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Abstract

In this paper, we first use PDE techniques and probabilistic methods to identify a kind of quasi-
continuous random variables. Then we give a characterization of the G-integrable processes and get a
kind of quasi-continuous processes by Krylov’s estimates. This result is useful for the development of
G-stochastic analysis theory. Moreover, it also provides a tool for the study of the non-Markovian Itô
processes.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Motivated by model uncertainty in finance, Peng [11,12] firstly constructed a kind of
dynamically consistent fully nonlinear expectations through PDE approach. An important case
is the G-expectation Ê[·] and the corresponding canonical process (Bt )t≥0 is called G-Brownian
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motion analogous to the classical Wiener process. Under the G-expectation framework, the
corresponding stochastic calculus of Itô’s type was also established in Peng [13,14].

The G-expectation can be also seen as a upper expectation. Indeed, Denis et al. [1] obtained
a representation theorem of G-expectation Ê[·] by stochastic control method:

Ê[X ] = sup
P∈P

EP [X ] for X ∈ L i p(Ω),

where P is a family of weakly compact probability measures on (Ω ,B(Ω)). Moreover, they
gave a characterization of the space L p

G(Ω) and proved that every random variable in L p
G(Ω) is

quasi-continuous. The representation theorem was also obtained in [6] by a simple probabilistic
method.

The present article is devoted to the study of integrable random variables and stochastic
processes in the G-expectation framework. The classical Lusin’s theorem indicates each random
variable is “quasi-continuous” in a probability space. However, it is difficult to verify a random
variable is quasi-continuous in the G-expectation framework, since the measures in P may be
mutually singular. This problem has restricted the development of the G-stochastic analysis
theory. For example, it is difficult to construct the approximation of an admissible control to
get the dynamic programming principle for G-stochastic control problems and we cannot use the
approximation theory of measurable function to prove the Markov property of the G-stochastic
differential equations.

To overcome this difficult, we use PDE techniques and stochastic control methods to ob-
tain some polar sets associated to X , which is a multi-dimensional G-Itô process. Based on
these polar sets, we prove some “irregular” Borel measurable functions on (Ω ,B(Ω)) are quasi-
continuous, which implies the space L p

G(Ω) contains enough elements such as I{X t ∈[a,b]}. Thus
the approximation of quasi-continuous random variables through simple functions is possible.
Indeed, Hu and Ji [2] studied the G-stochastic control problems with the help of this result.
In 1-dimensional case, Martini [10] also got some polar sets by a pure probabilistic approach.
By our arguments, we also obtain the convergence rate, which enables us to study the sam-
ple path properties of the non-Markovian Itô processes, such as the differentiability and the
maxima.

The similar questions arise for the G-integrable processes, and the rest of this paper is
devoted to studying the space M p

G(0, T ). First, we give a characterization of M p
G(0, T ), which

non-trivially generalizes the result of [1]. Moreover, we establish a monotone convergence
theorem for quasi-continuous processes. Next we apply Krylov’s estimates to get a kind of
quasi-continuous processes. In particular, these estimates induce a weak dominated convergence
theorem for G-Itô processes, which is useful for the study of G-stochastic analysis. For example,
this result can be used to deal with the well-posedness of G-backward stochastic differential
equations under non-Lipschitz condition.

This paper is organized as follows. In Section 2, we recall some necessary notations and
results of G-expectation theory. In Section 3, we study the polar sets and give some useful quasi-
continuous random variables. In Section 4, we obtain the characterization of M p

G(0, T ) and get
some useful quasi-continuous progressively measurable processes by Krylov’s estimates.

2. Preliminaries

The main purpose of this section is to recall some basic notions and results of G-expectation,
which are needed in the sequel. The readers may refer to [13–16] for more details.
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Let Ω = Cd
0 (R

+) be the space of all Rd -valued continuous paths (ωt )t≥0, with ω0 = 0,
equipped with the distance

ρ(ω1, ω2) :=

∞
i=1

2−i
[(max

t∈[0,i]
|ω1

t − ω2
t |) ∧ 1].

For each t ∈ [0,∞), we denote

• Bt (ω) := ωt for each ω ∈ Ω ;
• B(Ω): the Borel σ -algebra of Ω , Ωt := {ω·∧t : ω ∈ Ω}, Ft := B(Ωt );
• L0(Ω): the space of all B(Ω)-measurable real functions;
• L0(Ωt ): the space of all B(Ωt )-measurable real functions;
• Bb(Ω): all bounded elements in L0(Ω); Bb(Ωt ) := Bb(Ω) ∩ L0(Ωt );
• Cb(Ω): all continuous elements in Bb(Ω); Cb(Ωt ) := Cb(Ω) ∩ L0(Ωt );
• L i p(Ω) := {ϕ(Bt1 , . . . , Btk ) : k ∈ N, t1, . . . , tk ∈ [0,∞), ϕ ∈ Cb.Lip(Rk×d)}, where

Cb.Lip(Rk×d) denotes the space of bounded and Lipschitz functions on Rk×d ; L i p(Ωt ) :=

L i p(Ω) ∩ L0(Ωt ).

For each given monotonic and sublinear function G : S(d) → R, let the canonical
process Bt = (Bi

t )
d
i=1 be the d-dimensional G-Brownian motion in the G-expectation space

(Ω , L i p(Ω), Ê[·], (Êt [·])t≥0), where S(d) denotes the space of all d ×d symmetric matrices. For
each p ≥ 1, the completion of L i p(Ω) under the norm ∥X∥L p

G
:= (Ê[|X |

p
])1/p is denoted by

L p
G(Ω). Similarly, we can define L p

G(ΩT ) for each fixed T ≥ 0. In this paper, we always assume
that G is non-degenerate, i.e., there exist two constants 0 < σ 2

≤ σ̄ 2 < ∞ such that

1
2
σ 2tr[A − B] ≤ G(A)− G(B) ≤

1
2
σ̄ 2tr[A − B], for A ≥ B.

Then we deduce that |G(A)| ≤
1
2 σ̄

2
√

d


tr[AAT ] for any A ∈ S(d).
Denis et al. [1] proved that the completions of Cb(Ω) and L i p(Ω) under ∥ · ∥L p

G
are the same.

Theorem 2.1 ([1,6]). There exists a weakly compact set of probability measures P on
(Ω ,B(Ω)), such that

Ê[ξ ] = sup
P∈P

EP [ξ ], for all ξ ∈ L1
G(Ω).

P is called a set that represents Ê.

Remark 2.2. Denis et al. [1] constructed a concrete set P M that represents Ê. For simplicity’s
sake, we consider the 1-dimensional case, thus G(a) =

1
2 (σ̄

2a+
− σ 2a−) for each a ∈ R.

Suppose B is a Brownian motion defined on (Ω , L0(Ω), P), then

P M :=


Pθ : Pθ = P ◦ X−1, X t =

 t

0
θsd Bs, θ ∈ L2

F ([0, T ]; [σ 2, σ̄ 2
])


represents Ê, where L2

F ([0, T ]; [σ 2, σ̄ 2
]) is the collection of all adapted measurable processes

with σ 2
≤ |θs |

2
≤ σ̄ 2.

