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Abstract

We prove the hydrostatics of boundary driven gradient exclusion processes, Fick’s law and we present a
simple proof of the dynamical large deviations principle which holds in any dimension.
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1. Introduction

Statical and dynamical large deviations principles of boundary driven interacting particle
systems have attracted attention recently as a first step in the understanding of nonequilibrium
thermodynamics (cf. [5,7,8] and references therein).

This article has two purposes. First, inspired by the dynamical approach to stationary large
deviations, introduced by Bertini et al. in the context of boundary driven interacting particle
systems [3], we present a proof of the hydrostatics based on the hydrodynamic behavior of
the system and on the fact that the stationary profile is a global attractor of the hydrodynamic
equation.
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More precisely, if ρ̄ represents the stationary density profile and πN the empirical measure,
to prove that πN converges to ρ̄ under the stationary state µN

ss , we first prove the hydrodynamic
limit stated as follows. If we start from an initial configuration which has a density profile γ ,
on the diffusive scale the empirical measure converges to an absolutely continuous measure,
π(t, du) = ρ(t, u)du, whose density ρ is the solution of the parabolic equation∂tρ = ∇ · D(ρ)∇ρ,

ρ(0, ·) = γ (·),

ρ(t, ·) = b(·) on Γ ,
(1.1)

where D is the diffusivity of the system, ∇ the gradient, b the boundary condition imposed by
the stochastic dynamics and Γ the boundary of the macroscopic domain Ω in which the particles
evolve. Since for all initial profile 0 ≤ γ ≤ 1, the solution ρt is bounded above (resp. below)
by the solution with initial condition equal to 1 (resp. 0), and since these solutions converge, as
t ↑ ∞, to the stationary profile ρ̄, the hydrostatics follows from the hydrodynamics and the weak
compactness of the space of measures.

The second contribution of this article is an important simplification of the proof of the
dynamical large deviations principle of the empirical measure around the hydrodynamic limit.
The original proof [15,9,13] relies on the convexity of the rate functional, a very special property
only fulfilled by very few interacting particle systems as the symmetric simple exclusion process.
The extension to general processes [19,20,6] is relatively technical. The main difficulty appears
in the proof of the lower bound where one needs to show that any trajectory λt , 0 ≤ t ≤ T ,
with finite rate function, IT (λ) < ∞, can be approximated by a sequence of smooth trajectories
{λn

: n ≥ 1} such that

λn
−→ λ and IT (λ

n) −→ IT (λ). (1.2)

This property is proved by approximating in several steps a general trajectory λ by a sequence
of profiles, smoother at each step, the main ingredient being the regularizing effect of the
hydrodynamic equation. This part of the proof is quite elaborate and relies on properties of the
Green kernel associated with the second-order differential operator.

We propose here a simpler proof. It is well known that a path λwith finite rate function may be
obtained from the hydrodynamical path through an external field. More precisely, if IT (λ) < ∞,
there exists H such that

IT (λ) =
1
4

∫ T

0
dt

∫
σ(λt )[∇ Ht ]

2dx, (1.3)

where σ is the mobility of the system and H is related to λ by the equation
∂tλ− ∇ · D(λ)∇λ = −∇ · [σ(λ)∇ Ht ]

H(t, ·) = 0 at the boundary.
(1.4)

This is an elliptic equation for the unknown function H for each t ≥ 0. Note that the left hand side
of the first equation is the hydrodynamical equation. Instead of approximating λ by a sequence
of smooth trajectories, we show that on approximating H by a sequence of smooth functions, the
corresponding smooth solutions of (1.4) converge in the sense (1.2) to λ.

This approach, closer to the original one in the convex case, simplifies considerably the
proof of the large deviations of the empirical measure from the hydrodynamic limit. Indeed,
the previous approach (cf. Lemma 5.6 and the proof of Theorem 5.1 in [6], as well as the proof
of Theorem 6.4 in [20]) requires the selection of an appropriate space and time mollifier to
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smooth the trajectory through a convolution and relies on sharp estimate of the mollifiers. This
is not easy in the case of systems in contact with reservoirs where the boundary prevents the use
of Gaussian mollifiers, which have to be replaced by the resolvents of Brownian motions killed
at the boundary. This step becomes much simpler here on approximating, as we said above, the
function H appearing in (1.3) with a sequence of smooth functions.

Finally, the approach presented here to prove the hydrostatics of the empirical measure has
an important advantage with respect to the original one [11,12,14]. In these articles, to derive
the hydrostatics one proves first that all weak limits of the empirical measure are concentrated
on weak solutions of a coupled differential equation on the product space Ω × Ω , and then that
there exists at most one weak solution of the coupled equation (cf. Theorem 1 of [11]). Since
uniqueness of weak solutions of the coupled equation has been proven only in dimension 1, all
results hold only in this dimension.

In this article we present a method which holds in all dimensions provided that the
hydrodynamic equation has a unique fixed point and that the solutions are monotone in the sense
that ρ(t, ·) ≤ λ(t, ·) a.s. for all t ≥ s if this inequality holds for t = s a.s. In particular, the
approach proposed here extends the hydrostatics to higher dimension for several different kinds
of dynamics.

2. Notation and results

Fix a positive integer d ≥ 2. Denote by Ω the open set (−1, 1) × Td−1, where Tk is the
k-dimensional torus [0, 1)k , and by Γ the boundary of Ω : Γ = {(u1, . . . , ud) ∈ [−1, 1]×Td−1

:

u1 = ±1}.
For an open subset Λ of R × Td−1, C m(Λ), 1 ≤ m ≤ +∞, stands for the space of real

functions that are m times continuously differentiable, defined on Λ. Let C m
0 (Λ) (resp. C m

c (Λ)),
1 ≤ m ≤ +∞, be the subset of functions in C m(Λ) which vanish at the boundary of Λ (resp.
with compact support in Λ).

Fix a positive function b : Γ → R+. Assume that there exists a neighborhood V of Ω and
a smooth function β : V → (0, 1) in C 2(V ) such that β is bounded below by a strictly positive
constant, bounded above by a constant smaller than 1 and such that the restriction of β to Γ is
equal to b.

For an integer N ≥ 1, denote by Td−1
N = {0, . . . , N −1}

d−1, the discrete (d −1)-dimensional
torus of length N . Let ΩN = {−N +1, . . . , N −1}×Td−1

N be the cylinder in Zd of length 2N −1
and basis Td−1

N and let ΓN = {(x1, . . . , xd) ∈ Z × Td−1
N | x1 = ±(N − 1)} be the boundary of

ΩN . The elements of ΩN are denoted by letters x, y and the elements of Ω by the letters u, v.
We consider boundary driven symmetric exclusion processes on ΩN . A configuration is

described as an element η in X N = {0, 1}
ΩN , where η(x) = 1 (resp. η(x) = 0) if site x

is occupied (resp. vacant) for the configuration η. At the boundary, particles are created and
removed in order for the local density to agree with the given density profile b.

The infinitesimal generator of this Markov process can be decomposed into two pieces:

L N = L N ,0 + L N ,b, (2.1)

where L N ,0 corresponds to the bulk dynamics and L N ,b to the boundary dynamics. The action
of the generator L N ,0 on functions f : X N → R is given by


L N ,0 f


(η) =

d−
i=1

−
x

rx,x+ei (η)


f (ηx,x+ei )− f (η)

,
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where (e1, . . . , ed) stands for the canonical basis of Rd and where the second sum is performed
over all x ∈ Zd such that x, x + ei ∈ ΩN . For x, y ∈ ΩN , ηx,y is the configuration obtained from
η by exchanging the occupation variables η(x) and η(y):

ηx,y(z) =

η(y) if z = x,
η(x) if z = y,
η(z) if z ≠ x, y.

For a > −1/2, the rate functions rx,x+ei (η) are given by

rx,x+ei (η) = 1 + a

η(x − ei )+ η(x + 2ei )


if x − ei and x + 2ei belong to ΩN . At the boundary, the rates are defined as follows. Let
x̌ = (x2, . . . , xd) ∈ Td−1

N . Then,

r(−N+1,x̌),(−N+2,x̌)(η) = 1 + a

η(−N + 3, x̌)+ b(−1, x̌/N )


,

r(N−2,x̌),(N−1,x̌)(η) = 1 + a

η(N − 3, x̌)+ b(1, x̌/N )


.

The non-conservative boundary dynamics can be described as follows. For any function
f : X N → R,

L N ,b f

(η) =

−
x∈ΓN

Cb(x, η)


f (ηx )− f (η)

,

where ηx is the configuration obtained from η by flipping the occupation variable at site x :

ηx (z) =


η(z) if z ≠ x
1 − η(x) if z = x

and the rates Cb(x, ·) are chosen in order for the Bernoulli measure with density b(·) to be
reversible for the flipping dynamics restricted to this site:

Cb(−N + 1, x̌), η


= η(−N + 1, x̌)

1 − b(−1, x̌/N )


+


1 − η(−N + 1, x̌)


b(−1, x̌/N ),

Cb(N − 1, x̌), η


= η(N − 1, x̌)

1 − b(1, x̌/N )


+


1 − η(N − 1, x̌)


b(1, x̌/N ),

where x̌ = (x2, . . . , xd) ∈ Td−1
N , as above.

Denote by {ηt : t ≥ 0} the Markov process associated with the generator L N speeded up by
N 2. For a smooth function ρ : Ω → (0, 1), let νN

ρ(·) be the Bernoulli product measure on X N
with marginals given by

νN
ρ(·)(η(x) = 1) = ρ(x/N ).

It is easy to see that the Bernoulli product measure associated with any constant function is
invariant for the process with generator L N ,0. Moreover, if b(·) ≡ b for some constant b then
the Bernoulli product measure associated with the constant density b is reversible for the full
dynamics L N .

2.1. Hydrostatics

Denote by µN
ss the unique stationary state of the irreducible Markov process {ηt : t ≥ 0}. We

examine in Section 3 the asymptotic behavior of the empirical measure under the stationary state
µN

ss .
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Let M = M(Ω) be the space of positive measures on Ω with total mass bounded by 2
endowed with the weak topology. For each configuration η, denote by πN

= πN (η) the positive
measure obtained by assigning mass N−d to each particle of η:

πN
= N−d

−
x∈ΩN

η(x)δx/N ,

where δu is the Dirac measure concentrated on u.
To define rigorously the quasi-linear elliptic problem that the empirical measure is expected

to solve, we need to introduce some Sobolev spaces. Let L2(Ω) be the Hilbert space of functions
G : Ω → C such that


Ω |G(u)|2du < ∞ equipped with the inner product

⟨G, J ⟩2 =

∫
Ω

G(u) J̄ (u)du,

where, for z ∈ C, z̄ is the complex conjugate of z and |z|2 = zz̄. The norm of L2(Ω) is denoted
by ‖ · ‖2.

Let H1(Ω) be the Sobolev space of functions G with generalized derivatives ∂u1 G, . . . , ∂ud G
in L2(Ω). H1(Ω) endowed with the scalar product ⟨·, ·⟩1,2, defined by

⟨G, J ⟩1,2 = ⟨G, J ⟩2 +

d−
j=1

⟨∂u j G, ∂u j J ⟩2,

is a Hilbert space. The corresponding norm is denoted by ‖ · ‖1,2.
Let ϕ : [0, 1] → R+ be given by ϕ(r) = r(1 + ar), let ∇ρ represent the gradient of

some function ρ in H1(Ω): ∇ρ = (∂u1ρ, . . . , ∂udρ), and let ‖ · ‖ be the Euclidean norm:
‖(v1, . . . , vd)‖

2
=

∑
1≤i≤d v

2
i . A function ρ : Ω → [0, 1] is said to be a weak solution of

the elliptic boundary value problem
∆ϕ(ρ) = 0 on Ω ,
ρ = b on Γ , (2.2)

if:

(S1) ρ belongs to H1(Ω):∫
Ω

‖∇ρ(u)‖2du < ∞.

