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Abstract

We consider the ordinary differential equation (ODE) dx; = b(t, x;)dt + dw; where w is a continuous
driving function and b is a time-dependent vector field which possibly is only a distribution in the space
variable. We quantify the regularising properties of an arbitrary continuous path w on the existence and
uniqueness of solutions to this equation. In this context we introduce the notion of p-irregularity and show
that it plays a key role in some instances of the regularisation by noise phenomenon. In the particular case
of a function w sampled according to the law of the fractional Brownian motion of Hurst index H € (0, 1),
we prove that almost surely the ODE admits a solution for all b in the Besov—Holder space Bgoféo with
o> —1/2H.If « > 1 — 1/2H then the solution is unique among a natural set of continuous solutions. If
H>1/3anda >3/2—1/2H orifa > 2 — 1/2H then the equation admits a unique Lipschitz flow. Note
that when « < 0 the vector field b is only a distribution, nonetheless there exists a natural notion of solution
for which the above results apply.
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1. Introduction

In [7] A. M. Davie showed that the integral equation

t
%=m+/bmmm+w,temﬂ, M
0

with x, w € C([0,1]; R?) and b : R x R? — R? bounded and measurable has a unique con-
tinuous solution for almost every path w sampled from the law of the d-dimensional Brownian
motion. This result can be interpreted as a phenomenon of regularisation by noise, in the sense
that it is well known that the same equation without w can show non-uniqueness.

Regularisation by noise in the case of stochastic differential equations (SDEs) driven by
Brownian motion is nowadays a well understood subject: see for example Veretennikov, Krylov
and Roeckner [15], Flandoli, Gubinelli and Priola [9], Zhang, Flandoli and Da Prato [6]. All
these work are essentially based of the use of Itd calculus to highlight the regularising properties
of Brownian paths. Meyer-Brandis and Proske [17] use Malliavin calculus to derive similar
conclusions. Davie’s contribution [7] is more subtle in the sense that it is a result for an ordinary
differential equation (ODE) and not for the related SDE, i.e. the existence and uniqueness of
solutions is studied in the space of continuous paths and not in the more common probabilistic
framework of continuous adapted processes on a given filtered probability space. This has been
clearly pointed out by Flandoli [8] which called these more general solutions path-by-path. In
this respect Davie’s contribution is purely analytical and one of the aim of the present work is to
analytically characterize the regularisation effect for general continuous perturbation w (whether
random or not) to the evolution dictated by an irregular vector field.

Regularisation by “fast” or “dispersive” motions is an interesting phenomenon which appears
also in some deterministic PDE situations, for example for Korteweg—de-Vries equation [13,1]
and for fast-rotating Euler and Navier—Stokes equations [2]. In particular the technique of Young
integration we employ in the present work is essentially the same used in the paper [13] to
study the periodic Korteweg—de-Vries equation and take inspiration in the theory of rough paths
[16,14,11].

In a recent paper [4,5] Chouk and Gubinelli analyse the regularisation phenomenon in the con-
text of non-linear dispersive PDEs modulated by an irregular signal. In particular they considered
equations of the form

d dw

a‘/’t = Ay, dtt + A4 (pr), t=0 2)

where w : Ry — R is an arbitrary continuous function, A is an unbounded linear operator
(like the Schrodinger operator i9% or the Airy operator 8° acting on periodic or non-periodic
functions) and .#” some local polynomial non-linearity with possibly derivative terms. The uni-
fying theme of this last study and the present one is the fact that the regularising properties of
w e C([0, 1]; RY) are analysed in terms of the averaging operator T, defined as

t
@ = [ farudn xeR )
0

for any measurable functions f : RY — R. Characterising the mapping properties of T* for
various kind of perturbations w seems very interesting and not straightforward. Mapping prop-
erties of 7% for deterministic smooth curves w are, for reasons not related to the regularisation
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by noise phenomenon, an interesting subject in analysis: we have in mind, for example the work
of Tao and Wright [19] on L? improving bounds for averages along curves (we thank F. Flandoli
and V.M. Tortorelli for having pointed us the existence of these results).

The averaging operator can be seen as the convolution against the occupation measure L}’ of
the path w defined as

t
LPWy) = /O S, (dy)du

Indeed, for continuous b, the following computation holds
t t
Tb(x) = / b(x + wy)du = / du/ b(x — y)8y, (dy) = (b * L) (x).
0 0 R4

The basic observation contained in Davie’s paper [7] is that if 5 : R — R is a given bounded
function then for almost every d-dimensional Brownian path w : [0, T] — R¢ and for all
0 <t < T the function x — T;”b(x) has almost Lipschitz regularity (its modulus of continuity
is of the type |x|log'/?(1/|x|)). Morally this is a gain of almost 1 degree of the regularity and
one of the key steps to prove uniqueness of the ODE (1) for a bounded measurable drift b.

In this paper we analyse the behaviour of the averaging operator 7% in the scale of Holder—
Besov spaces 6% = €*(RY, R") = Bgo’oo(Rd, R™) for arbitrary regularity « € R. We consider
a class of perturbations w given by the sample paths of the d-dimensional fractional Brownian
motion (fBm) of Hurst index H € (0, 1), that is the unique centred Gaussian process (BtH >0
with values on R¢ and covariance function

E[B/ B! = cu(lt + s — 1 =1s1*")1d

forallz,s > 0.

As an application of the averaging properties we obtain various existence and uniqueness
results for solutions of the ODE (1) and relative flow properties for distributional vector field b.

The choice of fBm has the advantage of being a simple process for which many other results
about existence and uniqueness of associated SDE are available [18]. More interestingly, the
approach based on Itd calculus, used in most of the papers on the regularisation effect for
Brownian motion, does not easily extend to the fBm case, nor does the explicit computations
of Davie [7]. The freedom in the choice of the Hurst parameter gives us the possibility to explore
the effect of different degrees of irregularity of the perturbation on the regularisation phenomenon
and the quasi-invariance of the law of the fBm will allow us to study the effect of perturbations
on the averaging properties of the paths.

Returning to the averaging behaviour of fBm paths we obtain the following result.

Theorem 1.1. Tauke H € (0, 1) and p < 1/2H. Then there exists y > 1/2 such that for all
f € C(R%; R) there exists a Borel set Nty € C([0, 1], R?) (which depends on f,y) of zero
measure with respect to the law of the d-dimensional fractional Brownian motion (fBm) of Hurst
index H such that for all w & N},,, we have for a > —p,

I f =T fllgatow Sy Il fllgalt — sI”
forall0 <s <t < 1.

In this statement the weighted space €®V is a subspace of the space of local Holder
continuous functions with given grow at infinity described by the weight v, and its precise
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definition is given in Definition 1.16. The space €’ is the usual Besov—Holder defined below
in (6).

Letting for a moment aside the time regularity, this result shows that the averaging against
fBm paths gains almost 1/2H derivatives in the space variable. Unfortunately the result stated
in Theorem 1.1 is not very satisfying since one would really like to have the almost sure
boundedness of T, : 6% — ¢2tP ¥ The difficulty is, of course, the fact that the exceptional set
A7 of Theorem 1.1 depends itself on the function f. Using the Littlewood—Paley decomposition
of Besov—Holder distributions and the scaling of the fractional Brownian motion, the problem
of finding a version of 7" which is almost surely continuous can be related to the following
conjecture:

Conjecture 1.2. Let (B/),>0 be a d-dimensional fBm of Hurst index H € (0, 1). Let K : RY —
R be a smooth function such that

1K) <+ xh~V, /K(x)dx=o,
Rd

where N > d can be chosen arbitrarily large. Then

u t p
E(HToﬁ K||1L’](Rd)) ZEK/W‘/O K(x+Bf’)ds‘dx> ] < P2

ast — +0o.

If the function K has a bounded support the estimation is true as an easy consequence of our
results, however currently we are unable to prove or disprove this conjecture.
On the positive side if we replace 6* by the Fourier—Lebesgue spaces FL%” defined as

FL*P(RY) = {f € S'(RY) : Ny, p(f)P = /R IFE)IP(1 + ENPdE < oo} ,

with FLY = FL*! thenitis easy to see thatfor0 < y < land p € R:

Noip(T," [ =T f)
17" — Tl c(F Lo Frovey = sup :
Co e ' perLe Na(f)

where & (a) = [ '@ dr = 7/ (@¥) T (¢/@ ) (x) and where we introduced the norm

¥ (a) — PV
12" llyypr = sup  sup (1 + apye 2@ = & @]
’ acRd 0<s<t<T |s —¢t|”

S @l le = sl

This observation reduces the question of the boundedness of 7% to that of the decay of
the Fourier transform a +— &/"(a) of the occupation measure of w (for generalities about
occupation measures and densities for deterministic and random functions see for example the
review of Geman and Horowitz [12]). This suggests to introduce the following novel notion of
“irregularity” of the perturbation w:

Definition 1.3. Let p > 0 and y > 0. We say that a function w € C([0, T]; RY) is (p, y)-
irregular if

H@WHW/TJ.V < 400.

Moreover we say that w is p-irregular if there exists y > 1/2 such that w is (p, y)-irregular.
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The time regularity of this Fourier transform, measured by the Holder exponent y, will also
be crucial in our analysis. The notion of p-irregularity is also relevant to the boundedness of 7%
in other functional spaces, for example we easily see that for all @ € R:

1T f = T3 fll gevoay < NS Nyyer 1t = s If 1| e ra)

where H%(R?) = . L%? are the usual Sobolev spaces on R and in general similar inequalities
holds in Fourier-Lebesgue spaces .# L*? of arbitrary integrability p € [1, +oc0]. However
the notion of p-irregularity does not seem enough to control the boundedness of the averaging
operator in Besov spaces.

The limiting value 1/2 for y does not seem to have any special meaning, as far as the occupa-
tion measure is concerned, however if y > 1/2 we are able to develop a quite simple integration
theory for the averaging operator using Young integral techniques and quite surprisingly it turns
out that this is sufficient for the purpose of this paper. Indeed a proof similar to that of Theo-
rem 1.1 gives the existence of (plenty of) perturbations w which are p-irregular:

Theorem 1.4. Let (B,H )i>0 be a fractional Brownian motion of Hurst index H € (0, 1) then for
any p < 1/2H there exist y > 1/2 so that with probability one the sample paths of BY are

(p, y)-irregular.

In particular there exist continuous paths which are p-irregular for arbitrarily large p and
thus paths which deliver an arbitrary degree of regularisation. Using well known properties of
support of the law of the fractional Brownian motion it is also possible to show that there exists
p-irregular trajectories which are arbitrarily close in the supremum norm to any smooth path.

As a direct corollary of Theorem 1.4 we have the boundedness of 7% in the Fourier—Lebesgue
spaces .# L“:

Corollary 1.5. Let H € (0, 1) and p < 1/2H. Then almost surely with respect to the law of the
fBm of Hurst index H we have that for all 0 < s <t < T the averaging operator TV is bounded
from FL* to F L and satisfy

”Ttw - va”L(fL”;yLa*'ﬂ) < Cw,y,p” —s|”
for some constant Cy, ,, , which depends only on w, y, p. This means that

T € €7 ([0, T]; L(F LY, FL)).