Let P be a weakly compact set that represents Ê. For this P , we define capacity

c(A) := sup
P∈P

P(A), A ∈ B(Ω).
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An important property of this capacity is that c(Fn) ↓ c(F) for any closed sets Fn ↓ F .
A set A ⊂ B(Ω) is polar if c(A) = 0. A property holds “quasi-surely” (q.s.) if it holds outside

a polar set. In the following, we do not distinguish between random variables X and Y if X = Y
q.s.

Definition 2.3. A real function X on Ω is said to be quasi-continuous if for each ε > 0, there
exists an open set O with c(O) < ε such that X |Oc is continuous.

Definition 2.4. We say that X : Ω → R has a quasi-continuous version if there exists a quasi-
continuous function Y : Ω → R such that X = Y , q.s.

Theorem 2.5 ([1,6]). We have

L p
G(Ω) = {X ∈ L0(Ω) : lim

N→∞
Ê[|X |

p I|X |≥N ] = 0 and

X has a quasi-continuous version}.

Theorem 2.6 ([1,6]). Let (Xk)k≥1 ⊂ L1
G(Ω), be such that Xk ↓ X q.s. Then Ê[Xk] ↓ Ê[X ]. In

particular, if X ∈ L1
G(Ω), then Ê[|Xk − X |] ↓ 0.

Definition 2.7 ([5]). Assume Xθ ∈ L1
G(Ωt ) for each θ ∈ Θ . Then the essential supremum of

{Xθ | θ ∈ Θ}, denoted by esssupθ∈Θ Xθ , is a random variable ζ ∈ L1
G(Ωt ) satisfying:

(i) ∀θ ∈ Θ, ζ ≥ Xθ q.s.;
(ii) if ξ is a random variable satisfying ξ ≥ Xθ q.s. for any θ ∈ Θ , then ζ ≤ ξ q.s.

Definition 2.8. Let M0
G(0, T ) be the collection of processes of the following form: for a given

partition {t0, . . . , tN } = πT of [0, T ],

ηt (ω) =

N−1
i=0

ξi (ω)I[ti ,ti+1)(t),

where ξi ∈ L i p(Ωti ), i = 0, 1, 2, . . . , N −1. For each p ≥ 1, denote by M p
G(0, T ) the completion

of M0
G(0, T ) under the norm ∥η∥M p

G
:= (Ê[

 T
0 |ηt |

pdt])1/p.

For each η ∈ M2
G(0, T ), the G-Itô integral {

 t
0 ηsd Bi

s}t∈[0,T ] is well defined, see Peng [16]
and Li–Peng [9].

3. Quasi-continuous random variables

In this section, we shall prove some “irregular” Borel measurable functions on Ω are quasi-
continuous by virtue of a PDE approach. We consider the following G-Itô processes (in this
paper we always use Einstein’s summation convention): for each given x = (x1, . . . , xn)

⊤
∈ Rn

and 1 ≤ i ≤ n,

X xi ;i
t = xi +

 t

0
αi (s)ds +

 t

0
β

jk
i (s)d⟨B j , Bk

⟩s +

 t

0
σi (s)d Bs,

where β jk(t) = βk j (t) and σi is the i th row of σ . Denote by X x
t = (X x1;1

t , . . . , X xn;n
t )⊤, α(t) =

(α1(t), . . . , αn(t))⊤ and β jk(t) = (β
jk

1 (t), . . . , β
jk

n (t))⊤. Then the above G-Itô processes can
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be written as

X x
t = x +

 t

0
αsds +

 t

0
β

jk
s d⟨B j , Bk

⟩s +

 t

0
σsd Bs . (1)

In this paper, we shall use the following assumptions:

(H1) For each s > 0, (αt )0≤t≤s and (β
jk

t )0≤t≤s are in M2
G(0, s; Rn), (σt )0≤t≤s are in

M2
G(0, s; Rn×d).

(H2) There exists a constant L > 0 such that for each t ∈ [0,∞),

|αi (t)| ≤ L , |β
jk

i (t)| ≤ L , |σi (t)| ≤ L , for j, k ≤ d and i ≤ n.

(H3) There exist two constants 0 < λ < Λ < ∞ such that for each t ∈ [0,∞),

λIn×n ≤ σt (σt )
⊤

≤ ΛIn×n, if n ≤ d,

λId×d ≤ (σt )
⊤σt ≤ ΛId×d , if n > d.

(H4) There exist two constants 0 < γ < Γ < ∞ such that for each (t, x) ∈ [0,∞)× Rn ,

γ ≤ |σi (t)|
2

= σi (t)(σi (t))
⊤

≤ Γ , for i ≤ n.

Remark 3.1. If n ≤ d, then (H3) is stronger than (H4).

In order to state the main results of this section, we shall use the stochastic representation for
the HJB equation. For this purpose, we denote the following sets:

V = {v = (α, β, σ )| α, β and σ satisfy assumptions (H1), (H2) and (H3)}

and

V0 = {v ∈ V| v is a constant process, i.e., v(t) = v(0) for each t > 0 }.

Now for each fixed t ≥ 0, v ∈ V and for each given ξ ∈ L2
G(Ωt ; Rn), consider the following

G-Itô process:

X t,ξ,v
s = ξ +

 s

t
αr dr +

 s

t
β

jk
r d⟨B j , Bk

⟩r +

 s

t
σr d Br . (2)

Then for each fixed T > 0 and Φ ∈ Cb.Lip(Rn), we define

Y t,ξ
t = esssup

v∈V
Êt [Φ(X

t,ξ,v
T )], t ∈ [0, T ].

Next, for each x ∈ Rn , we set

u(t, x) := Y t,x
t .

It is important to note that u(0, x) = supv∈V Ê[Φ(X0,x,v
T )].

Theorem 3.2 ([5]). For each fixed T > 0, we have

(1) u(t, x) is a deterministic continuous function of (t, x);
(2) For each ξ ∈ L2

G(Ωt ; Rn), Y t,ξ
t = u(t, ξ);
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(3) u is the unique viscosity solution of the following PDE:
∂t u + sup

v∈V0

{G(σ⊤ D2
x uσ + 2⟨β jk, Dx u⟩)+ ⟨α, Dx u⟩} = 0,

(t, x) ∈ [0, T )× Rn,

u(T, x) = Φ(x).

(3)

Remark 3.3. In the definition of V , we can also assume α, β and σ satisfy assumptions (H1),
(H2) and (H4). In this case, the set V0, value function u and Eq. (3) have to be redefined
accordingly.

3.1. Polar sets associated to G-Itô processes

In the following, we first prove that c({X x
t = a}) = 0 for any t > 0 and a ∈ Rn , i.e. the

G-Itô process X x
t does not weight single point. The proof is based on an estimate of the solution

to PDE (3).

Lemma 3.4. Let T > 0, ρ = (n ∧d)λσ 2(8dσ̄ 2Λ)−1, θ = (2dσ̄ 2Λ)−1, ε = (8κ)−1
∧T , m ≥ 8κ

and um be the solution of PDE (3) with the terminal condition um(T, x) = exp(−mθ |x−a|
2

2 ),
where a = (a1, . . . , an)

⊤
∈ Rn , n ∧ d = min{n, d},

κ = L2(σ̄ 2d
√

d + 1)2((n ∧ d)λσ 2)−1.

