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Abstract

In this paper, L p convergence and almost sure convergence of the Milstein approximation of a partial
differential equation of advection–diffusion type driven by a multiplicative continuous martingale is proven.
The (semidiscrete) approximation in space is a projection onto a finite dimensional function space. The
considered space approximation has to have an order of convergence fitting to the order of convergence
of the Milstein approximation and the regularity of the solution. The approximation of the driving noise
process is realized by the truncation of the Karhunen–Loève expansion of the driving noise according to
the overall order of convergence. Convergence results in L p and almost sure convergence bounds for the
semidiscrete approximation as well as for the fully discrete approximation are provided.
c⃝ 2013 Elsevier B.V. All rights reserved.
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1. Introduction

The numerical study of stochastic partial differential equations is a relatively recent topic.
This is in contrast with the abundance of research (see e.g. [24]) that has been conducted for
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∗ Corresponding author at: ETH Zürich, Seminar für Angewandte Mathematik, Rämistrasse 101, CH–8092 Zürich,
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real-valued stochastic differential equations or partial differential equations (e.g. [5,13,36]). In
contrast to partial differential equations, for stochastic partial differential equations we have
different notions of convergence. Pathwise convergence plays a central role in filtering theory
and other phenomena in physics. For instance, the strong convergence of the second moment
gives a bound for the expected error. The strong convergence of higher moments, and not only
of the variance, is for pathwise approximations essential.

For a numerical treatment of stochastic partial differential equations, approximation has to
be done in space, in time, and possibly of the driving noise process. In this paper, we study a
Milstein scheme for the time approximation of the solution of a stochastic partial differential
equation of the form

d X (t) = (A + B)X (t) dt + G(X (t)) d M(t), X (0) = X0. (1.1)

Here, M is a continuous, square integrable martingale with values in a separable Hilbert space
U . Probably the most popular example of such stochastic processes are Wiener processes. The
linear operators A and B act on a dense subset of a separable Hilbert space H and the linear
operator G is a mapping from H into the linear operators from U to H (detailed definitions and
properties of A, B, and G are given in the next section).

Approximation schemes, like the Euler–Maruyama or Milstein scheme, are approximations of
the stochastic integral of a stochastic differential equation which are derived from the Itô–Taylor
expansion (see [24]). The Euler–Maruyama scheme has strong convergence of order O(

√
kn),

where kn denotes the time discretization step size, while the corresponding Milstein scheme
converges with order O(kn). In [28,29], a Milstein scheme was derived for a stochastic partial
differential equation as introduced here, but driven by a Q-Wiener process W . The authors
showed that the approximation, which was obtained by recursive insertion of the mild form
of the stochastic partial differential equation, converges in L2 and almost surely of order O(kn).
They derive a Milstein scheme which has two more terms than the Euler–Maruyama scheme.
Here, we show that only one additional term is needed to derive the Milstein scheme from the
Euler–Maruyama scheme. The same estimates apply to the calculations in [28,29] as remarked
in [20]. Like in the case of a real-valued stochastic differential equation, a term treating the
iterated stochastic integrals has to be added. In this paper, we use a similar scheme for the time
discretization, where the driving noise is a continuous, square integrable martingale.

For the approximation in space, we project the solution on a finite dimensional subspace
of the infinite dimensional solution space H . This approach can be numerically realized by a
Galerkin projection. These approximations are typically implemented as Finite Element methods.
So far Galerkin methods are mainly used for partial differential equations (cf. [36,13,35])
but first applications to stochastic partial differential equations have been done e.g. in [2,6,
8,9,26] and references therein. The approximation of mild solutions with colored noise has
been treated e.g. in [2,14,17,18,25,27,28,30,38] and references therein. First approaches to
higher order approximation schemes using Taylor expansions were done e.g. in [19] with
additive space–time white noise. Galerkin methods lead to pathwise approximations, also called
strong approximations. Here, we combine this type of discretization with a higher order time
discretization. Those approximations exhibit high order of convergence of the fully discrete
Milstein approximation, while the regularity assumptions are minimal.

In most of these references, parabolic equations with (possibly) nonlinear terms are studied.
Here we study an advection–diffusion type equation. An additive nonlinearity would not give rise
to any additional difficulty in the approximation, as long as certain linear growth and Lipschitz
conditions are fulfilled and the driving noise process is a continuous martingale.
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The main result in this paper is: assume that Eq. (1.1) is approximated by a scheme which
converges for the corresponding homogeneous, parabolic, deterministic problem with accuracy
O((h+k1/2

n )α), for α ∈ N, to the solution of the homogeneous problem. Here, h denotes the space
discretization step size and α is a regularity parameter. Then, the approximated stochastic partial
differential equation converges with order O(hα+kmin(α/2,1)

n ) in L p. Further, it converges almost
surely to the mild solution of Eq. (1.1) with order O((h2

+ kn)
1−ϵ) for any ϵ > 0 and the optimal

choice α = 2. Namely, we prove convergence results with minimal regularity assumptions on
the initial condition. Higher regularity leads to higher order of convergence up to a convergence
of order O(kn) in time, which is the maximal convergence of a Milstein approximation.

The advection–diffusion type of the equation studied in this paper appears, among various
phenomena in physics, in the study of Zakai’s equation (cf. [39]). The stochastic partial
differential equation of Zakai type, which was introduced by Zakai for a nonlinear filtering
problem, reads, extended to continuous square integrable martingales,

dut (x) = L∗ut (x) dt + G(ut (x)) d Mt (x). (1.2)

In the framework of this paper, the equation is considered on a bounded domain D ⊂ Rd ,
with zero Dirichlet boundary conditions on the Lipschitz boundary ∂D and initial condition
u0(x) = v(x). L∗ is a second order elliptic differential operator of the form

L∗u =
1
2

d
i, j=1

∂i∂ j ai j u −

d
i=1

∂i fi u,

for u ∈ C2
c (D) and it can be split into the operators A and B in Eq. (1.1) for convenience of

possible simulations. Originally, the operator G in Eq. (1.2) denotes a pointwise multiplication
with a suitable function g ∈ H . This setting is included in the more general assumptions on G in
Eq. (1.1), which we introduce in detail in the next section.

This work is organized as follows: Section 2 sets up the framework of this paper and contains
a detailed analysis of Eq. (1.1). The introduction of the used discretization schemes for the space,
time, and noise approximation is given in Section 3. In Section 4, a proof that the semidiscrete
approximation (discretized in space) converges in L p of order O(hα) and almost surely of order
O(hα−ϵ) is provided. To have a more general result, we derive convergence rates in dependence
of a regularity parameter α. Finally, L p convergence of order O(hα + kmin(α/2,1)

n ) of the fully
discrete Milstein type scheme including the noise approximation is proven in Section 5, as well
as almost sure convergence of order O((h2

+ kn)
1−ϵ).

2. Framework

Let H denote the Hilbert space L2(D), where D ⊂ Rd , d ∈ N, is a bounded domain
with piecewise smooth boundary ∂D and let the subspaces Hα be the corresponding Sobolev
spaces for α ∈ N and Hα

0 those with elements that satisfy zero Dirichlet boundary conditions,
respectively. To simplify the notation we set for α = 0, H0

= H . We are interested in developing
a numerical algorithm to estimate the solution of the stochastic partial differential equation

d X (t) = (A + B)X (t) dt + G(X (t)) d M(t) (2.1)

on the time interval τ := [0, T ], where T < +∞, with initial condition X (0) = X0 and
zero Dirichlet boundary conditions on ∂D. M is a continuous, square integrable martingale
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on a filtered probability space (Ω ,F , (Ft )t≥0,P), which satisfies the “usual conditions”, with
values in a separable Hilbert space (U, (·, ·)U ). The space of all continuous, square integrable
martingales on U with respect to (Ft )t≥0 is denoted by M2

c(U ). We restrict ourselves to the
following class of square integrable martingales

M2
b,c := {M ∈ M2

c(U ) : ∃ Q ∈ L+

1 (U ) s.t. ∀t ≥ s ≥ 0,

⟨⟨M,M⟩⟩t − ⟨⟨M,M⟩⟩s ≤ (t − s)Q},

where L+

1 (U ) denotes the space of all linear, nuclear, symmetric, nonnegative-definite operators
acting on U . The operator angle bracket process ⟨⟨M,M⟩⟩t is defined as

⟨⟨M,M⟩⟩t :=

 t

0
Qs d⟨M,M⟩s,

where ⟨M,M⟩t denotes the unique angle bracket process from the Doob–Meyer decomposition.
The process (Qs, s ≥ 0) is called the martingale covariance.

