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Abstract

This article is concerned with the study of fractal properties of thick points for a 4-dimensional Gaussian
Free Field. We adopt the definition of Gaussian Free Field on R4 introduced by Chen and Jakobson
(2012) viewed as an abstract Wiener space with underlying Hilbert space H2(R4). We can prove that for
0 ≤ a ≤ 4, the Hausdorff dimension of the set of a-high points is 4 − a. We also show that the thick points
give full mass to the Liouville Quantum Gravity measure on R4.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Random measures defined by means of log-correlated Gaussian fields X and that can be
formally written as “m(dω) = eaX (ω)dω” arise in conformal field theory and in the theory
of Gaussian multiplicative Chaos (GMC). When X is an instance of the Gaussian Free Field
(GFF) these measures are referred to as Liouville quantum gravity (LQG) measures. The interest
around such objects comes from physics and in particular from the understanding and proving
the KPZ relation, formulated by Knizhnik, Polyakov and Zamolodchikov [17], which gives the
relation between volume exponents derived using the quantum metric induced by m(dω) and the
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Euclidean metric. Several interesting papers have been written to show this relation, and the first
result is given by Duplantier and Sheffield [10] proving the formula for the planar case. For a
clear explanation of this and other aspects of the KPZ we refer to Garban [11]. To construct such
measures one has to rely on an approximation (cut-off) of the field and there are various methods
to construct this approximation. While on the one hand a more geometric approach (which
explicitly relies on the structure of the field) is present in the work Duplantier and Sheffield
[10], the perspective of Robert and Vargas [26,27,24] dates back to the definition of Mandelbrot
[21], Kahane [16] of multiplicative chaos, which deals with properties of the covariance kernel.
These works extended the concept of multiplicative chaos of Kahane to a more general class of
covariance kernels.

In this paper we focus our attention on the multifractal formalism of the underpinned Gaussian
field, or with an equivalent terminology on its so-called thick points. To our knowledge the first
rigorous study in this direction was made by Mandelbrot [22] in the context of one-dimensional
log-correlated Gaussian fields. Hu et al. [13] showed that the Hausdorff dimension of the set of
a-thick points is 2 − a for 0 ≤ a ≤ 2 for the planar GFF (case of sphere average process). In
Kahane [16], Rhodes and Vargas [24] such a result is shown for certain covariance kernels leading
to multiplicative chaos. In this article we extend the results of Hu et al. [13] to 4 dimensions
using the sphere average process introduced by Chen and Jakobson [3]. The set of thick points
is relevant in understanding the support of the LQG. In fact it was shown in Duplantier and
Sheffield [10] that the LQG measure is almost surely supported on the thick points, in analogy
to Kahane’s similar results [16] on 1D Gaussian multiplicative chaos and to Rhodes and Vargas
[24, Theorem 4.1] in higher dimensions.

To give an analogy in Zd , one might look at the discrete Gaussian free field. It undergoes a
phase transition at d = 2 in terms of the existence of an infinite-volume limit measure. Similarly
the discrete membrane model (whose covariance is the inverse of the discrete Bilaplacian) shows
the same change of phase in d = 4 (further results about it can be found for instance in Kurt
[18,20]). In the critical dimension both fields possess logarithmically growing variances, and
moreover the results contained in Daviaud [5] and Cipriani [4] show a similar fractal behavior of
the thick points. In the continuum case, a natural analogue of the membrane model would be the
Gaussian field arising from the inverse (in the sense of distributions) of the Bilaplacian operator.
However, it is still an open problem to derive for it an appropriate sphere average in the sense
of Duplantier and Sheffield [10]. In this direction, Chen and Jakobson [3] first constructed the
sphere average process for the massive Bilaplacian Gaussian free field.

The construction of the set of thick points relies on the choice of cut-offs. One of them is the
sphere average process Xϵ(x), which can be taken as the average of the field over a ball of radius
ϵ around x (in the rest of the paper we will assume the parameters denoted by ϵ, ϵ1 etc. to be
small). The main advantage of such cut-offs is that they enjoy the spatial Markov property, that
is, informally, the processes (X t+s(x) − Xs(x))t≥0 and (X t+s(y) − Xs(y))t≥0 are independent
whenever ∥x − y∥ is large enough. Cut-offs can also be created by truncating appropriately the
covariance function [24], or using the orthonormal basis representation for generalized Gaussian
fields [14]. We prefer to stick to the more geometrical construction of the Gaussian free field, as
in Chen and Jakobson [3] rather than handling it as an instance of multiplicative chaos, in the
framework of Rhodes and Vargas [24, Theorem 4.2] although both approaches prove to be fruitful
to investigate thick points. Differences between the two approaches are discussed in Section 2.1.

Main results and structure of the article: In Section 2 we recall the model introduced by Chen
and Jakobson [3] and state our main result more precisely. We show in Theorem 2.1 that the set of
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thick points gives full mass to the LQG measure. Moreover, we show in Theorem 2.2 that the set
of a-thick points has Hausdorff dimension 4 − a when 0 ≤ a ≤ 4. When a > 4, the set of thick
points is almost surely empty. In Section 3 we list some basic properties of the sphere average
process and also provide a proof of Theorem 2.1 using a so-called rooted or Peyrière measure.
The proof of Theorem 2.2 is given in Sections 4 and 5 and relies on proving two different bounds.
For the upper bound we use the version of the Kolmogorov–Chentsov theorem derived by Hu
et al. [13]. For the lower bound we use a standard finite-energy method and the spatial Markov
property of the field. We discuss some comparison and open issues in Section 2.1.

2. GFF model and statement of the main results

To keep the paper self contained we review in this section some definitions of the GFF on R4

from Chen and Jakobson [3] and state some properties of the sphere average process which will
be useful in deriving our main result. In order to do so we begin with the definition of abstract
Wiener space.

Definition 2.1 (Abstract Wiener Space, Stroock [30]). An abstract Wiener space is a triple
(Θ, H, W), where

• Θ is a separable Banach space,
• H is a Hilbert space which is continuously embedded as a dense subspace of Θ , equipped

with the scalar product (·, ·)H ,
• W is a Gaussian probability measure on Θ defined as follows.

Let Θ∗ be the dual space of Θ . Given any x∗
∈ Θ∗ there exists a unique hx∗ ∈ H such that for

all h ∈ H, ⟨h, x∗⟩ = (h, hx∗)H where ⟨·, x∗⟩ denotes the action of x∗ on Θ . The sigma algebra
B(Θ) on Θ is such that all the maps θ → ⟨θ, x∗⟩ are measurable. W is a probability measure
such that for all x∗

∈ Θ∗,

EW

exp


i

·, x∗


= exp


−

∥hx∗∥
2
H

2


. (2.1)

Although the introduction of the set Θ is evidently important for the definition of the GFF, its
choice is not unique; moreover W(H) = 0 as explained in Stroock [30, Corollary 8.3.2 and Page
311]. In our setting, we consider the underlying Hilbert space to be H := H2


R4


which is the
completion of the Schwartz space S


R4


equipped with the inner product

( f1, f2)H =


R4

(I − ∆)2 f1 (x) f2 (x) dx for all f1, f2 ∈ S

R4


.