Then for any (t, x) ∈ [T − ε, T )× Rn , we have

0 ≤ um(t, x) ≤ (1 + m(T − t))−ρ . (4)

Proof. It is easy to check that ūm(t, x) = 0 is a viscosity subsolution of PDE (3). Thus by
comparison theorem we get um(t, x) ≥ 0 for each (t, x) ∈ [0, T ] × Rn . Set

ũm(t, x) = (1 + m(T − t))−ρ exp


−
mθ |x − a|

2

2(1 + m(T − t))


. (5)

It is obvious that ũm(T, x) = exp(−mθ |x−a|
2

2 ). In the following, we shall show that ũm is a
viscosity supersolution of PDE (3) if t ≥ T − ε. It is easy to verify that

∂t ũm =
ρm

1 + m(T − t)
ũm −

m2θ |x − a|
2

2(1 + m(T − t))2
ũm,

∂xi ũm = −
mθ(xi − ai )

1 + m(T − t)
ũm,

∂2
xi xi

ũm = −
mθ

1 + m(T − t)
ũm +

m2θ2
|xi − ai |

2

(1 + m(T − t))2
ũm,

∂2
xi x j

ũm =
m2θ2(xi − ai )(x j − a j )

(1 + m(T − t))2
ũm, i ≠ j.

For each v ∈ V0, by the assumptions (H1)–(H3), we obtain that

G(−σ⊤σ) ≤ −
σ 2

2
tr[σ⊤σ ] ≤ −

1
2
(n ∧ d)λσ 2,
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G(σ⊤(x − a)(x − a)T σ) ≤
σ̄ 2

2
|x − a|

2tr[σ⊤σ ] ≤
1
2

dΛσ̄ 2
|x − a|

2,

G((−⟨β jk, x − a⟩)dj,k=1) ≤
1
2

Lσ̄ 2d
√

d|x − a|, −⟨α, x − a⟩ ≤ L|x − a|.

Note that L(σ̄ 2d
√

d + 1)|x − a| ≤ L2(σ̄ 2d
√

d + 1)2|x − a|
2((n ∧ d)λσ 2)−1

+
1
4 (n ∧ d)λσ 2.

Then for (t, x) ∈ [T − ε, T )× Rn , we have

∂t ũm + sup
v∈V0

{G(σ⊤ D2
x ũmσ + (2⟨β jk(t, x), Dx ũm⟩)dj,k=1)+ ⟨α, Dx ũm⟩}

≤ ∂t ũm +
mθ ũm

1 + m(T − t)
sup
v∈V0

G(−σ⊤σ)

+
m2θ2ũm

(1 + m(T − t))2
sup
v∈V0

G(σ⊤(x − a)(x − a)⊤σ)

+
2mθ ũm

1 + m(T − t)
sup
v∈V0

G((−⟨β jk, x − a⟩)dj,k=1)+
mθ ũm

1 + m(T − t)
sup
v∈V0

{−⟨α, x − a⟩}

≤ −
mθ ũm

1 + m(T − t)
|x − a|

2


m

4(1 + m(T − t))
− κ


≤ −

mθ ũm

1 + m(T − t)
|x − a|

2


m

4(1 + mε)
− κ


= −

mθ ũm

1 + m(T − t)
|x − a|

2
×

m − 8κ
8(1 + mε)

≤ 0,

which implies that ũm is a viscosity supersolution of PDE (3) if t ≥ T − ε. Thus by comparison
theorem we obtain for (t, x) ∈ [T − ε, T ] × Rn ,

um(t, x) ≤ ũm(t, x) ≤ (1 + m(T − t))−ρ .

The proof is complete. �

Remark 3.5. If α = β jk
= 0. From the above proof, we can take ρ = (n ∧ d)λσ 2(2dσ̄ 2Λ)−1,

θ = (dσ̄ 2Λ)−1, ε = T (κ = 0), m ≥ 0 and the results also hold true.

Remark 3.6. We remark that there is a potential to extend our results to a much more general
nonlinear expectation setting. In particular, by slightly more involved estimates, our results still
hold for the following PDE (see [3–5]):

∂t u + sup
v∈V0

{G(σ⊤ D2
x uσ + 2⟨β jk, Dx u⟩ + f1(t, Dx u, v))

+ ⟨α, Dx u⟩ + f2(t, Dx u, v)} = 0,
u(T, x) = Φ(x),

where fi (i = 1, 2) is a Lipschitz continuous function satisfying fi (t, 0, v) = 0. The proof is the
same without any difficulty.
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Theorem 3.7. Assume (H1)–(H3) hold. Then we have for each T > 0

Ê


exp


−

mθ |X x
T − a|

2

2


≤ (1 + m(T ∧ ε))−ρ, (6)

where X x
t is the G-Itô process (1) and θ, ρ, ε are given in Lemma 3.4. In particular, we have

c({X x
T = a}) = 0. (7)

Proof. If T ≤ ε, it follows from Lemma 3.4 and Ê[exp(−
mθ |X x

T −a|
2

2 )] ≤ um(0, x) that

Ê[exp(−
mθ |X x

T −a|
2

2 )] ≤ (1 + mT )−ρ . If T > ε, by Theorem 3.2(2) and Lemma 3.4, we get
that

Ê[exp(−
mθ |X x

T − a|
2

2
)] = Ê

ÊT −ε

exp

−
mθ |X

T −ε,X x
T −ε

T − a|
2

2


≤ Ê[um(T − ε, X x

T −ε)]

≤ Ê[(1 + mε)−ρ]

= (1 + mε)−ρ .

Thus we obtain Eq. (6). Note that exp(−
mθ |X x

T −a|
2

2 ) ≥ I{X x
T =a}, then

c({X x
T = a}) ≤ Ê


exp


−

mθ |X x
T − a|

2

2


≤ (1 + m(T ∧ ε))−ρ .

Thus we can get c({X x
T = a}) = 0 by letting m → ∞. �

We remark that Martini [10] proved a similar result in the one dimensional case. By a
probabilistic method, he obtained that the Itô process does not weight single point under strict
ellipticity condition. In Theorem 3.7, we also obtain the convergence rate (6), which can be used
to estimate the quality of the G-Itô processes staying in a ball.

Corollary 3.8. Assume (H1)–(H3) hold and α = β jk
= 0. Then for each t > 0, y ∈ Rn and

ϵ > 0, we have

c({|X x
t − y| ≤ ϵ}) ≤ exp


θ

2


ϵ2ρ

tρ
,

where ρ = (n ∧ d)λσ 2(2dσ̄ 2Λ)−1, θ = (dσ̄ 2Λ)−1. In particular,

lim
ϵ↓0

sup
y∈Rd

c({|X x
t − y| ≤ ϵ}) = 0.

Proof. By Remark 3.5 and Theorem 3.7, we obtain for each y ∈ Rn and m ≥ 0,

Ê


exp


−
mθ |X x

t − y|
2

2


≤

1
(1 + mt)ρ

.
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Thus we get for each m and ϵ > 0,

Ê[I{|X x
t −y|≤ϵ}] ≤ exp


mθϵ2

2


Ê


exp


−
mθ |X x

t − y|
2

2


≤ exp


mθϵ2

2


1

(1 + mt)ρ
.

