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Abstract

This paper analyzes the continuity and differentiability of several classes of ruin functions under
Markov-modulated insurance risk models with a barrier and threshold dividend strategy, respectively.
Many ruin related functions in the literature, such as the expectation and the Laplace transform of the
Gerber–Shiu discounted penalty function at ruin, of the total discounted dividends until ruin, and of the
time-integrated discounted penalty and/or reward function of the risk process, etc, are special cases of the
functions considered in this paper. Continuity and differentiability of these functions in the corresponding
dual models are also studied.
c© 2008 Elsevier B.V. All rights reserved.

Keywords: Ruin function; Markov-modulated model; Dual model; Strong Markov property; Differentiability;
Gerber–Shiu function

1. Introduction

In risk theory, ruin probabilities and related quantities have been investigated extensively over
the past century. There is a huge amount of literature in this area. The ruin related quantities
include the time to ruin, the surplus immediately before ruin, the deficit at ruin, the maximal ruin
severity, the aggregate severity of ruin until recovery, and the time-integrated penalty or rewards
of the risk process, etc. When there are dividend payments in the model, the discounted aggregate
dividends until ruin is another important quantity. To explore these random variables, we usually
consider their expectations and/or Laplace transforms as functions of the initial surplus.
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One common way to deal with a risk function is to derive an integro-differential equation
satisfied by the concerned ruin function first. Then by either solving or analyzing this integro-
differential equation, we can obtain some interesting results. However, most of the papers in
actuarial science literature do not provide conditions and proofs for the differentiability of the
concerned ruin functions. In this paper, we are interested in the continuity and differentiability
of several classes of general ruin functions. Justification of higher-order differentiability is also
useful as in some particular cases where the claim size distributions fall into a certain class
such that the integro-differential equations can be transformed into solvable high-order ordinary
differential equations. Moreover, the existence of the derivatives of these ruin functions makes it
possible to compute them as integrals of other functions. For some related discussions, see [1].
When dividend payments are taken into consideration, the problem becomes more complex and
more important, since the continuity and differentiability of the functions concerned at the point
of the level of the threshold or the barrier may be a question. Moreover, in these cases, the ruin
functions usually satisfy piecewise integro-differential equations, which requires more boundary
conditions in order to be solved. If we can prove continuity and /or differentiability of these
functions at some of these points, these properties can serve as boundary conditions. Of course,
the continuity and differentiability properties themselves are of great mathematical interest.

Cai [2] considered the continuity and differentiability of a penalty function under a classical
insurance risk model with stochastic investment. For a similar model, Wang and Wu [3] proved
the continuity and differentiability of the ruin probability and the distribution of surplus before
and after ruin.

As an extension of the classical insurance risk model, the Markov-modulated (also called
Markovian regime-switching) insurance risk model takes the impact of external environment into
consideration. A time-homogeneous Markov chain with finite number of states is used to model
the changes of the economic environment in this model. See [4,5] and the references therein
for detailed discussions of this type of models. Another problem with the classical model is
that it is very conservative. Under the positive loading condition the surplus tends to infinity with
probability one as time goes to infinity. DeFinetti [6] proposed a model which pays dividends, and
the insurance risk models with dividend payments have attracted considerable attention recently.
Two most common dividend strategies are the barrier strategy and the threshold strategy. Under
the barrier strategy, the excess of the surplus over a barrier is paid out immediately as dividends
but no dividends are paid when the surplus is below the barrier. Under the threshold strategy,
dividends are paid at a constant rate no greater than the premium rate when the surplus exceeds
a barrier but no dividends are paid when the surplus is below the barrier.

In this paper, we consider the Markov-modulated risk model with a barrier or threshold
strategy and the corresponding dual models. We analyze the continuity and differentiability of
several classes of ruin functions based on these models. In order to make the ruin functions
general enough to include most quantities in the ruin theory as special cases, we introduce two
unified random variables and study the expectations and the Laplace transforms of them.

2. Markov-modulated model

In this section we deal with the Markov-modulated model. We consider two kinds of dividend
strategies, namely the threshold strategy and the barrier strategy. Let Rt denote the surplus of an
insurance company at time t , and Jt be the environment state at time t . Assume that {Jt } is a
time-homogeneous Markov process with the state space E = {1, . . . ,m}, and that it is governed
by the intensity matrix Q = (qi j )i, j∈E with qi := −qi i . Then the Markov-modulated risk process
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can be defined by

Rt = R0 +

∫ t

0
cJs ds −

N (t)∑
j=1

U j

where R0 denotes the initial reserve, ci (i ∈ E) are premium rates, U j is the size of the j th
claim, and N (t) counts the number of claims arriving before or on time t . Assume that given the
environment state at time t Jt = i , the claim arrival intensity at this moment is λi , and the claim
size distribution is Fi (·) if a claim occurs at this moment. For j ∈ N, define S j to be the arrival
time of the j th claim. Then we have N (t) = #{ j : S j ≤ t} and given JS j = i , the conditional
distribution function of U j is Fi (·). Furthermore, under the model, it is assumed that given the
environmental state JS j , U j is independent of {Ui , i 6= j} and {N (t)}.

When there are dividend payments in the model, we use Rb
t to denote the surplus at time

t for the risk model modified by dividend payments with either a barrier or threshold strategy,
where the superscript b denotes the level of the barrier or of the threshold. For the model under
a threshold dividend strategy, let dJt stand for the dividend payout rate at time t , if any. Let I {·}
be the indicator function. Then if the threshold dividend strategy is applied, the surplus process
is given by

Rb
t = Rb

0 +

∫ t

0

(
cJs − dJs I {Rb

s− ≥ b}
)

ds −
N (t)∑
j=1

U j . (2.1)

And if the barrier dividend strategy is adopted, the surplus process can be represented as below

Rb
t = Rb

0 ∧ b +
∫ t

0
cJs I {Rb

s− < b}ds −
N (t)∑
j=1

U j . (2.2)

For convenience, consider {(Rb
t , Jt )}t∈R+ as a canonical process on the path space Ω =

(R × E)R+ equipped with the σ -field A = (B(R) ⊗ 2E )R
+

generated by all evaluation maps
πt : Ω → R × E where B(R) and 2E denote the Borel σ -field of R and the collection of all
subsets of E , respectively. Consider the probability space (Ω ,A,P) and define Ft = σ {(Rb

s , Js) :

0 ≤ s ≤ t}. Write A for the P-completion of A and Ft for the P-completion of Ft in A.
Throughout this paper, we base our study on the filtered probability space (Ω ,A, {Ft },P) where
P is the extension of the probability measure P to the σ -field A. We introduce the shift operator
θt : Ω → Ω , t ≥ 0, given by (θtω)s = ωs+t , s, t ≥ 0, ω = (ωs : s ≥ 0) ∈ Ω .

We will show that for the Markov-modulated risk model without dividends, if the claim
size distributions are nice, some frequently concerned risk functions are usually continuous
and differentiable (up to high order) with respect to the initial reserve x except for the point
x = 0. When there are dividends in the model, the problem is more complex. For instance,
for a threshold or barrier dividend strategy with threshold or barrier level b, the point x = b is
sometimes not a differentiable point.

For convenience, we let (Rb, J ) stand for the process {(Rb
t , Jt ) : t ≥ 0}. Define the time to

ruin by Tb = inf{t ≥ 0 : Rb
t < 0}. It can be shown that Tb is an {F t }-stopping time. For any fixed

t ≥ 0, write (R× E)[0,t] for the class of functions f : [0, t] → R× E . For any set A ⊆ R+, let
πA : (R× E)R+ → (R× E)A be the projection map given by πA({Xs : s ≥ 0}) = {Xs : s ∈ A}.
Consider a measurable function w : R×R+× E → R such that for i ∈ E , w(x, y; i) ≡ 0 for all
x < 0 and w(0, 0; i) = 0. For any fixed t (0 ≤ t ≤ ∞), let K 1

t be a measurable map from the
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space (R×E)[0,t] to R, and K 2
t be a measurable map from the space (R×E)[0,t]×R+ to R, such

that both K 1
t and K 2

t have left limits for t > 0, that K 1
∞(R

b, J ) and K 2
Tb
(π[0,Tb](R

b, J ), Tb) are
bounded, and that for 0 ≤ t ≤ s ≤ ∞,

K 1
s (π[0,s](R

b, J )) = K 1
t−(π[0,t)(R

b, J ))+ g(t)K 1
s−t (π[0,s−t](θt (R

b, J ))), (2.3)

K 2
s∧Tb

(π[0,s∧Tb](R
b, J ), Tb) = K 2

(t∧Tb)−
(π[0,t∧Tb)(R

b, J ), Tb)

+ g(Tb)w(R
b
Tb−
, |Rb

Tb
|; JTb )I (Tb ≤ t)

+ g(t)K 2
(s−t)∧(Tb◦θt )

(
π[0,(s−t)∧(Tb◦θt )](θt (R

b, J ), Tb ◦ θt )
)

I (Tb > t), (2.4)

where K l
0−(·) ≡ 0 (l = 1, 2), and g(t) (t ≥ 0) is a continuous function with g(0) = 1. Write for

0 ≤ t <∞,

K
1
t = K 1

t (π[0,t](R
b, J )), K

2
t = K 2

t∧Tb
(π[0,t∧Tb](R

b, J ), Tb), (2.5)

K
1
= K 1

∞(R
b, J ), K

2
= K 2

Tb
(π[0,Tb](R

b, J ), Tb), (2.6)

K
1
0− = K

2
0− = 0.