H−2

R4


is the Hilbert space consisting of tempered distributions µ such that

∥µ∥
2
H−2 =

1

(2π)4


R4


1 + |ξ |

2
−2 µ̂ (ξ)

2 dξ < ∞

where µ̂ is the Fourier transform. It is possible to identify H with H−2 through the linear
isometry (I − ∆)−2

: H−2
→ H . By abuse of notation we will call hν the image of ν ∈ H−2

under (I − ∆)−2, that is, hν is the unique element in H such that ⟨h, ν⟩ = (h, hν)H for
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all h ∈ H . At this point we have to introduce another fundamental object for our work, the
Paley–Wiener integral I (hν). I is viewed as a mapping

I : x∗
∈ Θ∗

→ I(hx∗) ∈ L2(W)

θ ∈ Θ → [I (hx∗)](θ) :=

θ, x∗


.

By (2.1), we have that


I (hν) : ν ∈ H−2


is also a Gaussian family whose covariance is given
by

EW


I

hν1


I

hν2


=

hν1 , hν2


H = ⟨ν1, ν2⟩H−2 .

Therefore I is an isometry from {hx∗ : x∗
∈ Θ∗} → L2(W), and since its domain is dense in H ,

it admits a unique extension to the whole of H .
For every x ∈ R4 and ϵ > 0 denote as σ x

ϵ ∈ H−2 the tempered distribution given by
f, σ x

ϵ


=

1

2π2ϵ3


D(x,ϵ)

f (y) dσ (y) , for all f ∈ S

R4


,

where dσ is the surface area measure on D(x, ϵ), the sphere of radius ϵ around x . Interestingly,
Chen and Jakobson [3] noted that


I

hσ x

ϵ


: ϵ > 0


fails to possess the Markov property and

considered instead another Gaussian family:
I

hσ x

ϵ


, I

hdσ x

ϵ


: x ∈ R4, ϵ > 0


,

with dσ x
ϵ the tempered distribution given by


f, dσ x

ϵ


:=

d
dϵ


f, σ x

ϵ


for all f ∈ S


R4

. It is

important to point out at this juncture that such a collection is reminiscent of the double boundary
conditions needed for the membrane model in the discrete case [19]. Let ζ := (1, 1)T and

B (r) :=


I1 (r) /r I ′

1 (r)

I2 (r) /r I ′′

1 (r)


,

where Ik are the modified Bessel functions of the first kind of order k ∈ N (for definitions of the
Bessel functions that appear throughout the article a good reference is for example Abramowitz
and Stegun [1, Chapter 9]). Define

µx
ϵ := ζ⊤B−1 (ϵ)


σ x

ϵ

dσ x
ϵ


. (2.2)

It was shown in Chen and Jakobson [3] that µx
ϵ ∈ H−2(R4) and


I

hµx

ϵ


: x ∈ R4, ϵ > 0


forms a Gaussian family with the correct Markovian properties and is the suitable candidate for
the sphere average process in four dimensions.

Definition 2.2 (Thick Points of the Sphere Average). For the sphere average process the set of
a-thick points is defined as

T (a) :=


x ∈ R4

: lim
ϵ→0

I

hµx

ϵ


√

2π2G(ϵ)
=

√
2a


. (2.3)

Here G(ϵ) = VarW


I

hµx

ϵ


and an explicit expression using Bessel functions is given in (3.1).
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We would also need the definition of a set quite similar to the above:

T≥(a) =


x ∈ R4

: lim sup
ϵ→0

I

hµx

ϵ


√

2π2G(ϵ)
≥

√
2a


. (2.4)

It is easy to see that

T (a) ⊂ T≥(a).

One of the main results of Chen and Jakobson [3, Theorem 5] was to show the existence of
the Liouville quantum gravity measure and the validity of the KPZ relation in R4. Define to this
purpose a random measure on R4 by

mθ
ϵ (dx) := Eθ

ϵ (x)dx,

where

Eθ
ϵ = exp


γ I


hµx

ϵ


−

γ 2

2
G(ϵ)


, γ > 0.

If ϵn = ϵn
0 with ϵ0 ∈ (0, 1) and 0 < γ 2 < 2π2, then there exists a non-negative measure mθ on

R4 such that the following convergence holds for every f ∈ Cc(R4):

lim
n→+∞


R4

f (x)mθ
ϵn

(dx) =


R4

f (x)mθ (dx) (2.5)

W -almost surely and also in L2(W). It is also known that this measure is almost surely positive.
In the following theorem we show that the set of thick points gives full measure to the LQG

measure in R4.

Theorem 2.1. Let 0 < γ 2 < 2π2, then for a = γ 2/4π2 we have

mθ (T (a)c) = 0 W − a.s.

That is, the set T (a) gives full mass to the measure mθ (·).

For the proof of Theorem 2.1 we construct an auxiliary tool, the rooted or Peyrière measure.
For the use of rooted measures see [10,24].

Before we state our main result on fractal properties of thick points, we recall the definition
of Hausdorff dimension and Hausdorff measure.

Definition 2.3 (Hausdorff Dimension). Let X be a metric space and S ⊆ X . For every d ≥ 0 and
δ > 0 define the Hausdorff-d-measure in the following way:

Cd
δ (S) := inf


i

diam(Ei )
d

: E1, E2, E3, . . . , cover S and diam(Ei ) ≤ δ


,

i.e. we are considering coverings of S by sets of diameter no more than δ. Then

Cd
H(S) = sup

δ>0
Cd

δ (S) = lim
δ↓0

Cd
δ (S)

is the Hausdorff-d-measure of the set S. The Hausdorff dimension of S is defined by

dimH(S) := inf{d ≥ 0 : Cd
H(S) = 0}.
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Theorem 2.2. For 0 ≤ a ≤ 4, the Hausdorff dimension of T (a) is 4 − a. For a > 4, we have
that T (a) is empty.

Remark 2.1. The above result shows similarity with the membrane model. In Cipriani [4] it was
shown that discrete fractal dimension of the a-high points is 4 − 4a2.

To prove Theorem 2.2 we apply some of the techniques implemented in Dembo et al. [7,6] to
show similar results for occupation measures of planar or spatial Brownian motion.

2.1. Some comments and remarks

In this subsection we point out some open questions and comments on the existing literature
on different cut-offs for Gaussian free fields.