Since Q ∈ L+

1 (U ), there exists an orthonormal basis (en, n ∈ N) of U consisting of eigen-
vectors of Q. Therefore we have the representation Qen = γnen , where γn ≥ 0 is the eigenvalue
corresponding to en . The square root of Q is defined as

Q1/2ψ :=


n
(ψ, en)U γ

1/2
n en,

for ψ ∈ U , and Q−1/2 is the pseudo inverse of Q1/2. Let us denote by (H, (·, ·)H)
the Hilbert space defined by H := Q1/2(U ) endowed with the inner product given by
(ψ, φ)H = (Q−1/2ψ, Q−1/2φ)U , for ψ, φ ∈ H. Let LHS(H, H) refer to the space of all
Hilbert–Schmidt operators from H to H and ∥ · ∥LHS(H,H) denote the corresponding norm. The
canonical example of a process that belongs to M2

b,c is a Q-Wiener process, but, in general, a
stochastic covariance process would be possible.

In what follows, we introduce a Burkholder–Davis–Gundy type inequality as a generalization
of the Itô isometry for square integrable martingales of class M2

b,c. Let L2
H,τ

(H) := L2(Ω ×

τ ; LHS(H, H)) be the space of integrands, defined over the measure space (Ω ×τ, Pτ , P⊗dλ),
where Pτ denotes the σ -field of predictable sets in Ω ×τ and dλ is the Lebesgue measure. Then,
by Eq. (1.6) in [16], we have as a generalization of Proposition 8.16 in [33], for p > 0 and for
every Ψ ∈ L2

H,τ
(H), a Burkholder–Davis–Gundy type inequality

E


sup
t∈τ


 t

0
Ψ(s) d M(s)


p

H


≤ C p E

 T

0
∥Ψ(s)∥2

LHS(H,H) ds

p/2
. (2.2)

For a full introduction to Hilbert-space-valued stochastic differential equations, we refer the
reader to [33,11,7,34].

The operators A and B in Eq. (2.1) are defined as follows. We assume that the functions ai j ,
for i, j = 1, . . . , d, are twice continuously differentiable on D with continuous extension to the
closure D̄. The operator A is the unique self-adjoint extension of the differential operator

1
2

d
i, j=1

∂i (ai j ∂ j u), u ∈ C2
c (D).
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B is a first order differential operator given by

Bu :=

d
i=1

∂i (bi u), u ∈ C1
c (D),

with elements bi that are defined as

bi :=
1
2

d
j=1

∂ j ai j − fi ,

where the functions fi , i = 1, . . . , d , are continuously differentiable on D with continuous
extension to D̄. Defined this way, we also include the differential operator L∗ in Eq. (1.2).

With the following assumptions, the right hand side of Eq. (2.1) is well defined and its
solution has certain regularity properties which are shown later. From here on, let the smoothness
parameter α ∈ N be fixed.

Assumption 2.1. The coefficients of A and B, the operator G, and the initial condition X0 satisfy
the following conditions:

(a) for i, j = 1, . . . , d, the elements ai j belong to Cα+1
b (D) and fi to Cα

b (D) with continuous
extensions to D̄,

(b) there exists δ > 0 such that for all x ∈ D and ξ ∈ Rd

d
i, j=1

ai j (x)ξiξ j ≥ δ∥ξ∥2
Rd ,

(c) X0 is F0-measurable and E(∥X0∥
p
Hα ) < +∞ for chosen p > 0,

(d) G is a linear mapping from H into L(U, H) that satisfies for C > 0 that for 0 ≤ β ≤ α and
φ ∈ Hβ

∥G(φ)∥LHS(H,Hβ ) ≤ C ∥φ∥Hβ .

Assumption 2.1(b) implies that the operator A is dissipative; see e.g. [23]. Then, by the Lumer–
Phillips theorem, e.g. [12], A generates a strongly continuous contraction semigroup on H which
we denote by S = (S(t), t ≥ 0). Furthermore, by Corollary 2 in [22], S is analytic in the right
half-plane. Therefore, fractional powers of −A are well defined, cf. [12], and we denote for
simplicity A−β = (−A)−β and Aβ = A−1

−β for β > 0.
In this context we shall make use of the following lemma – whose statement is also known as

Kato’s conjecture – which was proven in [1].

Lemma 2.2. The domain of A1/2 is D(A1/2) = H1
0 and the norm ∥A1/2 · ∥H is equivalent to

∥ · ∥H1 , i.e., there exists C > 0 such that

∥A1/2 φ∥H ≤ C ∥φ∥H1 and ∥φ∥H1 ≤ C ∥A1/2 φ∥H ,

for all φ ∈ H1.

To simplify the notation in the preceding, we introduce the following norm for an H -valued
random variable Φ with finite p-th moment

∥Φ∥H,L p :=


E

∥Φ∥

p
H

1/p
.
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Furthermore, we abbreviate for p > 0 the norm in C(τ ; L p(Ω; H)) with

∥Ψ∥H,L p,∞τ := sup
t∈τ

∥Ψ(t)∥H,L p

and the one in L p(Ω; C(τ ; H)) with

∥Ψ∥H,∞τ ,L p := E

sup
t∈τ

∥Ψ(t)∥p
H

1/p
,

for a stochastic process Ψ = (Ψ(t), t ∈ τ)with finite p-th moment for all t ∈ τ . For φ : τ → H ,
we set

∥φ∥H,∞τ := sup
t∈τ

∥φ(t)∥H ,

accordingly. We refer to subintervals of τ by τs := [0, s] for s ≤ T .
Assumption 2.1 also implies by results in Chapter 9 in [33], that Eq. (2.1) has a unique mild

solution in Hα , i.e.,

∥X (t)∥Hα,L2,∞[0,T ]
< +∞,

for all T ∈ (0,+∞), and the stochastic partial differential equation can be rewritten for all t > 0
in mild form

X (t) = S(t)X0 +

 t

0
S(t − s)B X (s) ds +

 t

0
S(t − s)G(X (s)) d M(s). (2.3)

Those assumptions even ensure that Eq. (2.1) has a unique strong solution in H2 by Theorem 2.3
in [31]. Furthermore, we have similarly to [15,37,16] that Eq. (2.2) implies for all Ψ ∈ L2

H,τ
(H)

 t

0
S(t − s)Ψ(s) d M(s)

p

H,∞τ ,L p
≤ C p E

 T

0
∥Ψ(s)∥2

H ds

p/2
. (2.4)

Before we introduce the approximation schemes, we provide two lemmas on the properties of
the solution of Eq. (2.1) that are needed in later proofs. The first gives some insight on the space
regularity of the mild solution. Under certain regularity assumptions on the initial condition of
the stochastic partial differential equation, we have regularity of the mild solution. The second
lemma gives a regularity result for the mild solution in time, i.e., Hölder continuity of order 1/2
is shown. This result is necessary for the convergence proof of the approximation schemes.