Then {K
1
t : t ≥ 0} and {K

2
t : t ≥ 0} are two {F t }-adapted stochastic processes, of which the left

limits with respect to t exist for all t > 0, and K
1

and K
2

are two random variables with respect
to F .

Write E(x,i)[·] = E[·|(Rb
0 , J0) = (x, i)], and define functions for l = 1, 2

Vl(x, b; i) = E(x,i)[K
l
], (2.7)

Ll(x, b, r; i) = E(x,i)[e
−r K

l

] for r ≥ 0. (2.8)

These functions Vl(x, b; i) (l = 1, 2, i ∈ E) and Ll(x, b, r; i) (l = 1, 2, i ∈ E) are very general
in the sense that they include most of the risk functions considered in the literature of risk theory
as special cases. A few examples are listed below.

Example 1. For 0 ≤ t ≤ ∞, let K 2
t (π[0,t](R

b, J ), Tb) =
∫ t

0 dJs I {Rb
s− ≥ b}e−δsds, g(t) = e−δt

and w(x, y; i) ≡ 0 (i ∈ E). The random variable K
2
=
∫ Tb

0 dJs I {Rb
s− ≥ b}e−δsds is the

aggregate discounted dividends until ruin, and hence for each i , V2(x, b; i) and L2(x, b, r; i) are
the conditional expectation and the conditional Laplace transform of the aggregate discounted
dividends until ruin, respectively, given that the initial surplus is x and that the initial environment
state is i .

Example 2. Define a bounded measurable function ω : R × R+ → R+ such that ω(x, y) ≡ 0
for x < 0 and y ≥ 0. For 0 ≤ t ≤ ∞, let K 2

t (π[0,t](R
b, J ), Tb) = e−δTbω(Rb

Tb−
, |Rb

Tb
|)I (Tb ≤

t), g(t) = e−δt for δ ≥ 0, and w(x, y; i) = ω(x, y) (i ∈ E). The random variable

K
2
= e−δTbω(Rb

Tb−
, |Rb

Tb
|) is the discounted penalty at ruin and its expectation is the so-called

Gerber–Shiu discounted penalty function. This function covers a lot of important quantities in
risk theory (see [7]).

Example 3. Let µ : R+ → R+ and ν : R+ → R+ be two bounded measurable functions. For
0 ≤ t ≤ ∞, let K 1

t (π[0,t](R
b, J )) =

∫ t
0 e−δs(µ(|Rb

s |)I {R
b
s < 0} − ν(|Rb

s |)I {R
b
s ≥ 0})ds, and
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g(t) = e−δt . Then the random variable K
1
=
∫
∞

0 e−δs(µ(|Rb
s |)I {R

b
s < 0} − ν(|Rb

s |)I {R
b
s ≥

0})ds is the time-integrated discounted penalty. For more information about this quantity, refer
to [1].

Introduce Rb
0− = −1. For l = 1, 2, define functions ub

l : R × R+ × E → R and
vb

l : R× R+ × R+ × E → R+ such that for t > 0 and l = 1, 2,

ub
l (x, t; i)

=


E
[

K
l
t−|R

b
s = (x + ci s) ∧ b + (ci − di )

((
s −

b − x

ci

)
∨ 0

)
,

Js = i for 0 ≤ s < t

]
x < b

E
[

K
l
t−|R

b
s = x + (ci − di )s, Js = i for 0 ≤ s < t

]
x ≥ b,

(2.9)

vb
l (x, t, r; i)

=


E
[

e−r K
l
t− |Rb

s = (x + ci s) ∧ b + (ci − di )

((
s −

b − x

ci

)
∨ 0

)
,

Js = i for 0 ≤ s < t

]
x < b

E
[

e−r K
l
t− |Rb

s = x + (ci − di )s, Js = i for 0 ≤ s < t

]
x ≥ b.

(2.10)

Since K
l
0− = 0 (l = 1, 2), from the definitions (2.9) and (2.10) it follows that for l = 1, 2, i ∈ E ,

and x ∈ R,

ub
l (x, 0; i) ≡ 0, vb

l (x, 0, r; i) ≡ 1,

and by noticing that ruin occurs immediately if the initial value is less than 0, from (2.9) and
(2.10) we have that for x < 0, t ≥ 0 and i ∈ E ,

ub
2(x, t; i) ≡ 0, vb

2(x, t, r; i) ≡ 1.

Noting that in (2.9) and (2.10) the path of the process over time period [0, t) has been specified,
it can be shown that for l = 1, 2 and i ∈ E ,

vb
l (x, t, r; i) = e−rub

l (x,t;i).

Since Rb
0− = −1, and w(x, t; i) ≡ 0 (x < 0 and i ∈ E ), from (2.4) we have that given Tb = 0,

K
2
= w(Rb

0−, |R
b
0 |; J0) ≡ 0. Noting that ruin occurs immediately if the initial value is less than

0, it follows from (2.7) and (2.8) that for x < 0 and i ∈ E ,

V b
2 (x, b; i) ≡ 0, Lb

2(x, b, r; i) ≡ 1. (2.11)

Define for i ∈ E , ρ(x; i) =
∫
∞

x w(x, y − x; i)dFi (y) and α(x, r; i) =
∫
∞

x e−rw(x,y−x;i)dFi (y).
Let φ(x, t; i) and ϕ(x; i) be functions on R×R+×E and R×E , respectively. We first introduce
a few assumptions that will be needed later. We use C to denote any constant and C+ any strictly
positive constant and add a superscript (k) to a function to represent the kth-order derivative of
it for k = 1, 2, . . . , where a function with a superscript (0) is itself.
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Assumptions
I: (a) φ(x, t; i) (i ∈ E) are continuous for x ∈ R− {0, b} and t > 0; limx↑b φ(x, b−x

ci
; i) = 0;

(b)
∫
∞

0 e−(qi+λi )t |φ(x, t; i)|dt (i ∈ E) are bounded for x ∈ R;
(c) g(t) is continuous for t > 0 and right continuous at t = 0 i.e., limt↓0 g(t) = 1;
(d)
∫
∞

0 e−mini (qi+λi )t |g(t)|dt <∞.
I′: ρ(x; i) (i ∈ E) are bounded for x ∈ R.
II: For any i ∈ E ,

(a) Fi (x) is continuously differentiable up to (n−1)th order and all F (k)i (x) (k = 1, . . . , n−1)
are bounded for x > 0;

(b) For (x, t) ∈ {(x, t) : x < 0, 0 < t < − x
ci
} ∪ {(x, t) : 0 < x < b, 0 < t <

b−x
ci
} ∪ {(x, t) : x > b, t > 0}, and k = 0, 1, . . . , n, ∂

kφ(x,t;i)
∂xk exists and is continuous, and

|
∂kφ(x,t;i)

∂xk | ≤ C+e(qi+λi−ε)t for some ε > 0;

(c) For x ∈ (0, b): limx↑b φ(x, b−x
ci
; i) = 0; k, k′ = 0, 1, 2, . . . , n − 1, and k +

k′ ≤ n − 1, ∂k′

∂xk′ (
∂kφ(x,t;i)

∂xk |t= b−x
ci
−
) exists and is continuous, and | ∂

k′

∂xk′ (
∂kφ(x,t;i)

∂xk |t= b−x
ci
−
)| ≤

C+e
(qi+λi−ε)

b−x
ci for some ε > 0;

∂nφ(x, b−x
ci
−;i)

∂xn exists and is continuous, and |
∂nφ(x, b−x

ci
−;i)

∂xn | ≤

C+e
(qi+λi−ε)

b−x
ci for some ε > 0;

(d) g(t) is right continuous at t = 0; g(t) is continuously differentiable up to nth order for
t > 0, and for k = 0, . . . , n,

∫
∞

0 e−mini (qi+λi )t |g(k)(t)|dt <∞
II′: For i ∈ E and x ∈ (−∞, 0):

for k, k′ = 0, 1, 2, . . . , n−1, and k+k′ ≤ n−1, ∂k′

∂xk′ (
∂kφ(x,t;i)

∂xk |t=(− x
ci
)−) exists and is continuous,

and | ∂
k′

∂xk′ (
∂kφ(x,t;i)

∂xk |t=(− x
ci
)−)| ≤ C+e

−(qi+λi−ε)
x
ci for some ε > 0;

∂nφ(x,(− x
ci
)−;i)

∂xn exists and is

continuous, and |
∂nφ(x,(− x

ci
)−;i)

∂xn | ≤ C+e
−(qi+λi−ε)

x
ci for some ε > 0;

II′′: ϕ(x; i) (i ∈ E) are continuously differentiable up to (n − 1)th order and for k =
0, 1, . . . , n − 1, the kth-order derivatives are bounded.