1. Different cut-offs can be considered for the whole plane massive GFF. For example, note that
the Green’s function G(x, y) for the Bessel operator (I−∆)d/2 on Rd is given by K0(∥x −y∥)

where K0(r) denotes the modified Bessel function of second kind of order zero and is given
by

G(x, y) = K0(∥x − y∥) =


∞

0
e−u/2e−

∥x−y∥
2

2u
du

u
,

see Stein [28, Page 133]. This falls in the category of σ -positive kernels [16] and star-scale
invariant kernels [2]. Now as in Garban et al. [12] one can consider an increasing sequence
(cn)n≥1 with c1 = 1 and an independent (in n) Gaussian sequence (Yn(x)) with covariance
given by

E [Yn(x)Yn(y)] =

 cn

cn−1

k(u∥x − y∥)
du

u
, (2.6)

where k(r) =
1
2


∞

0 e−
r2
2v e−v/2dv. Formally, the field can be represented as X (x) =


n≥1

Yn(x) and hence one can consider integral cut-offs of the form Xn(x) =
n

k=1 Yk(x). The
main advantage of working with such cut-offs is that the exponential of the field becomes
a positive martingale and logarithmic bounds due to the covariance structure give uniform
integrability of the martingale, with the goal of proving the existence/uniqueness of the
limiting quantum gravity measure. One can exploit the methods developed in Kahane [16]
to conclude about the lower bound of thick points in such cases. However not all known cut-
offs can be written in such fashion (as also pointed out in some examples in Robert and Vargas
[26]). For instance, we could not show that the sphere average process can be related to any
integral cut-off.

2. We also note that for (X t (x)) a Gaussian process with covariance kernel given by

E [X t (x)X t (y)] =


∞

1
k(u∥x − y∥)

dy

y

there is no long range independence, but still exponential decay for correlations. It would
be interesting to see whether a modification of the proof for the lower bound presented in
Section 5 could be adapted to these fields. Indeed, the present proof crucially depends on
Lemma 3.1 and thus the independence of the Brownian motions becomes the most important
aspect of it. The use of the exponential decay of the cut-off was recently exploited in the works
of Duplantier et al. [8,9] and Rhodes and Vargas [25].
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3. On R4, the Bilaplacian model on domains is still an open area of research and especially the
construction of the associated sphere average process and its thick points. It would be inter-
esting to derive any geometrical property which is analogous to the conformal invariance of
thick points derived by Hu et al. [13]. We believe the methods used in Chen and Jakobson [3]
and here can act as a starting point of such a study. The sphere average process in fact appears
as a combination of two measures and clearly indicates the role of boundary conditions in a
Bilaplacian boundary value problem.

4. Although not directly related to the present article, the problem of the choice of cut-offs is not
irrelevant. In general the almost sure uniqueness of the limiting quantum gravity measure is
an open problem. Such universality results date back to Kahane [16] who showed uniqueness
in law of GMC under certain conditions. The conditions were relaxed in Robert and Vargas
[26]. The almost sure question in the case of the planar GFF was partially dealt with in Du-
plantier and Sheffield [10] where it was shown that the LQG measures arising out of sphere
averages and orthonormal basis truncations are almost surely equal. It remains to be investi-
gated whether there are sufficient conditions on cut-offs which lead to the same LQG measure
or GMC almost surely. Also we note that the proof of Duplantier and Sheffield [10] uses
conformal properties and hence it is not clear how one could extend such results in higher di-
mensions. Similarly, one may inquire if these uniqueness results are also true for thick points.

We are looking at some of the issues pointed out here and we intend to address them in a
future paper.

3. GFF model and some estimates

This section is devoted to providing some details about the behavior of the sphere average
process, such as the covariance structure. We then use them to derive a proof of Theorem 2.1.

3.1. Some more properties of the sphere average process: covariance structure

Let us denote as D(0, R) the sphere centered at 0 with radius R > 0. Let Ir , Kr be the
modified Bessel functions of order r ∈ N ∪ {0}. Define the positive function G : (0, ∞) →

(0, ∞) by

G (r) :=


−

1

4π2


2I1 (r) K1 (r) + 2I2 (r) K0 (r) − 1

I 2
1 (r) − I0 (r) I2 (r)

. (3.1)

It can be shown that G is strictly decreasing and smooth, with limr→0 G(r) = +∞ and
limr→+∞ G(r) = 0. It also follows from the properties of the Bessel functions that as r decreases
to 0, G(r) asymptotically behaves like −

1
2π2 log r . Then, we have that

1. given x ∈ R4 and ϵ1 ≥ ϵ2 > 0,

EW


I


hµx
ϵ1


I


hµx
ϵ2


= EW


I 2


hµx
ϵ1


= G (ϵ1) . (3.2)

2. Given x, y ∈ R4, x ≠ y, and ϵ1, ϵ2 > 0 with D(x, ϵ1) ∩ D(y, ϵ2) = ∅,

EW


I


hµx
ϵ1


I


hµ
y
ϵ2


=

1

2π2 K0 (∥x − y∥) . (3.3)
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3. Given x, y ∈ R4, x ≠ y, and ϵ1, ϵ2 > 0 with D(y, ϵ2) ⊆ D(x, ϵ1),

EW


I


hµx
ϵ1


I


hµ
y
ϵ2


= I0 (∥x − y∥) G (ϵ1) −

1

4π2

I2 (∥x − y∥)

I 2
1 (ϵ1) − I0 (ϵ1) I2 (ϵ1)

. (3.4)

We would like to point out that K0(x) =


∞

0 e
x2
4v e−v dv

v
. Now using the saddle point method it is

easy to show that this integral is bounded and in fact decays exponentially to 0 as ∥x−y∥ → +∞.
On the other hand for ∥x − y∥ bounded it can be shown, using Abramowitz and Stegun
[1, Equation 9. 6. 54], that

K0(x) = −


log

x

2
+ γ


I0(x) + 2

+∞
k=1

I2k(x)

k
= log

1
∥x∥

+ H(x), (3.5)

with H uniformly bounded and γ the Euler–Mascheroni constant, using the expansion (see
Abramowitz and Stegun [1, Equation 9. 6. 10])

Iν(z) =


1
2

z2
 +∞

k=0


1
4 z2
k

k!Γ (ν + k + 1)
. (3.6)

Hence (3.3) shows that sphere average processes indexed by disjoint spheres have logarithmic
decay of correlations. The independence of ϵ1 and ϵ2 on the right-hand side of (3.3) is also crucial
to prove Lemma 3.1.

The next lemma states one of the most useful and important properties of the spherical average
process and is analogous to the properties of the two dimensional circle average studied in
Duplantier and Sheffield [10], Hu et al. [13]. It shows that for fixed x ∈ R4, the spherical
average after a time change is a Brownian motion and in disjoint annuli two such motions are
independent. We briefly sketch the proof of the following lemma as it is an easy consequence
after one compares the covariance structure.