(S2) For every function G ∈ C 2
0 (Ω),∫

Ω


∆G


(u)ϕ


ρ(u)


du =

∫
Γ
ϕ(b(u))n1(u)(∂u1 G)(u)dS,

where n = (n1, . . . ,nd) stands for the outward unit vector normal to the boundary surface
Γ and dS for an element of surface on Γ .

We prove in Section 7 existence and uniqueness of weak solutions of (2.2). The first main
result of this article establishes a law of large numbers for the empirical measure under µN

ss . Let
Ω = [−1, 1] × Td−1 and denote by Eµ the expectation with respect to a probability measure µ.
Moreover, for a measure m in M and a continuous function G : Ω → R, denote by ⟨m,G⟩ the
integral of G with respect to m:

⟨m,G⟩ =

∫
Ω

G(u)m(du).
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Theorem 2.1. For any continuous function G : Ω → R,

lim
N→∞

Eµ
N
ss

⟨πN ,G⟩ −

∫
Ω

G(u)ρ̄(u)du
 = 0,

where ρ̄(u) is the unique weak solution of (2.2).

Denote by Γ−, Γ+ the left and right boundaries of Ω :

Γ± = {(u1, . . . , ud) ∈ Ω |u1 = ±1}

and denote by Wx,x+ei , x , x + ei ∈ ΩN , the instantaneous current over the bond (x, x + ei ). This
is the rate at which a particle jumps from x to x + ei minus the rate at which a particle jumps
from x + ei to x . A simple computation shows that

Wx,x+ei = {hi,x (η)− hi,x+ei (η)} + {gi,x (η)− gi,x+2ei (η)} (2.3)

provided x − ei and x + 2ei belongs to ΩN . Here, hi,x (η) = η(x) − aη(x + ei )η(x − ei ) and
gi,x (η) = aη(x − ei )η(x).

Theorem 2.2 (Fick’s Law). Fix −1 < u < 1. Then,

lim
N→∞

Eµ
N
ss

 2N

N d−1

−
y∈Td−1

N

W([uN ],y),([uN ]+1,y)


=

∫
Γ−

ϕ(b(v))S(dv)−

∫
Γ+

ϕ(b(v))S(dv).

Remark 2.3. We could have considered different bulk dynamics. The important feature used
here to avoid serious technical problems is that the process is gradient, which means that the
currents can be written as a sum of differences of a local function and its translation, as in (2.3).

The gradient assumption is restrictive, with consequences on the hydrodynamic equations.
The jump rates of the known gradient dynamics are of the form

rx,x+ei (η) = 1 + a1(i)[η(x − ei )+ η(x + 2ei )] + a2(i)

η(x − 2ei )η(x − ei )

+ η(x − ei )η(x + 2ei )+ η(x + 2ei )η(x + 3ei )


+ · · ·

+ am(i)

η(x − mei ) · · · η(x − ei )+ · · · + η(x + 2ei ) · · · η(x + [m + 1]ei )


,

where the constants a1(i), . . . , am(i) are chosen such that rx,x+ei (η) > 0 for all configurations
η. The associated hydrodynamic equation is given by

∂tρ =

d−
i=1

∂ui [Di (ρ)∂uiρ], (2.4)

where Di (ρ) = 1 +
∑

1≤k≤m ak(i)(k + 1)ρk . In particular, the gradient condition restricts the
hydrodynamic equations to parabolic equations of type (1.1) with diagonal matrices D whose
entries are strictly positive polynomials. All results stated in this article hold in this context with
exactly the same proofs.
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2.2. Dynamical large deviations

Fix T > 0. Let M0 be the subset of M of all absolutely continuous measures with respect to
the Lebesgue measure with positive density bounded by 1:

M0
=


π ∈ M : π(du) = ρ(u)du and 0 ≤ ρ(u) ≤ 1 a.e.


,

and let D([0, T ],M) be the set of right continuous with left limit trajectories π : [0, T ] → M,
endowed with the Skorohod topology. M0 is a closed subset of M and D([0, T ],M0) is a
closed subset of D([0, T ],M).

Let ΩT = (0, T ) × Ω and ΩT = [0, T ] × Ω . For 1 ≤ m, n ≤ +∞, denote by C m,n(ΩT )

the space of functions G = G t (u) : ΩT → R with m continuous derivatives in time and n
continuous derivatives in space. We also denote by C m,n

0 (ΩT ) (resp. C∞
c (ΩT )) the set of functions

in C m,n(ΩT ) (resp. C∞,∞(ΩT )) which vanish at [0, T ] × Γ (resp. with compact support in ΩT ).
Let the energy Q : D([0, T ],M0) → [0,∞] be given by

Q(π) =

d−
i=1

sup
G∈C∞

c (ΩT )


2

∫ T

0
dt⟨ρt , ∂ui G t ⟩ −

∫ T

0
dt

∫
Ω

G(t, u)2du


.

For each G ∈ C 1,2
0 (ΩT ) and each measurable function γ : Ω → [0, 1], let ĴG = ĴG,γ,T :

D([0, T ],M0) → R be the functional given by

ĴG(π) = ⟨πT ,GT ⟩ − ⟨γ,G0⟩ −

∫ T

0
⟨πt , ∂t G t ⟩dt

−

∫ T

0
⟨ϕ(ρt ),∆G t ⟩dt +

∫ T

0
dt

∫
Γ+

ϕ(b)∂u1 GdS

−

∫ T

0
dt

∫
Γ−

ϕ(b)∂u1 GdS −

∫ T

0
⟨σ(ρt ), ‖∇G t‖

2
⟩dt,

where σ(r) = r(1 − r)(1 + 2ar) is the mobility and πt (du) = ρt (u)du. Define JG = JG,γ,T :

D([0, T ],M) → R by

JG(π) =


ĴG(π) if π ∈ D([0, T ],M0),

+∞ otherwise.
(2.5)

We define the rate functional IT (·|γ ) : D([0, T ],M) → [0,+∞] as

IT (π |γ ) =

 sup
G∈C 1,2

0 (ΩT )


JG(π)


if Q(π) < ∞,

+∞ otherwise.
(2.6)

Theorem 2.4. Fix T > 0 and a measurable function ρ0 : Ω → [0, 1]. Consider a sequence ηN

of configurations in X N associated with ρ0 in the sense that

lim
N→∞

⟨πN (ηN ),G⟩ =

∫
Ω

G(u)ρ0(u)du

for every continuous function G : Ω → R. Then, the measure QηN = PηN (πN )−1 on D([0, T ],

M) satisfies a large deviation principle with speed N d and rate function IT (·|ρ0). Namely, for
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each closed set C ⊂ D([0, T ],M),

lim
N→∞

1
N d log QηN (C) ≤ − inf

π∈C
IT (π |ρ0)

and for each open set O ⊂ D([0, T ],M),

lim
N→∞

1
N d log QηN (O) ≥ − inf

π∈O
IT (π |ρ0).

Moreover, the rate function IT (·|ρ0) is lower semicontinuous and has compact level sets.

3. Hydrodynamics, hydrostatics and Fick’s law

We prove in this section Theorem 2.1. The idea is to couple three copies of the process,
the first one starting from the configuration with all sites empty, the second one starting from
the stationary state and the third one from the configuration with all sites occupied. The
hydrodynamic limit states that the empirical measures of the first and third copies converge to
the solution of the initial boundary value problem (3.2) with initial condition equal to 0 and 1.
Denote these solutions by ρ0

t , ρ1
t , respectively. In turn, the empirical measure of the second copy

converges to the solution of the same boundary value problem, denoted by ρt , with an unknown
initial condition. Since all solutions are bounded below by ρ0 and bounded above by ρ1, and since
ρ j converges to a profile ρ̄ as t ↑ ∞, ρt also converges to this profile. However, since the second
copy starts from the stationary state, the distribution of its empirical measure is independent of
time. Hence, as ρt converges to ρ̄, ρ0 = ρ̄. As we shall see in the proof, this argument does
not require attractiveness of the underlying interacting particle system. This approach has been
followed in [18] to prove hydrostatics for interacting particle systems with Kac interaction and
random external field.

We first describe the hydrodynamic behavior. Consider a symmetric diffusion matrix D(ρ) =

{Di, j (ρ) : 1 ≤ i, j ≤ d} such that:

(a) Di, j : [0, 1] → R is a Lipschitz continuous function, 1 ≤ i, j ≤ d . There exists M > 0 such
that |Di, j (ρ)− Di, j (λ)| ≤ M |ρ − λ| for all ρ, λ ∈ [0, 1].

(b) The matrix D is strictly elliptic. There exists a > 0 such that λ · D(ρ)λ ≥ a|λ|2 for all
λ ∈ Rd , 0 ≤ ρ ≤ 1.

Observe that there exists â < ∞ such that λ · D(ρ)λ ≤ â|λ|2 for all λ ∈ Rd , 0 ≤ ρ ≤ 1,
because the entries are continuous.

Denote by χ(ρ) the static compressibility and by σ(ρ) the mobility. We shall assume
throughout this article that the static compressibility χ(ρ) is the scalar function ρ(1 − ρ) of
exclusion processes. By the Einstein relation and since the compressibility is a scalar, σ(ρ) =

χ(ρ)D(ρ). Denote by di, j the primitive of Di, j such that di, j (0) = 0, so d ′

i, j = Di, j .

For a Banach space (B, ‖ · ‖B) and T > 0 we denote by L2([0, T ],B) the Banach space of
measurable functions U : [0, T ] → B for which

‖U‖
2
L2([0,T ],B) =

∫ T

0
‖Ut‖

2
Bdt < ∞

holds.
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Fix T > 0 and a profile ρ0 : Ω → [0, 1]. A measurable function ρ : [0, T ] × Ω → [0, 1] is
said to be a weak solution of the initial boundary value problem∂tρ = ∇ · D(ρ)∇ρ,

ρ(0, ·) = ρ0(·),

ρ(t, ·)|Γ = b(·) for 0 ≤ t ≤ T,
(3.1)

in the layer [0, T ] × Ω if:

(H1) ρ belongs to L2

[0, T ], H1(Ω)


:∫ T

0
ds

∫
Ω

‖∇ρ(s, u)‖2du

< ∞.

(H2) For every function G = G t (u) in C 1,2
0 (ΩT ),∫

Ω
du


GT (u)ρ(T, u)− G0(u)ρ0(u)


−

∫ T

0
ds

∫
Ω

du(∂s Gs)(u)ρ(s, u)

=

d−
i, j=1

∫ T

0
ds

∫
Ω

du(∂2
ui ,u j

Gs)(u)di, j

ρ(s, u)


−

d−
i=1

∫ T

0
ds

∫
Γ

di,1(b(u))n1(u)(∂ui Gs(u))dS.

The hydrodynamic equation of the boundary driven gradient symmetric exclusion process on
Ω is the parabolic equation (3.1) with D(ρ) = ϕ′(ρ)I, where I is the identity:∂tρ = ∆ϕ


ρ

,

ρ(0, ·) = ρ0(·),

ρ(t, ·)|Γ = b(·) for 0 ≤ t ≤ T .
(3.2)

We prove in Section 7 the existence of weak solutions of (3.2) and the uniqueness of weak
solutions of (3.1).

For a measure µ on X N , denote by Pµ = PN
µ the probability measure on the path space

D(R+, X N ) corresponding to the Markov process {ηt : t ≥ 0} with generator N 2 L N starting
from µ, and by Eµ the expectation with respect to Pµ. Recall the definition of the empirical
measure πN and let πN

t = πN (ηt ):

πN
t = N−d

−
x∈ΩN

ηt (x)δx/N .