In particular, taking m =
1
ϵ2 , we get for each y ∈ Rn ,

c({|X x
t − y| ≤ ϵ}) ≤ exp


θ

2


ϵ2ρ

tρ
,

which completes the proof. �

Example 3.9. From Corollary 3.8, we can obtain that for each t > 0, y ∈ Rd and ϵ > 0,

c({|Bt − y| ≤ ϵ}) ≤ exp

θ

2


ϵ2ρ

tρ
,

where ρ =
σ 2

2σ̄ 2 , θ = (dσ̄ 2)−1. This inequality provides a way to study the sample path properties
of non-Markovian Itô process in the Wiener space. Indeed by Remark 2.2, we have

P({|X t − y| ≤ ϵ}) ≤ exp

θ

2


ϵ2ρ

tρ

and X t =
 t

0 θsd Bs is non-differentiable almost everywhere (see [19]).

By Remark 3.3, we conclude also the value function u is the viscosity solution of PDE (3)
under the assumptions (H1), (H2) and (H4). Then we have the following result.

Lemma 3.10. Let T > 0, ρ = γ σ 2(8σ̄ 2Γ )−1, θ = (2σ̄ 2Γ )−1, ε = (8κ)−1
∧ T , m ≥ 8κ and um

be the solution of PDE (3) with terminal condition um(T, x) = exp(−mθ |xi −ai |
2

2 ), where ai ∈ R,
κ = L2(σ̄ 2d

√
d + 1)2(γ σ 2)−1. Then for any (t, x) ∈ [T − ε, T )× Rn , we have

0 ≤ um(t, x) ≤ (1 + m(T − t))−ρ . (8)

Proof. The proof of um(t, x) ≥ 0 is the same as in Lemma 3.4. Set

ũm(t, x) = (1 + m(T − t))−ρ exp


−
mθ |xi − ai |

2

2(1 + m(T − t))


. (9)

It is obvious that ũm(T, x) = exp(−mθ |xi −ai |
2

2 ). In the following, we show that ũm is a viscosity
supersolution of PDE (3) if t ≥ T − ε. It is easy to verify that, for each v ∈ V0

∂t ũm =
ρm

1 + m(T − t)
ũm −

m2θ |xi − ai |
2

2(1 + m(T − t))2
ũm,

∂xi ũm = −
mθ(xi − ai )

1 + m(T − t)
ũm,

∂2
xi xi

ũm = −
mθ

1 + m(T − t)
ũm +

m2θ2
|xi − ai |

2

(1 + m(T − t))2
ũm,

∂x j ũm = 0, ∂2
xi x j

ũm = 0, j ≠ i,

σ⊤ D2
x ũmσ = (∂2

xi xi
ũm)σ

⊤

i σi ,
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G(−σ⊤

i σi ) ≤ −
γ σ 2

2
; G(σ⊤

i σi ) ≤
σ̄ 2Γ

2
,

(⟨β jk, Dx ũm⟩)dj,k=1 = (∂xi ũm)(β
jk

i )
d
j,k=1.

Then for each (t, x) ∈ [T − ε, T )× Rn , we have

∂t ũm + sup
v∈V0

{G(σ⊤ D2
x ũmσ + (2⟨β jk, Dx ũm⟩)dj,k=1)+ ⟨α, Dx ũm⟩}

≤ ∂t ũm +
mθ ũm

1 + m(T − t)
sup
v∈V0

G(−σ⊤

i σi )+
m2θ2ũm |xi − ai |

2

(1 + m(T − t))2
sup
v∈V0

G(σ⊤

i σi∗)

+
2mθ ũm

1 + m(T − t)
sup
v∈V0

G((−(xi − ai )β
jk

i (t, x))dj,k=1)

+
mθ ũm

1 + m(T − t)
sup
v∈V0

(ai − xi )αi

≤ −
mθ ũm

1 + m(T − t)
|xi − ai |

2


m

4(1 + mε)
− κ


≤ 0,

which implies that ũm is a viscosity supersolution of PDE (3) if t ≥ T − ε. Thus by comparison
theorem we obtain for (t, x) ∈ [T − ε, T )× Rn ,

um(t, x) ≤ ũm(t, x) ≤ (1 + m(T − t))−ρ .

The proof is complete. �

Note that the above result still holds if assumption (H4) is valid only for some i . By a similar
analysis as in Theorem 3.7, we can show that c({X xi ;i

t = ai }) = 0 for any t > 0 and ai ∈ R.
We remark that one can also obtained this result by Martini’s approach and Girsanov’s theorem.
However, we can also get the convergence rate. Indeed,

Theorem 3.11. Under the assumptions (H1), (H2) and (H4), we obtain that for each T > 0

Ê


exp


−

mθ |X xi ;i
T − ai |

2

2


≤ (1 + m(T ∧ ε))−ρ, (10)

where θ, ρ and ε are given in Lemma 3.10.

By the above result, we can show that the maximal process does not weight a single point.

Corollary 3.12. Assume d = 1. Then we have c({B∗
t = a}) = 0 for each a ∈ R, where

B∗
t = sup0≤s≤t Bs .

Proof. Without loss of generality, assume t = 1. For each m ≥ 1, set ϕm(x) = exp

(−
m

2(1+ρ)
ρ θ |x−a|

2

2 ), where θ, ρ are given in Lemma 3.10. Then applying Fatou’s lemma yields
that

c({B∗
t = a}) ≤ lim inf

m→∞
Ê[ϕm(sup{Btm

1
, Btm

2
, . . . , B1})],

where tm
i =

i
m for each i ≤ m.
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By Remark 3.5 and Theorem 3.11, we conclude that

Ê[ϕm(sup{Btm
1
, Btm

2
})] ≤ Ê[ϕm(Btm

1
+ sup{0, Btm

2
− Btm

1
})]

≤ Ê[ϕm(Btm
1
)] + Ê[Ê[ϕm(y + Btm

2
− Btm

1
)]y=Btm1

]

≤ 2


1 + m
2(1+ρ)
ρ m−1

−ρ

≤
2

m2+ρ
.

Iterating the procedure for m times implies that

Ê[ϕm(sup{Btm
1
, Btm

2
, . . . , B1})] ≤

1

m1+ρ

and this completes the proof. �

Example 3.13. By Remark 2.2, we have P({X∗
t = y}) = 0, where X∗

t is the maximal process
of X t =

 t
0 θsd Bs and this provides a way to study the maxima of non-Markovian Itô process.

Moreover, one can get that X t has a unique maxima in the interval [0, t].

Finally, we shall study the capacity of the G-Itô process staying in a curve.

Theorem 3.14. Assume (H1), (H2) and (H4) hold. Suppose f satisfies ∂xi f, ∂2
xi x j

f ∈

Cb,Lip(Rn) and there exist two constants 0 < δ ≤ ∆ < ∞ such that

δ ≤

 n
i=1

∂xi f σi


2

≤ ∆.

Then for each T > 0 we have

c({ f (X x
T ) = 0}) = 0.

Proof. Applying the G-Itô formula yields that

f (X x
t ) = f (x)+

 t

0
∂xi f αi (s)ds +

 t

0


∂xi fβ jk

i +
1
2
∂2

xi xl
f σi jσlk


(s)d⟨B j , Bk

⟩s

+

 t

0
∂xi f σi (s)d Bs .