Note: All the ε that appear in the above assumptions are not necessarily the same one. The
statement that a function is continuously differentiable up to 0th order is interpreted as that the
function is continuous.

Remark 2.1. The assumptions regarding the functions φ(x, t; i) (i ∈ E ) look formidable.
However, it is not difficult to verify these conditions for φ(x, t; i) = ub

l (x, t; i) or φ(x, t; i) =
vb

l (x, t, r; i) corresponding to those frequently concerned ruin functions. We illustrate this by
reconsidering the three examples introduced before.

Example 1. We have for x < 0, ub
2(x, t; i) ≡ 0 and vb

2(x, t, r; i) ≡ 1. For 0 < x < b
and 0 < t ≤ b−x

ci
, we also have ub

2(x, t; i) ≡ 0 and vb
2(x, t, r; i) ≡ 1. When x > b, we

have ub
2(x, t; i) = di

∫ t
0 e−δsds and vb

2(x, t, r; i) = e−di
∫ t

0 e−δs ds . It is easy to see that all the
assumptions hold for φ(x, t; i) = ub

l (x, t; i) or φ(x, t; i) = vb
l (x, t, r; i).

Example 2. For φ(x, t; i) = ub
l (x, t; i) or φ(x, t; i) = vb

l (x, t, r; i), all the assumptions on
φ(x, t; i) are satisfied by noting that ub

2(x, t; i) ≡ 0 and vb
2(x, t, r; i) ≡ 1 for all x ∈ R and

t ≥ 0.
Example 3. Suppose that for all x > 0, µ(x) and ν(x) are both continuously differentiable

up to (n − 1)th order, and for any k = 0, 1, . . . , n − 1, the kth-order derivatives are bounded. By
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the definition (2.9), we have that for x < 0 and 0 < t < − x
ci

,

ub
1(x, t; i) =

∫ t

0
e−δsµ(−x − ci s)ds =

1
ci

∫ x+ci t

x
e
−δ s−x

ci µ(−s)ds,

ub
1

(
x,−

x

ci
; i

)
=

1
ci

∫ 0

x
e
−δ s−x

ci µ(−s)ds.

So for any fixed i ∈ E , it is easy to see that for x < 0, 0 < t < − x
ci

, and k = 1, . . . , n − 1,
∂k

∂xk ub
1(x, t; i) and ∂k

∂xk ub
1(x,−

x
ci
; i) exist, and

∂k

∂xk ub
1(x, t; i) = (−1)k−1 1

ci

(
µ(k−1)(−x − ci t)e−δt − µ(k−1)(−x)

)
+
δ

ci

∂k−1

∂xk−1 ub
1(x, t; i),

∂k

∂xk ub
1(x, t; i)|t=(− x

ci
)− = (−1)k−1 1

ci

(
µ(k−1)(0−)e

δ x
ci − µ(k−1)(−x)

)
+
δ

ci

∂k−1

∂xk−1 ub
1(x, t; i)|t=(− x

ci
)−, (2.12)

∂k

∂xk ub
1

(
x,−

x

ci
; i

)
= (−1)k

1
ci
µ(k−1)(−x)+

δ

ci

∂k−1

∂xk−1 ub
1

(
x,−

x

ci
; i

)
.

It follows from (2.12) that for any k + k′ ≤ n − 1, if ∂k′

∂xk′ (
∂k−1

∂xk−1 ub
1(x, t; i)|t=(− x

ci
)−) exists, so

does ∂k′

∂xk′ (
∂k

∂xk ub
1(x, t; i)|t=(− x

ci
)−). Hence, by noticing that ub

1(x, (−
x
ci
)−; i) = ub

1(x,−
x
ci
; i) is

differentiable up to (n − 1)th order, it can be shown that for any k and k′ with k + k′ ≤ n − 1,
∂k′

∂xk′ (
∂k

∂xk ub
1(x, t; i)|t=(− x

ci
)−) exists and

∂k′

∂xk′

(
∂k

∂xk ub
1(x, t; i)|t=(− x

ci
)−

)
= (−1)k−1 1

ci

((
δ

ci

)k′

µ(k−1)(0−)e
δ x

ci − (−1)k
′

µ(k+k′−1)(−x)

)

+
δ

ci

∂k′

∂xk′

(
∂k−1

∂xk−1 ub
1(x, t; i)|t=−( x

ci
)−

)
.

Since for all i ∈ E , ub
1(x,−

x
ci
; i) (x < 0), ub

1(x, t; i) (x < 0) and µ(k)(x) (x > 0, k =
0, . . . , n − 1) are bounded, proceeding recursively it can be shown that all the derivatives
considered above are bounded. So for φ(x, t; i) = ub

l (x, t; i), II′ is satisfied here.

For 0 ≤ x < b, 0 < t < b−x
ci

and i ∈ E ,

ub
1(x, t; i) = −

∫ t

0
e−δsν(x + ci s)ds = −

1
ci

∫ x+ci t

x
e
−δ s−x

ci ν(s)ds

and ub
1(x,

b−x
ci
; i) = − 1

ci

∫ b
x e
−δ s−x

ci ν(s)ds.
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For x ≥ b, t > 0 and i ∈ E ,

ub
1(x, t; i) = −

∫ t

0
e−δsν(x + (ci − di )s)ds = −

1
ci − di

∫ x+(ci−di )t

x
e
−δ s−x

ci−di ν(s)ds.

Noticing the similarity between the case x < 0 and the two cases 0 < x < b and x > b, we
can therefore apply a similar argument to show that the assumptions II(b), (c) are satisfied for
φ(x, t; i) = ub

l (x, t; i).

Noting that vb
1(x, t, r; i) = e−rub

1(x,t;i), it is easy to prove that all the assumptions II(b), (c) as
well as II′ are satisfied for φ(x, t; i) = vb

l (x, t, r; i).
In what follows, we use A1 to represent the assumptions listed in I, and A2 to represent the

assumptions included in I and I′. Let B1 denote the assumptions II and II′, and B2 denote the
assumptions II and II′′.

2.1. Threshold dividend strategy

Assume that the company adopts a threshold dividend strategy with the threshold level b and
that it pays dividends at the rate dJt (0 ≤ dJt ≤ cJt ) at time t given the environment state Jt if
the surplus at this moment exceeds b. This model can be described by (2.1). We study the risk
functions Vl(x, b; i) (l = 1, 2, i ∈ E) and Ll(x, b, r; i) (l = 1, 2, i ∈ E ) based on this model.
In the next theorem, we present the conditions sufficient for the functions to be continuous or
differentiable (up to high order) with respect to the initial reserve x . Define σ1 to be the first
transition time of the Markov chain {Jt }. Let ∂

−

∂x , ∂
+

∂x and ∂
∂x stand for the left-partial derivative,

the right-partial derivative and the partial derivative, respectively, with respect to x .

Theorem 2.1. For fixed l = 1 or 2, if Al holds for φ(x, t; i) = ub
l (x, t; i), then the functions

Vl(x, b; i) (i ∈ E ) and Ll(x, b, r; i) (i ∈ E) are continuous in x for x ∈ R− {0}.

Proof. For any fixed i and any a.s. finite stopping time η, by conditioning on Fη first and then
using the strong Markov property of {(Rb

t , Jt )}, from (2.3)–(2.7) we have

V1(x, b; i) = E(x,i)[K
1
η− + g(η)E(Rb

η ,Jη)
[K

1
]] = E(x,i)[K

1
η− + g(η)V1(R

b
η, b; Jη)],(2.13)

V2(x, b; i)

= E(x,i)
[

K
2
η− + g(η)

(
E(Rb

η ,Jη)
[K

2
]I (Tb > η)+ w(Rb

Tb−
, |Rb

Tb
|; JTb )I (Tb = η)

)]
= E(x,i)

[
K

2
η− + g(η)

(
V2(R

b
η, b; Jη)I (Tb > η)+ w(Rb

Tb−
, |Rb

Tb
|; JTb )I (Tb = η)

)]
.