Lemma 2.3. Under Assumption 2.1, the mild solution satisfies for p > 0 and β ≤ α

∥X∥Hβ ,L p,∞τ
≤ ∥X∥Hβ ,∞τ ,L p < +∞.

Proof. From here on, C denotes varying constants depending on p and T . We consider p > 2,
for p ≤ 2 the result follows by Hölder’s inequality. We estimate

∥X∥
p
Hβ ,∞τ ,L p =

S(t)X0 +

 t

0
S(t − s)B X (s) ds

+

 t

0
S(t − s)G(X (s)) d M(s)

p

Hβ ,∞τ ,L p
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≤ C


∥X0∥

p
Hβ ,L p +


 t

0
S(t − s)B X (s) ds


p

Hβ ,∞τ ,L p

+

Aβ/2

 t

0
S(t − s)G(X (s)) d M(s)

p

H,∞τ ,L p



≤ C


∥X0∥

p
Hβ ,L p + E


sup
t∈τ

 t

0
∥S(t − s)B X (s)∥Hβ ds

p

+ E

 T

0
∥Aβ/2G(X (s))∥2

LHS(H,H) ds

p/2

≤ C


∥X0∥

p
Hβ ,L p + E


sup
t∈τ

 t

0
(t − s)−1/2

∥X (s)∥Hβ ds

p

+ E

 T

0
∥X (s)∥2

Hβ ds

p/2

≤ C


∥X0∥

p
Hβ ,L p + 2

 T

0
∥X∥

p
Hβ ,∞τs ,L p ds


,

where we used the boundedness of the contraction semigroup in the first and Eq. (2.4) in the
second step, Lemma 2.2, Theorem 6.13 in [32], and the definition of the Bochner integral in the
third one, and Hölder’s inequality in the fourth. Finally, we apply Gronwall’s inequality which
yields

∥X∥
p
Hβ ,∞τ ,L p ≤ C ∥X0∥

p
Hβ ,L p exp(2CT ) < +∞,

since ∥X0∥Hβ ,L p is finite by Assumption 2.1(c). �

Lemma 2.4. If X is the mild solution of Eq. (2.1), then for p > 2 and 0 ≤ r ≤ R ≤ T

∥X (R)− X (r)∥p
H,L p ≤ C ∥X∥

p
H1,L p,∞τ

(R − r)p/2.

Proof. We employ Assumption 2.1, Theorem 6.13 in [32], Eq. (2.4), and Lemma 2.2 to estimate

∥X (R)− X (r)∥p
H,L p ≤ 3p−1


∥(S(R − r)− 1)X (r)∥p

H,L p

+


 R

r
S(R − s)B X (s) ds


p

H,L p

+


 R

r
S(R − s)G(X (s)) d M(s)


p

H,L p


≤ C


∥A1/2 X (r)∥p

H,L p + 2 · ∥X∥
p
H,L p,∞τ


(R − r)p/2

≤ C ∥X∥
p
H1,L p,∞τ

(R − r)p/2. �
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3. Approximation schemes

In this section, we derive a semidiscrete and a fully discrete approximation scheme for
Eq. (2.1). The convergence properties of these schemes are proven in Sections 4 and 5.

To derive a semidiscrete form of Eq. (2.1) first, we project H onto a finite dimensional
subspace Vh of H , for instance a Finite Element space. This can for example be done by first
discretizing D by a triangulation defined over a finite number of points. Then, let (Sh, h > 0)
denote a family of Finite Element spaces, consisting of piecewise linear, continuous polynomials
with respect to the family of triangulations (Th, h > 0) of D, with mesh width h, such that
Sh → H for h → 0 and furthermore Sh ⊂ H1

0 (D) for h > 0. In the general framework, let
V := (Vh, h > 0) be a family of finite dimensional subspaces of H1

0 with refinement sizes h, H -
orthogonal projection Ph and norm derived from H . For h → 0 the sequence V is supposed to
be dense in H in the following sense: for all φ ∈ H it holds that

lim
h→0

∥Phφ − φ∥H = 0.

The semidiscrete problem is to find Xh(t) ∈ Vh such that for t ∈ τ

d Xh(t) = (Ah + Ph B)Xh(t) dt + PhG(Xh(t)) d M(t), Xh(0) = Ph X0.

Here, we define the approximate operator Ah : Vh → Vh through the bilinear form

(−Ahϕh, ψh)H = BA(ϕh, ψh) :=

d
i, j=1

(ai j∂ jϕh, ∂iψh)H ,

for all ϕh, ψh ∈ Vh . The operator Ah is the generator of an analytic semigroup Sh = (Sh(t), t ≥

0) defined formally by Sh(t) = exp(t Ah), for t ≥ 0. The semidiscrete mild solution is then
given by

Xh(t) = Sh(t)Ph X0 +

 t

0
Sh(t − s)Ph B Xh(s) ds

+

 t

0
Sh(t − s)PhG(Xh(s)) d M(s). (3.1)

By Assumption 2.1, Sh is self-adjoint, positive-semidefinite on H and positive-definite on Vh .
We prove in Section 4 that Eq. (3.1) converges in L p and almost surely to the mild solution of
Eq. (2.3) with order O(hα) resp. O(hα−ϵ), for any ϵ > 0.

For the time approximation, we introduce a combination of a first order time stepping method,
e.g., a backward Euler approximation, and a Milstein scheme. To this end, we consider, for n ∈ N,
equidistant partitions 0 = tn

0 < · · · < tn
n = T of the interval τ with step size kn := T/n. We

set T n
= {tn

j , j = 0, . . . , n} and refer to the norm C(T n
; H) with the subscript ∞T n . For

i < n, the subset {tn
j , j = 0, . . . , i} of T n is denoted by T n

i . For n ∈ N, we define the map
πn : τ → {tn

j , j = 0, . . . , n} by πn(s) = tn
j , if tn

j ≤ s < tn
j+1. Furthermore, we set ιn( j) = tn

j

for j = 0, . . . , n. Then, ιn is a bijective map and κn = ι−1
n ◦πn is well defined and gives for t ∈ τ

the index of the next smaller grid point in T n . The approximations introduced in the following
and its convergence results also apply to nonequidistant partitions as used in [3], but for the sake
of simplicity, we present here an equidistant time stepping. Inserting Eq. (2.3) recursively into
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itself yields

X (tn
j+1) = S(tn

j+1 − tn
j )X (t

n
j )+

 tn
j+1

tn
j

S(tn
j+1 − s)B


S(s − tn

j )X (t
n
j )

+

 s

tn
j

S(s − r)B X (r) dr +

 s

tn
j

S(s − r)G(X (r)) d M(r)


ds

+

 tn
j+1

tn
j

S(tn
j+1 − s)G


S(s − tn

j )X (t
n
j )+

 s

tn
j

S(s − r)B X (r) dr

+

 s

tn
j

S(s − r)G(X (r)) d M(r)


d M(s). (3.2)

To provide some intuition regarding the structure of the approximation, we analyze the following
deterministic partial differential equation with source term following [36]. We demonstrate the
method for a backward Euler time stepping scheme. We remark that we are not restricted to
this time stepping scheme; any scheme fulfilling certain approximation properties, as specified
in Eqs. (4.1), resp. (5.1) could be used. For simplicity, we omit details on the boundary or initial
conditions, since the following are just heuristics. Consider

d X (t)

dt
= AX (t)+ f (X (t)).

The time derivative is approximated by

d X (t)

dt
≈

Xn
j+1 − Xn

j

kn

and AX (t) on the right hand side by

AX (t) ≈ AXn
j+1,

where Xn
j := X (tn

j ), for j = 0, . . . , n. The source term is approximated by

f (X (t)) ≈ f (Xn
j ),

which is called linearization. Overall the scheme takes the following form:

Xn
j+1 − Xn

j

kn
= AXn

j+1 + f (Xn
j ),

which can be transformed into

Xn
j+1 = r(kn A)Xn

j + kn r(kn A) f (Xn
j ).