Thus X̃ x
t = ((X x

t )
⊤, f (X x

t ))
⊤ can be seen as the G-Itô process (1) corresponding to

α̃(t) =


α(t)

∂xi f αi (t)


, σ̃ (t) =


σ(t)

∂xi f σi (t)


and

β̃ jk(t) =

 β jk(t)
∂xi fβ jk

i +
1
2
∂2

xi xl
f σi jσlk


(t)

 .
Thus we have c({ f (X x

T ) = 0}) = 0 and this completes the proof. �

Example 3.15. The property required upon the gradient of the curve f is necessary. Indeed, we
take n = 2, d = 1, x = 0, b = 0, h jk

= 0, σ = (1,−1)T and f (x, y) = x − y. Then
f (BT , BT ) = 0, q.s. However ∂x f σ1 + ∂y f σ2 = 0.
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3.2. Some applications

In this subsection, we shall identify some non-trivial quasi-continuous Borel measurable
functions on Ω and we always assume (H1), (H2) and (H4) hold.

Theorem 3.16. Let ξ ∈ L1
G(Ω; Rk) and A ∈ B(Rk) with c({ξ ∈ ∂A}) = 0. Then I{ξ∈A} ∈

L1
G(Ω).

Proof. For each ϵ > 0, since ξ ∈ L1
G(Ω; Rk), we can find an open set O ⊂ Ω with c(O) ≤

ϵ
2

such that ξ |Oc is continuous. Set Di = {x ∈ Rk
: d(x, ∂A) ≤

1
i } and Ai = {x ∈ Rk

:

d(x, ∂A) < 1
i }, it is easy to check that {ξ ∈ Di } ∩ Oc is closed, {ξ ∈ Ai } ⊂ {ξ ∈ Di } and

{ξ ∈ Di } ∩ Oc
↓ {ξ ∈ ∂A} ∩ Oc. Then we have

c({ξ ∈ Di } ∩ Oc) ↓ c({ξ ∈ ∂A} ∩ Oc) = 0.

Thus we can find an i0 such that c({ξ ∈ Ai0} ∩ Oc) ≤
ϵ
2 . Set O1 = {ξ ∈ Ai0} ∪ O , it is easy

to verify that c(O1) ≤ ϵ, Oc
1 = {ξ ∈ Ac

i0
} ∩ Oc is closed and I{ξ∈A} is continuous on Oc

1 . Thus

I{ξ∈A} is quasi-continuous, which implies I{ξ∈A} ∈ L1
G(Ω). �

Now we consider the capacity of X t,ξ
s hitting the boundary of cubes, where X t,ξ is the G-Itô

process (1) starting at t and from the random variable ξ . Then, by the above theorem, we can get
a kind of quasi-continuous random variables associated to G-Itô processes.

Lemma 3.17. Let A = [a, b], where a, b ∈ Rn with a ≤ b. Then for each given t ≥ 0,
ξ ∈ L2

G(Ωt ; Rn), s > t , we have c({X t,ξ
s ∈ ∂A}) = 0.

Proof. It suffices to prove that c({X t,ξi ;i
s = ai }) = c({X t,ξi ;i

s = bi }) = 0. We shall only show
that c({X t,ξ1;1

s = a1}) = 0 and the other cases can be proved in a similar way. For each m, set

ϕm(x) = exp(−mθ |x1−a1|
2

2 ). Applying Theorems 3.2 and 3.11, we conclude that

Ê[ϕm(X
t,ξ
s )] ≤ (1 + m((s − t) ∧ ε))−ρ .

Letting m → ∞ yields the desired result and this completes the proof. �

Theorem 3.18. Let Ai = [ai , bi
] with ai , bi

∈ Rn , ai
≤ bi for i ≥ 1 and D ∈ B(Rn) with

∂D ⊂ ∪
∞

i=1 ∂Ai . Then for each given t ≥ 0, ξ ∈ L2
G(Ωt ; Rn), s > t , we have I

{X t,ξ
s ∈D}

∈

L1
G(Ωs). In particular, I{X x

s ∈D} ∈ L1
G(Ωs).

Proof. This is a direct consequence of Lemma 3.17 and Theorem 3.16. �

In the following, we only consider the capacity of Bt on the sphere. But the method can be
applied to deal with X t,ξ

s .

Lemma 3.19. Let D be a d-dimensional sphere. Then we have for each t > 0,

c({Bt ∈ ∂D}) = 0.

Proof. Without loss of generality, we assume D is the unit sphere. Set x̄ = (x1, . . . , xd−1) and
denote functions

f (x̄) :=


1 − |x̄ |2 I{|x̄ |2≤1}.
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For each ϵ > 0, there exists a nonnegative function J ϵ(x̄) ∈ C∞

0 (R
d−1) such that

J ϵ(x̄) =


1, if |x̄ | ≤ 1 − 2ϵ;
0, if |x̄ | ≥ 1 − ϵ.

Then define function f ϵ(x) := xd − J ϵ(x̄) f (x̄). It is easy to check that J ϵ(x̄) f (x̄) ∈ C∞

0 (R
d−1).

Moreover, |
d

i=1 ∂xi f ϵ(x)ei |
2

=
d−1

i=1 |∂xi f ϵ(x)|2 + 1. Then applying Theorem 3.14, we
obtain for each given t ≥ 0,

c({Bd
t − J ϵ(B̃t ) f (B̃t ) = 0}) = 0,

where B̃t = (B1
t , . . . , Bd−1

t ). Consequently,

c({Bd
t − f (B̃t ) = 0} ∩ {|B̃t |

2
≤ 1 − 2ϵ}) = 0.

Note that {Bd
t − f (B̃t ) = 0} ∩ {|B̃t |

2
≤ 1 − 2ϵ} ↑ {Bd

t − f (B̃t ) = 0} ∩ {|B̃t |
2 < 1}, then by

taking ϵ ↓ 0 we get that

c({Bd
t − f (B̃t ) = 0} ∩ {|B̃t |

2 < 1}) = 0.

From Theorem 3.11, we get c({Bd
t = 0}) = 0. Therefore, we deduce that

c({Bd
t − f (B̃t ) = 0}) ≤ c({Bd

t − f (B̃t ) = 0} ∩ {|B̃t |
2 < 1})+ c({Bd

t = 0}) = 0.

By a similar analysis, we also get c({Bd
t + f (B̃t ) = 0}) = 0. Thus

c({Bt ∈ ∂D}) ≤ c({Bd
t − f (B̃t ) = 0})+ c({Bd

t + f (B̃t ) = 0}) = 0,

which is the desired result. �

The following result is a direct consequence of Theorem 3.16, Lemmas 3.17 and 3.19.

Theorem 3.20. Suppose Ai is a d-dimensional sphere or [ai , bi
] with ai , bi

∈ Rd , ai
≤ bi for

i ≥ 1. If D is in B(Rd) with ∂D ⊂ ∪
∞

i=1 ∂Ai , then I{Bt ∈D} ∈ L1
G(Ωt ) for any t > 0.

Example 3.21. Assume d = 1. Given a function u ∈ Cb,Lip(R). Then for each given n ∈ N, we
take

hn
i (x) = 1

[−n+
i
n ,−n+

i+1
n )
(x), i = 0, . . . , 2n2

− 1, hn
2n2 = 1 −

2n2
−1

i=0

hn
i .