(2.14)

Note that conditioning on J0 = i and σ1 = t , the conditional probability of the event S1 > t is
e−λi t and the conditional density of S1 is λi e−λi s for s < t . Given (Rb

0 , J0) = (x, i) and σ1 = t ,
we have for 0 ≤ s < S1 and s ≤ t ,

Rb
s = x + ci

(
s ∧

(
b − x

ci
∨ 0

))
+ (ci − di )

((
s −

b − x

ci
∨ 0

)
∨ 0

)
.

By (2.9) it follows that for any 0 ≤ η ≤ S1 ∧ σ1, K
l
η− = ub

l (R
b
0 , η; J0) (l = 1, 2). Then, for

x < 0, setting η = σ1 ∧ S1 ∧ (−
x
ci
) in (2.13) and distinguishing three cases η = σ1, η = S1 and
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η = − x
ci

yield

V1(x, b; i) =
∫
−

x
ci

0
qi e−(qi+λi )t

(
ub

1(x, t; i)+ g(t)
∑
j 6=i

qi j

qi
V1(x + ci t, b; j)

)
dt

+

∫
−

x
ci

0
λi e−(qi+λi )sds

(
ub

1(x, s; i)+ g(s)
∫
∞

0
V1(x + ci s − y, b; i)dFi (y)

)
+ e

(qi+λi )
x
ci

(
ub

1

(
x,−

x

ci
; i

)
+ g

(
−

x

ci

)
V1(0, b; i)

)
for x < 0, (2.15)

where the first term on the right-hand side is obtained from the case η = σ1 by conditioning on
σ1 = t (0 ≤ t ≤ − x

ci
) and making use of the fact that conditioning on J0 and σ1, I {σ1 < S1} is

independent of (Rb
σ1
, Jσ1), the second term comes from the case η = S1 by first conditioning on

σ1 = t (0 ≤ t ≤ ∞) and then on S1 = s (0 ≤ s ≤ t ∧ (− x
ci
)), and the last term is regarding the

case η = − x
ci

. Similarly, for 0 ≤ x < b, by letting η = σ1 ∧ S1 ∧
b−x

ci
in (2.13) and (2.14), and

then distinguishing the cases η = σ1, η = S1 and η = b−x
ci

, we have

Vl(x, b; i) =
∫ b−x

ci

0
qi e−(qi+λi )t

(
ub

l (x, t; i)+ g(t)
∑
j 6=i

qi j

qi
Vl(x + ci t, b; j)

)
dt

+

∫ b−x
ci

0
λi e−(qi+λi )sds

(
ub

l (x, s; i)+ g(s)

×

[∫ x+ci s

0
Vl(x + ci s − y, b; i)dFi (y)+ ρ(x + ci s; i)I {l = 2}

])
+ e
−(qi+λi )

b−x
ci

(
ub

l

(
x,

b − x

ci
; i

)
+ g

(
b − x

ci

)
Vl(b, b; i)

)
for 0 ≤ x < b. (2.16)

When x ≥ b, letting η = σ1∧ S1 in (2.13) and (2.14), and then distinguishing η = σ1 and η = S1
gives

Vl(x, b; i) =
∫
∞

0
qi e−(qi+λi )t

(
ub

l (x, t; i)+ g(t)
∑
j 6=i

qi j

qi
Vl(x + (ci − di )t, b; j)

)
dt

+

∫
∞

0
λi e−(qi+λi )sds

(
ub

l (x, s; i)

+ g(s)

[∫ x+(ci−di )s

0
Vl(x + (ci − di )s − y, b; i)dFi (y)

+ ρ(x + (ci − di )s; i)I {l = 2}

])
. (2.17)

Recall from (2.11) that

V2(x, b; i) ≡ 0 for x < 0.
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Rearranging the terms in (2.15)–(2.17), we obtain that for l = 1, 2 and i, j ∈ E ,

Vl(x, b; i) = Cl(x; i)+
∑
j 6=i

qi j Al(x; i, j)+ Bl(x; i) (2.18)

where

A1(x; i, j) =



∫
−

x
ci

0
e−(qi+λi )t g(t)V1(x + ci t, b; j)dt x < 0∫ b−x

ci

0
e−(qi+λi )t g(t)V1(x + ci t, b; j)dt 0 ≤ x < b∫

∞

0
e−(qi+λi )t g(t)V1(x + (ci − di )t, b; j)dt x ≥ b,

(2.19)

A2(x; i, j) =


0 x < 0∫ b−x

ci

0
e−(qi+λi )t g(t)V2(x + ci t, b; j)dt 0 ≤ x < b∫

∞

0
e−(qi+λi )t g(t)V2(x + (ci − di )t, b; j)dt x ≥ b,

(2.20)

B1(x; i)

=



∫
−

x
ci

0
λi e−(qi+λi )s g(s)ds

∫
∞

0
V1(x + ci s − y, b; i)dFi (y), x < 0∫ b−x

ci

0
λi e−(qi+λi )s g(s)ds

∫
∞

0
V1(x + ci s − y, b; i)dFi (y), 0 ≤ x < b∫

∞

0
λi e−(qi+λi )s g(s)ds

∫
∞

0
V1(x + (ci − di )s − y, b; i)dFi (y), x ≥ b,

(2.21)

B2(x; i)

=



0, x < 0∫ b−x
ci

0
λi e−(qi+λi )s g(s)ds

×

(∫ x+ci s

0
V2(x + ci s − y, b; i)dFi (y)+ ρ(x + ci s; i)

)
, 0 ≤ x < b∫

∞

0
λi e−(qi+λi )s g(s)ds

(∫ x+(ci−di )s

0
V2(x + (ci − di )s − y, b; i)dFi (y)

+ ρ(x + (ci − di )s)

)
, x ≥ b,

(2.22)

C1(x; i) = (qi + λi )

∫
−

x
ci

0
e−(qi+λi )t ub

1(x, t; i)dt + e
(qi+λi )

x
ci ub

1

(
x,−

x

ci
; i

)
+ e

(qi+λi )
x
ci g

(
−

x

ci

)
V1(0, b; i) for x < 0, (2.23)

C2(x; i) ≡ 0 for x < 0, (2.24)
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Cl(x; i) = (qi + λi )

∫ b−x
ci

0
e−(qi+λi )t ub

l (x, t; i)dt + e
−(qi+λi )

b−x
ci ub

l

(
x,

b − x

ci
; i

)
+ e
−(qi+λi )

b−x
ci g

(
b − x

ci

)
Vl(b, b; i) for 0 ≤ x < b, (2.25)

and

Cl(x; i) = (qi + λi )

∫
∞

0
e−(qi+λi )t ub

l (x, t; i)dt for x ≥ b. (2.26)

For l = 1 or 2, by I(a), (b), (c) for φ(x, t; i) = ub
l (x, t; i) and the dominated convergence

theorem, it follows from (2.23)–(2.26) that Cl(x; i) (i ∈ E) are continuous for x ∈ R − {0, b}
and bounded for all x ∈ R.

Note from (2.19) and (2.20) that for i, j ∈ E ,

A1(x; i, j) =



1
ci

∫ 0

x
e
−(qi+λi )

t−x
ci g

(
t − x

ci

)
V1(t, b; j)dt x < 0

1
ci

∫ b

x
e
−(qi+λi )

t−x
ci g

(
t − x

ci

)
V1(t, b; j)dt 0 ≤ x < b

1
ci − di

∫
∞

x
e
−(qi+λi )

t−x
ci−di g

(
t − x

ci − di

)
V1(t, b; j)dt x ≥ b.

(2.27)

A2(x; i, j) =


0 x < 0
1
ci

∫ b

x
e
−(qi+λi )

t−x
ci g

(
t − x

ci

)
V2(t, b; j)dt 0 ≤ x < b

1
ci − di

∫
∞

x
e
−(qi+λi )

t−x
ci−di g

(
t − x

ci − di

)
V2(t, b; j)dt x ≥ b.

(2.28)

Since K
l

is bounded, Vl(x, b; i) (i ∈ E) are also bounded. The boundedness of Vl(x, b; i) (i ∈ E)
and the assumptions I(c), (d) for φ(x, t; i) = ub

l (x, t; i), imply that Al(x; i, j) (i, j ∈ E ) are
continuous for x ∈ R− {0, b} and bounded for x ∈ R.