Here, r denotes the rational approximation of the semigroup which is given by r(λ) := (1−λ)−1,
for λ ≠ 1. If we apply this approximation scheme in projected form to Eq. (3.2), we may write

Xn
j+1 = r(kn Ah)X

n
j +

 tn
j+1

tn
j

r(kn Ah)Ph B Xn
j ds +

 tn
j+1

tn
j

r(kn Ah)PhG(Xn
j ) d M(s)

+

 tn
j+1

tn
j


r(kn Ah)PhG

 s

tn
j

G(Xn
j ) d M(r)


d M(s). (3.3)
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The three terms from Eq. (3.2) tn
j+1

tn
j

S(tn
j+1 − s)B

 s

tn
j

S(s − r)G(X (r)) d M(r) ds,

 tn
j+1

tn
j

S(tn
j+1 − s)B

 s

tn
j

S(s − r)B X (r) dr ds,

 tn
j+1

tn
j

S(tn
j+1 − s)G

 s

tn
j

S(s − r)B X (r) dr


d M(s)

have been omitted since they for themselves converge as fast as the overall achieved convergence
rate of the approximation scheme, which is shown in Section 5. There, we prove that this
approximation converges in L p and almost surely to the mild solution of Eq. (2.1) with order
O(hα + kmin{α/2,1}

n ) resp. O((h2
+ kn)

1−ϵ), for all ϵ > 0 and the optimal choice α = 2. Eq. (3.3)
can be rewritten with respect to the functions πn and κn , which were introduced with the time
discretization, by

Xn
κn(t) = r(kn Ah)X

n
κn(t)−1 +

 πn(t)

πn(t)−kn

r(kn Ah)Ph B Xn
κn(t)−1 ds

+

 πn(t)

πn(t)−kn

r(kn Ah)PhG(Xn
κn(t)−1) d M(s)

+

 πn(t)

πn(t)−kn


r(kn Ah)PhG

 s

πn(t)−kn

G(Xn
κn(t)−1) d M(r)


d M(s)

= r(kn Ah)
κn(t)Ph X0 +

 πn(t)

0
r(kn Ah)

κn(t)−κn(s)Ph B Xn
κn(s) ds

+

 πn(t)

0
r(kn Ah)

κn(t)−κn(s)PhG(Xn
κn(s)) d M(s)

+

 πn(t)

0


r(kn Ah)

κn(t)−κn(s)PhG

 s

πn(s)
G(Xn

κn(s)) d M(r)


d M(s),

for all t ∈ [kn, T ].
Note that all random variables involved in Eq. (3.3) can be simulated in the following way.

If U = H and Vh contains a finite subset of the eigenbasis of M , the noise is automatically
finite dimensional. Otherwise this approximation might not be suitable for simulations. In [4],
it is shown for a class of Lévy processes which choices of noise approximations imply that the
overall order of convergence is preserved. We follow this approach here. Therefore, let

⟨⟨M,M⟩⟩t − ⟨⟨M,M⟩⟩s = (t − s)Q,

i.e., M is a Q-Wiener process (see [33,21]). Let us denote the Itô integral to be simulated by b

a
PhΨ(s) d M(s)

with a < b, a, b ∈ τ and Ψ ∈ L2
H,τ

(H). This expression can be rewritten using the Karhunen–
Loève representation of M , to
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∞
i=1

√
γi

 b

a
PhΨ(s)ei d Mi (s).

Here, the elements γi denote the eigenvalues of the covariance operator Q and ei the correspond-
ing eigenfunctions. To evaluate this expression, we might have to simulate an infinite number
of continuous one-dimensional martingales Mi . One possibility to overcome this problem is to
approximate the infinite dimensional process by a truncation of the series expansion, i.e., set

Mκ(t) :=

κ
i=1

√
γi Mi (t) ei .

Let (Mκ , κ ∈ N) be the sequence of truncated series expansions with covariance Qκ that con-
verges almost surely to the martingale M with covariance Q. We set

Mcκ(t) := M(t)− Mκ(t) =

∞
i=κ+1

√
γi Mi (t) ei

with covariance Qcκ
:= Q − Qκ , which converges almost surely to zero. This implies for the Itô

integral of Ψ ∈ L2
H,τ

(H) that b

a
Ψ(s) d M(s)−

 b

a
Ψ(s) d Mκ(s) =

 b

a
Ψ(s) d Mcκ(s). (3.4)

This difference converges to zero depending on the decay of the eigenvalues (γi , i ∈ N), which
is shown in the following lemma. We omit the proof, since it is equivalent to Lemma 3.1 in [4].

Lemma 3.1. If ∥Ψ∥L(U,H),∞[a,b],L p < +∞ and there exist constants Cν,C, µ > 0 and ν > 1
such that the eigenvalues satisfy γi ≤ Cν i−ν and κ ≥ C h−µ, then

E


sup

t∈[a,b]

 t

a
Ψ(s) d M(s)−

 t

a
Ψ(s) d Mκ(s)

p

H


≤ C p h

µ(ν−1)p
2 ,

for a constant C p.

We use Lemma 3.1 to derive an error bound for the approximation of the Milstein term in
Eq. (3.3) tn

j+1

tn
j


r(kn Ah)PhG

 s

tn
j

PhG(Xn
j ) d M(r)


d M(s). (3.5)

To simplify the notation we introduce the separable Hilbert spaces H and U . The Hilbert space
H is for example L2(D) or some approximation space Vh . Further, we consider a linear map
Γ : H → L(U, H) satisfying Assumption 2.1(d) for β = 0 and the norm in L(U, H). In
addition, we have a bounded map σ : τ → L(H, H). For 0 ≤ a < b ≤ T and an H -valued
adapted stochastic process ψ = (ψ(t), t ∈ τ), we rewrite Eq. (3.5) more generally as b

a
σ(a)Γ

 s

a
Γ (ψ(a)) d M(r)


d M(s).

The following error bound is proven similarly to Lemma 4.2 in [3].
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Lemma 3.2. For n ∈ N, let σ : T n
→ L(H, H),Γ : H → LHS(H, H) be linear and

satisfy Assumption 2.1(d) for β = 0 and the norm in L(U, H) as well as

Γ (Γ (ψ)ei )e j = Γ (Γ (ψ)e j )ei ,

for i, j ∈ N. Further, let ψ = (ψ(t), t ∈ T n) be an adapted H-valued stochastic process. If

E
 T

0
∥ψ(πn(s))∥

p
H ds


< +∞

and there exist constants Cν,C > 0 such that the eigenvalues of the covariance operator Q of
M satisfy γi ≤ Cν i−ν , for some ν > 1 and all i ∈ N, and κ ≥ C h−µ, for some µ > 0, then
there exists a constant C p such that

E


sup
t∈τ


 t

0
σ(πn(s))Γ

 s

πn(s)
Γ (ψ(πn(s))) d M(r)


d M(s)

−

 t

0
σ(πn(s))Γ

 s

πn(s)
Γ (ψ(πn(s))) d Mκ(r)


d Mκ(s)


p

H



≤ C p (kn hµ(ν−1))p/2.

To get optimal convergence rates, the noise approximation should have the same order of
convergence as the spacial and temporal approximations. We couple all error contributions in
Section 5. In the next section, we derive error bounds for the semidiscrete approximation.