Lemma 3.1. (a) Let G(·) be as in (3.1) and for x ∈ R4, let B(x, t) = I


hµx
G−1(t)


. Then

B(x, t) − B(x, t1) has the same distribution as a standard Brownian motion for t ≥ t1.

(b) Given x, y ∈ R4 and t1 ≤ t ≤ t2 and s1 ≤ s ≤ s2 be such that D(x, G−1(s1)) \

D(x, G−1(s2)) and D(y, G−1(t1)) \ D(y, G−1(t2)) are disjoint, then {B(x, s) −

B(x, s1)}s1≤s≤s2 is independent of {B(y, t) − B(y, t1)}t1≤t≤t2 .

Proof. (a) It follows from (3.2) that for t1 ≤ s ≤ t one has

CovW (B(x, t) − B(x, t1), B(x, s) − B(x, t1))

= G(G−1(s)) − G(G−1(t1)) − G(G−1(t1)) + G(G−1(t1)) = s − t1.

Here we have used the fact that G(·) and G−1(·) are decreasing functions and hence, as
t1 ≤ s ≤ t we have G−1(t1) ≥ G−1(s) ≥ G−1(t).

(b) As the annuli are disjoint it follows that ∥x −y∥ > G−1(t1)+G−1(s1) ≥ G−1(t)+G−1(s) ≥

G−1(t1) + G−1(s1) and hence using (3.3) we obtain

CovW (B(y, t) − B(y, t1), B(x, s) − B(x, s1)) = 0. �
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3.2. Proof of Theorem 2.1

Let Γ be a compact subset of R4. Let B(Γ ) be the Borel sigma algebra of Γ . We define a
rooted measure on B(Θ) ⊗ B(Γ ) as

M(dxdθ) :=
mθ (dx)W(dθ)

|Γ |
.

Here |Γ | denotes the volume of the set Γ with respect to the Lebesgue measure. Note that
M(Θ × Γ ) = EW


mθ (Γ )


|Γ |

−1
= 1 and as such M is a probability measure on the space

Γ × Θ .
Let r(t) := G−1(t + G(R)), R > 0 fixed and defineB(x, t)(θ) := I


hµx

r(t)


(θ) − I


hµx

R


(θ).

The following lemma allows us to view the random measure mθ in a different way. We show
that the joint distribution of (x, B(x, t)) under M(dxdθ) is nothing but the distribution of
(x, B(x, t) + γ t) under W(dθ)dx (where γ ∈ (0, 2π2) as in the statement of the theorem)
and in the latter case the marginal on Θ does not depend on x .

Lemma 3.2. Let 0 < γ 2 < 2π2. For any compact set Γ and any F ∈ Cc(R4
× R) we have

Θ


Γ

F(x, B(x, t)(θ))M(dxdθ) =
1

|Γ |


Γ


Θ

F(x, B(x, t)(θ) + γ t)W(dθ)dx . (3.7)

Proof. Note that for almost every θ , the map Γ ∋ x → F(x, B(x, t)(θ)) is continuous by
Corollary 3 of [3]. So from the vague convergence in (2.5) we have W -a.s.

lim
n→∞


Γ

F(x, B(x, t))mθ
ϵn

(dx) =


Γ

F(x, B(x, t))mθ (dx).

Since the function in the integral is bounded we have for some constant C and for all n
Θ


Γ

F(x, B(x, t))mθ
ϵn

(dx)W(dθ) ≤ C |Γ |.

So by dominated convergence

lim
n→∞

1
|Γ |


Θ


Γ

F(x, B(x, t))mθ
ϵn

(dx)W(dθ) =


Θ


Γ

F(x, B(x, t))M(dxdθ). (3.8)

Note that for small enough ϵ > 0

Cov(B(x, t), hµx
ϵ
) = G(r(t)) − G(R) = t

holds, so
Θ


Γ

F(x, B(x, t))M(dxdθ)
(3.8)
= lim

n→+∞

1
|Γ |


Θ


Γ

F(x, B(x, t))mθ
ϵn

(dx)W(dθ)

= lim
n→+∞

1
|Γ |


Θ


Γ

F(x, B(x, t))Eθ
ϵn

(x)dx W(dθ)

=
1

|Γ |


Γ


Θ

F(x, B(x, t)(θ) + γ t)W(dθ)dx

where in the third equality we have employed the Cameron–Martin theorem. �
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Proof of Theorem 2.1. Using the fact that EW

mθ (A)


= |A| for any bounded set A it follows

that the marginal of M on Γ is nothing but the normalized Lebesgue measure on Γ . Hence by
Theorem 9.2.2. of [30] there exists a Borel measurable map

Γ ∋ x → Lx (·) ∈ M1(Θ),

where M1(Θ) is the set of probability measures on Θ for which the following holds:

M(dxdθ) = Lx (dθ)
dx

|Γ |
.

Note that Lx (dθ) is nothing but a regular conditional probability. Now using the above
decomposition we have that

Θ


Γ

F(x, B(x, t))M(dxdθ) =
1

|Γ |


Γ


Θ

F(x, B(x, t))Lx (dθ)dx .

So from Lemma 3.2 we have for any compact set Γ and F ∈ Cc(R4
× R)

1
|Γ |


Γ


Θ

F(x, B(x, t))Lx (dθ)dx =
1

|Γ |


Γ


Θ

F(x, B(x, t) + γ t)W(dθ)dx . (3.9)

If we denote by µx the law of B(x, t) under Lx (dθ) and by ν the law of B(x, t) + γ t under
W(dθ) on R, it is easy to show that for almost every x ∈ R4, µx = ν, since (3.9) holds for any
compact set Γ . It is also possible to see that ν is the law of a standard Brownian motion with a
drift. If we take a = γ 2/4π2 and use the fact that the sphere average process is a time inversion
of a Brownian motion (due to Lemma 3.1), then the set of thick points can also be written as

T (a) =


x ∈ R4

: lim
t→∞

B(x, t)

t
= γ


.

Now from the discussion above we have that

M(T (a)c) =
1

|Γ |


Γ

Lx (T (a)c)dx .

Since the law of B(x, t) under Lx is the same as the law of Brownian motion with a drift, the
condition for the thick points gets satisfied with probability 1. So we have M(T (a)c) = 0,
which, together with the fact that mθ (·) is a. s. a positive measure, proves the result. �

4. Upper bound of Theorem 2.2

In this section we prove the upper bound. By the countable stability property, viz.

dimH


∞

i=1

Ei


= sup

1≤i≤∞

dimH(Ei )

it is enough to show that for R ≥ 1

dimH T≥(a, R) = dimH


x ∈ D(0, R) : lim sup

ϵ→0

I

hµx

ϵ


√

2π2G(ϵ)
≥

√
2a


≤ 4 − a (4.1)

almost surely. The next proposition gives the local Hölder continuity of the process and through
it we can determine a modification of the process which has some uniform estimates on the



A. Cipriani, R.S. Hazra / Stochastic Processes and their Applications 125 (2015) 2383–2404 2393

increments. It is similar to Proposition 2.1 of Hu et al. [13] and uses Lemma C.1 of Hu et al.
[13]. The proof also uses some finer estimates on the covariance functions and some bounds on
Bessel functions which are provided in the Appendix.