Theorem 3.1. Fix a profile ρ0 : Ω → (0, 1). Let µN be a sequence of measures on X N
associated with ρ0 in the sense that

lim
N→∞

µN
⟨πN ,G⟩ −

∫
Ω

G(u)ρ0(u)du

 > δ


= 0, (3.3)

for every continuous function G : Ω → R and every δ > 0. Then, for every t > 0,

lim
N→∞

PN
µ

⟨πN
t ,G⟩ −

∫
Ω

G(u)ρ(t, u)du

 > δ


= 0,

where ρ(t, u) is the unique weak solution of (3.2).
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The proof of this result can be found in [12]. Denote by QN
ss the probability measure on

the Skorohod space D([0, T ],M) induced by the stationary measure µN
ss and the process

{πN (ηt ) : 0 ≤ t ≤ T }. Note that, in contrast with the case for the usual set-up of hydrodynamics,
we do not know that the empirical measure at time 0 converges. We cannot prove, in particular,
that the sequence QN

ss converges, but only that this sequence is tight and that all limit points are
concentrated on a weak solution of the hydrodynamic equation for some unknown initial profile.

We first show that the sequence of probability measures {QN
ss : N ≥ 1} is weakly relatively

compact:

Proposition 3.2. The sequence {QN
ss , N ≥ 1} is tight and all its limit points Q∗

ss are concentrated
on absolutely continuous paths π(t, du) = ρ(t, u)du whose density ρ is positive and bounded
above by 1:

Q∗
ss


π : π(t, du) = ρ(t, u)du, for 0 ≤ t ≤ T


= 1,

Q∗
ss


π : 0 ≤ ρ(t, u) ≤ 1, for (t, u) ∈ ΩT


= 1.

The proof of this statement is similar to that of Proposition 3.2 in [16] and is thus omitted.
Actually, the proof is even simpler because the model considered here is gradient.

The next two propositions show that all limit points of the sequence {QN
ss : N ≥ 1} are

concentrated on absolutely continuous measures π(t, du) = ρ(t, u)du whose densities ρ are
weak solutions of (3.2) in the layer [0, T ] × Ω . Denote by AT ⊂ D


[0, T ],M0


the set of

trajectories {ρ(t, u)du : 0 ≤ t ≤ T } whose density ρ satisfies condition (H2) for some initial
profile ρ0.

Proposition 3.3. All limit points Q∗
ss of the sequence {QN

ss , N > 1} are concentrated on paths
π(t, du) = ρ(t, u)du in AT :

Q∗
ss{AT } = 1.

The proof of this proposition is similar to that of Proposition 3.3 in [16]. The next result states
that every limit point Q∗

ss of the sequence {QN
ss , N > 1} is concentrated on paths whose density

ρ belongs to L2([0, T ], H1(Ω)):

Proposition 3.4. Let Q∗
ss be a limit point of the sequence {QN

ss , N > 1}. Then,

EQ∗
ss

[∫ T

0
ds

∫
Ω

‖∇ρ(s, u)‖2du

]
< ∞.

The proof of this proposition is similar to that of Lemma A.1.1 in [14]. We are now ready to
prove the first main result of this article.

Proof of Theorem 2.1. Fix a continuous function G : Ω → R. We claim that

lim
N→∞

Eµ
N
ss

⟨π,G⟩ − ⟨ρ̄(u)du,G⟩

 = 0.

Note that the expectations are bounded. Consider a subsequence Nk along which the left hand
side converges. It is enough to prove that the limit vanishes. Fix T > 0. Since µN

ss is stationary,
by definition of QNk

ss ,

Eµ
Nk
ss

⟨π,G⟩ − ⟨ρ̄(u)du,G⟩

 = QNk
ss

⟨πT ,G⟩ − ⟨ρ̄(u)du,G⟩

.
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Let Q∗
ss stand for a limit point of {QNk

ss : k ≥ 1}. Since the expression inside the expectation is
bounded, by Proposition 3.3,

lim
k→∞

QNk
ss

⟨πT ,G⟩ − ⟨ρ̄(u)du,G⟩

 = Q∗
ss

⟨πT ,G⟩ − ⟨ρ̄(u)du,G⟩

 1{AT }


≤ ‖G‖∞Q∗

ss


‖ρ(T, ·)− ρ̄(·)‖1 1{AT }


,

where ‖ · ‖1 stands for the L1(Ω) norm. Denote by ρ0(·, ·) (resp. ρ1(·, ·)) the weak solution
of the boundary value problem (3.2) with initial condition ρ(0, ·) ≡ 0 (resp. ρ(0, ·) ≡ 1). By
Lemma 7.4, each profile ρ in AT , including the stationary profile ρ̄, is bounded below by ρ0 and
above by ρ1. Therefore

lim
k→∞

Eµ
Nk
ss

⟨π,G⟩ − ⟨ρ̄(u)du,G⟩

 ≤ ‖G‖∞

ρ0(T, ·)− ρ1(T, ·)


1.

Note that the left hand side does not depend on T . To conclude the proof it remains to let T ↑ ∞

and to apply Lemma 7.6. �

Fick’s law, announced in Theorem 2.2, follows from the hydrostatics and elementary
computations presented in the Proof of Theorem 2.2 in [14]. The arguments here are even simpler
and more explicit since the process is gradient.

4. The rate function IT (·|γ )

We examine in this section the rate function IT (·|γ ). The main result, presented in
Theorem 4.6 below, states that IT (·|γ ) has compact level sets. The proof relies on two
ingredients. The first one, stated in Lemma 4.2, is an estimate of the energy and of the H−1
norm of the time derivative of a trajectory in terms of the rate function. The second one, stated
in Lemma 4.5, establishes that sequences of trajectories with rate function uniformly bounded
which converges weakly in L2 in fact converge strongly.

For each G ∈ C 1,2
0 (ΩT ) and each measurable function γ : Ω → [0, 1], let ĴG = ĴG,γ,T :

D([0, T ],M0) → R be the functional given by

ĴG(π) = ⟨πT ,GT ⟩ − ⟨γ,G0⟩ −

∫ T

0
⟨πt , ∂t G t ⟩dt

−

d−
i, j=1

∫ T

0
⟨di, j (ρt ), ∂

2
u ,i ,u j

G t ⟩dt +

d−
i=1

∫ T

0
dt

∫
Γ+

di,1(b)∂ui GdS

−

∫ T

0
dt

∫
Γ−

di,1(b)∂ui GdS −

∫ T

0
⟨∇G t · σ(ρt )∇G t ⟩dt,

where πt (du) = ρt (u)du. Define the functionals JG = JG,γ,T : D([0, T ],M) → R and
IT (·|γ ) : D([0, T ],M) → [0,+∞] by Eqs. (2.5) and (2.6).

Some Sobolev spaces play an important role in this section. Recall that we denote by C∞
c (Ω)

the set of infinitely differentiable functions G : Ω → R, with compact support in Ω . Recall
from Section 2.1 the definition of the Sobolev space H1(Ω) and of the norm ‖ · ‖1,2. Denote
by H1

0 (Ω) the closure of C∞
c (Ω) in H1(Ω). Since Ω is bounded, by Poincaré’s inequality, there
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exists a finite constant C1 such that for all G ∈ H1
0 (Ω),

‖G‖
2
2 ≤ C1‖∂u1 G‖

2
2 ≤ C1

d−
j=1

⟨∂u j G, ∂u j G⟩2.

This implies that, in H1
0 (Ω),

‖G‖1,2,0 =


d−

j=1

⟨∂u j G, ∂u j G⟩2

1/2

is a norm equivalent to the norm ‖ · ‖1,2. Moreover, H1
0 (Ω) is a Hilbert space with inner product

given by

⟨G, J ⟩1,2,0 =

d−
j=1

⟨∂u j G, ∂u j J ⟩2.

To assign boundary values along the boundary Γ of Ω to any function G in H1(Ω), recall,
from the trace theorem [22, Theorem 21.A.(e)], that there exists a continuous linear operator
B : H1(Ω) → L2(Γ ), called the trace, such that BG = G|Γ if G ∈ H1(Ω) ∩ C(Ω). Moreover,
the space H1

0 (Ω) is the space of functions G in H1(Ω) with zero trace [22, Appendix (48b)]:

H1
0 (Ω) =


G ∈ H1(Ω) : BG = 0


.

Since C∞(Ω) is dense in H1(Ω) [22, Corollary 21.15.(a)], for functions F,G in H1(Ω), the
product FG has generalized derivatives ∂ui (FG) = F∂ui G + G∂ui F in L1(Ω) and∫

Ω
F(u)∂u1 G(u)du +

∫
Ω

G(u)∂u1 F(u)du

=

∫
Γ+

B F(u)BG(u)du −

∫
Γ−

B F(u)BG(u)du. (4.1)

Moreover, if G ∈ H1(Ω), f ∈ C 1(R) is such that f ′ is bounded, then f ◦ G belongs to H1(Ω)
with generalized derivatives ∂ui ( f ◦ G) = ( f ′

◦ G)∂ui G and trace B( f ◦ G) = f ◦ (BG).
Denote by H−1(Ω) the dual of H1

0 (Ω). H−1(Ω) is a Banach space with norm ‖ · ‖−1 given
by

‖v‖2
−1 = sup

G∈C∞
c (Ω)


2⟨v,G⟩−1,1 −

∫
Ω

‖∇G(u)‖2du


,

where ⟨v,G⟩−1,1 stands for the values of the linear form v at G.
For each G ∈ C∞

c (ΩT ) and each integer 1 ≤ i ≤ d, let QG
i : D([0, T ],M0) → R be the

functional given by

QG
i (π) = 2

∫ T

0
dt⟨ρt , ∂ui G t ⟩ −

∫ T

0
dt

∫
Ω

duG(t, u)2,

where π(t, du) = ρ(t, u)du, and recall, from Section 2.2, that the energy Q(π) was defined as

Q(π) =

d−
i=1

Qi (π) with Qi (π) = sup
G∈C∞

c (ΩT )

QG
i (π).
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The functional QG
i is convex and continuous in the Skorohod topology. Therefore Qi and Q

are convex and lower semicontinuous. Furthermore, it is well known that a measure π(t, du) =

ρ(t, u)du in D([0, T ],M) has finite energy, Q(π) < ∞, if and only if its density ρ belongs to
L2([0, T ], H1(Ω)), in which case

Q̂(π) :=

∫ T

0
dt

∫
Ω

du‖∇ρt (u)‖
2 < ∞

and Q(π) = Q̂(π).
Let Dγ = Dγ,b be the subset of C([0, T ],M0) consisting of all paths π(t, du) = ρ(t, u)du

with initial profile ρ(0, ·) = γ (·), finite energy Q(π) (in which case ρt belongs to H1(Ω) for
almost all 0 ≤ t ≤ T and so B(ρt ) is well defined for those t) and such that B(ρt ) = b for almost
all t in [0, T ].

Lemma 4.1. Let π be a trajectory in D([0, T ],M) such that IT (π |γ ) < ∞. Then π belongs to
Dγ .

Proof. Fix a path π in D([0, T ],M) with finite rate function, IT (π |γ ) < ∞. By definition of
IT , π belongs to D([0, T ],M0). Denote its density by ρ: π(t, du) = ρ(t, u)du.