We denote un(Bt ) :=
2n2

i=0 u(−n +
i
n )h

n
i (Bt ). Then by Theorem 3.20 and a direct calculation,

we conclude un(Bt ) ∈ L1
G(Ωt ) and

lim
n →∞

Ê[|un(Bt )− u(Bt )|] = 0,

which can be seen as a counterpart of the approximation of function in the nonlinear expectation
theory. In particular, it provides a method to construct the approximation of an admissible control
under the G-expectation framework, more details can be founded in [2].



14 M. Hu et al. / Stochastic Processes and their Applications ( ) –

4. Quasi-continuous processes

In this section, we shall study the integrable processes under the G-expectation framework.
First, we consider the characterization of M p

G(0, T ). Then we apply Krylov’s estimates to get
some quasi-continuous processes.

4.1. Characterization of M p
G(0, T )

We shall give a characterization of the space M p
G(0, T ) for each T > 0 and p ≥ 1, which

generalizes the results in [1].
Set Ft = B(Ωt ) for t ∈ [0, T ] and the distance

ρ((t, ω), (t ′, ω′)) = |t − t ′| + max
s∈[0,T ]

|ωs − ω′
s |, for (t, ω), (t ′, ω′) ∈ [0, T ] × ΩT .

Define, for each p ≥ 1,

Mp(0, T ) =


η : progressively measurable on [0, T ] × ΩT and Ê

 T

0
|ηt |

pdt


< ∞


and the corresponding capacity

ĉ(A) =
1
T

Ê
 T

0
IA(t, ω)dt


, for each progressively measurable set A ⊂ [0, T ] × ΩT .

Proposition 4.1. Let A be a progressively measurable set in [0, T ] × ΩT . Then IA = 0 ĉ-q.s. if
and only if

 T
0 IA(t, ·)dt = 0 c-q.s.

Proof. It is obvious
 T

0 IA(t, ·)dt ≥ 0. Thus we can easily get Ê[
 T

0 IA(t, ω)dt] = 0 if and only

if c({
 T

0 IA(t, ·)dt > 0}) = 0, which completes the proof. �

In the following, we do not distinguish the progressively measurable process η from η′ if
ĉ({η ≠ η′

}) = 0.

Proposition 4.2. For each p ≥ 1, Mp(0, T ) is a Banach space under the norm ∥η∥Mp :=

(Ê[
 T

0 |ηt |
pdt])1/p.

Proof. The proof is the same as the classical case and we omit it. �

It is clear that M0
G(0, T ) ⊂ Mp(0, T ) for any p ≥ 1. Thus M p

G(0, T ) is a closed subspace of
Mp(0, T ). Also we set

Mc(0, T ) = {all adapted processes η in Cb([0, T ] × ΩT )}.

Proposition 4.3. For each p ≥ 1, the completion of Mc(0, T ) under the norm ∥ · ∥Mp is
M p

G(0, T ).

Proof. We first prove that the completion of Mc(0, T ) under the norm ∥ · ∥Mp is included in
M p

G(0, T ). For each fixed η ∈ Mc(0, T ), we set

ηk
t (·) =

k−1
i=0

η(iT )/k(·)I[ iT
k ,

(i+1)T
k )

(t).



M. Hu et al. / Stochastic Processes and their Applications ( ) – 15

By Theorem 2.5, it is easy to verify that ηk
∈ M p

G(0, T ). For each ε > 0, since P is weakly
compact, there exists a compact set K ⊂ ΩT such that Ê[IK c ] ≤ ε. Thus

Ê
 T

0
|ηt − ηk

t |
pdt


≤ Ê


IK

 T

0
|ηt − ηk

t |
pdt


+ Ê


IK c

 T

0
|ηt − ηk

t |
pdt


≤ sup
(t,ω)∈[0,T ]×K

T |ηt (ω)− ηk
t (ω)|

p
+ (2l)pT ε,

where l is the upper bound of η. Noting that [0, T ] × K is compact and η ∈ Cb([0, T ] × ΩT ),
thus

lim sup
k→∞

Ê
 T

0
|ηt − ηk

t |
pdt


≤ (2l)pT ε.

Since ε is arbitrary, we get ∥ηk
− η∥Mp → 0 as k → ∞. Thus η ∈ M p

G(0, T ), which implies the
desired result.

Now we prove the converse part. For each given η̄t =
N−1

i=0 ξi I[ti ,ti+1)(t) ∈ M0
G(0, T ),

we can find {φi
k : k ≥ 1} ⊂ C([0,∞)), i < N , k ≥ 1 so that supp(φi

k) ⊂ (ti , ti+1) and T
0 |φi

k(t) − I[ti ,ti+1)(t)|
pdt → 0 as k → ∞. Set η̄k

t =
N−1

i=0 ξiφ
i
k(t), it is easy to check that

η̄k
∈ Mc(0, T ) and ∥η̄k

− η̄∥Mp → 0 as k → ∞. Thus each element of M p
G(0, T ) belongs to the

completion of Mc(0, T ) under the norm ∥ · ∥Mp , which completes the proof. �

Definition 4.4. A progressively measurable process η : [0, T ] × ΩT → R is called quasi-
continuous (q.c.), if for each ε > 0, there exists a progressively measurable open set G in
[0, T ] × ΩT such that ĉ(G) < ε and η|Gc is continuous.

Remark 4.5. Our definition of quasi-continuous process is different from the ones in [17,18].

Definition 4.6. We say that a progressively measurable process η : [0, T ] × ΩT → R has a
quasi-continuous version if there exists a quasi-continuous process η′ such that ĉ({η ≠ η′

}) = 0.

Theorem 4.7. For each p ≥ 1,

M p
G(0, T ) =


η ∈ Mp(0, T ) : lim

N→∞
Ê
 T

0
|ηt |

p I{|ηt |≥N }dt


= 0 and

η has a quasi-continuous version


.

Proof. We denote

Jp =


η ∈ Mp(0, T ) : lim

N→∞
Ê
 T

0
|ηt |

p I{|ηt |≥N }dt


= 0 and

η has a quasi-continuous version

.

Noting that the completion of Mc(0, T ) under the norm ∥ · ∥Mp is M p
G(0, T ), then, by the same

analysis as in Propositions 18 and 24 in [1], we can get M p
G(0, T ) ⊂ Jp.