Proposition 4.1. There exists a modification X of the process {I


hµz
t


: z ∈ D(0, R), t ∈

(0, 1)} such that for every 0 < γ < 1
2 and ϵ, ζ > 0 there exists M > 0 such that the following

holds:

|X(z, r) − X(w, s)| ≤ M


log

1
r

ζ
|(z, r) − (w, s)|γ

r (1+ϵ)γ
, (4.2)

for all z, w ∈ D(0, R) and r, s ∈ (0, 1] with 1/2 ≤ r/s ≤ 2.

Proof. Consider x, y ∈ D(0, R), ϵ1, ϵ2 ∈ (0, 1) and we abbreviate

Hϵ1,ϵ2(x, y) := CovW


I


hµx
ϵ1


, I


hµ

y
ϵ2


.

We distinguish between three cases:

Case 1. Let x = y. By Lemma A.1, we have

|Hϵ1, ϵ1(x, x) − Hϵ2, ϵ1(x, x)|

≤ |Hϵ1, ϵ1(x, x) − Hϵ1, ϵ2(x, x)| + |Hϵ2, ϵ1(x, x) − Hϵ1, ϵ2(x, x)|

(3.2)
≤ |G(ϵ1) − G(ϵ1 ∨ ϵ2)| + |G(ϵ2) − G(ϵ1 ∨ ϵ2)|

≤ C
|ϵ1 − ϵ2|

ϵ1 ∧ ϵ2
.

Here we have used that | log(z/w)| ≤
∥z−w∥

z∧w
for all z, w ∈ (0, +∞).

Case 2. Let D(x, ϵ1) ∩ D(y, ϵ2) = ∅. In this case ∥x − y∥ > ϵ1 + ϵ2 > ϵ1. Then

|Hϵ1,ϵ1(x, x) − Hϵ1,ϵ2(x, y)| =

G(ϵ1) −
1

2π2 K0(∥x − y∥)


(3.5)
≤ −C(log ϵ1 + log(∥x − y∥)) ≤

∥x − y∥

ϵ1
.

Note that in applying (3.5) a bounded constant does not affect the statement of the
theorem. Similarly one can show that |Hϵ2,ϵ2(y, y) − Hϵ1,ϵ2(x, y)| ≤

∥x−y∥

ϵ1
.

Case 3. For D(y, ϵ2) ⊆ D(x, ϵ1) one obtains

|Hϵ1, ϵ1(x, x) − Hϵ1, ϵ2(x, y)|

≤ |G(ϵ1)(1 − I0(∥x − y∥))| + C
I2(∥x − y∥)

I 2
1 (ϵ1) − I0(ϵ1)I2(ϵ1)

≤ −C log ϵ1∥x − y∥
2
+

∥x − y∥
2

ϵ2
1

≤ C
∥x − y∥

ϵ1
.

Here we have used the series expansion (3.6).
Note that in Cases 1 and 3 we can choose ϵ1 and ϵ2 small so that the asymptotics of the Bessel

functions are justified. Combining these three cases yields

VarW


I


hµx
ϵ1


− I


hµ

y
ϵ2


≤ C

∥x − y∥ + |ϵ1 − ϵ2|

ϵ1 ∧ ϵ2
. (4.3)
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Since I


hµx
ϵ1


− I


hµ

y
ϵ2


is Gaussian,

EW
I


hµx

ϵ1


− I


hµ

y
ϵ2

α ≤ C


∥x − y∥ + |ϵ1 − ϵ2|

ϵ1 ∧ ϵ2

α/2

.

We can find α and β large enough such that |
β
α

−
1
2 | < δ, and consequently by Hu et al.

[13, Lemma C.1] there exists a modification X(x, ϵ) = I

hµx

ϵ


a.s. on L2(W) satisfying

(4.2). �

In this section for the proof of the upper bound we work with this modification which we also

denote by I

hµx

t


. Recall that B(x, t) = I


hµx

G−1(t)


.

Proof of the upper bound. Let ε > 0 and γ ∈ (0, 1/2), ζ ∈ (0, 1) and denote γ̃ := (1 + ε)γ .
Also let K := ε−1, rn := n−K .

Define the set

UR :=

x ∈ D(0, R) : lim sup
n→+∞

I


hµx
rn


√

2π2G(rn)
≥

√
2a

 .

We first show that

T≥(a, R) ⊂ UR . (4.4)

For x ∈ T≥(a, R) and for t ∈ (G(rn), G(rn+1)) we write B(x, G(rn)) = B(x, G(rn))−B(x, t)+
B(x, t). By Proposition 4.1 we have

|B(x, t) − B(x, G(rn))| ≤ M


log


1

G−1(t)

ζ

G−1(t) − rn

γ
G−1(t)γ̃

≤ M(log(n + 1))ζ
(rn+1 − rn)γ

r γ̃

n+1

= O

(log n)ζ


. (4.5)

Hence using the fact that G(rn) ∼ C log n for n → +∞ and ζ < 1 we have B(x, G(rn)) − B(x, t)
√

2π2G(rn)

 = O


(log n)ζ

G(rn)


= o (1) .

Now (4.4) follows as we have

lim sup
n→+∞

B(x, G(rn))
√

2π2G(rn)
≥ lim sup

t→+∞

B(x, t)
√

2π2t
≥

√
2a.

The next step is to determine a cover for the set UR . In view of that, let {xnj : j = 1, . . . , k̄n},
be a maximal collection of points in D(0, R) such that infl≠ j ∥xnj − xnl∥ ≥ r1+ε

n . Note that there
exists a constant c′ such that k̄n ≤ c′rn

−4(1+ϵ). Denote

An :=


1 ≤ j ≤ k̄n :

|B(xnj , G(rn))|
√

2π2G(rn)
≥

√
2a − δ(n)


with δ(n) = C(log n)ζ−1 (the constant C will be tuned later according to (4.6)).

We now show that for any N ≥ 1,


n≥N


j∈A N
D

xnj , r1+ε

n


covers UR with sets having

maximal diameter 2r1+ε
N . First note that for any x ∈ D(0, R), there exists j ∈


1, . . . , kn


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such that x ∈ D

xnj , r1+ε

n


. Otherwise, this would contradict the maximality of the set {xnj :

j = 1, . . . , k̄n}. For any x ∈ UR we have that for N ≥ 1, there exists n ≥ N such that by
Proposition 4.1 the follows holds:

|B(xnj , G(rn)) − B(x, G(rn))|
√

2π2G(rn)
≤ C(log n)ζ

∥x − xnj∥
γ

G(rn)γ̃+1

= δ(n)
log n

G(rn)
≤ Cδ(n) (4.6)

which implies, renaming possibly δ(n),

B(xnj , G(rn))

2π2G(rn)
≥

√
2a − δ(n).