The proof that ρ(0, ·) = γ (·) is similar to that of Lemma 3.5 in [4]. To prove that B(ρt ) = b
for almost all t ∈ [0, T ], since the function d1,1 : [0, 1] → R+ belongs to C 1([0, 1]) and
is strictly increasing, and since B(d1,1 ◦ ρt ) = d1,1(Bρt ) (for those t such that ρt belongs to
H1(Ω)), it is enough to show that B(d1,1 ◦ ρt ) = d1,1(b) for almost all t ∈ [0, T ]. To this end,
we just need to show that, for any function H± ∈ C 1,2([0, T ] × Γ±),∫ T

0
dt

∫
Γ±

du


B(d1,1(ρt ))(u)− d1,1(b(u))


H±(t, u) = 0. (4.2)

Fix a function H ∈ C 1,2([0, T ]×Γ−). For each 0 < θ < 1, let hθ : [−1, 1] → R be the function
given by

hθ (r) =


r + 1 if − 1 ≤ r ≤ −1 + θ,
−θr

1 − θ
if − 1 + θ ≤ r ≤ 0,

0 if 0 ≤ r ≤ 1,

and define the function Gθ : ΩT → R as G(t, (u1, ǔ)) = hθ (u1)H(t, (−1, ǔ)) for all ǔ ∈ Td−1.
Of course, Gθ can be approximated by functions in C 1,2

0 (ΩT ). From the integration by parts
formula (4.1) and the definition of JGθ , since π has finite energy,

lim
θ→0

JGθ (π) =

∫ T

0
dt

∫
Γ−

du


B(d1,1(ρt ))(u)− d1,1(b(u))


H(t, u),

which proves (4.2) because IT (π |γ ) < ∞.
We deal now with the continuity of π . We claim that there exists a positive constant C0 such

that, for any g ∈ C∞
c (Ω), and any 0 ≤ s < r < T ,

|⟨πr , g⟩ − ⟨πs, g⟩| ≤ C0(r − s)1/2


IT (π |γ )+ ‖g‖
2
1,2,0

+ (r − s)1/2
d−

i, j=1

‖∂2
ui ,u j

g‖1


. (4.3)
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Indeed, for each δ > 0, let ψδ : [0, T ] → R be the function given by

(r − s)1/2ψδ(t) =


0 if 0 ≤ t ≤ s or r + δ ≤ t ≤ T,
t − s

δ
if s ≤ t ≤ s + δ,

1 if s + δ ≤ t ≤ r,

1 −
t − r

δ
if r ≤ t ≤ r + δ,

and let Gδ(t, u) = ψδ(t)g(u). Of course, Gδ can be approximated by functions in C 1,2
0 (ΩT ) and

then

(r − s)1/2 lim
δ→0

JGδ (π) = ⟨πr , g⟩ − ⟨πs, g⟩ −

d−
i, j=1

∫ r

s
dt⟨di, j (ρt ), ∂

2
ui ,u j

g⟩

−
1

(r − s)1/2

∫ r

s
dt⟨∇g · σ(ρt )∇g⟩.

To conclude the proof, it remains to observe that the left hand side is absolutely bounded by
(r − s)1/2 IT (π |γ ), and to note that di, j , σi, j are absolutely bounded on [0, 1]. �

Denote by L2([0, T ], H1
0 (Ω))

∗ the dual of L2([0, T ], H1
0 (Ω)). By Proposition 23.7 in [22],

L2([0, T ], H1
0 (Ω))

∗ corresponds to L2([0, T ], H−1(Ω)) and for v in L2([0, T ], H1
0 (Ω))

∗, G in
L2([0, T ], H1

0 (Ω)),

⟨⟨v,G⟩⟩−1,1 =

∫ T

0
⟨vt ,G t ⟩−1,1dt, (4.4)

where the left hand side stands for the value of the linear functional v at G. Moreover, if we
denote by |||v|||−1 the norm of v,

|||v|||2
−1 =

∫ T

0
‖vt‖

2
−1dt.

Fix a path π(t, du) = ρ(t, u)du in Dγ and suppose that

sup
H∈C∞

c (ΩT )


2

∫ T

0
dt⟨ρt , ∂t Ht ⟩ −

∫ T

0
dt

∫
Ω

du‖∇ Ht‖
2

< ∞. (4.5)

In this case ∂tρ : C∞
c (ΩT ) → R defined by

∂tρ(H) = −

∫ T

0
⟨ρt , ∂t Ht ⟩dt

can be extended to a bounded linear operator ∂tρ : L2([0, T ], H1
0 (Ω)) → R. It belongs

therefore to L2([0, T ], H1
0 (Ω))

∗
= L2([0, T ], H−1(Ω)). In particular, there exists v = {vt :

0 ≤ t ≤ T } in L2([0, T ], H−1(Ω)), which we denote by vt = ∂tρt , such that for any H in
L2([0, T ], H1

0 (Ω)),

⟨⟨∂tρ, H⟩⟩−1,1 =

∫ T

0
⟨∂tρt , Ht ⟩−1,1dt.
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Moreover,

|||∂tρ|||
2
−1 =

∫ T

0
‖∂tρt‖

2
−1dt

= sup
H∈C∞

c (ΩT )


2

∫ T

0
dt⟨ρt , ∂t Ht ⟩ −

∫ T

0
dt

∫
Ω

du‖∇ Ht‖
2

.

Let W be the set of paths π(t, du) = ρ(t, u)du in Dγ such that (4.5) holds, i.e., such that
∂tρ belongs to L2


[0, T ], H−1(Ω)


. For G in L2


[0, T ], H1

0 (Ω)

, let JG : W → R be the

functional given by

JG(π) = ⟨⟨∂tρ,G⟩⟩−1,1 +

∫ T

0
dt

∫
Ω

du∇G t (u) · D(ρt (u))∇ρt (u)

−

∫ T

0
dt

∫
Ω

du∇G t (u) · σ(ρt (u))∇G t (u).

Note that JG(π) = JG(π) for every G in C∞
c (ΩT ). Moreover, since J·(π) is continuous in

L2

[0, T ], H1

0 (Ω)


and since C∞
c (ΩT ) is dense in C 1,2

0 (ΩT ) and in L2([0, T ], H1
0 (Ω)), for every

π in W ,

IT (π |γ ) = sup
G∈C∞

c (ΩT )

JG(π) = sup
G∈L2


[0,T ],H1

0

 JG(π). (4.6)

Lemma 4.2. There exists a constant C0 > 0 such that if the density ρ of some path π(t, du) =

ρ(t, u)du in D([0, T ],M0) has a generalized gradient, ∇ρ, then∫ T

0
dt ‖∂tρt‖

2
−1 ≤ C0 {IT (π |γ )+ Q(π)} , (4.7)∫ T

0
dt

∫
Ω

du
‖∇ρt (u)‖2

χ(ρt (u))
≤ C0 {IT (π |γ )+ 1} . (4.8)

Proof. Fix a path π(t, du) = ρ(t, u)du in D([0, T ],M0). By Lemma 4.1, we may assume that
π(t, du) belongs to Dγ . In view of the discussion presented before the lemma, we need to show
that the left hand side of (4.5) is bounded by the right hand side of (4.7). Such an estimate
follows from the definition of the rate function IT (·|γ ) and from the elementary inequality
2ab ≤ Aa2

+ A−1b2.
We turn now to the proof of (4.8). We may of course assume that IT (π |γ ) < ∞, in which

case Q(π) < ∞. Fix a function β as at the beginning of Section 2. For each δ > 0, let
hδ : [0, 1]

2
→ R be the function given by

hδ(x, y) = (x + δ) log


x + δ

y + δ


+ (1 − x + δ) log


1 − x + δ

1 − y + δ


.

By (4.7), ∂tρ belongs to L2([0, T ], H−1(Ω)). We claim that∫ T

0
dt⟨∂tρt , ∂x hδ(ρt , β)⟩−1,1 =

∫
Ω

hδ(ρT (u), β(u))du −

∫
Ω

hδ(ρ0(u), β(u))du, (4.9)

where ∂x hδ stands for the derivative of hδ with respect to the first coordinate.
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Indeed, by Lemma 4.1 and (4.7), ρ − β belongs to L2

[0, T ], H1

0 (Ω)


and ∂t (ρ − β) = ∂tρ

belongs to L2([0, T ], H−1(Ω)). Then, there exists a sequence {Gn
: n ≥ 1} of smooth functionsGn

: ΩT → R such that Gn
t belongs to C∞

c (Ω) for every t in [0, T ], Gn converges to ρ − β in
L2([0, T ], H1

0 (Ω)) and ∂t Gn converges to ∂t (ρ−β) in L2([0, T ], H−1(Ω)) (cf. [22], Proposition
23.23(ii)). For each positive integer n, let Gn

= Gn
+β and for each δ > 0, fix a smooth function

h̃δ : R2
→ R with compact support and such that its restriction to [0, 1]

2 is hδ . It is clear
that ∫ T

0
dt⟨∂t G

n
t , ∂x h̃δ(Gn

t , β)⟩ =

∫
Ω

h̃δ(Gn
T (u), β(u))du −

∫
Ω

h̃δ(Gn
0(u), β(u))du. (4.10)

On the one hand, ∂x hδ : [0, 1]
2

→ R is given by

∂x hδ(x, y) = log


x + δ

1 − x + δ


− log


y + δ

1 − y + δ


.

Hence, ∂x hδ(ρ, β) and ∂x h̃δ(Gn, β) belongs to L2

[0, T ], H1

0 (Ω)

. Moreover, since ∂x h̃δ is

smooth with compact support and Gn converges to ρ in L2([0, T ], H1(Ω)), ∂x h̃δ(Gn, β)

converges to ∂x hδ(ρ, β) in L2([0, T ], H1
0 (Ω)). From this fact and since ∂t Gn converges to ∂tρ

in L2([0, T ], H−1(Ω)), if we let n → ∞, the left hand side in (4.10) converges to∫ T

0
dt⟨∂tρt , ∂x hδ(ρt , β)⟩−1,1.

On the other hand, by Proposition 23.23(ii) in [22], Gn
0 (resp. Gn

T ) converges to ρ0 (resp. ρT )
in L2(Ω). Then, if we let n → ∞, the right hand side in (4.10) goes to∫

Ω
hδ(ρT (u), β(u))du −

∫
Ω

hδ(ρ0(u), β(u))du,

which proves claim (4.9).
Notice that, since β is bounded away from 0 and 1, there exists a positive constant C = C(β)

such that for δ small enough,

hδ(ρ(t, u), β(u)) ≤ C for all (t, u) in ΩT . (4.11)

For each δ > 0, let H δ
: ΩT → R be the function given by

H δ(t, u) =
∂x hδ(ρ(t, u), β(u))

2(1 + 2δ)
.

A simple computation shows that

JH δ (π) ≥

∫ T

0
dt


∂tρt , H δ

t


−1,1 +

1
8

∫ T

0
dt

∫
Ω

du
1

χδ(ρt (u))
∇ρt (u) · D(ρt (u))∇ρt (u)

− 3
∫ T

0
dt

∫
Ω

du
χδ(ρt (u))

χδ(β(u))2
∇β(u) · D(ρt (u))∇β(u),

where χδ(r) = (r + δ)(1 − r + δ). In view of the strict ellipticity of the diffusion matrix D,
this last inequality together with (4.6), (4.9) and (4.11) shows that there exists a positive constant
C0 = C0(β) such that for δ small enough
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C0 {IT (π |γ )+ 1} ≥

∫ T

0
dt

∫
Ω

du
‖∇ρ(t, u)‖2

χδ(ρ(t, u))
.

We conclude the proof by letting δ ↓ 0 and by using Fatou’s lemma. �

Corollary 4.3. The density ρ of a path π(t, du) = ρ(t, u)du in D([0, T ],M0) is the weak
solution of Eq. (3.1) with initial profile γ if and only if the rate function IT (π |γ ) vanishes.
Moreover, in that case∫ T

0
dt

∫
Ω

du
‖∇ρt (u)‖2

χ(ρt (u))
< ∞.