Transformation of variables in (2.21) and (2.22) gives

B1(x; i)

=



∫ 0

x

λi

ci
e
−(qi+λi )

z−x
ci g

(
z − x

ci

)
dz
∫
∞

0
V1(z − y, b; i)dFi (y), x < 0,∫ b

x

λi

ci
e
−(qi+λi )

z−x
ci g

(
z − x

ci

)
dz
∫
∞

0
V1(z − y, b; i)dFi (y), 0 ≤ x < b,∫

∞

x

λi

ci − di
e
−(qi+λi )

z−x
ci−di g

(
z − x

ci − di

)
dz

×

∫
∞

0
V1(z − y, b; i)dFi (y), x ≥ b,

(2.29)

B2(x; i) =


0, x < 0,∫ b

x

λi

ci
e
−(qi+λi )

z−x
ci g

(
z − x

ci

)
ξ(z; i)dz, 0 ≤ x < b,∫

∞

x

λi

ci − di
e
−(qi+λi )

z−x
ci−di g

(
z − x

ci − di

)
ξ(z; i)dz, x ≥ b,

(2.30)
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where ξ(x; i) =
∫ x

0 V2(x − y, b; i)dFi (y)+ ρ(x; i). By the dominated convergence theorem, it
follows from the boundedness of V1 and the assumptions I(c), (d) for φ(x, t; i) = ub

1(x, t; i), that
B1(x; i) (i ∈ E) are continuous and bounded for x ∈ R−{0, b}. Since if I′ holds, ξ(x; i) (i ∈ E)
are continuous and bounded, then B2(x; i) (i ∈ E) are also continuous for x ∈ R − {0, b} and
bounded for all x ∈ R. Therefore, Vl(x, t; i) (i ∈ E) are continuous for x ∈ R − {0, b} and
bounded for x ∈ R.

Now we look at the continuity at x = b. By using a similar argument in proving the continuity
of Vl in x for x > b, from (2.17) we can show that Vl(x, b; i) (i ∈ E) are right continuous with
respect to x at x = b. Letting x ↑ b in (2.16), from the fact that limx↑b ub

l (x,
b−x

ci
; i) = 0

and limt↓0 g(t) = 1, it follows that limx↑b Vl(x, b; i) = Vl(b, b; i) (i ∈ E). Therefore,
Vl(x, b; i) (i ∈ E) are continuous with respect to x at x = b.

The desired results concerning L(x, r, b; i) can be proved similarly. �

Next, we consider the differentiability of the ruin functions Vl(x, b; i) and Ll(x, r, b; i) with
respect to the initial reserve x .

Theorem 2.2. For fixed l = 1 or 2, if for some n (n ≥ 1), Bl holds for φ(x, t; i) = ub
l (x, t; i)

and ϕ(x; i) = ρ(x; i), then all the functions Vl(x, b; i) (i ∈ E) are continuously differentiable
up to nth order with respect to x for x ∈ R−{0, b}, and the right and left derivatives with respect
to x of the functions Vl(x, b; i) (i ∈ E) at the point x = b exist and satisfy

∂−

∂x
Vl(x, b; i)|x=b = lim

h↓0

ub
l (b,

h
ci
; i)− ub

l (b − h, h
ci
; i)

h
+

ci − di

ci

∂+

∂x
Vl(x, b; i)|x=b

for i ∈ E .

Proof. Let φ(x, t; i) = ub
l (x, t; i) and let the functions Al(x; i, j), Bl(x; i) and Cl(x; i) be

defined in the proof of Theorem 2.1. Before we proceed to study the differentiability, we first
consider the functions Cl(x; i) (i ∈ E , l = 1, 2). If Bl holds for n = 1, from (2.23)–(2.26) it is
not difficult to see that for x ∈ R− {0, b}, d

dx Cl(x; i) (i ∈ E ) exist, and that they are continuous
and bounded. Moreover, for i ∈ E ,

d
dx

C1(x; i) = C
∫
−

x
ci

0
e−(qi+λi )t ∂

∂x
ub

1(x, t; i)dt + Ce
(qi+λi )

x
ci ub

1

(
x,−

x

ci
; i

)

+Ce
(qi+λi )

x
ci
∂

∂x
ub

1

(
x,−

x

ci
; i

)
+ Ce

(qi+λi )
x
ci g

(
−

x

ci

)
+ Ce

(qi+λi )
x
ci g′

(
−

x

ci

)
for x < 0,

d
dx

C2(x; i) = 0 for x < 0,

d
dx

Cl(x; i) = C
∫ b−x

ci

0
e−(qi+λi )t ∂

∂x
ub

l (x, t; i)dt + Ce
−(qi+λi )

b−x
ci ub

l

(
x,

b − x

ci
; i

)

+Ce
−(qi+λi )

b−x
ci
∂

∂x
ub

l

(
x,

b − x

ci
; i

)
+ Ce

−(qi+λi )
b−x
ci g

(
b − x

ci

)

+Ce
−(qi+λi )

b−x
ci g′

(
b − x

ci

)
for 0 < x < b,
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and

d
dx

Cl(x; i) = C
∫
∞

0
e−(qi+λi )t ∂

∂x
ub

l (x, t; i)dt for x > b.

Proceeding repeatedly, we can conclude that if Bl (l = 1 or 2) holds for some n, dk

dxk Cl(x; i) (i ∈
E) exist for k ≤ n, and they are continuous and bounded for x ∈ R − {0, b}, and for all k ≤ n,
l = 1, 2 and i ∈ E ,

dk

dxk C1(x; i) = C
∫
−

x
ci

0
e−(qi+λi )t ∂

k

∂xk ub
1(x, t; i)dt

+

k−1∑
k′=0

k−k′−1∑
s=0

Ce
(qi+λi )

x
ci
∂s

∂x s

(
∂k′

∂xk′
ub

1(x, t; i)|
t=
(
−

x
ci

)
−

)

+

k∑
k′=0

Ce
(qi+λi )

x
ci
∂k′

∂xk′
ub

1

(
x,−

x

ci
; i

)
+

k∑
k′=0

Ce
−(qi+λi )

b−x
ci g(k

′)

(
−

x

ci

)
for x < 0,

dk

dxk C2(x; i) ≡ 0 for x < 0,

dk

dxk Cl(x; i) = C
∫ b−x

ci

0
e−(qi+λi )t ∂

k

∂xk ub
l (x, t; i)dt

+

k−1∑
k′=0

k−k′−1∑
s=0

Ce
−(qi+λi )

b−x
ci
∂s

∂x s

(
∂k′

∂xk′
ub

l (x, t; i)|t= b−x
ci
−

)

+

k∑
k′=0

Ce
−(qi+λi )

b−x
ci
∂k′

∂xk′
ub

l

(
x,

b − x

ci
; i

)

+

k∑
k′=0

Ce
−(qi+λi )

b−x
ci g(k

′)

(
b − x

ci

)
for 0 < x < b,

and

dk

dxk Cl(x; i) = (qi + λi )

∫
∞

0
e−(qi+λi )t ∂

k

∂xk ub
l (x, t; i)dt for x > b.

Assume that Bl holds for n = 1. For any fixed i and j , from the boundedness and the
continuity of V (x, b; i) for x ∈ R − {0}, and the assumption II (d), we can conclude that the
derivatives of the integrands in (2.27) and (2.28) with respect to x are both continuous on the
associated area and they are bounded for x ∈ R − {0, b}. So from (2.27) and (2.28), we can see
that for x ∈ R − {0, b} and i, j ∈ E , d

dx Al(x; i, j) exists and it is continuous with respect to x .
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Moreover, we have

d
dx

A1(x; i, j)

=



CV1(x, b; j)+ C
∫ 0

x
e
−(qi+λi )

t−x
ci

×

(
qi + λi

ci
g

(
t − x

ci

)
−

1
ci

g′
(

t − x

ci

))
V1(t, b; j)dt x < 0,

CV1(x, b; j)+ C
∫ b

x
e
−(qi+λi )

t−x
ci

×

(
qi + λi

ci
g

(
t − x

ci

)
−

1
ci

g′
(

t − x

ci

))
V1(t, b; j)dt 0 < x < b,

CV1(x, b; j)+ C
∫
∞

x
e
−(qi+λi )

t−x
ci−di

×

(
qi + λi

ci − di
g

(
t − x

ci − di

)
−

1
ci − di

g′
(

t − x

ci − di

))
V1(t, b; j)dt x > b,

(2.31)

d
dx

A2(x; i, j)

=



0 x < 0

CV2(x, b; j)+ C
∫ b

x
e
−(qi+λi )

t−x
ci

×

(
qi + λi

ci
g

(
t − x

ci

)
−

1
ci

g′
(

t − x

ci

))
V2(t, b; j)dt 0 < x < b,

CV2(x, b; j)+ C
∫
∞

x
e
−(qi+λi )

t−x
ci−di

×

(
qi + λi

ci − di
g

(
t − x

ci − di

)
−

1
ci − di

g′
(

t − x

ci − di

))
V2(t, b; j)dt x > b.