On the other hand, for each η ∈ Jp, we need to prove that η ∈ M p
G(0, T ). Without loss of gen-

erality, we assume that η is quasi-continuous. For each N > 0, set ηN
= (η ∧ N )∨ (−N ), since
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Ê[
 T

0 |ηt − ηN
t |

pdt] ≤ Ê[
 T

0 |ηt |
p I{|ηt |≥N }dt] → 0 as N → ∞, it suffices to show that ηN

∈

M p
G(0, T ) for each fixed N > 0. For each ε > 0, there exists a compact set Kε ⊂ ΩT such that

Ê[IK c
ε
] ≤ ε and a progressively measurable open set Gε ⊂ [0, T ]×ΩT such that ĉ(Gε) < ε and

ηN
|Gc

ε
is continuous. By Tietze’s extension theorem, there exists a function η̃N ,ε

∈ Cb([0, T ] ×

ΩT ) such that |η̃N ,ε
| ≤ N and η̃N ,ε

|Gc
ε

= ηN
|Gc

ε
. For each k ≥ 1, we set F i,k

= Gc
ε∩([t

k
i , tk

i+1]×

ΩT ) for i ≤ k − 1, where tk
i =

iT
k for i = 0, . . . , k. Since Gc

ε is progressively measurable, we
can get F i,k

∈ B([0, tk
i+1])× B(Ωtk

i+1
). Since F i,k is closed, again by Tietze’s extension theorem,

there exists a function ζ N ,i,k
∈ Cb([0, tk

i+1] × ΩT ) such that ζ N ,i,k
∈ B([0, tk

i+1]) × B(Ωtk
i+1
),

|ζ N ,i,k
| ≤ N and ζ N ,i,k

|F i,k = ηN
|F i,k . We denote η̃N ,k

t (ω) =
k−1

i=0 ζ
N ,i,k(t, ω)I

[tk
i ,t

k
i+1)
(t) and

η̄
N ,k
t (ω) = η̃N ,k


t −

T

k
, ω


I
[tk

1 ,T )
(t), η̄

N ,ε,k
t (ω) = η̃N ,ε


t −

T

k
, ω


I
[tk

1 ,T )
(t).

A similar analysis as in Proposition 4.3 implies that η̄N ,k
∈ M p

G(0, T ). Moreover, we obtain that

Ê
 T

0
|ηN

t − η̄
N ,k
t |

pdt


≤ 3p−1


Ê
 T

0
|ηN

t − η̃
N ,ε
t |

pdt


+ Ê

 T

0
|η̃

N ,ε
t − η̄

N ,ε,k
t |

pdt


+ Ê

 T

0
|η̄

N ,ε,k
t − η̄

N ,k
t |

pdt


≤ 3p−1


Ê
 T

0
|ηN

t − η̃
N ,ε
t |

pdt


+ Ê

 T

0
|η̃

N ,ε
t − η̄

N ,ε,k
t |

pdt


+ Ê

 T

0
|η̃

N ,ε
t − η̃

N ,k
t |

pdt


≤ 3p−1


2(2N )pT ε + Ê

 T

0
|η̃

N ,ε
t − η̄

N ,ε,k
t |

pdt



≤ 3p−1


2(2N )pT ε + (2N )p T

k
+ Ê

 T

tk
1

|η̃
N ,ε
t − η̄

N ,ε,k
t |

pdt



≤ 3p−1


2(2N )pT ε + (2N )p T

k
+ Ê


IK c

ε

 T

tk
1

|η̃
N ,ε
t − η̄

N ,ε,k
t |

pdt



+ Ê


IKε

 T

tk
1

|η̃
N ,ε
t − η̄

N ,ε,k
t |

pdt



≤ 3p−1

3(2N )pT ε + (2N )p T

k
+ sup
(t,ω)∈[tk

1 ,T ]×Kε

× T

η̃N ,ε(t, ω)− η̃N ,ε


t −
T

k
, ω

p
.
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Noting that [0, T ] × Kε is compact and η̃N ,ε
∈ Cb([0, T ] × ΩT ), thus

lim sup
k→∞

Ê
 T

0
|ηN

t − η̄
N ,k
t |

pdt


≤ (6N )pT ε,

which implies ηN
∈ M p

G(0, T ). The proof is complete. �

Remark 4.8. Note that the Tietze’s extension theorem cannot ensure the extension of a
progressively measurable process is also progressively measurable. Then we provide an
alternative way to prove the characterization of M p

G(0, T ), which is different from that of [1].

By Theorem 4.7, we immediately have the following result.

Corollary 4.9. Let η ∈ M1
G(0, T ) and f ∈ Cb([0, T ] × R). Then ( f (t, ηt ))t≤T ∈ M p

G(0, T ) for
any p ≥ 1.

Theorem 4.10. Let ηk be in M1
G(0, T ), k ≥ 1, such that ηk

↓ η ĉ-q.s. Then Ê[
 T

0 ηk
t dt] ↓

Ê[
 T

0 ηt dt]. Moreover, if η ∈ M1
G(0, T ), then Ê[

 T
0 |ηk

t − ηt |dt] ↓ 0.

Proof. Since ηk
∈ M1

G(0, T ), we can choose ηk,N
∈ M0

G(0, T ) such that Ê[
 T

0 |ηk
t −η

k,N
t |dt] →

0 as N → ∞. It is easy to check that
 T

0 η
k,N
t dt ∈ L1

G(ΩT ) and Ê[|
 T

0 η
k,N
t dt −

 T
0 ηk

t dt |] ≤

Ê[
 T

0 |ηk
t − η

k,N
t |dt]. Then we get

 T
0 ηk

t dt ∈ L1
G(ΩT ) for k ≥ 1. By Proposition 4.1 and

Theorem 4.7, it is easy to verify that
 T

0 ηk
t dt ↓

 T
0 ηt dt c-q.s. Thus, applying Theorem 2.6 yields

that Ê[
 T

0 ηk
t dt] ↓ Ê[

 T
0 ηt dt]. If η ∈ M1

G(0, T ), then |ηk
− η| ∈ M1

G(0, T ) and |ηk
− η| ↓ 0 ĉ-

q.s., which implies that Ê[
 T

0 |ηk
t − ηt |dt] ↓ 0. �

The following example shows that M p
G(0, T ) is strictly contained in Mp(0, T ).

Example 4.11. Suppose 0 < σ 2 < σ̄ 2 < ∞, T > 0. We consider 1-dimensional G-Brownian
motion (Bt )t≥0. (⟨B⟩t )t≥0 is the quadratic process of (Bt )t≥0. Let

ηt = I
{⟨B⟩t =

(σ2+σ̄2)t
2 }

for t ≤ T .

Then we claim that η ∉ M1
G(0, T ). Indeed we can choose f k(t, x) ∈ Cb([0, T ] × R), k ≥ 1,

such that

f k(t, x) = 1 for

x −
(σ 2

+ σ̄ 2)t

2

 ≤
T

k
;

f k(t, x) = 0 for

x −
(σ 2

+ σ̄ 2)t

2

 ≥
2T

k
.

Set gk
= ∧

k
i=1 f i , it is easy to check that gk

∈ Cb([0, T ]×R), gk(t, x) = 1 for |x −
(σ 2

+σ̄ 2)t
2 | ≤

T
k and gk

↓ I
{x=

(σ2+σ̄2)t
2 }

. Since gk(t, ⟨B⟩t ) ↓ ηt , we have gk(t, ⟨B⟩t ) ∈ M1
G(0, T ) by Corol-

lary 4.9. If η ∈ M1
G(0, T ), then it follows from Theorem 4.10 that Ê[

 T
0 |gk(t, ⟨B⟩t )−ηt |dt] ↓ 0.

On the other hand, by the representation of Ê[·] in [1], there exists a probability measure P ∈ P
such that ⟨B⟩t = ((

(σ 2
+σ̄ 2)
2 −

1
k ) ∨ σ

2)t P-a.s. Therefore we have Ê[
 T

0 |gk(t, ⟨B⟩t )− ηt |dt] ≥

EP [
 T

0 |gk(t, ⟨B⟩t )− ηt |dt] = T and this contradiction implies that η ∉ M1
G(0, T ).
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4.2. G-integrable processes

In the above subsection, we give the characterization of M p
G(0, T ). However, it is also difficult

to check that a progressively measurable process is quasi-continuous. Then the present section
is devoted to finding some Borel measurable functions on [0, T ] × ΩT are quasi-continuous
processes.