Proof. On the one hand, if the density ρ of a path π(t, du) = ρ(t, u)du in D([0, T ],M0) is the
weak solution of Eq. (3.1), by assumption (H1), the energy Q(π) is finite. Moreover, since the
initial condition is γ , in the formula of ĴG(π), the linear part in G vanishes which proves that
the rate functional IT (π |γ ) vanishes. On the other hand, if the rate functional vanishes, the path
ρ belongs to L2([0, T ], H1(Ω)) and the linear part in G of JG(π) has to vanish for all functions
G. In particular, ρ is a weak solution of (3.1). Moreover, in that case, by the previous lemma, the
bound claimed holds. �

For each q > 0, let Eq be the level set of IT (π |γ ) defined by

Eq = {π ∈ D([0, T ],M) : IT (π |γ ) ≤ q} .

By Lemma 4.1, Eq is a subset of C([0, T ],M0). Thus, from the previous lemma, it is easy to
deduce the next result.

Corollary 4.4. For every q ≥ 0, there exists a finite constant C(q) such that

sup
π∈Eq

∫ T

0
dt ‖∂tρt‖

2
−1 +

∫ T

0
dt

∫
Ω

du
‖∇ρ(t, u)‖2

χ(ρ(t, u))


≤ C(q).

The next result together with the previous estimates provides the compactness needed in the
proof of the lower semicontinuity of the rate function.

Lemma 4.5. Let {ρn
: n ≥ 1} be a sequence of functions in L2(ΩT ) such that uniformly on n,∫ T

0
dt

ρn
t

2
1,2 +

∫ T

0
dt

∂tρ
n
t

2
−1 < C

for some positive constant C. Suppose that ρ ∈ L2(ΩT ) and that ρn
→ ρ weakly in L2(ΩT ).

Then ρn
→ ρ strongly in L2(ΩT ).

Proof. Since H1(Ω) ⊂ L2(Ω) ⊂ H−1(Ω) with compact embedding H1(Ω) → L2(Ω), from
Corollary 8.4, [21], the sequence {ρn

} is relatively compact in L2

[0, T ], L2(Ω)


. Therefore the

weak convergence implies the strong convergence in L2

[0, T ], L2(Ω)


. �

Theorem 4.6. The functional IT (·|γ ) is lower semicontinuous and has compact level sets.
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Proof. We have to show that, for all q ≥ 0, Eq is compact in D([0, T ],M). Since Eq ⊂

C([0, T ],M0) and C([0, T ],M0) is a closed subset of D([0, T ],M), we just need to show that
Eq is compact in C([0, T ],M0).

We will show first that Eq is closed in C([0, T ],M0). Fix q ∈ R and let {πn
: n ≥ 1} be a

sequence in Eq converging to some π in C([0, T ],M0). Then, for all G ∈ C(ΩT ),

lim
n→∞

∫ T

0
dt⟨πn

t ,G t ⟩ =

∫ T

0
dt⟨πt ,G t ⟩.

Notice that this means that πn
→ π weakly in L2(ΩT ), which together with Corollary 4.4 and

Lemma 4.5 implies that πn
→ π strongly in L2(ΩT ). From this fact and the definition of JG it

is easy to see that, for all G in C 1,2
0 (ΩT ),

lim
n→∞

JG(πn) = JG(π).

This limit, Corollary 4.4 and the lower semicontinuity of Q permit us to conclude that Q(π) ≤

C(q) and that IT (π |γ ) ≤ q .
We prove now that Eq is relatively compact. To this end, it is enough to prove that for every

continuous function G : Ω → R,

lim
δ→0

sup
π∈Eq

sup
0≤s,r≤T
|r−s|<δ

|⟨πr ,G⟩ − ⟨πs,G⟩| = 0. (4.12)

Since Eq ⊂ C([0, T ],M0), we may assume by approximations of G in L1(Ω) that G ∈ C∞
c (Ω).

In which case, (4.12) follows from (4.3). �

We conclude this section with an explicit formula for the rate function IT (·|γ ). For each
π(t, du) = ρ(t, u)du in D([0, T ],M0), denote by H1

0 (σ (ρ)) the Hilbert space induced by

C 1,2
0 (ΩT ) endowed with the inner product ⟨·, ·⟩σ(ρ) defined by

⟨H,G⟩σ(ρ) =

∫ T

0
dt⟨∇ Ht · σ(ρt )∇G t ⟩.

Induced means that we first declare two functions F,G in C 1,2
0 (ΩT ) to be equivalent if

⟨F − G, F − G⟩σ(ρ) = 0 and then we complete the quotient space with respect to the inner
product ⟨·, ·⟩σ(ρ). The norm of H1

0 (σ (ρ)) is denoted by ‖ · ‖σ(ρ).
Fix a path ρ in D([0, T ],M0) and a function H in H1

0 (σ (ρ)). A measurable function
λ : [0, T ] × Ω → [0, 1] is said to be a weak solution of the nonlinear boundary value parabolic
equation∂tλ = ∇ · D(λ)∇λ− ∇ · σ(λ)∇ H,

λ(0, ·) = γ,

λ(t, ·)|Γ = b for 0 ≤ t ≤ T,
(4.13)

if it satisfies the following two conditions:

(H1′) λ belongs to L2

[0, T ], H1(Ω)


:∫ T

0
ds

∫
Ω

‖∇λ(s, u)‖2du


< ∞.
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(H2′) For every function G(t, u) = G t (u) in C 1,2
0 (ΩT ),∫

Ω
du


GT (u)λ(T, u)− G0(u)γ (u)


−

∫ T

0
ds

∫
Ω

du(∂s Gs)(u)λ(s, u)

=

d−
i, j=1

∫ T

0
ds

∫
Ω

du(∂2
ui ,u j

Gs)(u)di, j

λ(s, u)


−

d−
i=1

∫ T

0
ds

∫
Γ

di,1(b(u))n1(u)(∂ui Gs(u))dS

+

∫ T

0
ds

∫
Ω

du∇Gs(u) · σ(λ(s, u))∇ Hs(u).

Note that in this definition we assumed that the solutions take values in the bounded set [0, 1].
In Section 7 we prove the uniqueness of weak solutions of Eq. (4.13) when H belongs to

L2

[0, T ], H1(Ω)


, i.e., provided∫ T

0
dt

∫
Ω

du‖∇ Ht (u)‖
2 < ∞.

Lemma 4.7. Assume that π(t, du) = ρ(t, u)du in D([0, T ],M0) has finite rate function:
IT (π |γ ) < ∞. Then, there exists a function H in H1

0 (σ (ρ)) such that ρ is a weak solution
to (4.13). Moreover,

IT (π |γ ) =
1
4
‖H‖

2
σ(ρ). (4.14)

The proof of this lemma is similar to that of Lemma 5.3 in [13] and is therefore omitted.

5. IT (·|γ )-density

The main result of this section, stated in Theorem 5.3, asserts that any trajectory λt , 0 ≤

t ≤ T , with finite rate function, IT (λ|γ ) < ∞, can be approximated by a sequence of smooth
trajectories {λn

: n ≥ 1} such that

λn
−→ λ and IT (λ

n
|γ ) −→ IT (λ|γ ).

This is one of the main steps in the proof of the lower bound of the large deviations principle for
the empirical measure. The proof rests mainly on the regularizing effects of the hydrodynamic
equation and is one of the main contributions of this article, since it considerably simplifies the
existing methods.

A subset A of D([0, T ],M) is said to be IT (·|γ )-dense if for every π in D([0, T ],M) such
that IT (π |γ ) < ∞, there exists a sequence {πn

: n ≥ 1} in A such that πn converges to π and
IT (π

n
|γ ) converges to IT (π |γ ).

Let Π1 be the subset of D([0, T ],M0) consisting of paths π(t, du) = ρ(t, u)du whose
density ρ is a weak solution of the hydrodynamic equation (3.1) in the time interval [0, δ] for
some δ > 0.

Lemma 5.1. The set Π1 is IT (·|γ )-dense.
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Proof. Fix π(t, du) = ρ(t, u)du in D([0, T ],M) such that IT (π |γ ) < ∞. By Lemma 4.1, π
belongs to C([0, T ],M0). For each δ > 0, let ρδ be the path defined as

ρδ(t, u) =

λ(t, u) if 0 ≤ t ≤ δ,

λ(2δ − t, u) if δ ≤ t ≤ 2δ,
ρ(t − 2δ, u) if 2δ ≤ t ≤ T,

where λ is the weak solution of the hydrodynamic equation (3.1) with initial condition γ . It is
clear that π δ(t, du) = ρδ(t, u)du belongs to Dγ , because so do π and λ, and that Q(π δ) ≤

Q(π)+ 2Q(λ) < ∞. Moreover, π δ converges to π as δ ↓ 0 because π belongs to C([0, T ],M).
By the lower semicontinuity of IT (·|γ ), IT (π |γ ) ≤ limδ→0 IT (π

δ
|γ ). Then, in order to prove the

lemma, it is enough to prove that IT (π |γ ) ≥ limδ→0 IT (π
δ
|γ ). To this end, decompose the rate

function IT (π
δ
|γ ) as the sum of the contributions on each time interval [0, δ], [δ, 2δ] and [2δ, T ].

The first contribution vanishes because π δ solves the hydrodynamic equation in this interval. On
the time interval [δ, 2δ], ∂tρ

δ
t = −∂tλ2δ−t = −∇ · D(λ2δ−t )∇λ2δ−t = −∇ · D(ρδt )∇ρ

δ
t . In

particular, the second contribution is equal to

sup
G∈C 1,2

0 (ΩT )


2

∫ δ

0
ds

∫
Ω

du∇G · D(λ)∇λ−

∫ δ

0
ds

∫
Ω

du∇G · σ(λ)∇G


which, by the Schwarz inequality, is bounded above by∫ δ

0
ds

∫
Ω

du
1

χ(λ)
∇λ · D(λ)∇λ .

By Corollary 4.3, this last expression converges to zero as δ ↓ 0. Finally, the third contribution
is bounded by IT (π |γ ) because π δ in this interval is just a time translation of the path π . �

Let Π2 be the set of all paths π in Π1 with the property that for every δ > 0 there exists ϵ > 0
such that ϵ ≤ πt (·) ≤ 1 − ϵ for all t ∈ [δ, T ].

Lemma 5.2. The set Π2 is IT (·|γ )-dense.

Proof. By the previous lemma, it is enough to show that each path π(t, du) = ρ(t, u)du in Π1
can be approximated by paths in Π2. Fix π in Π1 and let λ be as in the proof of the previous
lemma. For each 0 < ε < 1, let ρε = (1 − ε)ρ + ελ, πε(t, du) = ρε(t, u)du. Note that
Q(πε) < ∞ because Q is convex and both Q(π) and Q(λ) are finite. Hence, πε belongs to Dγ
since both ρ and λ satisfy the boundary conditions. Moreover, it is clear that πε converges to π
as ε ↓ 0. By the lower semicontinuity of IT (·|γ ), in order to conclude the proof, it is enough to
show that

lim
ε→0

IT (π
ε
|γ ) ≤ IT (π |γ ). (5.1)

By Lemma 4.7, there exists H ∈ H1
0 (σ (ρ)) such that ρ solves the Eq. (4.13). Let P =

σ(ρ)∇ H − D(ρ)∇ρ and Pλ = −D(λ)∇λ. For each 0 < ε < 1, let Pε = (1 − ε)P + εPλ. Since
ρ solves Eq. (4.13), for every G ∈ C 1,2

0 (ΩT ),∫ T

0
dt⟨Pεt · ∇G t ⟩ = ⟨πεT ,GT ⟩ − ⟨πε0 ,G0⟩ −

∫ T

0
dt⟨πεt , ∂t G t ⟩.
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Hence, by (4.6), IT (π
ε
|γ ) is equal to

sup
G∈C 1,2

0 (ΩT )

∫ T

0
dt

∫
Ω


Pε + D(ρε)∇ρε


· ∇Gdu −

∫ T

0
dt

∫
Ω

∇G · σ(ρε)∇Gdu


.