One of the contributions of our work is the observation that the regularity of the occupation
measure of w seems to play a major role in the understanding of the regularising properties of w
in a non-linear context and it would be desirable to understand more deeply the link of the notion
of p-irregularity with the pathwise properties of w, for example linking them to the notion of
true roughness appearing in the literature on densities for differential equations driven by rough
paths [10].

It would also be interesting to study more deeply the notion of irregularity for “generic”
continuous paths (for example in the class of Holder continuous paths). Indeed, set aside the
classic contribution of Geman and Horowitz [12] mentioned above, the authors are not aware of
any systematic study of occupation measures of random processes from the point of view of their
action on spaces of functions or distributions, topic which seems central to our analysis.

An open problem is, for example, understanding what happens if we replace w with a
regularised version w® or with a perturbed version. In this respect we conjecture that if w is
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(p, y)-irregular then for any smooth function ¢ € C([0, 1]; R?) the perturbed path w? = w4+ ¢
is still (p, y)-irregular. In relation to this last problem we have obtained the following general
result:

Theorem 1.6. Let p € R and ¢ € €P([0, T1; RY) with 1/2 < B < 1. Then if w is p-irregular
the path w? = w + ¢ is (p — 1/2B)-irregular. Moreover for y > 1/2 we have

||Twwf||<gy(|o,T|;<ga+p—1/2ﬂ) S8y 1T fllgr (o, 11:50+0) 1@l g5
In particular if T" € €Y ([0, T L (Cf"‘; CK‘HP"/’)) then

Tw+¢e<£V(nqu;c(%m;%ﬂ+ﬂfuﬂﬁ).

In particular the irregularity property is preserved at the price of aloss at least 1/2 in regularity
(which happens when g is close to 1).

If w is sampled according to the law of a fBm and if the perturbation ¢ is adapted to the
natural filtration of w then it is possible to exploit the quasi-invariance of the fBm measure with
respect to adapted shifts to prove the irregularity of the perturbed path without any loss on the
irregularity exponent:

Theorem 1.7. Let B be a fBm of Hurstindex H € (0, 1) andlet  : [0, T] — R? be an Hélder
continuous process which is adapted to the natural filtration of BY. Then, for all p < 1/2H
almost surely the process B + & is p-irregular and for any f € €*

ITB"+2 7| + Imost surel
@7 ([0.T);¢o+ev) < +00  almost surely.

The disadvantage of this result is that the exceptional set where the irregularity property fails
depends a priori on ¢ and this poses problems in applications to pathwise results valid for a large
class of perturbations (for example smooth and adapted ).

One of our aims is to apply these results on the averaging properties of paths w and of
its perturbations to the study of existence and uniqueness of solutions to the ODE (1) for
distributional b. Two main situations will be considered:

1. b € €% (or b € FL%) for some a > 0. In this case b will be a bounded continuous function
and the ODE (1) has a natural meaning and allows for continuous solution, we will then
consider the related uniqueness problem and the existence of a Lipschitz flow.

2. b € €Y (orb e FLY) for some o < 0. In this case even the appropriate meaning to give to
the ODE (1) is not clear and we will investigate this problem and the related well-posedness
and continuity issues.

In the case & > 0 we have the following results:

Theorem 1.8. Let b € ¢ (RY) and assume that IT"bllgy o0.11. 4320y < +00. Then for any

xo € RY there exists a unique continuous solution x € C([0, 1]; ]Rd) of the ODE (1) and the flow
map xo — X of the equation is locally Lipschitz continuous in space uniformly int € [0, 1].

Theorem 1.9. Let b € €° and assume that o« > 1 — 1/2H. Then for any xo € R? there exists a
measurable set of perturbations N}, x, < C([0, 11; Rd) which is of zero measure with respect to
the law of the fBm with index H € (0, 1) and such that, for all w & N}, x, there exists a unique
continuous solution x € C ([0, 1]; R%) of the ODE (1).

Please cite this article in press as: R. Catellier, M. Gubinelli, Averaging along irregular curves and regularisation of
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As we already remarked, in the case where b € € for @ < 0, the ODE (1) is not well defined
since in general the evaluation of the distribution b along a continuous curve is not possible.
However if we take into account a particular class of continuous paths we can show that this
coupling has a meaning. A suitable class of continuous functions is given by a space of paths
which are perturbations of w:

Definition 1.10. Let y € (0, 1). The space 2 of (w, y)-controlled paths is the space

2Y = {x e C([0, 11; RY) : x —w € €7 ([0, 1]; R)}.
Then for controlled paths we can prove the following result.

Theorem 1.11. Let b € S'(RY; RY), y > % and assume that ||wa||(gy([O,T];fé’0.1//) < +o00. Let
p € S(RY) be a positive function with p(0) = 1 and let p.(x) = ¢ %p(x/e). Then, for all
x e Qv

v

t t
lim / (ps % b)(xy)ds = / b(x,)ds 4
e—0 0 0

exists uniformly in t € [0, T], is independent of p and extends the usual definition of the right
hand side for continuous b. Moreover the function t +> f(; b(xs)ds is Holder continuous of
exponent y .

Theorem 1.11 allows to give a natural meaning to f(; b(xg)ds for all x € Q;j’ and from this we
can say that x € Q;f is a solutions of the ODE (1) if

t
Xt — Wy = / b(xg)ds
0

for all ¢ € [0, 1]. That is the ODE has a meaning not in the space of all continuous functions, as
it was when b is a function, but in the more restricted space of functions which can be seen as
“not too irregular” additive modifications of w. In this context we have natural generalisations of
Theorems 1.8 and 1.9 provided we restrict the space of allowed functions to Q;ﬁ’ :

Theorem 1.12. Assume that ||T" D4y 0. 11.43/2.v) < +00. Then for any xo € R there exists a
unique continuous solution x € Q;’ of the ODE (1) and the flow map xo — x; of the equation is
Lipschitz continuous uniformly in t € [0, 1].

Theorem 1.13. Let b € €°+! and assume that « > —1/2H. Then for any xo € R? there exists
a measurable set of perturbations N}, , < C([0, 1]; Rd) which is of zero measure with respect
to the law of the fBm with index H € (0, 1) and such that, for all w & N}, x, there exists a unique
continuous solution x € Q)’j’ of the ODE (1).

Note that Theorems 1.12 and 1.13 are applicable also when o > 0. In this case existence of
solutions is simply a result of a compactness argument in C ([0, 1]; R¢) and given a continuous
solution it belongs necessarily to Q}’j’ so, in this case, Theorems 1.12 and 1.13 are natural
generalisations of Theorems 1.8 and 1.9.

When w is sampled according to the law of the fBm with Hurst parameter H Theorem 1.12
give the following corollary.
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Theorem 1.14. Fix H € (0, 1) and assume that b € €°13/2 for some o > —1/2H. Then there
exists a measurable set of perturbations A, < C([0, 1]; Rd) which is of zero measure with
respect to the law of the fBm with index H € (0, 1) and such that, for all w ¢ N}, and for all
xo € R there exists a unique continuous solution x € ,@;f of the ODE (1) and the corresponding
flow map &, : xo —> x; is globally Lipschitz. Moreover the exceptional set A}, can be chosen to
be the same for all b € FL“.

An interesting consequence of Theorem 1.14 is the fact that if one consider the ODE (1) as
a strong SDE (that is an equation for stochastic processes adapted to the filtration generated by
the process w) and if w has the law of the fBm of index H then we can allow general random
b € F L* and still retain uniqueness under the regularity conditions of the theorem. This was one
of our main motivation to introduce the scale of Fourier-Lebesgue regularities (& L%),,. Similar
results for the Besov scale (%), are not known since we are not able to prove the corresponding
mapping properties for the averaging operator 7%. Note that even in the case of the Brownian
motion this was an open problem [9] since the standard approach using stochastic calculus cannot
be applied in this case. Allowing random & could open the way to the study of a general class of
stochastic transport equations where the drift itself depends on the solution.

The key to obtain these results (the existence part when o < 0 and the uniqueness part for
a > 0ora < 0) lies in the fact that in all cases the ODE (1) is equivalent to an equation of
Young type (YE) of the form

t
6 = 6o + fo Xas (6). 5)

where here X : [0, 1] x R? — R plays the role of a time-varying, integrated, vector field and
0; = x; — w, is the perturbation which by the hypothesis x € Q}’f belongs to €7 ([0, 1]; RY).
The integral operation featuring in (5) has to be understood as a natural non-linear generalisation
of the Young integral [20] defined as limit of Riemann sums:

t
X4s(6s) = lim Xi s (01,
/0 as (65) |H\—>OZ bt O0)

where X ;(x) = X;(x) — Xs(x). In the case of the ODE (1) the integrated vector field X
corresponds to the average of the original vector field b given by X;(x) = T",b(x) for all

t €[0,1] and x € RY. Young differential equations of the type (5) are used also in [4,5] to
study the regularisation phenomenon for some non-linear dispersive equations. The theory of
such equations is very similar to the theory for standard Young-type equation but for the sake of
the reader we rederive here the main results in our slightly non standard setting.

This paper is then divided naturally into two parts: in the first we study the non-linear Young
integral and the YE (5) and derive the results announced above about existence and uniqueness
for the ODE (1). In the second we analyse the averaging properties of fBm sample paths and
apply the results to the study of the regularisation phenomenon for Eq. (1) driven by fBm paths.

1.1. Notations

Several function spaces are involved in the rest of the article. In this section we define those
spaces, and specify some notations. Let ¥, ¢ € D be a nonnegative radial functions such that

1. The support of ¥ is contained in a ball and the support of ¢ is contained in an annulus;
2.9 &) + X 509778 = 1forall§ € R,
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3. supp(y) N supp(p(2~/.)) = @ for i > 1 and if |i — j| > 1, then supp(p(2~.)) N
supp(p(277.)) = ¥.
For the existence of ¢ and ¢ see [3]. The Littlewood—Paley blocks are now defined as
A_ju=F (Y Fu) andforj>0Au=F(@R ™ )Fu).