4. Convergence of the semidiscrete approximation

In this section, we present an L p and an almost sure convergence result for the semidiscrete
approximation. We assume that for α ≥ β ≥ 0 with φ ∈ Hα and t ∈ τ , we have that

∥(S(t)− Sh(t)Ph)φ∥H ≤ C hαt−β/2∥φ∥Hα−β . (4.1)

This is for example satisfied by the Finite Element spaces (Sh, h > 0) as introduced before for
α = 2 (see Theorem 3.5 in [36]). In the more general setting of piecewise polynomials of degree
at most α − 1, Theorem 5.7 in [13] as well as Proposition 11.2.2 in [35] imply Eq. (4.1). We
note that in the proofs of Theorems 4.1 and 4.2, Eq. (4.1) just has to be satisfied for β = 0
and β = 1. If it holds only for β = 0, the theorems stay true when the mild solution satisfies
∥X∥Hα+1,L p,∞τ

< +∞.
The proposed space discretized equation converges uniformly, almost surely with order

O(hα−ϵ) and with order O(hα) in L p to the mild solution of Eq. (2.1), which is stated in the
following two theorems.

Theorem 4.1. The sequence of semidiscrete mild solutions (Xh, h > 0) defined in Eq. (3.1)
converges in L p to the mild solution X of Eq. (2.1) of order O(hα), i.e., for all p > 0

∥X − Xh∥H,∞τ ,L p ≤ C p hα ∥X∥Hα,∞τ ,L p .
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Proof. We first assume that p > 2. It holds that

∥X − Xh∥
p
H,∞τ ,L p ≤ 3p−1


∥(S − Sh Ph)X0∥

p
H,∞τ ,L p

+ E


sup
t∈τ


 t

0
S(t − s)B X (s) ds −

 t

0
Sh(t − s)Ph B Xh(s) ds


p

H



+ E


sup
t∈τ


 t

0
S(t − s)G(X (s)) d M(s)

−

 t

0
Sh(t − s)PhG(Xh(s)) d M(s)


p

H


, (4.2)

where we applied Hölder’s inequality. The first term satisfies for β = 0 by Eq. (4.1)

∥(S − Sh Ph)X0∥
p
H,∞τ ,L p ≤ C h pα

∥X0∥
p
Hα,L p .

The second one is split into t

0
S(t − s)B X (s) ds −

 t

0
Sh(t − s)Ph B Xh(s) ds

p

H,∞τ ,L p

≤ 2p−1


 t

0
(S(t − s)− Sh(t − s)Ph)B X (s) ds


p

H,∞τ ,L p

+


 t

0
Sh(t − s)Ph B(X (s)− Xh(s)) ds


p

H,∞τ ,L p


.

The first of these expressions is bounded by the properties of the Bochner integral, Eq. (4.1) for
β = 1, Hölder’s inequality, Fubini’s theorem, and Lemma 2.2 by t

0
(S(t − s)− Sh(t − s)Ph)B X (s) ds

p

H,∞τ ,L p

≤ Ch pα sup
t∈τ

 t

0
(t − s)−p/2(p−1) ds

p−1

∥B X∥
p
Hα−1,L p,∞τ

≤ Ch pα
∥X∥

p
Hα,L p,∞τ

.

Furthermore, the second term satisfies t

0
Sh(t − s)Ph B(X (s)− Xh(s)) ds

p

H,∞τ ,L p

≤ C E


sup
t∈τ

 t

0
(t − s)−1/2

∥X (s)− Xh(s)∥H ds

p
by the properties of the Bochner integral and Theorem 6.13 in [32]. Hölder’s inequality for p > 2
leads to t

0
Sh(t − s)Ph B(X (s)− Xh(s)) ds

p

H,∞τ ,L p
≤ C

 T

0
∥X − Xh∥

p
H,∞τs ,L p ds.
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So overall, we have for the second term on the right hand side in Eq. (4.2) t

0
S(t − s)B X (s) ds −

 t

0
Sh(t − s)Ph B Xh(s) ds

p

H,∞τ ,L p

≤ C


h pα

∥X∥
p
Hα,L p,∞τ

+

 t

0
∥X − Xh∥

p
H,∞τs ,L p ds


.

The third expression on the right hand side of Eq. (4.2) is split into the two following terms t

0
S(t − s)G(X (s)) d M(s)−

 t

0
Sh(t − s)PhG(Xh(s)) d M(s)

p

H,∞τ ,L p

≤ 2p−1


 t

0
(S(t − s)− Sh(t − s)Ph)G(X (s)) d M(s)


p

H,∞τ ,L p

+

 t

0
Sh(t − s)Ph(G(X (s))− G(Xh(s))) d M(s)

p

H,∞τ ,L p


.

The first of these expressions satisfies by Lemma 4.3, which is proven afterwards, and the
properties of G t

0
(S(t − s)− Sh(t − s)Ph)G(X (s)) d M(s)

p

H,∞τ ,L p
≤ Ch pα

∥X∥
p
Hα,∞τ ,L p .

Eq. (2.4) yields with Hölder’s inequality and Fubini’s theorem for the other term t

0
Sh(t − s)Ph(G(X (s))− G(Xh(s))) d M(s)

p

H,∞τ ,L p

≤ C
 T

0
∥G(X)− G(Xh)∥

p
LHS(H,H),∞τs ,L p ds,

and the properties of G imply that

∥G(X)− G(Xh)∥
p
LHS(H,H),∞τs ,L p ≤ C∥X − Xh∥

p
H,∞τs ,L p .

So overall, we have due to the finiteness of ∥X∥Hα,∞τ ,L p with Gronwall’s inequality

∥X − Xh∥
p
H,∞τ ,L p ≤ C1h pα

+ C2

 T

0
∥X − Xh∥

p
H,∞τs ,L p ds ≤ Ch pα,

for constants C1,C2, and C depending on the regularity of the mild solution, T , and p.
Finally, for p ≤ 2, we have for any p′ > 2 by Hölder’s inequality

∥X − Xh∥H,∞τ ,L p ≤ ∥X − Xh∥H,∞τ ,L p′ = O(hα). �

This theorem implies almost sure convergence as stated in the next theorem.

Theorem 4.2. For every ϵ > 0 and for h > 0 small enough such that h decays to zero with order
O(n−λ), for n ∈ N and fixed λ > 0,

∥X − Xh∥H,∞τ ≤ hα−ϵ, P-a.s.,

i.e., the family of approximations (Xh, h > 0) introduced in Eq. (3.1) converges uniformly,
almost surely to X of order O(hα−ϵ), for h → 0.
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Proof. To show almost sure convergence, we use Theorem 4.2 and Chebyshev’s inequality in the
following way:

P

∥Xh − X∥H,∞τ ≥ hα−ϵ


≤ h−(α−ϵ)p

∥Xh − X∥
p
H,∞τ ,L p ≤ C p h pϵ .

Since h = O(n−λ), the corresponding series is convergent for any p > (ϵλ)−1 and therefore, by
the Borel–Cantelli lemma, we have asymptotically

∥X − Xh∥H,∞τ ≤ hα−ϵ, P-a.s.,

which proves the theorem. �

The proof of Theorem 4.1 required a Burkholder–Davis–Gundy type result on the conver-
gence of the approximated semigroup in combination with a stochastic integral. In this case,
Eq. (2.4) cannot be applied, since this leads to a lower order of convergence.

Lemma 4.3. For p > 2 and Ψ ∈ L2
H,τ

(H) t

0
(Sh(t − s)Ph − S(t − s))Ψ(s) d M(s)


H,∞τ ,L p

≤ C hα ∥Ψ∥LHS(H,Hα),∞τ ,L p .

Proof. We closely follow the proof of Theorem 5.12 in [11]. For 0 < ν < 1, the following
identity holds: t

s
(t − r)ν−1(r − s)−νdr =

π

sin νπ
.