This expression can be rewritten as

1
4

∫ T

0
dt

∫
Ω

du

Pε + D(ρε)∇ρε


· σ(ρε)−1Pε + D(ρε)∇ρε


−

1
4

inf
G

σ(ρε)−1Pε + D(ρε)∇ρε

− ∇G

2

σ(ρε)


.

Hence,

IT (π
ε
|γ ) ≤

1
4

∫ T

0
dt

∫
Ω

du

Pε + D(ρε)∇ρε


· σ(ρε)−1Pε + D(ρε)∇ρε


.

In view of this inequality and (4.14), in order to prove (5.1), it is enough to show that

lim
ε→0

∫ T

0
dt

∫
Ω

du

Pε + D(ρε)∇ρε


· σ(ρε)−1Pε + D(ρε)∇ρε


=

∫ T

0
dt

∫
Ω

du

P + D(ρ)∇ρ


· σ(ρ)−1P + D(ρ)∇ρ


.

By the continuity of D(·) and χ(·), the strict ellipticity of D, and from the definition of Pε,

lim
ε→0


Pε + D(ρε)∇ρε


· σ(ρε)−1Pε + D(ρε)∇ρε


=


P + D(ρ)∇ρ


· σ(ρ)−1P + D(ρ)∇ρ


almost everywhere. Therefore, to prove (5.1), it remains to show the uniform integrability of

‖Pε‖2

χ(ρε)
: ε > 0


and


‖∇ρε‖2

χ(ρε)
: ε > 0


.

Since IT (π |γ ) < ∞, by (4.8), (4.14) and Corollary 4.3, the functions ‖P‖
2

χ(ρ)
, ‖Pλ‖2

χ(λ)
, ‖∇ρ‖

2

χ(ρ)
and

‖∇λ‖2

χ(λ)
belong to L1(ΩT ). In particular, the function

g = max


‖P‖
2

χ(ρ)
,
‖Pλ‖2

χ(λ)
,
‖∇ρ‖

2

χ(ρ)
,
‖∇λ‖2

χ(λ)


,

also belongs to L1(ΩT ). By the convexity of ‖ · ‖
2 and the concavity of χ(·),

‖Pε‖2

χ(ρε)
≤
(1 − ε)‖P‖

2
+ ε‖Pλ‖2

(1 − ε)χ(ρ)+ εχ(λ)
≤ g,

which proves the uniform integrability of the family ‖Pε‖2

χ(ρε)
. The uniform integrability of the

family ‖∇ρε‖
2

χ(ρε)
follows from the same estimate with ∇ρε, ∇ρ and ∇λ in place of Pε, P and

Pλ, respectively. �

Let Π be the subset of Π2 consisting of all those paths π which are solutions of the Eq. (4.13)
for some H ∈ C 1,2

0 (ΩT ).
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Theorem 5.3. The set Π is IT (·|γ )-dense.

Proof. By the previous lemma, it is enough to show that each path π in Π2 can be approximated
by paths in Π . Fix π(t, du) = ρ(t, u)du in Π2. By Lemma 4.7, there exists H ∈ H1

0 (σ (ρ)) such
that ρ solves the Eq. (4.13). Since π belongs to Π2 ⊂ Π1, ρ is the weak solution of (3.1) in some
time interval [0, 2δ] for some δ > 0. In particular, ∇ H = 0 a.e. in [0, 2δ] × Ω . On the other
hand, since π belongs to Π1, there exists ϵ > 0 such that ϵ ≤ πt (·) ≤ 1 − ϵ for δ ≤ t ≤ T .
Therefore,∫ T

0
dt

∫
Ω

‖∇ Ht (u)‖
2du < ∞. (5.2)

Since H belongs to H1
0 (σ (ρ)), there exists a sequence of functions {Hn

: n ≥ 1} in C 1,2
0 (ΩT )

converging to H in H1
0 (σ (ρ)). We may assume of course that ∇ Hn

t ≡ 0 in the time interval
[0, δ]. In particular,

lim
n→∞

∫ T

0
dt

∫
Ω

du‖∇ Hn
t (u)− ∇ Ht (u)‖

2
= 0. (5.3)

For each integer n > 0, let ρn be the weak solution of (4.13) with Hn in place of H and set
πn(t, du) = ρn(t, u)du. By (4.14) and since σ is bounded above in [0, 1] by a finite constant,

IT (π
n
|γ ) =

1
4

∫ T

0
dt⟨∇ Hn

t · σ(ρn
t )∇ Hn

t ⟩ ≤ C0

∫ T

0
dt

∫
Ω

du‖∇ Hn
t (u)‖

2.

In particular, by (5.2) and (5.3), IT (π
n
|γ ) is uniformly bounded. Thus, by Theorem 4.6, the

sequence πn is relatively compact in D([0, T ],M).
Let {πnk : k ≥ 1} be a subsequence of πn converging to some π0 in D([0, T ],M0). For

every G in C 1,2
0 (ΩT ),

⟨π
nk
T ,GT ⟩ − ⟨γ,G0⟩ −

∫ T

0
dt⟨πnk

t , ∂t G t ⟩ =

d−
i, j=1

∫ T

0
dt⟨di, j (ρ

nk
t ), ∂

2
ui ,u j

G t ⟩

−

d−
i=1

∫ T

0
dt

∫
Γ

di,1(b)n1(∂ui G)dS +

∫ T

0
dt⟨σ(ρn

t )∇ Hnk
t · ∇G t ⟩.

Letting k → ∞ in this equation, we obtain the same equation with π0 and H in place of πnk

and Hnk , respectively, if

lim
k→∞

∫ T

0
dt⟨di, j (ρ

nk
t ), ∂

2
ui ,u j

G t ⟩ =

∫ T

0
dt⟨di, j (ρ

0
t ), ∂

2
ui ,u j

G t ⟩,

lim
k→∞

∫ T

0
dt⟨σ(ρnk

t )∇ Hnk
t · ∇G t ⟩ =

∫ T

0
dt⟨σ(ρ0

t )∇ Ht · ∇G t ⟩.

(5.4)

We prove the second claim, the first one being simpler. Note first that we can replace Hnk by
H in the previous limit, because σ is bounded in [0, 1] by some positive constant and (5.3) holds.
Now, ρnk converges to ρ0 weakly in L2(ΩT ) because πnk converges to π0 in D([0, T ],M0).
Since IT (π

n
|γ ) is uniformly bounded, by Corollary 4.4 and Lemma 4.5, ρnk converges to ρ0

strongly in L2(ΩT ) which implies (5.4). In particular, since (5.2) holds, by the uniqueness of
weak solutions of Eq. (4.13), π0

= π and we are done. �
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6. Large deviations

We prove in this section the dynamical large deviations principle for the empirical measure
of boundary driven symmetric exclusion processes in dimension d ≥ 1. The proof relies on
the results presented in the previous section and is quite similar to the original one presented
in [15,9]. There are just three additional difficulties. On the one hand, the lack of explicitly
known stationary states hinders the derivation of the usual estimates of the entropy and the
Dirichlet form, so important in the proof of the hydrodynamic behavior. On the other hand, due
to the definition of the rate function, we have to show that trajectories with infinite energy can
be neglected in the large deviations regime. Finally, since we are working with the empirical
measure, instead of the empirical density, we need to show that trajectories which are not
absolutely continuous with respect to the Lebesgue measure and whose density is not bounded
by one can also be neglected. The first two problems have already been faced and solved, the first
one in [17,4] and the second in [19,6]. The approach here is quite similar; we thus only sketch
the main steps for the sake of completeness.

6.1. Superexponential estimates

It is well known that one of the main steps in the derivation of the upper bound is a
superexponential estimate which allows the replacement of local functions by functionals of the
empirical density in the large deviations regime. Essentially, the problem consists in bounding
expressions such as ⟨V, f 2

⟩µN
ss

in terms of the Dirichlet form ⟨−N 2 L N f, f ⟩µN
ss

. Here V is a

local function and ⟨·, ·⟩µN
ss

indicates the inner product with respect to the invariant state µN
ss .

In our context, the fact that the invariant state is not known explicitly introduces a technical
difficulty.

Let β be as at the beginning of Section 2. Following [17,4], we use νN
β(·) as the reference

measure and estimate everything with respect to νN
β(·). However, since νN

β(·) is not the invariant

state, there are no reasons for ⟨−N 2 L N f, f ⟩νN
β(·)

to be positive. The next statement shows that

this expression is almost positive.
For each function f : X N → R, let

DN ,0( f ) =

d−
i=1

−
x

∫
rx,x+ei (η)


f (ηx,x+ei )− f (η)

2 dνN
β(·)(η),

where the second sum is carried out over all x such that x, x + ei ∈ ΩN .

Lemma 6.1. There exists a finite constant C depending only on β such that

⟨N 2 L N ,0 f, f ⟩νN
β(·)

≤ −
N 2

4
DN ,0( f )+ C N d

⟨ f, f ⟩νN
β(·)
,

for every function f : X N → R.

The proof of this lemma is elementary and is thus omitted. Further, we may choose β for
which there exists a constant θ > 0 such that

β(u1, ǔ) = b(−1, ǔ) if − 1 ≤ u1 ≤ −1 + θ,

β(u1, ǔ) = b(1, ǔ) if 1 − θ ≤ u1 ≤ 1,
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for all ǔ ∈ Td−1. In that case, for every N large enough, νN
β(·) is reversible for the process with

generator L N ,b and then ⟨−N 2 L N ,b f, f ⟩νN
β(·)

is positive.

This lemma together with the computation presented in [2], p. 78, for nonreversible processes,
permits us to prove the superexponential estimate. For a cylinder function Ψ , denote the
expectation of Ψ with respect to the Bernoulli product measure νN

α by Ψ(α):
Ψ(α) = Eν

N
α [Ψ ].

For a positive integer l and x ∈ ΩN , denote the empirical mean density on a box of size 2l + 1
centered at x by ηl(x):

ηl(x) =
1

|Λl(x)|

−
y∈Λl (x)

η(y),

where

Λl(x) = ΛN ,l(x) = {y ∈ ΩN : |y − x | ≤ l}.

For each G ∈ C(ΩT ), each cylinder function Ψ and each ε > 0, let

V G,Ψ
N ,ε (s, η) =

1
N d

−
x

G(s, x/N )

τxΨ(η)− Ψ(ηεN (x))


,

where the sum is carried out over all x such that the support of τxΨ belongs to ΩN .
For a continuous function H : [0, T ] × Γ → R, let

V ±

N ,H =

∫ T

0
ds

1

N d−1

−
x∈Γ±

N

V ±(x, ηs)H


s,

x ± e1

N


,

where Γ−

N (resp. Γ+

N ) stands for the left (resp. right) boundary of ΩN :

Γ±

N = {(x1, . . . , xd) ∈ ΓN : x1 = ±(N − 1)}

and where

V ±(x, η) =

[
η(x)+ b


x ± e1

N

] [
η(x ∓ e1)− b


x ± e1

N

]
.

Proposition 6.2. Fix G ∈ C(ΩT ), H in C([0, T ] × Γ ), a cylinder function Ψ and a sequence
{ηN

: N ≥ 1} of configurations with ηN in X N . For every δ > 0,

lim
ε→0

lim
N→∞

1
N d log PηN

[ ∫ T

0
V G,Ψ

N ,ε (s, ηs)ds
 > δ

]
= −∞,

lim
N→∞

1
N d PηN


|V ±

N ,H | > δ


= −∞.

For each ε > 0 and π in M, denote by Ξε(π) = πε the absolutely continuous measure
obtained by smoothing the measure π :

Ξε(π)(dx) = πε(dx) =
1

Uε

π(Λε(x))

|Λε(x)|
dx,
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where Λε(x) = {y ∈ Ω : |y − x | ≤ ε}, |A| stands for the Lebesgue measure of the set A, and
{Uε : ε > 0} is a strictly decreasing sequence converging to 1: Uε > 1, Uε > Uε′ for ε > ε′, and
limε↓0 Uε = 1. Let

πN ,ε
= Ξε(πN ).