The Aju are smooth function with Fourier transform with compact support. We define the
Holder-Besov space €% by

¢* (R R") = BE , (RY;R")
= {u e S®LRY : Julle = 127114 ul0) 16 < 00} (©)

While the norm .||, depends on the choice of ¥ and ¢, the space €* does not and each choice
of ¥, ¢ correspond to an equivalent semi-norm on €. If « € Ry — N, then the space €™ is the
space of [«] times differentiable functions, whose partial derivatives up to order [«¢] are bounded,
and whose partial derivatives of order [«] are (¢ — [«])-Ho6lder continuous. Note that we have
the following continuous embedding, for ¢’ < « then €% C €% and |lully < |lulle. When
f € C(0,T],€%), we denote abusively || fllo = sup;e; u(t,.)|lq- When o > 0, the space
€* = Bgo’ o 18 the space of bounded Holder continuous functions, indeed, for m € N\ {0} and
m— 1 < a < m, when we define [f ], = SUP,2,, [f(x)— f|/Ix — y|* forv € (0, 1] and

G ={f R > R [ flloore +ID"7 f Iy < +00}.
Furthermore ||.|lo and || f|loo + [[f ,n—o are equivalent norms. We will equally use either one or

the other. We will also need some localised Holder spaces described as follows:

Definition 1.15. Let v € [0, 1). A weight is a continuous non-decreasing function ¢ : Ry —
R4 such that for ¢ > 0, there exists a constant C¢ y, > 0 such that

Y(ex) < Cey ¥ (x).
A v-weight is a weight such that

x UMy (x) — 0.
x—>—+00

Hence, in that setting we define some weighted Holder spaces as

Definition 1.16. Let ¥y be a weight, v € (0, 1] and V and W be two Banach spaces. The /-
weighted Holder space of index v is the space €V (V; W) defined by

¢V W) = {f G Ty = sup —L DD

xzyev X = ylv¥r(xlv + |ylv)

When n € N we say that a continuously n-times (Fréchet) differentiable function f € C"(V; W)
is in the y-weighted Holder space of order n 4+ v if D" f e €V (V; L"(W; W)), where
L"(W; W) denote the space of n-linear continuous applications from W into itself.

To simplify the notation, we introduce also the following spaces related to time dependent
nonlinear mappings between Banach spaces V and W.

Please cite this article in press as: R. Catellier, M. Gubinelli, Averaging along irregular curves and regularisation of
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Definition 1.17. Let 0 < y,v < 1 and ¢ be a weight. Let / = [0, T] and V and W be two
Banach spaces. Foralln € Nandany G : I x V — W we define
(G (x) — Gs(x) — (G (y) — G5 ()]
[G1,.,,y = supsup .
s#L Xy [t = s17]x = y["¥ (x| +[y])

n k k
ID"G,(0) — D"G;(0)|
G =[D"G
161ty = ID"G iy + 3 sup P

’

and
GV 1LV, W) =[G e L® (1,6 (Vi W) 2 1G Ly oy < 09) .

When V. = W we write %V*”"”(l, V,V) = %OV"“”(I, V). Furthermore, when it is not
ambiguous we only use €7*'¥. When ¥ = 1 and there is no ambiguity, we only write €7".

As stated in the introduction, in order to have estimates for the averaging operator 7" which
will not depend on the functions f, we introduce the following Fourier—Lebesgue spaces.

Definition 1.18. Let o € R,

. 1/p
Nop(f) = (A;d IfEIPA+ Iél)”“d$>

and FL*P(RY) = {f € S'(R?) : Ny(f) < oo}. Then Ny, , is a norm on .# L* P (RY). When
p = 1 we only write Z# L% and N,.

When @ > 0 and f € % L% implies that f isin Ly and f is bounded continuous function.
Furthermore if « > 1, f € #L* is globally Lipschitz continuous in the second variable.
Furthermore for @ € (0, 1), f € FL* is globally Holder continuous in the second variable.
Note that when o < 0 the vector fields are only distributions.

Remark 1.19. An easy computation gives #L* C ¢“ forall« € R, and for « > 0 and ¢ a
weight, €% C €%V.

It is natural to make some approximations in € and in .% L*. Although the quantity ) ; A; f
does not converge in €%, it converges in all ¢ with o/ < «, which gives the following lemma:

Lemma 1.20. Let @ € R and u € €*(R?). The sequence (T<NUIN>—1 = (ngN Aju)n
/ T
converges to u in €% for all o' < a. Furthermore, for all o, m<n f Z0 f for f € FL“.

Finally if G : [0, T'] % R? — R we write G (x) = G(x) — Gs(x).
2. The non-linear young integral and young-type equations

As already said, we intend to study the ODE (1) where w : Ry — R4 is a continuous function
(withwg =0)and b : R x R?Y > Reisa (time-dependent, distributional) vector field. We think
w as a very rough function whose oscillations dominate in small time scales the effects of the
integrated vector field b. In this situation the function x behaves at small scales very much like
w and the effects of b are seen only via a average over these fast oscillations. All this will cook
up some regularisation effect which will allow to prove existence and uniqueness even when the
vector field b does not enjoy sufficient space regularity.

Please cite this article in press as: R. Catellier, M. Gubinelli, Averaging along irregular curves and regularisation of
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To highlight the effect of the translations induced by w on the flow of b let us introduce the
change of variables 6, = x; — w; so that the above equation now reads:

t
0, = 60 + / b(ws + 6,)ds.
0

If we believe that w oscillate faster than 6 then it seems reasonable to approximate the integral
in the right hand side by a sum over a partition o = 0, ..., t, = t of [0, t] where we have fixed
the 6 parameter at the initial time of each segment:

n—1

/ b(s, wy + 65)ds ~ Z/ b(s, wy + 6,)ds = > (T", . b)(6;) (7)
i=0
where T, = T, — T{".
Under appropriate conditions the expression on the right hand side of Eq. (7) will have a well
defined limit as the size of the partition goes to zero and it defines a kind of integral which we
naturally denote by

n—1

t
/O (TJb)(65) —hmZ( o D) Or)

and will enable us to set up an alternative formulation of the above ODE as an integral equation
involving the time-dependent integrated vector field G; = T, b which is an averaged version of
b. The integral appearing in this equation is a kind of non-linear Young integral [20]. Existence
and uniqueness of solutions for equations involving Young integrals are by now standard
[16,14,11] and easily extended to this context as shown below. In particular the equation

t
@=%+AGM®

will have a solution 8 € €7 ([0, 1], Rd) (the space of y-Holder continuous functions from [0, T']
to RY) provided (x, t) — G(x) is a y-Holder function of time, locally Lipschitz in space with
y > 1/2, thatis

|Gyt () = Gs, e DI S 1x = yllt = s17 9 (x| + [yD

forall x,y € R and 0 < s < 7 < 1. Note that some space regularity is already needed to have
existence (to be compared with the classical setup where bounded vector fields are sufficient for
existence).

A strategy to prove uniqueness is to consider the difference between a solutions 6 and a
solution §’ of a similar equation

t
q=m+/c@@y
0
It is necessary to estimate the difference
t
0 —=6)) — (6 — 6;) = / Gau(0u) — Gy, (6,).
N

To deal with such an estimates, we will need an averaged translation operator /Gy ,(z) =
fst Gau(fy + z) in order to have an equation on 6 — 6’

Please cite this article in press as: R. Catellier, M. Gubinelli, Averaging along irregular curves and regularisation of
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In order for these estimates to be useful we need a way to link the regularity of the original
vector field b with its averaged version 7b along an arbitrary continuous path w.

Theorem 2.1. Assume that for o € R, f — T f is defined on the whole space F L*™" for all
v > 0. Assume also that there exists y > 1/2 such that for all v > 0, there exists a v-weight
such that TY maps €+ into €V""V. Then there exists a solution 6(xg) € €7 ([0, 1], RY) o
the Young-type equation

t
61 (x0) = xo0 + /O (T) 6, (x0))

for any b € € for v such that y(1 +v) > 1. If b € €**% (or a +3/2 > 0 and
b € €%13/2) this is the unique y-Hélder solution to this equation, and for all t € [0, 1], the
flow map xo — 6;(xo) is well defined and locally Lipschitz continuous, uniformly in time.

Remark 2.2. To prove such a theorem, we need the two hypothesis about 7%. The first one is
that this map is well defined. This will follow either from the definition of the map (when o > 0)
or from Section 3. The second one is to prove that 7% maps €* into €7""'¥. We also need a
theory of integration for vector fields in 7"V In the next section we will build such a theory.

This theorem is obtained when we apply Theorem 2.9, Remark 2.10, Theorem 2.17 and
Corollary 2.18 to the operator 7" with the wanted hypothesis.

When a > —1 the vector field b € €**! is continuous and the solutions are simply solutions
to the classical ODE

t
6; = 0y +/ b(u, w, + 6,)du.
0

In the case that « < —1 the vector field b is a distribution and the previous ODE does not make
sense. In that situation the natural meaning of these solution is the following. Let b, = m<,b for
b € € then

t t t
/ by (u, wy + 6,)du = / (leé)bn)(es) g / (Tdu;b)(gs)
0 0 0

by continuity of the Young integral and of the averaging with respect to the norm of .Z L*!,
Then 6 solves the equation

13
0; = 6p + lim/ by (u, wy + 6,)du,
nJo
where the right hand side is well defined for any 6 € €7 ([0, 1], R%). At this point we can identify

t t
/ b(u, w, + 0,)du = lim/ b,(u, w, + 6,)du
0 nJo
and give meaning to the ODE with a distributional drift .
Remark 2.3. When the vector field b is in .% L%, the limiting procedure does not depend on the

choice of the sequence. That is the principal reason of the introduction of that spaces.

One of the aims of this paper is to show that the above program can be carried out successfully
in the case of w given by a sample path of a fractional Brownian motion B of Hurst parameter
H e (0,1).

Please cite this article in press as: R. Catellier, M. Gubinelli, Averaging along irregular curves and regularisation of
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2.1. Definition of the Young integral

We define now the Young integral [20,16,14] for nonlinear operators.

Theorem 2.4. Let y, p,v > Owithy +vp > 1, a v-weight yr, and V and W two Banach spaces
and I a finite interval on R. Let G € €VV'V(I,V,W) and f € €°(I; V). Let s,t € I with
s < t. Then the following limit exists and is independent of the partition

!

G = lim ZG. . ).

/S au(fu) 11 partiton of [5.1] 4= lislit1 (fu)
|1T|—0

Furthermore

1. Foralls <u <twiths,u,t € I we have

t u t
/ Gar(f) = / Gar(f) + / Gar ().

t
f Gar(fy) = Gos ()| < CpopullG Ty LT 1t = 5I7H2Y (1l ).

w

3. Foralls <t e€land R > 0O, the map (f, G) — f; Gar(fy) is continuous as a function of
({g e €U, V), lglly.s.0 < R} M- lloo.fs.i1) X (G7HV UV, W), L llywy) to W.