Hence we have x ∈ D(xnj , r1+ϵ
n ) with j ∈ An . Let us assume for the moment that, for any

a ∈ (0, 4], there exists a constant C ′ (the constant may vary later) such that

EW [|An|] ≤ C ′(log n)−1/2ra−4(1+ε)+vn
n , (4.7)

where vn → 0 as n → ∞. If we choose α := 4 − a + ε 4+a
1+ε

we have, setting N large,

EW


n≥N


j∈An

diam(D(xnj , r1+ε
n ))α

 ≤


n≥N

EW [|An|] (2r1+ϵ
n )α

≤


n≥N

(log n)−1/2r (1+ε)α+a−4(1+ε)+vn
n

≤


n≥N

(log n)−1/2r4ε+vn
n . (4.8)

Now as vn → 0 one can choose n large enough, so that vn ≤ ε/2. Using rn = n−1/ε it follows
that the RHS of (4.8) is finite. Hence we have


n≥N


j∈An

diam(D(xnj , r1+ε
n ))α < +∞

almost surely. Therefore, using notation from Definition 2.3 we get,

Cα

2r1+ε
N

(UR) ≤


n≥N


j∈An

diam(D(xnj , r1+ε
n ))α.

Now taking N → ∞, since the right hand side is finite, we have Cα
H(UR) = 0 almost surely. So

we have that,

dimH(UR) ≤ 4 − a + ε
4 + a

1 + ε
.

Now letting ε ↓ 0 implies dimH(T≥(a, r)) ≤ 4 − a a.s. This completes the proof of the upper
bound provided we show (4.7). We first estimate W ( j ∈ An) as follows:

W ( j ∈ An) = W


|B(xnj , G(rn))|
√

G(rn)
≥ (

√
2a − δ(n))


2π2


G(rn)


≤ C ′(a + vn)−1/2G(rn)−1/2 exp


−a (1 + vn) 2π2G(rn)


≤ C ′(log n)−1/2ra+vn

n ,



2396 A. Cipriani, R.S. Hazra / Stochastic Processes and their Applications 125 (2015) 2383–2404

since G(rn) ∼ −
log rn
2π2 as n → +∞ and vn = c1(log n)2(ζ−1)

− c2(log n)ζ−1 for some constants
c1 and c2. Since ζ ∈ (0, 1), we have vn → 0. Furthermore

EW [|An|] ≤ C ′(log n)−1/2knr (a+vn)
n ≤ C ′(log n)−1/2ra+vn−4(1+ε)

n .

This proves (4.7) and hence the upper bound.
Now we show that for every R > 1, T≥(a, R) is empty for a > 4 using the above estimates.

Note that
n≥1

W (|An| > 1) ≤


n≥1

EW [|An|] ≤


n≥1

ra−4(1+ε)
n ≤ C ′


n≥1

n−4 < +∞

and hence by the Borel–Cantelli lemma we can conclude that, if ε becomes arbitrarily small,
|An| = 0 eventually and so T≥(a, R) is empty for a > 4 with probability one. �

5. Lower bound of Theorem 2.2

To derive the lower bound we use the energy method, for whose details we refer to Section
4.3 of Mörters et al. [23]. The α-th energy of a measure µ is given by

Iα(µ) =


dµ(x)dµ(y)

∥x − y∥α
.

Given a set A, the method allows to say that if we can find a measure ρ such that Iα(ρ) < ∞,
then dimH (A) > α. For this, partition the hypercube J := [0, 1]

4 into s−4
n smaller hypercubes

of radius sn =
1
n!

. Let xni be the centers of these hypercubes and Cn be the set of these centers.
Define tm := G(sm) for all m ≤ n. Note that since G is decreasing we have that tm is increasing
and also using the asymptotic expansion of G we have tm = −

log sm
2π2 (1+o (1)). Let Am(x), Bm(x)

be the events

Am(x) :=


sup

tm<t≤tm+1

|B(x, t) − B(x, tm) −


4aπ2(t − tm)| ≤


tm+1 − tm


,

Bm(x) :=


sup
t≥tm

|B(x, t) − B(x, tm)| − t ≤ 1 − tm


.

We say that x is an n-perfect a-thick point if En(x) :=


m≤n Am(x) ∩ Bn+1(x) occurs.
Note that Bn+1(x) is independent of the other events. We introduce a random variable Yni for
i = 1, . . . , |Cn| such that

Yni =


1 if xni is an n-perfect a-thick point,
0 otherwise.

Fix tm < t ≤ tm+1 and on the event En(x) we have, as m → ∞,

|B(x, t) − B(x, t1) −


4aπ2(t − t1)| = o (m log m) = o (t) . (5.1)

Define now the set of perfect a-thick points as

P(a) :=


k≥1


n≥k


z∈Cn(a)

S(z, sn),
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where Cn(a) is the set of centers of which xni is a n-perfect thick point and S(z, r) is a hypercube
of radius r centered around z. Let

T (a, J ) :=

x ∈ J : lim
t→∞

I


hµx
G−1(t)


√

2π2t
= a

 ⊂ T (a).

Lemma 5.1.

P(a) ⊆ T (a, J ). (5.2)

Proof. If z ∈ P(a) there exists a sequence (znk )k∈N of points such that znk ∈ Cn(a) for all k and
∥z − znk ∥ ≤ sn . For m such that tm < t ≤ tm+1B(znk , t) − B(znk , t1) −


4aπ2(t − t1)

 = o (t)

follows as in (5.1). Since the Brownian motion is a.s. continuous taking the limit for k → +∞B(z, t) − B(z, t1) −


4aπ2(t − t1)

 = o (t)

and dividing by
√

2π2t
I


hµz
G−1(t)


√

2π2t
−

√
2a

 = o (1)

which is an equivalent formulation of the set of thick points. �

Next we make preparations to define a measure µ supported on P(a) with positive probability.
For this purpose define a sequence of measures µn on J supported on n-perfect thick points as
such:

µn(·) =

|Cn |
i=1

1
W (En(xni ))

1{Yni =1}λ (· ∩ S(xni , sn)) , (5.3)

where λ(·) is the Lebesgue measure.
In the following lemma we list down some important properties of this measure.

Lemma 5.2. Let µn(·) be as in (5.3). Then the following hold:

(a) EW [µn(J )] = 1;
(b) supn EW


µn(J )2


< ∞;

(c) supn EW
Iα(µn)


< ∞;

(d) there exist a, b ∈ (0, ∞) such that for all n we have

W


b ≤ µn(J ) < b−1,Iα(µn) < a


> 0

for any α ≤ 4 − a.