It follows from Fubini’s theorem and the semigroup property that t

0
S(t − s)Ψ(s) d M(s) =

sin νπ
π

 t

0

 t

s
(t − r)ν−1(r − s)−ν dr


× S(t − s)Ψ(s) d M(s)

=
sin νπ
π

 t

0
(t − r)ν−1S(t − r)

×

 r

0
(r − s)−νS(r − s)Ψ(s) d M(s) dr

=
sin νπ
π

 t

0
(t − r)ν−1S(t − r)Y (r) dr,

where Y (r) =
 r

0 (r −s)−νS(r −s)Ψ(s) d M(s). Similar calculations for the semidiscrete version
lead to t

0
Sh(t − s)PhΨ(s)d M(s) =

sin νπ
π

 t

0
(t − r)ν−1Sh(t − r)PhYh(r) dr.

Note that since Ph is a projection Ph = P2
h . We decompose the equation to be verified in the

following way t

0
(Sh(t − s)Ph − S(t − s))Ψ(s) d M(s)

p

H,∞τ ,L p

≤ C

 sin νπ
π

p

 t

0
(t − r)ν−1(Sh(t − r)Ph − S(t − r))Y (r) dr


p

H,∞τ ,L p
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+


 t

0
(t − r)ν−1Sh(t − r)Ph(Yh(r)− Y (r)) dr


p

H,∞τ ,L p



=: C

 sin νπ
π

p

(I + II).

For ease of readability C and Cν,p denote varying constants that are independent of h. We ap-
proximate the two expressions separately. By the definition of the Bochner integral and Hölder’s
inequality, we obtain for term I and ν > 1/p

I ≤ E


sup
t∈τ

 t

0
∥(t − r)ν−1(Sh(t − r)Ph − S(t − r))Y (r)∥H dr

p
≤ Cν,p E


sup
t∈τ

 t

0
∥(Sh(t − r)Ph − S(t − r))Y (r)∥p

H dr


≤ Cν,p h pα

 T

0
∥Y (t)∥p

Hα,L p dt,

where we used Eq. (4.1) in the third step. Moreover, considering ν < 1/2, Eq. (2.4), Assump-
tion 2.1, the closed graph theorem, and the commutativity of the operator and the semigroup yield

∥Y (t)∥p
Hα,L p ≤ C E

Aα/2

 t

0
(t − s)−νS(t − s)Ψ(s) d M(s)

p

H


≤ C E

 t

0
(t − s)−νS(t − s)Aα/2Ψ(s) d M(s)

p

H


≤ C E

 t

0
(t − s)−2ν

∥Ψ(s)∥2
LHS(H,Hα) ds

p/2

≤ Cν,p ∥Ψ∥
p
LHS(H,Hα),∞τ ,L p .

Altogether, we obtain

I ≤ Cν,p h pα
∥Ψ∥

p
LHS(H,Hα),∞τ ,L p .

For term II, Hölder’s inequality for ν > 1/p and the fact that Sh(t)Ph is bounded imply

II ≤ E


sup

0≤t≤T

 t

0
(t − r)ν−1

∥Sh(t − r)Ph(Yh(r)− Y (r))∥H dr

p


≤ Cν,p

 T

0
∥Yh(r)− Y (r)∥p

H,L p dr.

We further approximate

∥Yh(r)− Y (r)∥p
H,L p = E

 r

0
(r − s)−ν(Sh(r − s)Ph − S(r − s))Ψ(s) d M(s)

p

H



≤ E

 r

0
(r − s)−2ν

∥(Sh(r − s)Ph − S(r − s))Ψ(s)∥2
LHS(H,H)ds

p/2

≤ Cν,p h pα
∥Ψ∥

p
LHS(H,Hα),∞τ ,L p ,
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where Eqs. (2.2) and (4.1) are used. Altogether this gives for term II

II ≤ Cν,p h pα
∥Ψ∥

p
LHS(H,Hα),∞τ ,L p .

Choosing any 1/p < ν < 1/2, we finally get t

0
(Sh(t − s)Ph − S(t − s))Ψ(s) d M(s)

p

H,∞τ ,L p
≤ C h pα

∥Ψ∥
p
LHS(H,Hα),∞τ ,L p ,

which concludes the proof. �

5. Convergence of the fully discrete approximation

In this section, we prove L p and almost sure convergence of the Milstein scheme introduced
in Section 3. With an Euler–Maruyama scheme, in general, only convergence of rate O(

√
kn) in

time can be achieved, whereas a Milstein scheme converges at a rate of order O(kn).
We define the approximation Xn

= (Xn
j , j = 0, . . . , n) of Eq. (2.3) by the Milstein scheme

introduced in Eq. (3.3). For the convergence of the approximated semigroup r(kn Ah) we assume
that it is stable and there exists a constant C such that for all 0 < j ≤ n and fixed α ∈ N and
β ∈ {0, 1}

∥(S(tn
j )− r(kn Ah)

j Ph)φ∥H ≤ C (h + k1/2
n )α(tn

j )
−β/2

∥φ∥Hα−β . (5.1)

This is especially met by a backward Euler scheme, which is shown similarly to Theorem 7.7
in [36] with Theorems 7.3 and 3.5 in the same book. Assumption (5.1) implies similarly to
Lemma 4.3 the convergence of the rational approximation of the semigroup in combination with
a stochastic integral.

Lemma 5.1. For p > 2, it holds that t

0


S(t − πn(s))− r(kn Ah)

κn(t)−κn(s)Ph

G(X (s)) d M(s)

p

H,∞T n ,L p

≤ C (h + k1/2
n )pα

∥X∥
p
Hα,∞τ ,L p .

Proof. Except for the fact that one applies Eq. (5.1) instead of Eq. (4.1), this proof is identical to
that of Lemma 4.3 and therefore we omit it. �

The order of convergence of the fully discrete approximation to the mild solution is stated in
the following theorem.

Theorem 5.2. For p > 0, the sequence of approximations (Xn, n ∈ N) defined by Eq. (3.3)
converges in p-th moment to the mild solution X of Eq. (2.1) and satisfies for constants C1 and
C2 that depend on T

∥X − Xn
κn()

∥H,∞T n ,L p ≤ C1(h + k1/2
n )α∥X∥Hα,∞τ ,L p + C2 kn∥X∥H1,L p,∞τ

.

Especially, for α = 2 and X ∈ H2, it holds that

∥X − Xn
κn()

∥H,∞T n ,L p = O(h2
+ kn).
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Proof. The proof of the theorem involves numerous estimates, where the same techniques are
used many times. Therefore, we derive the terms to be estimated and choose one of each type to
show the techniques that are employed.

Eq. (2.3) can be rewritten for t ∈ τ as

X (t) = S(t)X0 +

 t

0
S(t − s)BS(s − πn(s))X (πn(s)) ds

+

 t

0


S(t − s)B

 s

πn(s)
S(s − r)B X (r) dr


ds

+

 t

0


S(t − s)B

 s

πn(s)
S(s − r)G(X (r)) d M(r)


ds

+

 t

0
S(t − s)G


S(s − πn(s))X (πn(s))


d M(s)

+

 t

0


S(t − s)G

 s

πn(s)
S(s − r)B X (r) dr


d M(s)

+

 t

0


S(t − s)G

 s

πn(s)
S(s − r)G(X (r)) d M(r)


d M(s)

similarly to Eq. (3.2) as done in [28,29]. We remark that the third, the fourth, and the sixth
term on the right hand side are not approximated in scheme (3.3) because they (for themselves)
converge as fast as the overall approximation scheme.

For fixed n ∈ N, the difference of the mild solution of Eq. (2.1) and the fully discrete approx-
imation (3.3) is split into the initial condition, the Bochner integral, and the Itô integral terms

X (tn
j )− Xn

j = (S(tn
j )− r(kn Ah)

j Ph)X0 + ξn( j)+ ηn( j).