Proof. Let s,t € [ with s < t be fixed until the end of the proof. Suppose first that G is
differentiable (in time) and G’ € €V"""Y(I,V, W) and G € €7"¥. For simplicity, in all the
proof we write ||G|| and [G] instead of |G|,y and [G 1, .y . Then we define for s < ¢

t t
/ Gaulf) == / G (fodi = 1,,(f, G)

N N

and also define J; ;(f, G) := I; ;(f, G) — G4 (fs). Foru € [s, t] we have
-]s,t(f’ G) = Js,u(f’ G) + Ju,t(fa G) + Gu,t(fu) - 8GM,t(fY)a

hence, forn > 1,i € {0,...,2"}and ¢! =5 + (t — 5)i27",
2n—1 n 2k—1
Tsi(f. G) = 20: La W (£, G) + ; 21: (Glfiq”éf (ftgi—l) B Glﬁi—r’gi (fté((i—l)))‘
1= = 1=

But, as G is differentiable, the following computation holds

n

lipy
iy (RO < [1GL) = 6Lt
i

liy
</ UG, Ty fu = fir Y01 ful + | for D
tn

i

<2IG Ty ||oo/

n
%

"

i+1
|f1plu = 2 1P (Ul f lloo, s, du

5 9—(+vp)n

Please cite this article in press as: R. Catellier, M. Gubinelli, Averaging along irregular curves and regularisation of
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Hence

2"—1

D I, (F.O)| 3
i=0

27— 0,
n—oo

and then
oo 2k—1
) <
[s.(fs G < ; Zl G 1y ty; (f’2 Glécz 1 t21(f12(1 1 w
=1 i=
Fork > landi € {1,...,2% — 1}, we have
|Gl§i—l’t§i(fl§i—l) o G’f lzz(ffzn 1 )l

<Gy = "1 fy = fu VW (fu 1+ 1fx D)
S UGS By . ¥ fllos, sl — 17 F027 00k,

Hence, the following bound holds

00 2k_
-G
kz Z 5115 (f’2 1515 (ffz(z 1) )lw

oo 2k—1
SIGILS 1) 150y ¥ (UL f lloo s 12 — s[PPF7 Z Z o= (y+vp)k
=1 i=1
2—(p+y—1) -
S Ty NG Ty oy Yl fll sl — 5147 ®

The result is proved for differentiable G. Let us now take G € €7V¥(I,V, W) and f as
wanted. Let G" be differentiable as above such that G?,t( fs) = Gg:(fs) asn — oo; for all
Y <y limyoo0 |G —=G" ||y, =0andforalln >0, [|G"|l,v,y < IGlly,v,y- As I is linear
in the second variable, we have, for y’ < y

[ (f, G") = Jo (f, G"P™lw = |Jsi(f, G" = G"T™)|w
5 IIGn _ Gn+m ]]y’ )
— 0.
n—oo

The sequence (Js ;(f, G")), is Cauchy in W which is a Banach space. Let us say it converges to

a number Js ;(f, G). Furthermore, the sequence G/ 4 fs) converges obviously to G ;(fs). Then

as I« (f, G") = Js.(f, G") + G{ ,(fy) the sequence (I ;(f, G")), converges to a limit called
I +(f, G). Furthermore,

. (f, GDlw <y p TGS Tp 5.0y W (L f lloo) |t — 517
S IGILS T, vl flloo) |t — sP TP
and so does |I;;(f, G) — Gs,:(fs)|lw. The Chasles property and the triangular inequality are

obvious with the definition of 7. Moreover since I (f, G) is linear in G it is easy to see that the
definition does not depend on the particular sequence G”.

Please cite this article in press as: R. Catellier, M. Gubinelli, Averaging along irregular curves and regularisation of
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Let us show that I ;( f, G) is the limit of Riemann sum. Let Il = {s =1y <t <--- <t, =
t} a partition of [s, 7]. Let

n—1
S = Z Gt (fti+1)
k=0

be the Riemann sum corresponding to this partition. As Gy, 1., (fi,) = Iy, (f, G) —
Jt; 1141 (f, G) the following equality holds

n—1

St — L (f.G) == Ty, (f. G).
i=0

Hence

n—1
1S = Lt (. Olw < D Wi (F Glw
i=0
n—1
S Mt =67 ST S 7,00,

i=0
It remains to show the continuity of the map (f, G) — I (f, G). Take f, f’, G, G’ and assume
for simplicity that G(0) = G’(0) = 0 then
Is,l(fs G) - s,t(f/s G/) = [ls,t(f’ G) y s,t(f/v G)] + Is,l(f/s G — G/)
and
i (f, G = Glw
<G = Gsu(fs) = (G = G5 O)|w 4 (G = G5 (0)| + |1 (f, G — G)lw
SIG =GNt = sV ALY ALD 1+ 1= sI"LF T, vl flloo)
SIG =GNl = sl U3 N lloo) + 1+ 12 = sI”PILF 1) ¥ (Nl f lloo))
SIG =GNt = sl A+ AMFIE AL )

Furthermore

Is,l(fs G) - Is,t(f/’ G) = Gs,t(fs) - Gs,t(fs/) + Js,t(fs G) - Js,t(f/s G)

We have also

s (f, G) = I (f, GO lw S NG, = flls¥ UL f lloo + 1Lf Tleo) |t = 517
+ (ST ¥l flloo) + L T, WAL o) Gl [E = s]77FY
SANGIHILS = f s U fllp + 1 M1 =517
+ LI AL + 1 1w A DG — s[PPF
By partitioning the interval [s, t] in subintervals [#;, ;4] of size 27" and summing up the
contributions according to these bounds we obtain an improved estimate
s (f. G) — Is. (f'. G)lw
SNGIS = £ Ul + 110287 — 517
FUGHA LT AL 1) + LU AL M@ e — s F7 2",
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Taking n large enough so that

N If = FIY AL + 1£1,) S—
LA T + LT w AL Il — 5]

we have

L (f. G) = L (f . Dlw SUGIS = £V U fllo + 11028 — 517,
which means that it is possible to choose n such that
i (f, G) — Lo (f', Dlw S UG = F v Ul + 1F )= s]”
1-y
5 ALIEEA L) + DL AL M) — s\
If = £ 15wl fll, + 1)
SUGIE = £ U Fllp + NN T DI — )
<UL AL+ IE I ALl 7/

and this allows us to infer the continuity of I (f, G). U

Remark 2.5. It is easy to construct a suitable sequence (G"),>1. Leth : R — R be a compactly
supported, smooth positive function with integral 1. Define 4, (t) = nh(nt) and define for all
veVandallt e R

Gl (v) = / hn(t — 5)Gs(v)ds = G} (v) = / h(s)Gi_g(v)ds.
R R
Then G" is as wanted. Indeed,
IGS,(v) — GY,(w)|lw < /ﬂ;hn(r)l(Gz—r = Gs—r)() = (Gi—r — Gs—p)(w)|wdr

< /Rhnmv ~ v = wlb g (o] + [whdr

S NGl yplt = sl v = wlyy (vl + [w)) ®

which proves that G € €¥->¥ (R, V, W) and that ||G" lyv.v < IIGlly,v,y - Furthermore G" is
differentiable and (G”) € €7"¥ (R, V, W). As we can choose &, to be a good kernel, all the
properties required on G" are satisfied.

Definition 2.6. The limit functional / defined in the last theorem is obviously an integral and
then we will refer to it as || : Gau(fy).

Remark 2.7. Let g € €7 (I, V') and f € ¥°(I,V) with y + p > 1, where V and V' are
(finite-dimensional) Banach spaces. Let W = V ® V/ and for all x € V, G;(x) = x ® g;. Then
G € €' (I, V, W) and the above integral is the standard Young integral.

Remark 2.8. The bound in Theorem 2.4 is

t
| Gauth = Gt 20| SUG By 1t =17 B 01 ).

s
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Butas [/ 1, < [Iflly and || flloo < (1 + [IDIIf ], and ¥ is a weight, we also have this other
useful bound

t
/ Gau(fu) = Gt (f)| S UG Dywy It = s I W A Sl

where the new constant depends on the length of the interval |/| and . In the following, we will
exploit these three bounds equally and without further notice.

We intend to solve differential equations driven by such G. Thanks to the definition of the
integral and the bound in Theorem 2.4, we are able to define the equation, prove the existence of
solutions and give an a priori bound on the norm of the solutions. Here we will use the notion of
v-weight, in order to control the growth of the norm.

Theorem 2.9. Let y > %, v € [0, 1) such that y (1 + v) > 1 and r be a v-weight as in Defini-
tion 1.15. Let G € €YY ([0, T1, RY) and x € RY. There exists a solution 0 € €7 ([0, T]; RY)
to the non-linear Young differential equation

1
o =t0-+ [ Gato)
0
Furthermore, there exists two universal constants K1 and K, depending on y, v, ¥ and T such
that

/vy
101lc0.10.71 < K1 (141Gl 0.9) 1 lrvw (165] + 1)

and

~ > 1/vy
161,.10.71 < KiIGIY"Y (1 411G ly09) 1w (1 4 160)).

Proof. Let us first deal with the existence of the solutions. Let tp € I = [0, T], K > 0 and
0 < S < T to be specify later. Let J = [19, (fo + S) A T] and let us define for all x € V,
Copx =10 €€V (J) 1 0y = x, I0]ly.s < K}
and
CrJ, V) — €Y (J,V)
6 = x+ / Gau(0).

fo

Ql(),x .

By Theorem 2.4 the map &y, , is well defined. Furthermore we always have
10s] < 10| + T M0 T, 5 Sr 101y,
Hence for s < t € J we have
t
(sl < | [ Gaul@) ~ Gus@)
N

S NGy vyt = s (S*N0NY, ;¥ U181y, 0) + 105" ¥ (165]) + 1)
S NGlywylt = sI”(S*NON, ;¥ U181l 0) + 105" (160]) + D). (10)

+1Gys,1(05) — Gy1 (0)| + Gy, (0)]

Now take 6 € Cy, »,
[Py« @) 1y s S NGy SO, ;¥ Oy, 0) + 1x1"Y (x]) + D).
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But since v < 1 and v is a v-weight, there exists a constant C), y such that ||9||]‘j sl ) < a6

C,,y (1 + |x]). Hence, there is a universal constant C > 0 such that

D x Oy, s = [Py @) 1.5 +Ix| < x|+ CIGI, (ST N0y, s + 1x]"¥ (x]) + 1.
For S such that C||G|l, S” < 1/2, and for K > 2{|x| + C(|x["¥(|x]) + 1)}, we have

I Do, x O ly,s < K.

Then &y, (@) € C;,,x, moreover by the property of the Young integral the map &, . is continuous
on Cy, x for the norm ||.|loo, 1, (to+T)A1]- BY its definition Cy, , is immediately a closed convex set
of C(J). Let us show that &y, (Cy, ) is relatively compact in C. It is obviously equicontinuous
as || 9,.x (0)]l, < K and relatively bounded as |9y, « (60);| < |x| + K"¥ (K)(t — t0)” . Hence by
Ascoli theorem @, ,(Cy,,x) is relatively compact. Thanks to Leray—Schauder—Tychonoff fixed
point theorem, there exists 6% such that 0% = &, (6"") = x + fl; Gau (6. We then
construct by induction a solution on the whole interval. For n such that nS < T let 0 = §%%0
and 60" = 9"5’0’31_1. Let us define 6; = 6/ if t € [nS, (n 4+ 1)S]. By an immediate induction, 6 is
solution of the equation 6; = x¢ + fot G4, (0,) and then is obviously in €7 .