A simple computation shows that πN ,ε belongs to M0 for N sufficiently large because Uε > 1,
and that for each continuous function H : Ω → R,

⟨πN ,ε, H⟩ =
1

N d

−
x∈ΩN

H(x/N )ηεN (x)+ O(N , ε),

where O(N , ε) is absolutely bounded by C0{N−1
+ ε} for some finite constant C0 depending

only on H .
For each H in C 1,2

0 (ΩT ) consider the exponential martingale M H
t defined by

M H
t = exp


N d

[
⟨πN

t , Ht ⟩ − ⟨πN
0 , H0⟩

−
1

N d

∫ t

0
e−N d

⟨πN
s ,Hs ⟩


∂s + N 2 L N


eN d

⟨πN
s ,Hs ⟩ds

]
.

Recall from Section 2.2 the definition of the functional ĴH . An elementary computation shows
that

M H
T = exp


N d


ĴH (π

N ,ε)+ VH
N ,ε + c1

H (ε)+ c2
H (N

−1)

. (6.1)

In this formula,

VH
N ,ε = −

d−
i=1

∫ T

0
V
∂2

ui
H,hi

N ,ε (s, ηs)ds −
1
2

d−
i=1

∫ T

0
V
(∂ui H)2,gi

N ,ε (s, ηs)ds

+ aV +

N ,∂u1 H − aV −

N ,∂u1 H + ⟨πN
0 , H0⟩ − ⟨γ, H0⟩;

the cylinder functions hi , gi are given by

hi (η) = η(0)+ a

η(0)[η(−ei )+ η(ei )] − η(−ei )η(ei )


,

gi (η) = r0,ei (η)[η(ei )− η(0)]2
;

and c j
H : R+ → R, j = 1, 2, are functions depending only on H such that c j

H (δ) converges
to 0 as δ ↓ 0. In particular, the martingale M H

T is bounded by exp

C(H, T )N d


for some

finite constant C(H, T ) depending only on H and T . Therefore, Proposition 6.2 holds for
PH
ηN = PηN M H

T in place of PηN .

6.2. Energy estimates

To exclude paths with infinite energy in the large deviations regime, we need an energy
estimate. We state first the following technical result.

Lemma 6.3. There exists a finite constant C0, depending on T , such that for every G in C∞
c (ΩT ),

every integer 1 ≤ i ≤ d and every sequence {ηN
: N ≥ 1} of configurations with ηN in X N ,
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lim
N→∞

1
N d log EηN

[
exp


N d

∫ T

0
dt⟨πN

t , ∂ui G⟩

]
≤ C0


1 +

∫ T

0
‖G t‖

2
2dt


.

The proof of this proposition is similar to that of Lemma A.1.1 in [14].
Fix throughout the rest of the subsection a constant C0 satisfying the statement of Lemma 6.3.

For each G in C∞
c (ΩT ) and each integer 1 ≤ i ≤ d, let Q̃G

i : D([0, T ],M) → R be the function
given by

Q̃G
i (π) =

∫ T

0
dt⟨πt , ∂ui G t ⟩ − C0

∫ T

0
dt

∫
Ω

duG(t, u)2.

Notice that

sup
G∈C∞

c (ΩT )


Q̃G

i (π)


=
Qi (π)

4C0
. (6.2)

Fix a sequence {Gk : k ≥ 1} of smooth functions dense in L2([0, T ], H1(Ω)). For any
positive integers r, l, let

Br,l =


π ∈ D([0, T ],M) : max

1≤k≤r
1≤i≤d

Q̃Gk
i (π) ≤ l


.

Since, for fixed G in C∞
c (ΩT ) and 1 ≤ i ≤ d integer, the function Q̃G

i is continuous, Br,l is a
closed subset of D([0, T ],M).

Lemma 6.4. There exists a finite constant C0, depending on T , such that for any positive integers
r, l and any sequence {ηN

: N ≥ 1} of configurations with ηN in X N ,

lim
N→∞

1
N d log QηN


(Br,l)

c
≤ −l + C0.

Proof. For integers 1 ≤ k ≤ r and 1 ≤ i ≤ d , by the Chebyshev inequality and by Lemma 6.3,

lim
N→∞

1
N d log PηN


Q̃Gk

i > l


≤ −l + C0.

Hence, from

lim
N→∞

1
N d log(aN + bN ) ≤ max


lim

N→∞

1
N d log aN , lim

N→∞

1
N d log bN


, (6.3)

we obtain the desired inequality. �

6.3. The upper bound

Fix a sequence {Fk : k ≥ 1} of smooth nonnegative functions dense in C(Ω) for the uniform
topology. For k ≥ 1 and δ > 0, let

Dk,δ =


π ∈ D([0, T ],M) : 0 ≤ ⟨πt , Fk⟩ ≤

∫
Ω

Fk(x)dx + Ckδ, 0 ≤ t ≤ T


,
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where Ck = ‖∇Fk‖∞ and ∇F is the gradient of F . Clearly, the set Dk,δ , k ≥ 1, δ > 0, is a
closed subset of D([0, T ],M). Moreover, if

Em,δ =

m
k=1

Dk,δ,

we have that D([0, T ],M0) = ∩n≥1 ∩m≥1 Em,1/n . Note, finally, that for all m ≥ 1, δ > 0,

πN ,ε belongs to Em,δ for N sufficiently large. (6.4)

Fix a sequence of configurations {ηN
: N ≥ 1} with ηN in X N and such that πN (ηN )

converges to γ (u)du in M. Let A be a subset of D([0, T ],M):

1
N d log PηN


πN

∈ A


=
1

N d log EηN


M H

T (M
H
T )

−11{πN
∈ A}


.

Maximizing over πN in A, we get from (6.1) that the last term is bounded above by

− inf
π∈A

ĴH (π
ε)+

1
N d log EηN


M H

T e−N dVH
N ,ε


− c1

H (ε)− c2
H (N

−1).

Since πN (ηN ) converges to γ (u)du in M and since Proposition 6.2 holds for PH
ηN = PηN M H

T in
place of PηN , the second term of the previous expression is bounded above by some CH (ε, N )
such that

lim
ε→0

lim
N→∞

CH (ε, N ) = 0.

Hence, for every ε > 0, and every H in C 1,2
0 (ΩT ),

lim
N→∞

1
N d log PηN [A] ≤ − inf

π∈A
ĴH (π

ε)+ C ′

H (ε), (6.5)

where limε→0 C ′

H (ε) = 0.

For each H ∈ C 1,2
0 (ΩT ), each ε > 0 and any r, l,m, n ∈ Z+, let J r,l,m,n

H,ε : D([0, T ],M) →

R ∪ {∞} be the functional given by

J r,l,m,n
H,ε (π) =


ĴH (π

ε) if π ∈ Br,l ∩ Em,1/n,

+∞ otherwise.

This functional is lower semicontinuous because ĴH ◦ Ξε is too and because Br,l , Em,1/n are
closed subsets of D([0, T ],M).

Let O be an open subset of D([0, T ],M). By Lemma 6.4 and (6.3)–(6.5),

lim
N→∞

1
N d log QηN [O] ≤ max


lim

N→∞

1
N d log QηN [O ∩ Br,l ∩ Em,1/n],

lim
N→∞

1
N d log QηN [(Br,l)

c
]


≤ max


− inf
π∈O∩Br,l∩Em,1/n

ĴH (π
ε)+ C ′

H (ε),−l + C0


= − inf

π∈O
Lr,l,m,n

H,ε (π),
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where

Lr,l,m,n
H,ε (π) = min


J r,l,m,n

H,ε (π)− C ′

H (ε), l − C0


.

In particular,

lim
N→∞

1
N d log QηN [O] ≤ − sup

H,ε,r,l,m,n
inf
π∈O

Lr,l,m,n
H,ε (π).

Note that, for each H ∈ C 1,2
0 (ΩT ), each ε > 0 and r, l,m, n ∈ Z+, the functional Lr,l,m,n

H,ε
is lower semicontinuous. Then, by Lemma A2.3.3 in [13], for each compact subset K of
D([0, T ],M),

lim
N→∞

1
N d log QηN [K] ≤ − inf

π∈K
sup

H,ε,r,l,m,n
Lr,l,m,n

H,ε (π).

By (6.2) and since D([0, T ],M0) = ∩n≥1 ∩m≥1 Em,1/n ,

lim
ε→0

lim
l→∞

lim
r→∞

lim
m→∞

lim
n→∞

Lr,l,m,n
H,ε (π)

=


ĴH (π) if Q(π) < ∞ and π ∈ D([0, T ],M0),

+∞ otherwise.

This result and the last inequality imply the upper bound for compact sets because ĴH and
JH coincide on D([0, T ],M0). To pass from compact sets to closed sets, we have to obtain
exponential tightness for the sequence {QηN }. This means that there exists a sequence of compact
sets {Kn : n ≥ 1} in D([0, T ],M) such that

lim
N→∞

1
N d log QηN (Kn

c) ≤ −n.

The proof presented in [1] for the non-interacting zero-range process is easily adapted to our
context.

6.4. The lower bound

The proof of the lower bound is similar to that in the convex periodic case. We just sketch
it and refer the reader to [13], Section 10.5. Fix a path π in Π and let H ∈ C 1,2

0 (ΩT ) be
such that π is the weak solution of Eq. (4.13). Recall from the previous section the definition
of the martingale M H

t and denote by PH
ηN the probability measure on D([0, T ], X N ) given by

PH
ηN [A] = EηN [M H

T 1{A}]. Under PH
ηN and for each 0 ≤ t ≤ T , the empirical measure πN

t

converges in probability to πt . Further,

lim
N→∞

1
N d H


PH
ηN |PηN


= IT (π |γ ),

where H(µ|ν) stands for the relative entropy of µ with respect to ν. From these two results we
can obtain that for every open set O ⊂ D([0, T ],M) which contains π ,

lim
N→∞

1
N d log PηN


O


≥ −IT (π |γ ).

The lower bound follows from this and the IT (·|γ )-density of Π established in Theorem 5.3.
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7. Existence and uniqueness of weak solutions

We examine in this section the existence and uniqueness of weak solutions of the boundary
value problems (2.2), (3.2) and (4.13), as well as some properties of the solutions.

Proposition 7.1. Let ρ0 : Ω → [0, 1] be a measurable function. There exists a unique weak
solution of (3.2).

Proof. Existence of weak solutions of (3.2) is guaranteed by the tightness of the sequence QN
ss

proved in Section 3. Indeed, fix a profile ρ0 : Ω → [0, 1] and consider a sequence {µN
: N ≥ 1}

of probability measures in M associated with ρ0 in the sense (3.3). Fix T > 0 and denote by
QN the probability measure on D([0, T ],M) induced by the measure µN and the process πN

t .
Repeating the arguments of Section 3, one can prove that the sequence {QN

: N ≥ 1} is tight
and that any limit point of {QN

: N ≥ 1} is concentrated on weak solutions of (3.2). This proves
the existence. The uniqueness follows from Lemma 7.2 below. �

Denote by ‖·‖1 the L1(Ω) norm. The next lemma states that the L1(Ω)-norm of the difference
of two weak solutions of the boundary value problem (3.1) decreases in time:

Lemma 7.2. Fix two profiles ρ1
0 , ρ2

0 : Ω → [0, 1]. Let ρ j , j = 1, 2, be weak solutions

of (3.1) with initial condition ρ j
0 . Then, ‖ρ1

t − ρ2
t ‖1 decreases in time. In particular, there is

at most one weak solution of (3.1).