The Bochner integral part ξn is split again into three parts

ξn
:= ξn

1 + ξn
2 + ξn

3

with

ξn
1 ( j) :=

 tn
j

0


S(tn

j − s) B S(s − πn(s))X (πn(s))− r(kn Ah)
j−κn(s)Ph B Xn

κn(s)


ds,

ξn
2 ( j) :=

 tn
j

0


S(tn

j − s) B
 s

πn(s)
S(s − r) B X (r) dr


ds,

ξn
3 ( j) :=

 tn
j

0


S(tn

j − s) B
 s

πn(s)
S(s − r)G(X (r)) d M(r)


ds.

Similarly, the stochastic integral is decomposed into

ηn
:= ηn

1 + ηn
2 + ηn

3
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with

ηn
1( j) :=

 tn
j

0


S(tn

j − s)G

S(s − πn(s))X (πn(s))


− r(kn Ah)

j−κn(s)PhG(Xn
κn(s))


d M(s),

ηn
2( j) :=

 tn
j

0


S(tn

j − s)G

 s

πn(s)
S(s − r)B X (r) dr


d M(s),

ηn
3( j) :=

 tn
j

0


S(tn

j − s)G

 s

πn(s)
S(s − r)G(X (r)) d M(r)



− r(kn Ah)
j−κn(s)PhG

 s

πn(s)
G(Xn

κn(s)) d M(r)


d M(s).

We further split three of the terms. We may write

ξn
1 ( j) =

 tn
j

0
S(tn

j − s)B(S(s − πn(s))− 1)X (πn(s)) ds

+

 tn
j

0
(S(tn

j − s)− S(tn
j − πn(s)))B X (πn(s)) ds

+

 tn
j

0
(S(tn

j − πn(s))− r(kn Ah)
j−κn(s)Ph)B X (πn(s)) ds

+

 tn
j

0
r(kn Ah)

j−κn(s)Ph B(X (πn(s))− Xn
κn(s)) ds,

and we refer to the terms on the right hand side by ξn
1,i ( j) for i = 1, . . . , 4. Similarly, ηn

1( j) is
split into the following four terms

ηn
1( j) =

 tn
j

0
S(tn

j − s)G

(S(s − πn(s))− 1)X (πn(s))


d M(s)

+

 tn
j

0


S(tn

j − s)− S(tn
j − πn(s))


G(X (πn(s))) d M(s)

+

 tn
j

0


S(tn

j − πn(s))− r(kn Ah)
j−κn(s)Ph


G(X (πn(s))) d M(s)

+

 tn
j

0
r(kn Ah)

j−κn(s)PhG(X (πn(s))− Xn
κn(s)) d M(s),

and ηn
3( j) into five terms

ηn
3( j) =

 tn
j

0
S(tn

j − s)G

 s

πn(s)
(S(s − r)− 1)G(X (r)) d M(r)


d M(s)

+

 tn
j

0
S(tn

j − s)G

 s

πn(s)
G(X (r)− X (πn(s))) d M(r)


d M(s)

+

 tn
j

0


S(tn

j − s)− S(tn
j − πn(s))


G

 s

πn(s)
G(X (πn(s))) d M(r)


d M(s)
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+

 tn
j

0
(S(tn

j − πn(s))− r(kn Ah)
j−κn(s)Ph)G

 s

πn(s)
G(X (πn(s))) d M(r)


d M(s)

+

 tn
j

0
r(kn Ah)

j−κn(s)PhG

 s

πn(s)
G(X (πn(s))− Xn

κn(s)) d M(r)


d M(s).

For now, let p > 2. For better readability, we add tn
j resp. j in the terms to be estimated, although

it is not necessary in the norm. The initial condition is bounded by Eq. (5.1) for β = 0

∥(S(tn
j )− r(kn Ah)

j Ph)X0∥
p
H,∞T n ,L p ≤ C(h + k1/2

n )pα
∥X0∥

p
Hα,L p .

For ξn and ηn we just give calculations for one term of each type of estimation to demonstrate
the technique. The other terms are treated in a similar way. The first term of ξn

1 satisfies by the
properties of the Bochner integral, Lemma 2.2, and Theorem 6.13 in [32]

∥ξn
1,1( j)∥p

H,∞T n ,L p

≤ C E


sup

0≤ j≤n

 tn
j

0
(tn

j − s)−1/2
∥(S(s − πn(s))− 1)X (πn(s))∥H ds

p

≤ C E


sup

0≤ j≤n

 tn
j

0
(tn

j − s)−1/2(s − πn(s))
α/2

∥X (πn(s))∥Hα ds

p

≤ C k pα/2
n E


sup

0≤ j≤n

 tn
j

0
(tn

j − s)−1/2
∥X (πn(s))∥Hα ds

p
.

Hölder’s inequality and Fubini’s theorem imply that

∥ξn
1,1( j)∥p

H,∞T n ,L p ≤ C k pα/2
n

 T

0
(T − s)−p/(p−1)2 ds

p−1  T

0
∥X (πn(s))∥

p
Hα,L p ds

≤ C k pα/2
n T (p−2)/2

∥X∥
p
Hα,L p,∞τ

.

The property of the semigroup with similar estimates leads to

∥ξn
1,2( j)∥p

H,∞T n ,L p + ∥ηn
1,1( j)∥p

H,∞T n ,L p + ∥ηn
1,2( j)∥p

H,∞T n ,L p + ∥ηn
3,1( j)∥p

H,∞T n ,L p

+ ∥ηn
3,3( j)∥p

H,∞T n ,L p ≤ C p k pα/2
n ∥X∥

p
Hα,L p,∞τ

,

where Eq. (2.4) is used for the terms labeled with η.
The convergence properties of the rational approximation of the semigroup in Eq. (5.1) imply

for ξn
1,3( j) for β = 1 with similar estimates as before concerning the operator B

∥ξn
1,3( j)∥p

H,∞T n ,L p ≤ C T (p−2)/2 (h + k1/2
n )pα

 T

0
∥B X (πn(s))∥

p
Hα−1,L p ds

≤ C p (h + k1/2
n )pα

∥X∥
p
Hα,L p,∞τ

.

These estimates are also applied to the following terms and give with Lemma 5.1

∥ηn
1,3( j)∥p

H,∞T n ,L p + ∥ηn
3,4( j)∥p

H,∞T n ,L p ≤ C(1 + k p/2
n )(h + k1/2

n )pα
∥X∥

p
Hα,∞τ ,L p .
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In the end, the difference of the mild solution and the approximation is estimated by their
difference at previous time steps, which stems from the following calculation

∥ξn
1,4( j)∥p

H,∞T n ,L p ≤ C E


sup

0≤ j≤n

 tn
j

0
(tn

j − πn(s))
−1/2

∥X (πn(s))− Xn
κn(s)∥H ds

p

≤ C T (p−2)/2
j−1
i=0

kn∥X (tn
i )− Xn

i ∥
p
H,∞T n

i
,L p ,

where we used Eq. (4.2) in [26]. The stability of the semigroup approximation for ηn
1,4( j) and

ηn
3,5( j) leads to

∥ηn
1,4( j)∥p

H,∞T n ,L p + ∥ηn
3,5( j)∥p

H,∞T n ,L p

≤ C p

j−1
i=0

kn(1 + k p/2
n ) ∥X (tn

i )− Xn
i ∥

p
H,∞T n

i
,L p

≤ C p (1 + T p/2)

j−1
i=0

kn ∥X (tn
i )− Xn

i ∥
p
H,∞T n

i
,L p .