We have all the tools to bound the norm of a solution of the equation. Again take #y and S

to be specified later, and 6 a solution of the non-linear Young differential equation. And take
J = [to, (to + S) A T]. We have

1665, <

t
/ Gdu(eu) - Gs,t(es) + |Gs,t(9s) - Gs,t(9t0)|

+1Gs,1(6y) — G5, (0)] + |Gy, (0) |
St =s171Gy,vp (STM0 T, 5 Y UIOlly.0) + 101" (164 ]) + 1),

hence
00 Ty 119.10+51 S NG lly,v,u (STPNON v C101y,0) + 104" ¥ (105 )) + D).
Let S be such that C||G|l,,v,y S?"" < 1, and we have
1911y, 110,10+51 S NON5 g% N0lly,0) + 1651 + CUG lly,0,4 105" ¥ (105]) + ClIGlly -
As x — xV(x) is sublinear (as before), there exists a constant depending on v and  such that
1911y, 110,10+51 Sy L 10r] + Gy, 0,0 101" ¥ (101 1) + 1G 1y 0,y
There also exists a constant C such that
1011”18, 1) < C + 16y
and
1011y, 150,00+51 < (1 + G lly,v,y9)165 | + CUGly,v,y + D). (1D
From this we deduce
10:] < 10r — Oyl + 10| S 101y, + 16051 S (L4 NG lly,0,9)1051 + 1Glly 0,y + 1
and then

10llo0,s S (1 + 1Glly,v9)100] + Gl 0,y + 1.
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Now let n be such that § = T/n and 1/2 < C||G||T"Yn~"" < 1 hence n > T(C||G|))!/*Y and
we have for J; = [iT/n, (i + 1)T/n]

10llcc.s; S (1 +11Gllywy)ll0lloc, sy + I1Gllyvy +1
and

101,50 S (141G lly w9601 + IGlly vy + 1.
Hence

100l0c,s; S C' (L4 1Glly0.) (A + G ly0.9)100] + 1G 0.y + 1)
and finally

1001001071 < K1 (1 + Gl 1T (16| + 1),

where K| and K, are two universal constants depending on v, y, ¥ and 7. From the Eq. (11),
we can deduce, with the same induction argument, that

191ly.10.77 < 160l + CUGI T((A + Gy )0 llooio.71 + 1Gllyvy + 1)
and the result follows. [J
Remark 2.10. The bounds on the solutions of the differential equation allows us to get rid of the
v-weight 1. Indeed, we have, for a solution 6 of the non-linear Young equation we have

K|Gl,

[01lo,t0,71 < Ki(L+11Glly,v.p) “‘”(Ié’ |+ D).

Then for R > 0, and 6y € B(0, R) [|0]lco.f0.77 < K1(1 + ||G||yv1/,)K”G“V“W(R + 1). Hence, it
is enough to consider the localised norm of G

G, (x)—G G (0
||G”5v — sup sup | s,t( )v s,t(y)l —l—supl s,t( )l’
’ t#s€l x£yeB(0,RG-R) lx — |t —s|” st [t —s[Y
where
RO = Ky (1 + Gy i) K115 (R 4 1),

From now we will consider only bounded G, namely G € €", and we will extend the results
to €7"¥ thanks to the previous remark.

2.2. Uniqueness of solutions

2.2.1. Comparison principle

From now, thanks to Remark 2.10 we can restrict the study of the properties of the solutions,
their uniqueness and their regularity with respect to the parameters for bounded G. Hence, we
define the space (fby’"ﬂ ={Ge¥"" ||G||y gy < 00} with

n

b sy =ID"G1y,,+>  sup sup DGy (0)l/It —sl”.
k=0 s7#1€[0,T] xeRd

G112

As there will be no ambiguity in the following, we will usually avoid to mention explicitly the b
in the norm on that space. Those spaces are nicer than the whole space -V as there are natural
embeddings:
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Lemma 2.11. Let 0 < y < 1,0< v < vand G € 6" then ||G||‘; » SIGIE .
Proof. Letx,y € R? 5,1 € [0, T]. For0 < v < v < 1, we have

|G () = Gou O] _ (|Gs,,(x> — Gy ()
lx — y]V' h Ix — y|¥

<27V =sPIGIL L AIGHE )Y
<

- b
2"V —s17IGID

V' /v ,
) 1Gs.0(x) = Gy ()Y

and the following bound holds
b 1/ b
G115, = A +2"7"MGI? .

Furthermore, we also have

1
1Gy.i(x) = Gyt ()] < / dr|DGy(r(x — y) + y)llx — y|
0
< IDGI ylx = ylle —sI”
and

b b
IGI%,, < 21DGI -

The general result follows by an easy induction. [

Remark 2.12. These embeddings allows us to state a result for the existence of the solutions
when G € ‘@V’l with y > 1. Indeed, as forallv < 1,G € )" and |G, < ||G||’; - there

Y,V ~
exist a solution 6 and the non-linear Young differential equation. Furthermore, for all v < 1,

there exists a constant K, such that

b y\1/v
1A K> (IGIY )

b
10lloe < (1 +1G15 )W (00 + 1) < (1 + 1G5, ) (160 + 1).

In fact, a deeper look at the proof of Theorem 2.9, allows us to get rid of the v, and state that
there exists a constant K depending on 7" and y such that

K(GI, )Y

16]lc0 S (1+ IG5 ) (160l + 1)

and a similar bound holds for ||6]|,,.

In order to study the properties of the solutions of the non-linear Young differential equation,
we intend to compare two solutions 8! and 62. In the classical case (when G is differentiable in
time), we would have

t
6, —6; = (6 —65) + /0 (G0 — G (6D))du
t
= (60 —63) + / (GL(6) — 62 +62) — G.,(6))du
0

t t
=68 -0 + /0 (192G), (O] — 62)du — /0 G (63)du,
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where (152G);(x) = fot G, («9,42 + x)du. Hence 6! — 62 solve a differential equation, but with a
translated and averaged function (7,2 G) and a second member. In order to prove some properties
on the solutions, we then have to study this differential equation.

In the case of the Young differential equation, this strategy will be very profitable, we have to
define the averaged translation and to study some of its properties. Hence, we define the natural
action of the additive group of € paths on the integrated vector fields C € (fby’”.

Definition 2.13. Let y, v, p € [0, 1] such that y + pv > 1, G € ‘fby’u and f € €. We define
the average translation of G by f, and we write 7 G the following quantity

t
G0~ [ Gahi+ 0.
0

Due to the requirements of Young integration, the estimations for the translated integrated
vector field 77 G show a loss of regularity quantified by the next lemma.

Lemma 2.14. Fory +vp > landy +np > 1, f € €° and G € ‘Kby"H_n we have 17G € €7V
and

ItrGllyw S UGy w4+ IFID-

Proof. Suppose first that  + v < 1. Let X,y € V and define G(z) =Gx+2—GOH+2).
There is two bounds for the increments of G:

1G5, (21) — Gyt (2] S LG Ty ey It — 171 — y|V "
and

Gt (z1) = Gyt @) S LG Ny 1t = 517 121 — 22|
Hence, by interpolating these two inequalities

1Gsi(z1) = Gy @D S MG Ty, v 1t — 817 1x — y|"|z1 — 22"

When 2 > n+ v > 1, we have

1
|Gy, (z21) — Gy 1 (22)] = I/O dr{DGy,(x(r) +z1) — DGy (x(r) + 22)}.(x — y)

—1
S UG Dy iy It =517 1x = yllzi — 22",

where x(r) =y +r(x —y),

|G @) = Gt @)l S LG Dy,vy It = 51716 = "1 21 — 22
and again

1Gs.1(21) = Gt @) S LG Ny vy It = 51" 1x = yI"|z1 = 22"
In these two cases, we have

[[é]]y,n 5 [[G ]]y,v—i—n |t - S|y|x - y|u~
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Hence

t
Tst,t(x) - T}"Gs,t(y) = / Gau(fu +x) — Gau(fu +y)

< / Gaulfi) = Gos(f) + Gor(fo).
Hence,
177Gy (x) = 4G S TG Ty (LD + 1) + Gy (f)]
and as |G, (fy)] <2/t — s |G lly.v4s-
[trG s < IGlywin(LFID + D).

Furthermore

(77 G)s.i (0)] <

t
/ Gau(fu) = G5t ()| + 1G5t (SO < NGy plt — sV ALFI) + D

and by the embedding of Lemma 2.11, the result follows. [l

The averaged translation is a suitable tool to control the difference of two non-linear Young
integrals, as soon as we have enough regularity to estimate the integral. The following lemma
states the estimation for generic functions.

Lemma 2.15. Let y, v, V', p € [0, 1] such that y + pv > land y + pv' > 1. Let f', f* € €°*,
G e Cgby’v, and suppose that T > G € ‘Kby’v . Then

fo‘ Gau(f) — Gau(fD) SUtpGllyw T (WL = 215 +1F = 215

‘oo,[O,T]

and

/O‘ Gau(f)) — Gdu(ﬁ)] SNrpGlly W = £210 +11" = 1%

7.10,T]

Furthermore when 1 > n > 0 such that pn +y > 1 and G € €7-¥'*"

JRAE Gdu(fuz)‘
0 00,[0,T]
STYNG Ny g+ 1L2IDAL = F215 +1F = £21%).

Proof. It is a direct application of the definition of the averaged translation. Let s, ¢ € [0, T'], by
definition we have [ "Gau(fH =1 #2G5.1(0). Hence

t t
f Gl — / Gau(f2)

t
/ t2Galf) = 1) = 12 Gos(f = D] + 11 2Gos () = 12) = 712Gy 4 O)

<

S [[szG]]V,V/ |t _S|y([[fl - f2 ]],0 |[ — slU,y _I_ |fsl _ f52|]/).
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Q8 Hence,

|

[U Gau(f)) — Gdu<f3>ﬂ SIrpG ! = 215+ = £211%)-
0 y,10,T]

StpGllyw TV = £20) +IF = FRI%]
00,[0,T]

/O Gaulf)) = Gau(f2)

and

For the second part of the lemma, we use the bound of Lemma 2.14. [

We are now ready to prove a comparison principle between two solutions. In order to keep
a high degree of generality, we do not use the estimation of Lemma 2.14, but prefer to state a
general assumption for the regularity of the averaged translation of the first vector field.

Theorem 2.16. Let y > 1 v € [0,1] such that y(1 + v) > 1. Let G',G* € €},

01 (respectively 6%) be a solution of the nonlinear Young differential equation driven by G!
(respectively by G?). Suppose that ;2 G' € €7\, Then

/v
16" — 62lloc.j0.71 < c1e® W InT (16712 + 1)(168 = 631 + I1G = G2ly0).
Proof. Letty € [0, T'], S > 0 and define J = [1g, (fo + S) A 1]. For s < t € J we have

t
50" — 0%, = / 192Gy, (04 — 02) = 120G} (0] — 02) + 1,2 G) (6] — 67
N

2
— 702Gy ,(0) + f (G' =GP0 — (G' = G5, (0D)
s
+(G' = G*)54(07) = (G' — G*);,1(0) + (G' — G?);,4(0).
Hence,
180" = 0%)5sl S NTg2Gllly 1l = sI” (70" — 021, +16) — 67D
+1G" =Gl okt = sI” (ST IO I}, +1671" + D).

When Cj is the universal constant in the previous inequality and for S small enough such that
4—1‘ < Cilltp2 G! ly,187 < %, there exists another constant C, such that

180" — 64| < %w —s["([0" — 071, +57716} —67])
+ oG = Gyt — s (ST[07]) + 1).