In this section, we always assume n ≤ d and (H1)–(H3) hold. For some fixed x0 ∈ Rn ,
consider the G-Itô process X x0 given by (1). For convenience, we set X = X x0 .

Theorem 4.12 (Krylov’s Estimates). For each δ > 0 and p ≥ n, there exists a constant N de-
pending on p, λ,Λ, L ,G and δ such that for each Borel measurable function f (t, x) and g(x),

Ê


∞

0
exp(−δt)| f (t, X t )|dt


≤ N∥ f ∥L p+1([0,∞)×Rn),

Ê


∞

0
exp(−δt)|g(X t )|dt


≤ N∥g∥L p(Rn).

Proof. Let P be the weakly compact set that represents Ê. By Corollary 5.7 in Chapter 3 of [16],
we obtain that d⟨B j , Bk

⟩t = γ̂
jk

t dt q.s. and σ 2t Id×d ≤ γ̂t = (γ̂
jk

t )dj,k=1 ≤ σ̄ 2t Id×d . Note that
B is a martingale on the probability space (Ω , (Ft )t≥0, P) for each P ∈ P . Then it is easy to
check that

W P
t :=

 t

0
γ̂

−
1
2

s d Bs, P-a.s.

is a Brownian motion on (Ω , (Ft )t≥0, P). Thus we have

X t = x0 +

 t

0
αsds +

 t

0
β

jk
s γ̂

jk
s ds +

 t

0
σs γ̂

1
2

s dW P
s , P-a.s.

Applying Theorem 3.4 in Chapter 2 of Krylov [7] (see also [8]), we can find a constant N
depending on p, λ,Λ, L ,G and δ such that for each Borel measurable function f (t, x),

EP


∞

0
exp(−δt)| f (t, X t )|dt


≤ N̄∥ f ∥L p+1([0,T ]×Rn).

Therefore, we have

Ê


∞

0
exp(−δt)| f (t, X t )|dt


= sup

P∈P
EP


∞

0
exp(−δt)| f (t, X t )|dt


≤ N∥ f ∥L p+1([0,T ]×Rn)

and the second inequality can be proved in a similar way. �

The following estimates are from Theorem 4.12.

Corollary 4.13. For each T > 0 and p ≥ n, there exists a constant NT depending on
p, λ,Λ, L ,G and T such that for each Borel measurable function f (t, x) and g(x),

Ê
 T

0
| f (t, X t )|dt


≤ NT ∥ f ∥L p+1([0,T ]×Rn),

Ê
 T

0
|g(X t )|dt


≤ NT ∥g∥L p(Rn).
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From now on, we shall use Krylov’s estimates to generate some quasi-continuous processes.

Lemma 4.14. (i) If ψ is in L p([0, T ] × Rn) with p ≥ n + 1, then for each T > 0, we have
(ψ(t, X t ))t≤T ∈ M1

G(0, T ). Moreover, for each ψ ′
= ψ, a.e., we have ψ ′(·, X ·) = ψ(·, X ·).

(ii) If ϕ is in L p(Rn) with p ≥ n, then for each T > 0, we have (ϕ(X t ))t≤T ∈ M1
G(0, T ).

Moreover, for each ϕ′
= ϕ, a.e., we have ϕ′(X ·) = ϕ(X ·).

Proof. We only prove (ii), since (i) can be proved in a similar way. Note that there exists a
sequence of bounded continuous functions (ϕk)k≥1, which converges to ϕ in L p(Rn). Then by
Corollary 4.13, we can find a constant C ′ so that

lim
k→∞

Ê
 T

0
|ϕk

− ϕ|(X t )dt


≤ C ′ lim

k→∞
∥ϕk

− ϕ∥L p(Rn) = 0.

By Theorem 4.7, we can get (ϕk(X t ))t≤T ∈ M1
G(0, T ) for each k ≥ 1. Thus we obtain

(ϕ(X t ))t≤T ∈ M1
G(0, T ).

Assume ϕ = ϕ′, a.e. Applying Corollary 4.13 again, we conclude that

Ê
 T

0
|ϕ′

− ϕ|(X t )dt


≤ C ′

∥ϕ′
− ϕ∥L p(Rn) = 0,

which completes the proof. �

Theorem 4.15. Let (ϕk)k≥1 be a sequence of Rn-valued Borel measurable functions and
|ϕk(x)| ≤ C̄(1 + |x |

l), k ≥ 1 for some constants C̄ and l. If ϕk
→ ϕ, a.e., then for each

T > 0 and p ≥ 1,

lim
k→∞

Ê
 T

0
|ϕk(X t )− ϕ(X t )|

pdt


= 0.

Proof. By Lemma 4.14, we may assume that |ϕ(x)| ≤ C̄(1 + |x |
l). For each fixed N > 0, we

have

Ê
 T

0
|ϕk(X t )− ϕ(X t )|

pdt


≤Ê

 T

0
|ϕk(X t )− ϕ(X t )|

p I{|X t |≤N }dt


+ Ê

 T

0
|ϕk(X t )− ϕ(X t )|

p I{|X t |≥N }dt


.

By Corollary 4.13, there exists a constant C ′ independent of k such that

Ê
 T

0
|ϕk(X t )− ϕ(X t )|

p I{|X t |≤N }dt


≤ C ′


{|x |≤N }

|ϕk(x)− ϕ(x)|npdx

 1
n

.

Then applying Lebesgue’s dominated convergence theorem yields that

Ê
 T

0
|ϕk(X t )− ϕ(X t )|

p I{|X t |≤N }dt


→ 0 as k → ∞.

Noting that |ϕk(X t )− ϕ(X t )|
p I{|X t |≥N } ≤

(2C̄)p

N (1 + |X t |
l)p

|X t |, then we get

lim sup
k→∞

Ê
 T

0
|ϕk(X t )− ϕ(X t )|

pdt


≤
(2C̄)p

N

 T

0
Ê[(1 + |X t |

l)p
|X t |]dt.
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Since N can be arbitrarily large, we obtain

lim
k→∞

Ê
 T

0
|ϕk(X t )− ϕ(X t )|

pdt


= 0,

which is the desired result. �

Theorem 4.15 can be seen as a weak dominated convergence theorem for the G-Itô processes.
By this result, we obtain

Theorem 4.16. If ϕ is a Rn-valued Borel measurable function of polynomial growth, then we
have (ϕ(X t ))t≤T ∈ M2

G(0, T ) for each T > 0.

Proof. We can find a sequence of continuous functions (ϕk)k≥1 with compact support, such that
ϕk converges to ϕ a.e. and |ϕk(x)| ≤ C̄(1 + |x |

l), where C̄ , l are constants independent of k.
Then by Theorem 4.15, for each T > 0, we conclude that

lim
k→∞

Ê
 T

0
|ϕk

− ϕ|
2(X t )dt


= 0.

Since (ϕk(X t ))t≤T ∈ M2
G(0, T ) for each k by Theorem 4.7, we derive that (ϕ(X t ))t≤T ∈

M2
G(0, T ) and this completes the proof. �
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