Proof. Fix two profiles ρ1
0 , ρ2

0 : Ω → [0, 1]. Let ρ j , j = 1, 2, be weak solutions of (3.1) with

initial condition ρ j
0 . Fix 0 ≤ s < t . For δ > 0 small, denote by Rδ the function defined by

Rδ(u) =
u2

2δ
1{|u| ≤ δ} +


|u| − δ/2


1{|u| > δ}.

Let ψ : Rd
→ R+ be a smooth approximation of the identity:

ψ(u) ≥ 0, supp ψ ⊂ [−1, 1]
d ,

∫
ψ(u)du = 1.

For each positive ϵ, define ψϵ as

ψϵ(u) = ϵ−dψ(uϵ−1).

Taking the time derivative of the convolution of ρ j
t with ψϵ , after some elementary

computations based on properties (H1′), (H2′) of weak solutions of (3.2), one can show that∫
Ω

du Rδ

ρ1(t, u)− ρ2(t, u)


−

∫
Ω

du Rδ

ρ1(s, u)− ρ2(s, u)


= −δ−1

∫ t

s
dτ

∫
Aδ

du∇(ρ1
− ρ2) ·


D(ρ1)∇ρ1

− D(ρ2)∇ρ2,
where Aδ stands for the subset of [0, T ] × Ω where |ρ1(t, u) − ρ2(t, u)| ≤ δ. We may rewrite
the previous expression as

−δ−1
∫ t

s
dτ

∫
Aδ

du∇(ρ1
− ρ2) · D(ρ1)∇(ρ1

− ρ2)

−δ−1
∫ t

s
dτ

∫
Aδ

du∇(ρ1
− ρ2) ·


D(ρ1)− D(ρ2)


∇ρ2.
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By the strict ellipticity of the diffusion coefficient D, the first line is bounded above by

−aδ−1
∫ t

s
dτ

∫
Aδ

du‖∇(ρ1
− ρ2)‖2.

On the other hand, since Di, j is Lipschitz continuous, on the set Aδ , |Di, j (ρ
1) − Di, j (ρ

2)| ≤

M |ρ1
− ρ2

| ≤ Mδ. In particular, by the Schwarz inequality, the second line of the previous
formula is bounded by

Md A

2δ

∫ t

s
dτ

∫
Aδ

du‖∇(ρ1
− ρ2)‖2

+
δMd

2A

∫ t

s
dτ

∫
Aδ

du‖∇ρ2
‖

2

for every A > 0. Choose A = (2a/Md) to obtain that∫
Ω

du Rδ

ρ1(t, u)− ρ2(t, u)


−

∫
Ω

du Rδ

ρ1(s, u)− ρ2(s, u)


≤
δ(d M)2

4a

∫ t

0
dτ

∫
du‖∇ρ2

‖
2.

Letting δ ↓ 0, we conclude the proof of the lemma because Rδ(·) converges to the absolute value
function as δ ↓ 0. �

Lemma 7.3. Fix two profiles ρ1
0 , ρ2

0 : Ω → [0, 1]. Let ρ j , j = 1, 2, be weak solutions

of (4.13) for the same H satisfying (5.2) and with initial condition ρ j
0 . Then, ‖ρ1

t − ρ2
t ‖1

decreases in time. In particular, there is at most one weak solution of (4.13) when H
satisfies (5.2).

Proof. Following the same procedure of the proof of the previous lemma, we get first∫
Ω

du Rδ

ρ1(t, u)− ρ2(t, u)


−

∫
Ω

du Rδ

ρ1(s, u)− ρ2(s, u)


= −δ−1

∫ t

s
dτ

∫
Aδ

du∇(ρ1
− ρ2) ·


D(ρ1)∇ρ1

− D(ρ2)∇ρ2
+ δ−1

∫ t

s
dτ

∫
Aδ

du∇(ρ1
− ρ2)


σ(ρ1)− σ(ρ2)


· ∇ H,

and then∫
Ω

du Rδ

ρ1(t, u)− ρ2(t, u)


−

∫
Ω

du Rδ

ρ1(s, u)− ρ2(s, u)


≤ δC1

∫ t

0
dτ

∫
du‖∇ρ2

‖
2
+ δC2

∫ t

0
dτ

∫
du‖∇ H‖

2,

for some positive constants C1 and C2. Hence, letting δ ↓ 0 we conclude the proof of the
lemma. �

The same ideas permit to show the monotonicity of weak solutions of (3.2). This is the content
of the next result which plays a fundamental role in proving the existence and uniqueness of weak
solutions of (2.2).

Lemma 7.4. Fix two profiles ρ1
0 , ρ2

0 : Ω → [0, 1]. Let ρ j , j = 1, 2, be the weak solutions

of (4.13) for some H satisfying (5.2) and with initial condition ρ j
0 . Assume that there exists

s ≥ 0 such that
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λ

u ∈ Ω : ρ1(s, u) ≤ ρ2(s, u)


= 1,

where λ is the Lebesgue measure on Ω . Then, for all t ≥ s

λ

u ∈ Ω : ρ1(t, u) ≤ ρ2(t, u)


= 1.

Proof. We just need to repeat the same proof as for Lemma 7.2 but considering the function
R+

δ (u) = Rδ(u)1{u ≥ 0} instead of Rδ . �

Corollary 7.5. Denote by ρ0 (resp. ρ1) the weak solution of (3.1) with initial condition equal
to 0 (resp. 1). Then, for 0 ≤ s ≤ t , ρ1

t (·) ≤ ρ1
s (·) and ρ0

s (·) ≤ ρ0
t (·) a.e.

Proof. Fix s ≥ 0. Note that ρ̂(r, u) defined by ρ̂(r, u) = ρ1(s + r, u) is a weak solution of (3.1)
with initial condition ρ1(s, u). Since ρ1(s, u) ≤ 1 = ρ1(0, u), by the previous lemma, for all
r ≥ 0, ρ1(r + s, u) ≤ ρ1(r, u) for almost all u. �

We now turn to the existence and uniqueness of the boundary value problem (2.2). Recall
the notation introduced at the beginning of Section 4. Consider the following classical boundary
eigenvalue problem for the Laplacian:

−∆U = αU,
U ∈ H1

0 (Ω).
(7.1)

By the Sturm–Liouville theorem (cf. [10], Section 9.12.3), problem (7.1) has a countable system
{Un, αn : n ≥ 1} of eigensolutions which contains all possible eigenvalues. The set {Un : n ≥ 1}

of eigenfunctions forms a complete orthonormal system in the Hilbert space L2(Ω), each Un
belongs to H1

0 (Ω), all the eigenvalues, αn , have finite multiplicity and

0 < α1 ≤ α2 ≤ · · · ≤ αn ≤ · · · → ∞.

The set {Un/α
1/2
n : n ≥ 1} is a complete orthonormal system in the Hilbert space H1

0 (Ω). Hence,
a function V belongs to L2(Ω) if and only if

V = lim
n→∞

n−
k=1

⟨V,Uk⟩2Uk

in L2(Ω). In this case,

⟨V,W ⟩2 =

∞−
k=1

⟨V,Uk⟩2⟨W,Uk⟩2

for all W in L2(Ω). Moreover, a function V belongs to H1
0 (Ω) if and only if

V = lim
n→∞

n−
k=1

⟨V,Uk⟩2Uk

in H1
0 (Ω). In this case,

⟨V,W ⟩1,2,0 =

∞−
k=1

αk⟨V,Uk⟩2⟨W,Uk⟩2 (7.2)

for all W in H1
0 (Ω).
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Lemma 7.6. Fix two profiles ρ1
0 , ρ2

0 : Ω → [0, 1]. Let ρ j , j = 1, 2, be the weak solutions

of (3.2) with initial condition ρ j
0 . Then,∫

∞

0
‖ρ1

t − ρ2
t ‖

2
1dt < ∞.

In particular,

lim
t→∞

‖ρ1
t − ρ2

t ‖1 = 0.

Proof. Fix two profiles ρ1
0 , ρ2

0 : Ω → [0, 1] and let ρ j , j = 1, 2, be the weak solutions of (3.2)

with initial condition ρ j
0 . Let ρ j

t (·) = ρ j (t, ·). For n ≥ 1 let Fn : R+ → R be the function
defined by

Fn(t) =

n−
k=1

1
αk

⟨ρ1
t − ρ2

t ,Uk⟩2
2
.

Since ρ1, ρ2 are weak solutions, Fn is time differentiable. Since ∆Uk = −αkUk and since
αk > 0, for t > 0,

d
dt

Fn(t) = −

n−
k=1


⟨ρ1

t − ρ2
t ,Uk⟩2⟨ϕ(ρ

1
t )− ϕ(ρ2

t ),Uk⟩2

+ ⟨ϕ(ρ1
t )− ϕ(ρ2

t ),Uk⟩2⟨ρ
1
t − ρ2

t ,Uk⟩2


. (7.3)

Fix t0 > 0. Integrating (7.3) over time, applying identity (7.2), and letting n ↑ ∞, we get∫ T

t0
dt

∫
Ω


ϕ(ρ1

t (u))− ϕ(ρ2
t (u))


ρ1

t (u)− ρ2
t (u)


du = lim

n→∞

1
2


Fn(t0)− Fn(T )


≤

1
2α1

‖ρ1
t0 − ρ2

t0‖
2
2

for all T > t0. Since ρ1
t0 − ρ2

t0 belongs to L2(Ω),∫
∞

t0
dt

∫
Ω


ϕ(ρ1

t (u))− ϕ(ρ2
t (u))


ρ1

t (u)− ρ2
t (u)


du < ∞.

There exists a positive constant C2 such that, for all a, b ∈ [0, 1],

C2(b − a)2 ≤

ϕ(b)− ϕ(a)


(b − a).

On the other hand, by the Schwarz inequality, for all t ≥ t0,

‖ρ1
t − ρ2

t ‖
2
1 ≤ 2‖ρ1

t − ρ2
t ‖

2
2.

Therefore∫
∞

t0
‖ρ1

t − ρ2
t ‖

2
1dt < ∞

and the first statement of the lemma is proved because the integral in [0, t0] is bounded by 4t0.
The second statement of the lemma follows from the first one and from Lemma 7.2. �

Proposition 7.7. There exists a unique weak solution of the boundary value problem (2.2).
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Proof. We start with existence. Let ρ1(t, u) (resp. ρ0(t, u)) be the weak solution of the boundary
value problem (3.2) with initial profile constant equal to 1 (resp. 0). By Lemma 7.4, the
sequence of profiles {ρ1(n, ·) : n ≥ 1} (resp. {ρ0(n, ·) : n ≥ 1}) decreases (resp. increases)
to a limit denoted by ρ+(·) (resp. ρ−(·)). In view of Lemma 7.6, ρ+

= ρ− almost surely.
Denote this profile by ρ̄ and by ρ̄(t, ·) the solution of (3.2) with initial condition ρ̄. Since
ρ0(t, ·) ≤ ρ̄(·) ≤ ρ1(t, ·) for all t ≥ 0, by Lemma 7.4, ρ0(t + s, ·) ≤ ρ̄(s, ·) ≤ ρ1(t + s, ·) a.e.
for all s, t ≥ 0. Letting t ↑ ∞, we obtain that ρ̄(s, ·) = ρ̄(·) a.e. for all s. In particular, ρ̄ is a
solution of (2.2).

Uniqueness is simpler. Assume that ρ1, ρ2
: Ω → [0, 1] are two weak solutions of (2.2).

Then, ρ j (t, u) = ρ j (u), j = 1, 2, are two stationary weak solutions of (3.2). By Lemma 7.6,
ρ1

= ρ2 almost surely. �

Lemma 7.6 holds for weak solutions of Eq. (2.4) and Proposition 7.7 for the associated elliptic
boundary value problem.
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