Hence

10> — 621, < SN0 — 0?lloc.s + C31IG" = GPlly (1671 + 1)
and

16" = 0% loo.s < %(IIOI — 0?[lo,s + 16 — 67D + CallG' = Gl S” (107113, + 1).
Finally

160" = 62lloe,s < 216) — 071+ C5IG = G211, S” (1671} + D).
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By the same gluing argument as in Theorem 2.9, we have
16" — 6% 0o < 253105 — 631 + CSIIG" — G110 SY (10213, + 1).

Remind that }1 < G ||1'92G1 ly,187 < %, and there exist two universal constants (depending on
y, v, T) c1 and ¢; such that

1y
16" — 62100 < 12O i (105 — 031 + 1G" = G2l (167115 + 1)),

which ends the proof. [

2.2.2. Uniqueness of solutions

We prove here the uniqueness of the solutions when G is regular enough using the comparison
principle given in Theorem 2.16. In order to use the comparison principle, we ask that the vector
field is regular enough (in space) and as stated in Lemma 2.14, we are able to estimate the
averaged translation if we accept a additional loss of space regularity. Furthermore, as we will
use uniqueness results in different contexts, especially in situation when we will have a priori
regularity properties for the solutions, we will give a pretty general theorem of uniqueness,
Theorem 2.17, and specialise it in the two following corollaries.

Theorem 2.17. Let y > 1/2, v € [0, 1] such that y(1 + v) > 1 and G € %;"". Suppose that
there exists a sequence (G*), € ‘éby’v such that

i. Forally’ <y andall, |G — G*||,, — 0.
ii. Foralle > 0and |G®|l,,» <Gy
iii. Forall e > 0 and all x € RY there exists a unique solution 0 for the equation

t
0f (x) = x + / G (05 (x))du.
0

. 1
iv. Foralle > 0, 19:G € ‘Kby’ and sup, . ltesG|l,,1 < +o0.
Then the solution of the nonlinear Young equation driven by G is unique.

Proof. This theorem is a direct consequence of the comparison principle of Theorem 2.16. Let
x € R¥ be an initial condition, and let  be a solution of the nonlinear Young differential equation
with initial condition x. Furthermore let G® and 6¢ be as in the hypothesis of the theorem. Take
% < v/ < y such that y(1 +v) > 1. Remark that we can apply the comparison principle to 6
and 6° with y” instead of y, and as |G®l,/ , < |Gll,7,» S Glly,v, We have

~

RaG 1 1 4 D)

1 ’
16°11, S NG (L4 1GE )
’ % 1/vy’
S UG (1 411Gy 211" (1 4 |x]),
but also

<G|y
16G) = 5@ oo < ™™ VI TIGY — Gl (16912 + 1)

’ > l/uy/ G 1/y
S “G”Jl//“jy (1 + ”G”}/,\))KZ”G”%U (1 + |x|)eCZHT(~) Hy_] ”Gl _ Gs”y’,v-

As sup,_olITesGll,,1 < 400, we have [|0(x) — 0°(x)[lco —¢—00. As 6° is unique, and since
this convergence holds true for every function 6(x) solution of the equation, the solution is
unique. [
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We can now use the averaged translation operator to establish uniqueness in the case where
we have a priori informations of the regularities of the solutions 6°.

Corollary 2.18. Let y > 1/2,8 > O and G € ‘gby’H”. Suppose that there exists a sequence
(G%, € ‘fby’l-m such that

i. Forally' <y andall, |G — G*|,, 1 — 0.

ii. Foralle > 0and |G|y, 149 < Gy, 149-

iii. Forall ¢ > 0 and all x € RY there exists a unique solution 6 for the equation
t

0F (x) = x +f G§, (05 (x))du.
0
iv. There exists p > 0 such that no + y > 0 and for which for all ¢ > 0, 6°(x) € €* and
Sup.~.q 16°(x) 1l < +o00.

Then solution of the non-linear Young equation driven by G is unique.
Furthermore, when the function x — sup,. |10°(x)|l, is locally bounded in time, the flow
(t, x) — 6;(x) of the equation is locally Lipschitz continuous in space, uniformly in time and

16(0) = 8(Mlloe < exp(C(1+log(1 + 1Glly.141)
+(sup [0° M IMIGILT, Dl — yI(yl + 1.

e>0

Proof. Condition i., ii. and iii. are the same of those of Theorem 2.17. We only have to prove that

the point iv. of Theorem 2.17 is satisfied. But thanks to Lemma 2.14, we know that tp: G € %by’l .
Furthermore

lI7oe Glly.1 S NGy 144 U0°17 + 1) S IGlly 145 ((sup 167117 + 1)
e>0

and the uniqueness follows by Theorem 2.17. Furthermore, for y € R? since 1Gelly 14y <
IGlly, 145, we have

1T0e () GE lly.1 S NG Ny 14 ((Gup [0°11)" + 1) S NGy 149 ((sup 161 ,)7 + 1).
e>0 e>0

Since sup,_¢ IG°lly,1 S IIGlly,144 We have, thanks to the a priori bounds for the solutions of

~

Theorem 2.9, and Remark 2.12, that

16Dy S lloe S (1+ Gy 1) KNG (3] 4 1),
which implies
16°(x) — 0°(Mloo S exp(C(1 +log(1 + |G ly.112)
+sup 10 I)DIGIL T ) 1x = ¥l + 1),

e>0

the conclusion then easily follows when we let ¢ go to zero. [

Remark 2.19. Suppose furthermore that for all € [0, T'], x — 6/ (x) is differentiable in space.
Then

sup | DO/ (x)| < exp(C(1 +log(1 + |G lly,14n) + (Sug ”98()()||p)n)||G||)1,{i/+5)(|x| + 1.
£>

e>0
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Finally, we state the more general results of uniqueness, where all the needed informations
are the regularity of G.

Corollary 2.20. Let y > 3, v € [0, 1] such that y (1 + v) > 0 and suppose that G € ‘5})”’”1,

then there exists a unique solution 0(x) for the non-linear Young equation with initial condition
x. Furthermore 0 is locally Lipschitz continuous in space uniformly in time.

Proof. We only have to check the conditions of Corollary 2.18 with v = n and y = p. Let

G¢ € V!tV such that the time derivative (G®)' exists and lies in %hy’H”, and such that
1G®lly.14v < IGlly,14v and for all y* < y, |G — G*|ly 14, — 0. In that case, 6°(x) is
the solution of

t t
0% (x) = x +/ (G5 (02 (x))dr = x +/ G2, (6% (x)).
0 0

As G? € %by,l—w’ 0°¢ is unique and furthermore 6° is differentiable in space, and the differential
is the solution of the following equation

t
DO%(x) =id + / D(Gﬁ)’(@f(x))dr.
0
Thanks to Remark 2.12 we have

b y1/y
16° ()lloo + 105y < 4+ 1GIG KT (e + 1),

Hence x — sup, [|0°(x)|, is locally bounded in space. All the conditions of Corollary 2.18 are
fulfilled, and the result follows. [

2.3. Localisation of unbounded vector fields

In order to give a complete survey of the question, we need to go back to the weighted spaces
€7"¥ and to state the existence and uniqueness theorems in that case.

Let y > 1/2, v < 1 and y(1 +v) > 1 and ¥ > 0 a v-weight. Let r > 0 and
r = Ki(1 + ||G||f/’l)K2(”G”I;,1)1/y(r + 1), where K| and K, are define as in Theorem 2.9
and depend on y. As we intend to use the averaged translation operator, and since any so-
lution lies in balls of radius R, we need to localise G on balls B of centre 0 and of radius
2R. We then let G| € %by’v([O, T1], B) the restriction of G on [0, T] x B. We have of course
G r II;’,,V < Y Q2R)|Glly.v.y- Furthermore, as all the arguments hold locally, as we have done
all the estimations for x, y € B(0, r) in the previous section.

When v = 1, it is necessary to have the existence and a bound for the solution in order to
localise. As this holds only for v < 1, the good hypothesis is that there exists v < 1, ¥ a v-
weight such that G € €7°""¥ N ¢7'1:¥ . In that case, we are again able to localise and to use the
result of the previous section. The following theorem holds:

Theorem 2.21. Let y > % 12v>0withy(14v) > 1andy aweight. Let 1 < V' < v with

Vv < 1suchthat y(1+v') > 1, and ¥’ a v'-weight. Let G € €7V N €YYV Forall x € RY
there exists a solution 0(x) € €Y ([0, T]) to the equation

t
0 (x) =X+f Gau (Ou).
0
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Furthermore, there exist K| and K, two constants depending on y, v’ and ' such that

l !
KlG)""

16111071 < KAIGIY"Y (141G lly v yr) (14 |x]).

, Ny

Letr > 0, R = Ki[GI'"7 (1 + [Glly.vy) "0 (1 4+ |r)) and B = B(,2R). Let us
take G € €7V N €YV such that ||C~}||y’v,1/,/ < NGlly,v,y'» Suppose furthermore that for
y € BQ,r), té(y)G € €71V where 0 is the solution of the following equation

t
0:(y) = y+/0 Gau(Gy).
Then
~ . 1/y ~
16(x) — 6(Mlloo S (R BN Clviv (1x — y| 4+ 1G = Gllyvp),
where (R) = (R + Dy (R).

3. Averaging of paths

We turn now to the study of the averaging operator 7% proper. One of our main results is a
proof that fBm paths are p-irregular for any p < 1/2H and as a consequence that the averaging
operator T¥ is bounded from the Fourier—Lebesgue space .% L% to ¢ # L**P for any « € R
and for almost every fBm path w. This result was one of our main reasons to look at the scale of
Fourier—Lebesgue spaces.

For the scale of Besov spaces (4“), we were unable to prove similar results and we limited
ourselves to study the averaged vector-fields 7% f for fixed f € €.

In this section we will first study the almost-sure irregularity of fBm paths. This study
proceeds in two steps: first we use well known chaining arguments (essentially going back
to Kolmogorov lemma in the form given to it by Garsia, Rodemich and Rumsey) to go from
supremum norm to “integral” norms more suitable to probabilistic estimates and then use
Hoeffding inequality to prove these estimates.

The use of Hoeffding inequality replaces what in Davie’s paper [7] are explicit and painful
computations on Brownian motions (relying on the Markov property) and what in other works
(e.g. in [9]) is achieved via stochastic calculus (and thus martingale properties). In the fBm
context neither technique is applicable and explicit computations using Gaussian tools, while
possible are quite cumbersome and moreover we were unable to use them to obtain the
exponential square integrability we show here to be valid. So we think that our observation that
discrete martingale techniques like Hoeffding inequality are useful in the fBm context is one of
the interesting points of our research.

3.1. Chaining lemmas

To see the average properties of the fractional Brownian path, we will need some chaining
lemmas, to infer global estimates from pointwise ones.