(2.32)

For x ∈ R − {0, b}, by the continuity and boundedness of
∫
∞

0 V1(x − y, b; i)dFi (y) (i ∈
E), and the assumption II(d), it follows from (2.29) that B1(x; i) (i ∈ E) are continuously
differentiable and the derivatives are given as below: for i ∈ E ,

d
dx

B1(x; i) = C
∫
∞

0
V1(x − y, b; i)dFi (y)

+C
∫ 0

x
e
−(qi+λi )

z−x
ci g

(
z − x

ci

)
dz
∫
∞

0
V1(z − y, b; i)dFi (y)

+C
∫ 0

x
e
−(qi+λi )

z−x
ci g′

(
z − x

ci

)
dz
∫
∞

0
V1(z − y, b; i)dFi (y) for x < 0,

d
dx

B1(x; i) = C
∫
∞

0
V1(x − y, b; i)dFi (y)

+C
∫ b

x
e
−(qi+λi )

z−x
ci g′

(
z − x

ci

)
dz
∫
∞

0
V1(z − y, b; i)dFi (y)

+C
∫ b

x
e
−(qi+λi )

z−x
ci g

(
z − x

ci

)
dz
∫
∞

0
V1(z − y, b; i)dFi (y) for 0 < x < b,
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d
dx

B(x; i) = C
∫
∞

0
V1(x − y, b; i)dFi (y)

+C
∫
∞

x
e
−(qi+λi )

z−x
ci−di g

(
z − x

ci − di

)
dz
∫
∞

0
V1(z − y, b; i)dFi (y)

+C
∫
∞

x
e
−(qi+λi )

z−x
ci−di g′

(
z − x

ci − di

)
dz
∫
∞

0
V1(z − y, b; i)dFi (y) for x > b.

For i ∈ E and for x ∈ R − {0, b}, from the continuity and boundedness of
∫ x

0 V2(x −
y, b; i)dFi (y) and the assumption II′′, it follows that ξ(x; i) is continuous and bounded. Hence,
by II d), from (2.30) we can conclude that B2(x; i) (i ∈ E) are continuously differentiable and
that for i ∈ E ,

d
dx

B2(x; i) ≡ 0 for x < 0,

d
dx

B2(x; i) = Cξ(x; i)+ C
∫ b

x
e
−(qi+λi )

z−x
ci g′

(
z − x

ci

)
ξ(z; i)dz

+C
∫ b

x
e
−(qi+λi )

z−x
ci g

(
z − x

ci

)
ξ(z; i)d for 0 < x < b,

and

d
dx

B2(x; i) = Cξ(x; i)+ C
∫
∞

x
e
−(qi+λi )

z−x
ci−di g

(
z − x

ci − di

)
ξ(z; i)dz

+C
∫
∞

x
e
−(qi+λi )

z−x
ci−di g′

(
z − x

ci − di

)
ξ(z; i)dz for x > b.

Further, by II(d) it can be seen that for x ∈ R− {0, b}, l = 1, 2, and i ∈ E ,

d
dx

Bl(x; i) ≤ C+ + C+
∫
∞

0
e−(qi+λi )t g(t)dt + C+

∫
∞

0
e−(qi+λi )t g′(t)dt <∞.

As a result, all Bl(x; i) (i ∈ E ) are bounded. Thus, from (2.18) it follows that for i ∈ E and
x ∈ R − {0, b}, Vl(x, b; i) is continuously differentiable with respect to x and ∂

∂x Vl(x, b; i) is
bounded in x .

Now we look at the differentiability at x = b. The approach used to prove the differentiability
with respect to x for x ∈ R − {0, b} can be applied to show that the right and left derivatives
with respect to x of the functions Vl(x, b; i) (i ∈ E ) exist for x ∈ R− {0}, and the right and left
derivatives are continuous in x for x ∈ R− {0}. Let η = σ1 ∧ S1 ∧

h
ci

with h > 0, which is also
a stopping time. Invoking (2.13) and (2.14), and distinguishing three cases η = σ1, η = S1 and
η = h

ci
, from the same argument as in deriving (2.16) and (2.17), it follows that for i ∈ E ,

Vl(b, b; i)− Vl(b − h, b; i)

=

∫ h
ci

0
e−(qi+λi )t dt

[
(qi + λi )

(
ub

l (b, t; i)− ub
l (b − h, t; i)

)
+ g(t)

(∑
j 6=i

qi j (Vl(b + (ci − di )t, b; j)− Vl(b − h + ci t, b; j))

+ λi I {l = 1}
∫
∞

0
(V1(b + (ci − di )t − z, b; j)− V1(b − h + ci t, b; j)) dFi (z)
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+ λi I {l = 2} (ξ(b + (ci t − di t); i)− ξ(b − h + ci t; i))

)]
+ e
−(qi+λi )

h
ci

(
ub

l

(
b,

h

ci
; i

)
− ub

l

(
b − h,

h

ci
; i

)
+ g

(
h

ci

)
×

(
Vl(b + (ci − di )

h

ci
, b; i)− Vl(b, b; i)

))
.

Dividing both sides of the equation (2.32) by h and then letting h ↓ 0 yield that for i ∈ E ,

∂−

∂x
Vl(x, b; i)|x=b = lim

h↓0

ub
l (b,

h
ci
; i)− ub

l (b − h, h
ci
; i)

h
+

ci − di

ci

∂+

∂x
Vl(x, b; i)|x=b.

Therefore, for any fixed i , Vl(x, b; i) is not necessarily differentiable at x = b and the

differentiability holds if and only if ∂−

∂x Vl(x, b; i)|x=b =
ci
di

limh↓0
ub

l (b,
h
ci
;i)−ub

l (b−h, h
ci
;i)

h or if

and only if ∂
+

∂x Vl(x, b; i)|x=b =
ci
di

limh↓0
ub

l (b,
h
ci
;i)−ub

l (b−h, h
ci
;i)

h .
Next, let us consider the case that Bl holds for n = 2. From the previous part, it is obvious

that for x ∈ R − {0, b}, the first terms of all the expressions on the right-hand side of (2.31)
and (2.32) are continuously differentiable with respect to x , and they have bounded derivatives.
By the assumption II(d), a similar argument shows that for x ∈ R − {0, b}, the second terms
(2.31) and (2.32) are also continuously differentiable with respect to x , and the corresponding
derivatives are bounded in x . As a consequence, for x ∈ R−{0, b}, Al(x; i, j) (i, j ∈ E) are twice
continuously differentiable with respect to x and the corresponding second-order derivatives are
bounded.

Since for x ∈ R−{0, b}, ∂
∂x V (x, b; i) (i ∈ E) exist, and are continuous and bounded in x , by

II′ and by applying a similar argument as in proving the first-order differentiability, it follows that
ξ(x; i) (i ∈ E) and ξ ′(x; i) (i ∈ E) are continuous and bounded on x ∈ R − {0, b}. Hence, the
assumption Bl (for n = 2) guarantees that Bl(x; i) (i ∈ E) are twice continuously differentiable
for x ∈ R− {0, b}, and these second-order derivatives are bounded.

Therefore, by (2.18), we can conclude that for x ∈ R − {0, b}, Vl(x, b; i) (i ∈ E) are twice
continuously differentiable with respect to x and the second-order derivatives are bounded in x .

We can proceed analogously to prove that for l ∈ {1, 2} and x ∈ R−{0, b}, if Bl hold for some
n = 1, 2, . . . , Vl(x, b; i) (i ∈ E) are continuously differentiable up to nth order with respect to
x , and for k ≤ n, all the kth-order derivatives are bounded. �

The same technique can be applied to prove the following theorem concerning the
differentiability of the functions Ll(x, b, r; i) with respect to x .

Theorem 2.3. For fixed l = 1 or 2, if for some n (n ≥ 1), Bl holds for φ(x, t; i) = vb
l (x, t, r; i)

and ϕ(x; i) = α(x, r; i), then the functions Ll(x, b, r; i) (i ∈ E) are continuously differentiable
up to nth order with respect to x for x ∈ R − {0, b}, and the right and left derivatives of the
functions Ll(x, b, r; i) (i ∈ E) with respect to x at x = b exist and satisfy

∂−

∂x
Ll(x, b, r; i)|x=b = lim

h↓0

vb
l (b,

h
ci
, r; i)− vb

l (b − h, h
ci
, r; i)

h
Ll(b, b, r; i)

+
ci − di

ci

∂+

∂x
Ll(x, b, r; i)|x=b for i ∈ E .