The proof of Lemma 5.2 requires a correlation inequality and a lower bound depends on the
following lemma.
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Lemma 5.3. Let Am(x), Bm(x) be as above with sm =
1

m!
. Let

En(x) =


m≤n

Am(x) ∩ Bn+1(x).

Then for every y ∈ S(x, sℓ) \ S(x, sℓ+1), ℓ > 2, we have

W

En(x) ∩ En(y)


≤ Cℓ W


En(x)


W

En(y)


, (5.4)

where Cℓ is defined by

Cℓ := C


j≤ℓ+1

1
c j

,

and c j = exp


1
2

√
4aπ2√t j+1 − t j − 4aπ2(t j+1 − t j )


.

Proof of Lemma 5.3. Fix ℓ > 2 and y ∈ S(x, sℓ) \ S(x, sℓ+1). First note that the collections
{Ai (x) : 1 ≤ i ≤ ℓ + 1} and {Ai (x) : ℓ + 2 ≤ i ≤ n} are independent as they depend on
disjoint annuli. Similarly, as S(x, sℓ+2) ∩ S(x, s j ) \ S(x, s j+1) = ∅ the collection {A j (y) : j ≠

ℓ − 1, ℓ, ℓ + 1} and {Ai (x) : ℓ + 2 ≤ i ≤ n} are independent. Now note that by the assumption,

W
 

1≤i≤ℓ+1

Ai (x)


W
 

ℓ−1≤ j≤ℓ+1

A j (y)



=


1≤i≤ℓ+1

W (Ai (x))


ℓ−1≤ j≤ℓ+1

W


A j (y)


≥

ℓ+1
i=1

Cℓ. (5.5)

So we have,

W

En(x) ∩ En(y)


= W


i≤n

Ai (x) ∩ Bn+1(x) ∩


j≤n

A j (y) ∩ Bn+1(y)



≤ W


i≤n

Ai (x) ∩


j≤n

A j (y)



≤ W
 

ℓ+2≤i≤n

Ai (x) ∩


j≤n, j≠ℓ−1,ℓ,ℓ+1

A j (y)



≤ W
 

ℓ+2≤i≤n

Ai (x)


W
 

j≤n, j≠ℓ−1,ℓ,ℓ+1

A j (y)


.

If we now multiply and divide the last probability by

W
 

1≤i≤ℓ+1

Ai (x)


W
 

ℓ−1≤ j≤ℓ+1

A j (y)


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and use independence we get

W

En(x) ∩ En(y)


≤

W


i≤n
Ai (x)


W


i≤n
Ai (y)



W
 

1≤i≤ℓ+1
Ai (x)


W
 

l−1≤ j≤ℓ+1
A j (y)

 .

Now using the bound in (5.5) and the fact that Bn+1(x) is independent from {Ai (x) : i ≤ n} we
get

W

En(x) ∩ En(y)


≤ Cℓ W


En(x)


W

En(y)


.

We can adjust appropriately the constant Cℓ when ℓ ≤ 2 to complete the proof. �

Using the above Lemma the proof of Lemma 5.2 is almost immediate.

Proof of Lemma 5.2. Note the series


∞

ℓ=1 s4
ℓCℓ converges (absolutely) by the ratio test. By

means of the same criterion one shows also that


∞

ℓ=1 s4
ℓCℓs−α

ℓ+1 < +∞ under the assumption
α ≤ 4. Keeping these facts in mind we proceed to the proof.

(a) As S(xni , sn) forms a cover of J it is easy to show that EW [µn(J )] = 1. In particular,

EW [µn(J )] =

|Cn |
i=1

1
W (En(xni ))

W (Yni = 1) λ(J ∩ S(xni , sn))

=

|Cn |
i=1

λ(J ∩ S(xni , sn)) = 1.

(b) Using Lemma 5.3 we have

EW

µn(J )2


=

|Cn |
i, j=1

W

Yni = 1, Ynj = 1


W (En(xni )) W


En(xnj )

λ(S(xni , sn))λ(S(xnj , sn))

≤ s8
n

|Cn |
i=1

n
ℓ=1

|Cn |
j=1,sℓ≥∥xnj −xni ∥>sℓ+1

W

En(xni ) ∩ En(xnj )


W (En(xni )) W


En(xnj )


≤ s8

n

|Cn |
i=1

n
ℓ=1

s4
ℓ

s4
n
Cℓ ≤

∞
ℓ=1

s4
ℓCℓ < ∞.

Above we have used the fact that the number of hypercubes with center at xni and radius sℓ

is proportional to s4
ℓ/s4

n .
(c) For the expected energy we follow the same procedure as above. Note that ∥xni −xnj∥ > sℓ+1

then if we take x ∈ S(xni , sn) and y ∈ S(xnj , sn) then ∥x − y∥ > sℓ+1.

EW
Iα(µn)


=

|Cn |
i, j=1

W

En(xni ) ∩ En(xnj )


W (En(xni )) W


En(xnj )

 
S(xni ,sn)


S(xnj ,sn)

dxdy

∥x − y∥α

≤ s8
n

|Cn |
i=1

n
ℓ=1

s4
ℓ

s4
n
Cℓs−α

ℓ+1 ≤


ℓ≥1

Cℓs4
ℓ s−α

ℓ+1 < +∞.



2400 A. Cipriani, R.S. Hazra / Stochastic Processes and their Applications 125 (2015) 2383–2404

(d) By Paley–Zygmund inequality and the fact that supn≥2 EW

µn(J )2


< ∞, there exists

v > 0

W (µn(J ) ≥ b) ≥ (1 − b)2 1
EW [µn(J )]

≥
(1 − b)2

sup
n≥2

EW

µn(J )2

 ≥ v > 0.

Also using Markov’s inequality we have that

W

µn(J ) ≥ b−1


≤ bEW [µn(J )] = b.

Hence choosing b > 0 and v > 0 appropriately we have

W


b ≤ µn(J ) ≤ b−1


= W (µn(J ) ≥ b) − W

µn(J ) ≥ b−1


≥ 2v > 0.

Also note that since EW
Iα(µn)


is uniformly bounded in n, using Markov’s inequality we

have

W
Iα(µn) > a


≤ v.