Lemma 3.1. Let X from I* to R? such that for all s < u <t

[ Xl < |1 Xsul + Xyl and X, =0.
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And let us define for u > 0,

2"—1

Ru(X) =" Y 27 exp(u2" | Xpan es 1217
neN k=0

Then there exists a constant K > 0 such that for all s < t,

exp(ul Xy 1*/1t — s1) S 1t — s X Rk (X).

Proof. Let 0 < s <t < 1,n € N be the largest n’ € N such that 2= ('+1) <t—s5 < 21,
By definition of n there exists / such that [/2" < s < ¢t < (I + 1)/2". We can find some
sequences (Sx)k>1 and (f)x>1 such that (si) decreases, (#;) increases, s; =t = 21 + 1) /2”“,
limgoo Sk = 8, liMgsoo tr =1, Skr1 — Sk < ntk+l tht1 — e < 2n+k+l and 2n+ktk € Z and
ntkg, e 7. Hence [s, 1) = Uk>1[8k+1, k) U Ug>1[, tx+1) and thanks to the definition of the
sequences, the following inequalities hold for s, but also for #.
First, if sg11 = Sk, /| X5 1,5, = 0. Now, if sp4.1 < i then there exists [ € {0, ..., n + k}
such that s;1 = (2l — 1)/2"t*+1 and 5, = [ /2", Hence
\//»7|X_&‘k+1 5 | — 2—(n+k+1)/2 log(z(n+k+l)2—(n+k+l) eXp(M2k+n+l |Xsk+1 5 |2))1/2
S 27O (0 + k) + log(R (X))} /2.
But 2~ < | — 5| < 27", hence
VI X ) S 1= s1V2275 2k 4 Tog(1/1t = s]) + log (R (X)}'/2.

Thanks to the definition of (s;)x and (#;)x, we have
\/ﬁ'xs‘,t| < Z«/ﬁlxsk+1,sk| + \/ﬁlxtk,l]prl'
k>1
< Ir—sIV2{1 +log(1/le —s1) + log(R,. (X))}'/2.

Hence,

exp(ilXs 2/1t — s1) < exp(K log(1/]t — s]) + K log R,.(X))
St —sI7 Rk (X)

and by Jensen inequality R, X)X < R.k(X). O

In the following, to approach a point of R¢ we will use a similar argument. Namely we will
use the graph (27" Z)¢ as a good approximation of R¢. Hence we need to have an approximation
of the biggest error we can make using such an approximation. It is well known that for all 4 and
allm € N, sup, cga infy ¢ o-mzya |x — y| = /d /2" 1.

Lemma 3.2. Let X be a function from R¢ to R? and g such that g > 1, SUP|, /1< /d )2
8(¢)/g(€) < oo and with ||g~" L1 (ray < +00. Suppose furthermore that the following quantity
is finite

Cx:= sup |X(©)—XEH/Q™¢ ') < +oo.

meN
£:228(5)/2M>1/2
lg—¢'1<Vd/2
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Let
Su(X) =3 > 27y expulX HP).

neN¢e@2-"z)d

Then, there exists a constant C > 1 be such that

exp(IX (1) < g(0)~C exp(uK C%)Suc (X).

Proof. Let { € R? and m such that g(¢) ~ 2™. Let ¢’ € (27" Z)% such that [¢ —¢'| < 27™/d /2
then |X(¢) — X (¢)| < Cx2™|¢ — ¢’| £ Cx. Furthermore, the hypothesis on g gives us that
log(g(¢") < 1+ log(g(¢)). Hence

VEIX @] < VRIX©) — X))+ J/RIX (@]
< VICx + {log2"27"g(¢")g(¢) " exp(ul X (¢")P)}/?
< VECx + {m +1og(g(¢")) + log(Su (X))}
S VECx + {1+ 1og(g(2)) + log(S, (X)}'/2.
Finally we have
exp(1|X ()% < exp(K{uCx + 1 +log(g(2)) + log $,(X)})
< 8(OF exp(uCC)Suc(X). O

We can think of g as g(¢) = (1 + [¢])?T.

Lemma 3.3. For all B € R and all R > 0 there exists a constant C(B, R) such that for all
¢" € B, R)

A+ 1eDf —a+ 1P <ee A+~ -1

Proof. Let us suppose first that |¢| > || by the choice of ¢’ we have 0 < '41, —1¢] < R. Then

<1 1¢'l — |§I> 1
1+ ¢]

Ne'=1¢ll
1+ ¢

< sup |f,3(x>|(1+|;|)ﬂ e =2,
x€[0,R]

I(L+12DP — A+ 1D =+ 1gDP

< A+12p? Sup If,é(x)l

where the function fj is define from [0, R] to R by fg(x) = (1 + x)P. We have
|£50L =180+ )P < IBICA+ RP v 1),

If |¢] > |¢'], the same computation gives
A+ 12DP = A+ 12'DP I Sp gL+ 18D e = ¢

When 8 — 1 > 0, the result follows. Suppose now that 8 — 1 < 0, we have to prove that
(T+12) S (1+1Z']). When |¢| < 2R, then we have

(L+1g"D/A+ 1) = 1/(1+2R).
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When || > 2R,
A1 D/A+1D > A+l =18 =eD/A+ g =1 =g =¢l/A+ 1)) > 1/2

and the result follows. [
3.2. Application of the chaining lemmas, control of the averaging along curves

The last lemmas allows us to control the average of a function (or a distribution) along the
curve w. Indeed, to estimate on the quantity f f fu(x + w,)du it will be enough to have a
control on simpler quantities. We will apply those lemmas in two similar situations, namely
when f € €* and when f € % L. In this latter case, we will see that it is enough to control
.

3.2.1. Averaging property of the occupation measure
Recall that we have already defined & (&) = fé eHEwr dr and

B0 (E) — B
|9 [lyyer = sup  sup (1 + myoM_
r geRd 0<s<t<T |s — |7

Lemma 3.4. For all —f < o there exist a constant a > 0 and y > 0 such that for all A > 0,
10(8) — P )] S 1t — 517 (1 + 5D (1 4 log (eI~ K ¥ (1)),
where

Kyoy= Y 272 @0 gy exph2" (1 + €D 1D 0 ryn GNP

n,meN
0<hk<2—1
E/E(z—mz)d

Proof. We apply Lemmas 3.1 and 3.2 to
X (§) = L+ EDP 19,61/ It —s1'/2.

Thanks to Lemma 3.3 and the definition of &%

5,1

forall & € RY, and all £ € B (s, ﬁ/z), we
have
X5 (8) = X B < |A+EDF — A+ 1D @Y, ENN/1t —51'/2
+ 1+ EDPIOY, (&) — DL ENN/It —s|V?
S (U +EDPIE — €10 + lwlloo) |t — sI'/2

Here we take £ = &, g(¢) = (1 4 |¢])#1€9 such that B + Cd > d + 1. With those choices, Xt
and g verify the hypothesis of Lemma 3.2, furthermore Cx < (1 + ||w|), hence

exp(il Xy, (8)1%) = exp(u(l + [ED? B2, E)*/It — s)
< A+ EDCUTI S, (X ) exp(uCllwlZ).
Now, let us apply Lemma 3.1 to (1 + |&[)# &, (§), then

exp(il X, (E)%) S It — 17X R (1 + )P 07 (8)).
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But

R, (1 +1EDP .(8))
21

= Z Z 2” 2n eXp(MK2n|¢ k27" (k+1)2—" (E)l (1 + |E|)2ﬂ)
neN k=
2"—1

S A+ ENTUED DN 2728, 0k (Xion k) exp(CK [[w]1Z)
neN k=0

S A+ EDUTY exprllwlZ) K ().
When we take the logarithm, we have
|00, E)] < Pl — s+ )P (1 + log(1/]t — )
+ log(1 + [€]) + log(exp(A|w(|2,) K § (@))).

Hence, for all €1, &3 > 0, we have

| OV (E)] Seyey 210 = sIV2750 (1 + 1ED TP (1 + loglexpAllw 1 2) K § (@p)).

Furthermore, by interpolating with the trivial estimate | &, ;(§)| < |t — s, for all =8 < «, there
exists y > 1/2, and a constant a > 0 such that

|08, E)] S 1t — sI” (1 + [ED* (1 + log'* explapl|wll3,) K § (aw))). O

3.2.2. Averaging of Besov functions along paths

In this section we analyse the averaging effect of paths on functions belonging to the scale of
Besov spaces (¢*),. Note the following. If we write A; = Z”i_ﬂsl Aj,wehave A; A = A;
foralli > —1 and then T\, (4; f)(x) = T, (A; A; ) = (T (K;) * A; f)(x) where K; is the
integral kernel corresponding to the operator A;. In this case

V(A Pllzse S 1A F e I TS KDl

So any control of quantities like Zl> 1 TR \T ,(K )lI;1) for increasing functions ¥ will
imply boundedness properties of T% in Holder—Besov spaces. However in the case of fractional
Brownian sample path (or even just in the case of Brownian motion) we were unable to devise
useful estimates for this kind of quantities. Due to this difficulty which prevents us from having
(useful) estimates which are uniform in 4, the chaining argument now depends on the chosen
function f and the computations follows closely those in the previous section.

Lemma 3.5. For all —f < « there exists y > 1/2 such that for all f € S'(RY), all » > 0 and

all i,
T (A ) S5 22 14 flloolt = s17 (1 +og" > (1 + [x]) + log' /(K ¥ 5 (0))),
where
270,3(m+n+i) b2
w
KY g0 = ZN @ P62 PIT 0 gy jn (i HYE /110 £ 113
n,me
0<kean 1
X e@mzyd
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and cg is a constant depending only of B and d such that the sum without the exponential is
finite.

Proof. The proof is very similar to the proof of Lemma 3.4. We will apply Lemmas 3.1 and 3.2
to

XL, (x) = 21T (A )/ Ai flloolt — 5112,
with the convention that X = 0 when A; f = 0. We have, thank to the definition of T*,
1T (A )] < A flloolt — s]. (12)

Furthermore, as the Fourier transform of 4; f is compactly supported in an annulus, we have the
obvious estimate

X5, (0) = X5, 0D S 2P IV A flloolt — 51" 1x = /1114 Flloo
< 2D x — ¥,

Let us take g;(x) = 2@tPi(1 + |x|)¥*! witha > 1 and a + B > cp. Hence, Cxi, < 1. By
Lemma 3.2, there exists b, ¢ > 1 such that

exp(ul XL, ()P < 27PN+ PV s, (X ).
Now, thanks to Lemma 3.1, there exist a’, b’, ¢/, d’ such that

exp(ul X}, (1) < 2771+ x|t — 5| K ¥ p(d' ).
Hence by taking the logarithm, and by losing a small power of time and on i, we have

T A f )] S 20PN A; Flloolt = 51272 (1 +1og' (1 + |x)

+ log' (K g (d'1))). (13)

Now we interpolate (13) and (12) and for all « > —g, there exist p > 0 and y > 1/2 such
that

T (A Y] S 22145 Flloolt — s17 (1 +log!2(1 + [x]) + log(K ¥ g(d' 1)) '/?. O

3.2.3. The operator T

We are now able to define the function T¥ f for all f € €* (respectively % L%) for all
o > —f, as soon as there exists & > 0 small enough such that K% (1) (respectively K w()\)) is
finite. As already mentioned, it remains an open problem to study the boundedness of T’” as an
operator with range in Besov spaces so we restrict ourselves to study the image of 7% f for fixed
f and with w in the support of the fBm law without any attempt to obtain estimates which are
uniform in f. On the contrary, for . L%, the estimate on ¢" are good enough to define 7% as
an operator on the whole space.