The next corollary states the conditions for guaranteeing the continuity and differentiability
of those frequently concerned ruin functions considered in the previous examples.
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Corollary 2.4. (i) All the conditional expectations and Laplace transforms of the aggregate
discounted dividends until ruin defined in Example 1, are continuous with respect to x on R−{0}.
Furthermore, if all Fi (x) (i ∈ E) are continuously differentiable up to (n − 1)th order, all these
conditional expectations and Laplace transforms are continuously differentiable up to nth order
with respect to x for x ∈ R− {0, b}.
(ii) If

∫
∞

0 ω(x, y)dFi (y) (i ∈ E) are bounded, all the conditional expectations and Laplace
transforms of the discounted penalty function at ruin defined in Example 2, are continuous
with respect to x on R − {0}. Furthermore, if for all i ∈ E , Fi (x) and

∫
∞

0 ω(x, y)dFi (y) are
continuously differentiable up to (n − 1)th order and nth order respectively, and the derivatives
F (k)i (x) (k = 1, . . . , n − 1) and ∂k

∂xk

∫
∞

0 ω(x, y)dFi (y) (k = 1, . . . , n) are bounded for x > 0,
then all the conditional expectations and Laplace transforms are continuously differentiable up
to nth order with respect to x for x ∈ R− {0, b}.
(iii) All the conditional expectations and Laplace transforms of the time-integrated discounted

penalty studied in Example 3, are continuous with respect to x on R−{0}. If for x > 0, all Fi (x)
(i ∈ E ) are continuously differentiable up to (n − 1)th order, µ(x) and ν(x) are continuously
differentiable up to nth order, and the derivatives F (k)i (x) (i ∈ E , k = 0, 1, . . . , n − 1), µ(k)(x)
and ν(k)(x) (k = 0, 1, . . . , n) are bounded for x > 0, then all the conditional expectations
and Laplace transforms are continuously differentiable up to nth order with respect to x for
x ∈ R− {0, b}.

Proof. The assertions follow immediately from Remark 2.1 and Theorems 2.1–2.3. �

2.2. Barrier strategy

In this subsection, we assume that dividends are paid according to a barrier strategy with
barrier level b. Then the surplus process can be described by (2.2). When the initial reserve
x is less than or equal to the barrier b, this process coincides with the risk process under the
threshold dividend strategy with the dividend payment rates equaling the premium income rates
at the same time (dJt = cJt ). But this is not the case if the initial reserve is greater than the
barrier i.e. x > b. Because, when the barrier strategy is applied, all the excess amount over b is
immediately paid out as dividends to make the surplus always stay at level b before the arrival
of the first claim, while the surplus will be greater than x (x > b) until the arrival of the first
claim if the threshold strategy is used. Therefore, when x ≤ b, the functions Vl(x, b; i) (i ∈ E)
and Ll(x, b, r; i) (i ∈ E) based on the model (2.2) have same expressions as in the threshold
strategy case with di = ci for all i ∈ E . For x > b, the evolution of the risk process under
the barrier strategy with the initial value x is same as that of the process under the threshold
strategy with initial value b, except that we have an amount of dividends x − b at time 0 in
the former case. Similarly, we define functions for l = 1, 2, ub

l : R × R+ × E → R and
vb

l : R× R+ × R+ × E → R+ such that for t > 0 and l = 1, 2,

ub
l (x, t; i) =

E
[

K
l
t−|R

b
s = (x + ci s) ∧ b, Js = i for 0 ≤ s < t

]
x < b

E
[

K
l
t−|R

b
s = b, Js = i for 0 ≤ s < t

]
x ≥ b,

vb
l (x, t, r; i) =


E
[

e−r K
l
t− |Rb

s = (x + ci s) ∧ b, Js = i for 0 ≤ s < t

]
x < b

E
[

e−r K
l
t− |Rb

s = b, Js = i for 0 ≤ s < t

]
x ≥ b.
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It is clear that when x ≤ b, the above functions coincide with the corresponding ones based on the
risk model under the threshold strategy with ci = di (i ∈ E). These lead to the following theorem.

Theorem 2.5. Fix l = 1 or 2.
(i) If Al holds for φ(x, t; i) = ub

l (x, t; i), then for all i ∈ E , the functions Vl(x, b; i) and
Ll(x, b, r; i) are continuous with respect to x for x ∈ R− {0}.
(ii) If for some n ≥ 1, Bl holds for φ(x, t; i) = ub

l (x, t; i) (φ(x, t; i) = vb
l (x, t, r; i))

and ϕ(x; i) = ρ(x; i) (ϕ(x; i) = α(x, r; i)), then for all i ∈ E , Vl(x, b; i) (Ll(x, b, r; i)) are
continuously differentiable up to nth order with respect to x for x ∈ R−{0, b}, and the right and
left derivatives of the functions Vl(x, b; i) (Ll(x, b, r; i)) with respect to x exist and satisfy

∂−

∂x
Vl(x, b; i)|x=b = lim

h↓0

ub
l (b,

h
ci
; i)− ub

l (b − h, h
ci
; i)

h∂−
∂x

Ll(x, b, r; i)|x=b = lim
h↓0

vb
l

(
b, h

ci
, r; i

)
− vb

l (b − h, h
ci
, r; i)

h
Ll(b, b, r; i)

 .
Proof. The continuity and differentiability are obviously true when x > b. For x ≤ b, proceeding
similarly as in the model under the threshold strategy gives us the desired assertions. �

Remark 2.2. The continuity and differentiability of the functions Vl(x, b; i) (i ∈ E ) and
Ll(x, b, r; i) (i ∈ E) with respect to x for x ∈ R − {0, b} under the barrier dividend strategy
are same as those under the threshold strategy. As a direct result, Corollary 2.4 still holds for the
model under barrier strategy. We will show in the next corollary, that under the barrier strategy,
the ruin functions may have better properties at the point x = b.

Corollary 2.6. (i) Under the barrier strategy, if all the claim size distribution functions
Fi (x) (i ∈ E) are absolutely continuous, all the conditional expectations and Laplace transforms
of the aggregate discounted dividends until ruin defined in Example 1 are continuously
differentiable with respect to x at x = b.
(ii) If all the functions Fi (x) (i ∈ E) and

∫
∞

0 ω(x, y)dFi (y) (i ∈ E) are continuous and
bounded, all the conditional expectations and Laplace transforms of the discounted penalty at
ruin defined in Example 2 are continuously differentiable with respect to x at x = b.
(iii) If all the functions Fi (x) (i ∈ E), µ(x) and ν(x) are continuous and bounded, all

the conditional expectations and Laplace transforms of the time-integrated discounted penalty
studied in Example 3 are continuously differentiable with respect to x at x = b.

Proof. By Theorem 2.5, it is easy to see that if these functions are differentiable with respect to
x at x = b, then the derivatives are continuous at x = b.

(i) For the aggregate discounted dividends until ruin defined in Example 1, we have

w(x, y; i) ≡ 0 for all x ∈ R,

ub
2(x, t; i) =

∫ t

b−x
ci
∧t

ci e−δsds, vb
2(x, t, r; i) = e

−r
∫ t

b−x
ci
∧t

ci e−δs ds
for 0 ≤ x ≤ b,

V2(x, b; i) = x − b + V2(b, b; i), L2(x, b, r; i) = e−r(x−b)L2(b, b, r; i) for x > b.
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It follows by Theorem 2.5 that

∂−

∂x
V2(x, b; i)|x=b =

ci
∫ h

ci
0 e−δsds

h
= 1,

∂−

∂x
L2(x, b, r; i)|x=b = lim

h↓0

e−r
∫ h

ci
0 ci e−δt dt

− 1
h

L2(b, b, r; i) = −r L2(b, b, r; i).

Since from (2.32) we have ∂+

∂x V2(x, b; i)|x=b = 1, and ∂+

∂x L2(x, b, r; i)|x=b = −r L2(b, b, r; i),
the assertion follows immediately.

(ii) For the discounted penalty at ruin considered in Example 2, we have

ub
2(x, t; i) ≡ 0, vb

2(x, t, r; i) ≡ 1, for all x ≥ 0,

V2(x, b; i) = V2(b, b; i), L2(x, b, r; i) = L2(b, b, r; i), for x ≥ b.

Therefore, we have

∂+

∂x
V2(x, b; i)|x=b = 0,

∂+

∂x
L2(x, b, r; i)|x=b = 0.

By Theorem 2.5 it is easy to see that

∂−

∂x
V2(x, b; i)|x=b = 0,

∂−

∂x
L2(x, b, r; i)|x=b = 0.

This proves the desired differentiability at x = b.
(iii) For the time-integrated discounted penalty concerned in Example 3, we have

ub
1

(
b − h,

h

ci
; i

)
= −

∫ h
ci

0
e−δsν(b − h + ci s)ds = −

1
ci

e
−
δ
ci
(h−b)

∫ b

b−h
e
−
δ
ci

s
ν(s)ds,

ub
1

(
b,

h

ci
; i

)
= −

∫ h
ci

0
e−δsν(b + (ci − di )s)ds.

Hence, by Theorem 2.5 and noticing that vb
1(x, t, r; i) = e−rub

1(x,t;i), it follows that for i ∈ E ,

∂−

∂x
V1(x, b; i)|x=b = 0,

∂−

∂x
L1(x, b, r; i)|x=b = 0.

Since

V1(x, b; i) = V1(b, b; i), L1(x, b, r; i) = L1(b, b, r; i), for x ≥ b,

we have

∂+

∂x
V1(x, b; i)|x=b = 0,

∂+

∂x
L1(x, b, r; i)|x=b = 0.