Hence (d) follows from the above observations and the fact that,

W


b ≤ µn(J ) ≤ b−1,Iα(µn) ≤ a


≥ W


b ≤ µn(J ) ≤ b−1


− W
Iα(µn) > a


≥ 2v − v = v > 0. �

Proof of the lower bound. Now using Lemma 5.2 we continue with the proof of lower bound.
If we define

R := lim sup
n→+∞


b ≤ µn(J ) < b−1,Iα(µn) < a


,

then by Lemma 5.2(d), W (R) is bounded away from zero. Iα being a lower semicontinuous
function, the set of measures µ for which b ≤ µ(J ) < b−1 and Iα(µ) < a is compact in
the topology of weak convergence. Therefore the sequence (µn)n∈N admits surely along a sub-
sequence (µnk )k∈N a weak limit µ, which is a finite measure supported on P(a) and whose
α-energy is finite. Hence, we have

W


C4−a
H (P(a)) > 0


> 0. (5.6)

Now by the monotonicity of the Hausdorff-α-measure, if we can show that

W


C4−a
H (T (a, J )) > 0


∈ {0, 1}

then by (5.6), the set


C4−a
H (T (a, J )) > 0


will have probability one and hence the proof will

be complete.
Let (hm)m≥1 be an orthonormal basis of H . Let us denote the sigma field generated by the ran-

dom variable I(hm) by Fm . Let Tm = σ(


j≥m F j ). Note that the sigma fields Fm are indepen-
dent since (I(hm))m≥1 are i.i.d. Denote the tail sigma field by T =


m>0 Tm . We now claim that

lim sup
ϵ→0

I

hµx

ϵ


√

2πG(ϵ)
=

√
2a


∈ T .
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Now from the construction of µx
ϵ , it holds from Equation 7.9 of Chen and Jakobson [3] that

I

hµx

ϵ


= f1(ϵ)I(hσ x

ϵ
) + f2(ϵ)I(hdσ x

ϵ
), where

f1(ϵ) =
ϵ I1(ϵ) − 2I2(ϵ)

I 2
1 (ϵ) − I0(ϵ)I2(ϵ)

, f2(ϵ) =
−ϵ I2(ϵ)

I 2
1 (ϵ) − I0(ϵ)I2(ϵ)

.

Since limϵ→0 f1(ϵ) = 2 and limϵ→0 f2(ϵ) = 0, µx
ϵ → 2δx as ϵ → 0 in the sense of distribu-

tions. In fact, since dσ x
ϵ (ξ) = −

2
ϵ

J2(ϵ|ξ |) exp

i(ξ, x)R4


→ 0 for all ξ, dσ x

ϵ → 0 in the sense
of distributions. Thus

lim sup
ϵ→0

I

hµx

ϵ


√

2πG(ϵ)
= lim sup

ϵ→0

f1(ϵ)I(hσ x
ϵ
)

√
2πG(ϵ)

.

We now show


lim supϵ→0
f1(ϵ)I(hσ x

ϵ
)

√
2πG(ϵ)

=
√

2a


∈ T . By Stroock [29, Section 2], when {hm}m∈N
is an orthonormal basis of H , any θ ∈ Θ admits the series representation

θ
W −a.s.

=


m≥1

[I(hm)(θ)]hm .

Hence

[I(hσ x
ϵ
)](θ) =


θ, σ x

ϵ

 W −a.s.
=


m≥1

[I(hm)(θ)]hm, σ x
ϵ


.

Indeed, for all m,

hm, σ x

ϵ


→ hm(x) and G(ϵ) → +∞ as ϵ → 0. Given any arbitrary m0 > 0

large, one sees that

lim
ϵ→0

1
G(ϵ)

 
m≤m0

[I(hm)(θ)]hm, σ x
ϵ


= 0,

W -a. s. Hence
lim sup

ϵ→0

f1(ϵ)I(hσ x
ϵ
)

√
2πG(ϵ)

=
√

2a



=

lim sup
ϵ→0

f1(ϵ)

 
m≥m0

[I(hm)(θ)]hm, σ x
ϵ


√

2πG(ϵ)
=

√
2a

 ∈ Tm0 .

Since m0 is arbitrary, this allows one to apply Kolmogorov’s 0–1 law to conclude. �
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Appendix

Here we will collect some of the bounds on the Bessel functions. These bounds are easy to
derive but for completeness we provide a short proof for them. In the paper we have extensively
used the Bessel function Jν and the modified Bessel functions Iν and Kν of the first and second
kind. A closed alternative representation can be found in [1] and it is

Jν(z) =

 z
2

ν
√

πΓ

ν +

1
2

  π

0
cos(z cos θ)(sin θ)2νdθ,

Iν(z) :=
1
π


+∞

0
ez cos(θ) cos(νθ)dθ −

sin(νπ)

π


+∞

0
e−z cosh(t)−νt dt, ν ∈ R

and

Kν(z) :=
Γ (ν +

1
2 )(2z)ν

√
π


+∞

0

cos(t)dt

(t2 + z2)(ν+1/2)
, ν ∈ R.

We will prove here an auxiliary bound.

Lemma A.1. (a) For some constant C > 0 and x > 0

|I 2
1 (x) − I0(x)I2(x)| ≥ Cx2.

(b) Let G(·) be as in (3.1), then G(x) ≤ −C log x for all x ∈ [0, 1], with C > 0 uniform in x.

Proof. (a) Following [15] we have,

I 2
1 (x) − I0(x)I2(x) =

I 2
1 (x)

x


x

I ′

1(x)

I1(x)

′

=
I 2
1 (x)

x


n≥1

4x j1,n

(x2 + j2
1,n)2

where we used the equality


x
I ′

1(x)

I1(x)

′

=


n≥1
4x j1,n

(x2+ j2
1,n)2 , ji,n being the n-th zero of J1(x)/x

[31]. Now using the identity I1(x) = (x/C)


n≥1


1 +

x2

j2
1,n


[31, Page 498] we derive

I 2
1 (x) − I0(x)I2(x) =

I 2
1 (x)

x


x

I ′

1(x)

I1(x)

′

=
I 2
1 (x)

x

4x j1,1

(x2 + j2
1,1)

2
+

I 2
1 (x)

x


n≥2

4x j1,n

(x2 + j2
1,n)2

>
4I 2

1 (x) j1,1

(x2 + j2
1,1)

2
> C ′x2.

(b) By part (a) and the series expansion of Bessel functions [1] one can find a bound for G(·) as
follows (γ is the Euler–Mascheroni constant):

G(x) ≤
C

x2 (2I1(x)K1(x) + 2I2(x)K0(x) − 1)

=
C

x2


2


x

2
+

x3

16
+ O


x4

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×


1
x

+
x

4
(−1 + 2γ − 2 log 2 + 2 log x) + O


x3 log x


+ 2


x2

8
+ O


x4


((−γ + log 2 − log x) + O


x2 log x


− 1


=
C

x2


1 +

x2

8
+ O


x3


+
−1 + 2γ − 2 log 2

4
x2

+
−1 + 2γ − 2 log 2

32
x4

+ O


x2 log x


+
x2

4
C + O


x4


−
x2 log x

4
− 1


= −C log x + C ′.

Here C, C ′ denote positive constants that may vary from line to line. �
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