The remaining of the approximated terms cannot be estimated with respect to α. For those, con-
vergence is limited by the properties of the stochastic integral. We have with the regularity of the
solution from Lemma 2.4, Eq. (2.4), Hölder’s inequality, combined with previous estimates

∥ηn
3,2( j)∥p

H,∞T n ,L p ≤ C p

 T

0
(s − πn(s))

(p−2)/2
 s

πn(s)
∥X (r)− X (πn(s))∥

p
H,L p dr ds

≤ C k p
n ∥X∥

p
H1,L p,∞τ

.

The convergence for two of the remaining terms that were not approximated in Eq. (3.3) results
from the upper and lower limits of the inner integral, i.e., we have

∥ξn
2 ( j)∥p

H,∞T n ,L p + ∥ηn
2( j)∥p

H,∞T n ,L p ≤ C p k p
n ∥X∥

p
H1,L p,∞τ

.

Finally, to give estimates on ξn
3 ( j), we set Πn(r) = tn

i for tn
i−1 < r ≤ tn

i and write

∥ξn
3 ( j)∥p

H,∞T n ,L p

=


 tn

j

0

 tn
j

0
1{πn(s)≤r≤s<Πn(r)}S(tn

j − s)BS(s − r)G(X (r)) d M(r) ds


p

H,∞T n ,L p

=


 tn

j

0

 tn
j

0
1{πn(s)≤r≤s<Πn(r)}S(tn

j − s)BS(s − r)G(X (r)) ds d M(r)


p

H,∞T n ,L p

with a stochastic Fubini theorem (see Theorem 8.14 in [33]). Next, we apply Eq. (2.4), the prop-
erties of the Bochner integral, Hölder’s inequality, and similar estimates as before to derive

∥ξn
3 ( j)∥p

H,∞T n ,L p =


 tn

j

0

 Πn(r)

r
S(tn

j − s)BS(s − r)G(X (r)) ds d M(r)


p

H,∞T n ,L p

=


 tn

j

0
S(tn

j − Πn(r))
 Πn(r)

r
S(Πn(r)− s)BS(s − r)G(X (r)) ds d M(r)


p

H,∞T n ,L p
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≤ C p

 T

0
(Πn(r)− r)p−1

 Πn(r)

r
∥X (r)∥p

H1,L p ds dr

≤ C p k p
n ∥X∥

p
H1,L p,∞τ

.

This concludes the estimates of the terms, and overall we have

∥X − Xn
κn()

∥
p
H,∞T n ,L p ≤ C1


(h + k1/2

n )pα
∥X∥

p
Hα,∞τ ,L p + k p

n ∥X∥
p
H1,L p,∞τ


+ C2

j−1
i=0

kn∥X − Xn
κn()

∥
p
H,∞T n

i
,L p .

A discrete version of Gronwall’s inequality (cf. [10]) implies

∥X − Xn
κn()

∥
p
H,∞T n ,L p

≤ C1


(h + k1/2

n )pα
∥X∥

p
Hα,∞τ ,L p + k p

n ∥X∥
p
H1,L p,∞τ


·

j−1
i=0


1 + C2 kn


≤ C1


(h + k1/2

n )pα
∥X∥

p
Hα,∞τ ,L p + k p

n ∥X∥
p
H1,L p,∞τ


· exp(C2 T ),

which concludes the proof for p > 2. Finally, for p ≤ 2, Hölder’s inequality leads for p′ > 2 to

∥X − Xn
κn()

∥H,∞T n ,L p ≤ ∥X − Xn
κn()

∥H,∞T n ,L p′ = O((h + k1/2
n )α + kn). �

Theorem 5.3. For every ϵ > 0

∥X − Xn
κn()

∥H,∞T n ≤ (h2
+ kn)

1−ϵ, P-a.s.,

asymptotically for h and kn small enough such that there exists λ > 0 with h2
= O(kλn ), i.e.,

the series of approximations (Xn, n ∈ N) defined in Eq. (3.3) converges almost surely to X with
order O((h2

+ kn)
1−ϵ) for h, kn → 0.

Proof. Let ϵ > 0, then Chebyshev’s inequality implies with Theorem 5.2 for all 0 ≤ j ≤ n that

P

∥X − Xn

κn()
∥H,∞T n ≥ (h2

+ kn)
1−ϵ


≤ (h2

+ kn)
−(1−ϵ)p

∥X − Xn
κn()

∥
p
H,∞T n ,L p

≤ C p (h
2
+ kn)

pϵ .

Since kn = O(n−1) and h2
= O(kλn ) for some λ > 0, the series

∞
n=1

P

∥X − Xn

κn()
∥H,∞T n ≥ (h2

+ kn)
1−ϵ


≤ C

∞
n=1

n−pε(1∧λ)

converges for any p > ϵ−1(1 ∧ λ)−1 and therefore, by the Borel–Cantelli lemma

∥X − Xn
κn()

∥H,∞T n ≤ (h2
+ kn)

1−ϵ, P-a.s.,

which concludes the proof. �

As a final step we combine the approximation of the noise from Lemmas 3.1 and 3.2 with
Theorem 5.2.
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The fully approximated scheme reads then (see [3])

X̃n
j+1 = r(kn Ah)X̃

n
j +

 tn
j+1

tn
j

r(kn Ah)Ph B X̃n
j ds +

 tn
j+1

tn
j

r(kn Ah)PhG(X̃n
j ) d Mκ(s)

+

 tn
j+1

tn
j


r(kn Ah)PhG

 s

tn
j

G(X̃n
j ) d M

√
κ(r)


d M

√
κ(s).

To preserve the order of convergence for given ν > 1, we require κ1 ≥ C2 h−4/(ν−1) for the
Euler–Maruyama term and κ2 ≥ C2 h−2/(ν−1) for the Milstein term. For an equilibrated error we
use the first κ terms of the Karhunen–Loève expansion for the Euler–Maruyama term and

√
κ

terms for the Milstein term. In this sense the simulation of the Milstein term is computationally
not more expensive than the Euler term. For the Milstein term we have to sum over all mixed
stochastic processes, i.e., κ2

2 resp. κ2
2/2 terms, if we use the symmetry of Γ . If the simulation of

the Euler–Maruyama term needs computational effort O(κ1) and κ1 = κ2
2 , the overall work for

the Milstein term is also O(κ1). By adding the Milstein term, we increase the order of conver-
gence, but with the correct truncation of the Karhunen–Loève expansion the overall work does
not increase. Then, the next corollary is a consequence of Theorem 5.2 and Lemmas 3.1 and 3.2.

Corollary 5.4. The sequence of fully discrete approximations (X̃n, n ∈ N) converges in L p

and almost surely to the mild solution X of Eq. (2.1) and satisfies for constants C1 and C2 that
depend on T and for κ ≥ C⌈h−2 max(α,2)/(ν−1)

⌉, for fixed C > 0, where ν > 1 with γi ≤ Cν i−ν ,
for i ∈ N and Cν > 0,

∥X − X̃n
κn()

∥H,∞T n ,L p ≤ C1(h + k1/2
n )α∥X∥Hα,∞τ ,L p + C2 kn∥X∥H1,L p,∞τ

.

Especially for α = 2 and X ∈ H2, the error is bounded by

∥X − X̃n
κn()

∥H,∞T n ,L p = O(h2
+ kn).

Furthermore, with the same prerequisites as in Theorem 5.3 it holds asymptotically for any ϵ > 0
that

∥X − X̃n
κn()

∥H,∞T n ≤ (h2
+ kn)

1−ϵ, P-a.s.

Similar results also hold in the semidiscrete case. In conclusion, we see that the approximation
of the noise by an appropriate truncation of the Karhunen–Loève expansion does not affect the
overall order of convergence of the approximation scheme. Otherwise the convergence of the
noise approximation will dominate the errors (see [4]).
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