Therefore, V1(x, b; i) (i ∈ E) and L1(x, b, r; i) are differentiable with respect to x at the point
x = b. �

3. Markov-modulated dual model

In this section, we consider a Markov-modulated dual model. The dual model has been studied
by some authors before. Avanzi et al. [8] has considered the optimal dividends in the classical
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dual model. We continue to use Rt to denote the surplus of the dual model at time t . Let all the
other notations be defined same as before unless stated otherwise. Define Rt by

Rt = x +
N (t)∑
j=1

U j −

∫ t

0
cJs ds.

Also let Rb
t represent the surplus of the corresponding modified process with a barrier or

threshold dividend strategy with the level of the barrier or of the threshold being b. We consider
the dual model with the threshold dividend strategy, the surplus process of which is described by

Rb
t = x +

N (t)∑
j=1

U j −

∫ t

0
(cJs + dJs I {Rb

s− ≥ b})ds.

Define for l = 1, 2 and i ∈ E ,

ub
l (x, t; i) =



E
[

K
l
t−|R

b
s = x − ci s, Js = i for 0 ≤ s < t

]
for x ≤ b,

E

[
K

l
t−|R

b
s = x − (ci + di )s I

{
s <

x − b

ci + di

}
− ci

((
s −

x − b

ci + di

)
∨ 0

)
, Js = i for 0 ≤ s < t,

]
for x > b,

vb
l (x, t, r; i) =



E

[
e−r K

l
t− |Rb

s = x − ci s, Js = i for 0 ≤ s < t

]
for x ≤ b,

E

[
e−r K

l
t− |Rb

s = x − (ci + di )s I

{
s <

x − b

ci + di

}
− ci

((
s −

x − b

ci + di

)
∨ 0

)
, Js = i for 0 ≤ s < t,

]
for x > b.

Since {(Rb
t , Jt )} is still a Markov process, the approach used to deal with the modified Markov-

modulated model applies to the dual model, too. Proceeding analogously, we can derive the
following theorem.

Theorem 3.1. (i) For l = 1 or 2, under assumption I for φ(x, t; i) = ub
l (x, t; i) (φ(x, t; i) =

vb
l (x, t, r; i)), for all i ∈ E the functions Vl(x, b; i) (Ll(x, b, r; i)) are continuous with respect

to x for x ∈ R− {0}.
(ii) Under B1 for φ(x, t; i) = ub

1(x, t; i) (φ(x, t; i) = vb
1(x, t, r; i)) and ϕ(x; i) =

ρ(x; i) (ϕ(x; i) = α(x, r; i)), for all i ∈ E , V1(x, b; i) (L1(x, b, r; i)) are continuously
differentiable up to nth order with respect to x for x ∈ R − {0, b}. Under II for φ(x, t; i) =
ub

2(x, t; i) (φ(x, t; i) = vb
2(x, t, r; i)), all functions V2(x, b; i) (L2(x, b, r; i)) are continuously

differentiable up to nth order with respect to x for x ∈ R−{0, b}. If for l = 1, B1 holds for some
n ≥ 1, and for l = 2, II holds for some n ≥ 1 and φ(x, t; i) = ub

2(x, t; i) (ϕ(x; i) = α(x, r; i)),
then for all i ∈ E , the right and left derivatives of Vl(x, b; i) (Ll(x, b, r; i)) with respect to x
exist for x ∈ R− {0} and satisfy

∂+

∂x
Vl(x, b; i)|x=b

= lim
h↓0

ub
l (b + h, h

ci+di
; i)− ub

l (b,
h

ci+di
; i)

h
+

ci

ci + di

∂−

∂x
Vl(x, b; i)|x=b. (3.34)
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∂+

∂x
Ll(x, b, r; i)|x=b = lim

h↓0

vb
l (b,

h
ci
, r; i)− vb

l (b − h, h
ci
, r; i)

h
Ll(b, b, r; i)

+
ci

ci + di

∂−

∂x
Ll(x, b, r; i)|x=b.

)

Proof. We only give the proof for the results concerning Vl(x, b; i). All the asserted results
concerning Ll(x, b, r; i) can be proved similarly.

Since for the dual model, (2.13) and (2.14) also hold. For l = 1, when x ≤ 0, setting
η = σ1 ∧ S1 in (2.13) and distinguishing cases η = σ1 and η = S1 yield for i ∈ E ,

V1(x, b; i)

=

∫
∞

0
qi e−(qi+λi )t

(
ub

1(x, t; i)+ g(t)
∑
j 6=i

qi j

qi
V1(x − ci t, b; j)

)
dt

+

∫
∞

0
λi e−(qi+λi )sds

(
ub

1(x, s; i)+ g(s)
∫
∞

0
V1(x − ci s + y, b; i)dFi (y)

)
for x ≤ 0.

Since P(x,i)(Tb = 0) ≡ 1 for x ≤ 0 and that we have defined Rb
0− ≡ −1, w(x, y; i) ≡ 0 for

x < 0 and w(0, 0; i) = 0, we have for i ∈ E ,

V2(x, b; i) ≡ 0 for x ≤ 0.

For 0 < x ≤ b, by setting η = σ1∧S1∧
x
ci

in (2.13) and (2.14), and noticing that Rb
Tb−
= Rb

Tb
= 0

a.s., we have for i ∈ E ,

Vl(x, b; i)

=

∫ x
ci

0
qi e−(qi+λi )t

(
ub

l (x, t; i)+ g(t)
∑
j 6=i

qi j

qi
Vl(x − ci t, b; j)

)
dt

+

∫ x
ci

0
λi e−(qi+λi )sds

(
ub

l (x, s; i)+ g(s)
∫
∞

0
Vl(x − ci s + y, b; i)dFi (y)

)
+ e
−(qi+λi )

x
ci

(
ub

l

(
x,

x

ci
; i

)
+ g

(
x

ci

)
V1(0, b; i)I {l = 1}

+ g

(
x

ci

)
w(0, 0; i)I {l = 2}

)
for 0 < x ≤ b.

When x > b, by setting η = σ1 ∧ S1 ∧
x−b

ci+di
and noticing that P(x,i)(T b

≤ η) ≡ 0, we have for
l = 1, 2, i ∈ E ,

Vl(x, b; i)

=

∫
∞

0
qi e−(qi+λi )t

(
ub

l (x, t; i)+ g(t)
∑
j 6=i

qi j

qi
Vl(x − (ci + di )t, b; j)

)
dt

+

∫
∞

0
λi e−(qi+λi )sds

(
ub

l (x, s; i)+ g(s)
∫
∞

0
Vl(x − (ci + di )s + y, b; i)dFi (y)

)
+ e
−(qi+λi )

b−x
ci+di

(
ub

l

(
x,

b − x

ci + di
; i

)
+ g

(
b − x

ci + di

)
Vl(b, b; i)

)
for x > b.
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Then the desired assertions on the continuity with respect to x for x ∈ R − {0} and continuous
differentiability with respect to x for x ∈ R − {0, b} follow from a similar argument as in the
previous section. One difference is that in the dual model, we do not require restrictions on the
functions w(x, y; i) (i ∈ E), because only w(0, 0; i) (i ∈ E) are involved in the expressions.

Set η = σ1 ∧ S1 ∧
h

ci+di
in (2.13) and (2.14) for x = b + h and x = b respectively,

and distinguish three cases η = σ1, η = S1 and η = h
ci+di

. Substituting the newly obtained

expressions in quantities Vl (b+h,b;i)−Vl (b,b;i)
h and then letting h ↓ 0 yield the desired equations

(3.34). �

Remark 3.1. For the Markov-modulated risk model under the barrier strategy, the same results
in Theorem 3.1 concerning continuity with respect to x , and differentiability with respect to x
for x ∈ R− {0, b} hold.

Remark 3.2. For the Markov-modulated model, the right continuity at x = 0, and the continuity
and the equations involving the right and/or left derivatives at x = b can serve as boundary
conditions. For the Markov-modulated model with the barrier strategy, we need to solve a system
of equations with derivatives at x = b taking some specified value(s). For the model with a
threshold strategy, the functions satisfy different systems of equations depending on whether
0 < x < b or x > b. So we need to solve two systems of equations. As a result, the number
of boundary conditions required doubles. The extra boundary conditions are usually obtained by
noticing that ruin of the dual model occurs immediately if the initial reserve is 0.

4. Conclusion

In this paper, we have introduced several classes of very general ruin functions, and have
shown that many frequently considered ruin functions in the actuarial science literature are
special cases of the functions studied in this paper. We have investigated the continuity and
differentiability of the ruin functions.

For the purpose of illustrating the idea and avoiding tedious mathematics, we consider a
Markov-modulated compound Poisson insurance risk process with dividend payment. The idea
and methods in this paper can be used to obtain the same results for other models, such as the
models with interest rate, the diffusion perturbed models, and the renewal type models.
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