Definition 3.6. Let 8 € R, « > —f8 and let f € €*. We define
@) = ) T (AN @) = lim T3 (rey ()
iz—1

and

Thg(x) = lim Tl h(x).
’ he FLOVe

FLe

=g
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As these objects are defined by some limiting procedures, it is not straightforward that they
exist. Furthermore, for the consistency of the definition, we must show that when f € .#L¢
these two limiting procedures give the same object, and that the limit does not depend of the
choice of sequence (4;). This is the purpose of the following theorem.

Theorem 3.7. Let B € R and let « > —p.

1. Suppose that there exists Ay such that Kk” (Ao) < H4o00. Then for all g € FL% TYg exists
and does not depend on the choice of the sequence. Furthermore, for all A < Lo we have

T4 g(0)] < 1t — s No(g)(1 + log'/? K (1).

Hence, (T{")o<s<i<1 is well defined as a family of operators on F L.
ii. For f € ‘5"‘ suppose that there exists Ay such that K% w 7 p(20) < Fo0. Then TV f exists and
the following bound holds

T foa G Sy 1t = s 1 flla (1 +Tog" (1 + |x]) + Tog' 2 K 5 (1),
Furthermore let us suppose that for g € €, K“’ p(Ro) is also finite, then for all A < Lo/2
TS (f = | S 1t =1 1f = glla (1 +10g 2 (1 + [x]) + (K ¥ 5 (1) + K2 (1))

iii. These two limiting procedures are compatible when [ € F L*.

Proof. The proof is quite straightforward when g € .% L®. Indeed, for h' and h% in FLON.Z L,
we have

T, (hy — hy)(x) = /R (dE(hy — D) () explit - 1) B}, (€),
hence
T (hy — ho) ()] S No(hy —ho)lt —s]¥ (1 + log 2 (K} (10)))

and the result of (i) follows.
Let us prove (ii). For f € % let us show as the quantity 7", (mr<n f)(x) converges when
N — 4o00. Indeed, thanks to Lemma 3.5, for ¢ > 0 such that —8 < o — ¢ < o, we have

N+M

T (ran ) = T anm NN S Y 1T (A ) ()]

i=N+1
< Corx(log'? K gl flla2™Y.

Hence, (T;f’t (ren f )(x)) N30 is Cauchy, and then the limit 7% f exists. Furthermore we have the
straightforward bound for all A < ¢

1T ren ) S 1t = s 11 f o (1 +1og" (1 + [x]) + log" (K} (1))
and the same bound holds as N — +o00. For f and g we have
T (f =] St = s 1f = glla (1 +log">(1 + [x]) + log 2 (K ¥, s(1)),

but thanks to the definition of the constants, K ;‘X (A) < K (21) + K (ZA), and the result
follows. For (iii) let us consider f € .% L%, we have

T (mn )(xX) = T (man+m 1)) = T (man | — w<n+m [)(X)]
S CotxNa(men f = wantm f)log"? K (o)
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and as the sequence (r<y f)n converges in .% LY the limit also exists, and of course it is the
same. Furthermore, for two functions in .% L%V0,
1Ty (ren () = T (tanm IO Sy ¢ Na(f — 8)

and the limiting procedure in the .% L¢ case is correct. [J

Remark 3.8. The definition of 7% f given above seems to depend on the choice of the
Littlewood-Paley decomposition (4;);. It is indeed the fact. When we will consider w being
a stochastic process, this will lead us to a choice of a version of this averaging process defined
almost surely. In fact, if (4;); is another sequence of Littlewood—Paley operators, and K ; 1s the
associated integral kernels, we have

|Kj|#log(l +]-(x) < log(l+ |x])

+ /Rd dy|K; ()1 Tog(1 + |x —y]) —log(1 + |x|)|

< log(1 + [x|) + 27 f 29y 27 R (27 y)dy
]Rd
< 1+ log(l + |x]).

Hence, there exist two constants ¢ < C such that for all « > —pg and for all £ > 0 small enough,
we have

(THA WIS Y (AT A f) )

c+j<i<C+j

S22 fllalt =17 /de,-*<1+1og(1+|.|>

C+j<i<C+j
+ K5 (o) ()
S 2N f la (X o dog(L+ |x]) + K 7 (o)),

which gives the convergence of T%#<y f to a limit we called T% 2 f, and with the same
stochastic constant K 7’ ﬁ(ko).

In order to apply the results of the section related to the Young integral, it is necessary to have
a better understanding of the space regularity of an average function. Thanks to the property of
the operator 7%, as soon as we ask f to be regular, this regularity will hold. Furthermore the
definition of 7% allows us to differentiate it whenever f is regular enough, and the constant is
finite. Namely we have the following propositions.

Proposition 3.9. Letv € [0, 1], « > —B, and f € .F LY"" (respectively in €% ). Furthermore
we suppose that there exists Ly > 0 such that K};’ (Ag) < 00 (respectively K%cﬁ()»o) < +00).
Then TV f € ‘Kby’v (respectively TV f € €7V where Y (r) = 1 4 log!/?>(1 + r)) and the
following bounds hold

T F 00 = T F D] S Nago )] =17 |x — yI" (1 +log"? K (20))

32 Q9 (respectively

33

34

T3 f ) = T fOOL S Nt = 5171 = YN f oo (W (x| + 19D
+ log'? K¢ g (o) +log"> K'Y 4 (10))).
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Proof. For f € €**”, and forall 8 < o' < « 1

1
ITYAi f(x) = T" A f(y)| = / VTYA; f(r(x —y) +y) - (x — y)dr 2

0
<lx =yl sup [TYAVf@r(x—y) +y)l 3

rel0,1]
S2UNANV flloolx = yllt =517 (14 sup log">(1+|r(x — y) + yD + K¢ 5 (h0) .
rel0,1]

S2CDNA; flloolx =yl e =17 (1 +1og" (1 + |x| + [y]) + K& 5(h0))- 5
Furthermore, we also have 6
TV Ai f () = TP A fO)] S 27014 flloolt = 17 (1 + log" 2 (1 4 |x]) 7
+log' 2 (1+ IyD) + K ¥ 5 (o)), ‘
and by interpolation we have the bound for 7% A; f. The argument of Theorem 3.7 gives us the 0
result. A similar argument holds when f € #L%. [ 10

The next proposition shows that the definition of the averaging operator T is compatible with 1

the space differential in the Holder spaces. 12
Proposition 3.10. Let r € N, |r| = ri + --- .rg, and @ > —p. Suppose furthermore that for 13
f e €t there exists Lo such that Kg\'\fxo (Xo) < +o0 respectively there exists Ag > 0 such Q101
that Kg’(k) < 4-00. Then the derivative 3" T" f is well defined and we have 3" T f = T" 9" f. 15
Proof. First, let us take f € .ZL**". For N > 0, the projection 7« is a convolution operator, 16
hence 17
T (e () = T"nen (@ (). i

But for f € ZFLY oy (@ f)—7L% 9" f, which gives the result for f € .ZL%. Now take 1o
—B < o' < a. We know that for all f € €, ncyd" f ¢ d" f, and the result follows for 20
f e c“. O 21
4. Averages along fractional Brownian paths 2
4.1. Fractional Brownian motion case 23
The results of Lemmas 3.4 and 3.5 show that in order to control the irregularity constant of 24
fBm paths it is enough to prove that there exist A > 0 and « € R such that the random variable 25
B 1% KB (1 is almost surely finite when B is a continuous random path with the law of 2
the fBm. Then we only have to consider the following two quantities: 27

H

expOBTIS),  exp(u(1 + 1§D ©)F/1r — s 2

If the expectation of those quantities are bounded independently of s, 7, x, w, & then the 29
expectations of K ]lfH and e)‘“BHqufH()L) are finite and the variable are finite almost surely. 3
For exp(A|| BH ||§o) it is an application of a well known theorem due to Fernique. 31
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Theorem 4.1. Let X be a Gaussian random variable which takes values in a Banach space
(B, |I.11). Then there exists a constant . > 0 such that

Elexp(u|| X [|1*)] < +oo0.

Remark 4.2. This holds for the fractional Brownian motion of Hurst parameter H € (0, 1) and
for the Banach spaces (¢"7~¢([0, 11, RY), |l.[lo, s—¢ ) and for (C([0, 11, RY), ||.]loc,(0,1})-

To control the square exponential integrability of @f,H (&) we devised a novel technique based
on an elementary application of Hoeffding inequality for discrete martingale increments. This
bypasses the explicit Gaussian computations or the computations based on Malliavin calculus
usual in the studies involving the fBm. The following theorem then gives general estimates for
additive functionals of the fBm of the form

t
/ fu(B)du,

where f : [0, 1] x RY — R is a measurable and bounded function. Note that the following
theorem suggest in general that such functionals have the same Gaussian deviation behaviour of
Brownian martingales.

Theorem 4.3. Ler B = (BH-V) .. BH-D) pe g d-dimensional fractional Brownian motion
of Hurst parameter H € (0, 1) and let f be a function bounded by 1 and such that

o0
Cr:= sup/ | P2t fuloodt < 400,
u Jo

where P is the heat kernel on RY. Then for > 0 small enough independent of f we have

t 2
supE |:exp </,L / fL,(Bf)du /(|t - s|Cf)>:| < 4o00.
t#s s

Proof. The fBm B can be represented as a stochastic integral over a d-dimensional standard
Brownian motion W = (WM, ..., W@) defined on the whole R (with Wy = 0):

u
B® =f (K (u, 1) — K0, r)dw,
—0oQ

where K(u,r) = (u — r)f_l/z/F(H + 1/2). Let (Z;),cRr be the natural filtration of (W;),cR.

For v < u we have the decomposition

u
B =/ (K(u,r) — K0, r)dw®
—00

u v
= / K (u, rydw® +/ (K (u,r) — K(0, r)dw®
v —0oQ
1,G 2,3
= WED £ W2,
where thq random variable Wull(,’) is independent of F, and Wi’y) is F, measurable. We
define W/ = (W7, W/@D) for j e (1,2} and in the following we will note abusively
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Var(W/) = Var(W/(D). Now there is two cases we have to consider. Suppose first that
t —s/Cy < 1. Then
! H 2
/ Ju(B,)du| < |t —s|” < [t —s|Cy
N

and the result follows in that case. Suppose now that |t — s|C 1> 1.LetN e Ntobe specify
later. Forn € {0, ..., N}, letus define ¢, = s 4+ (t — s)n/N and

t t
Zs =E[/ fu<Bf>du|fan] —E[/ fuwj’)dum,]

Thanks to the previous decomposition of the fractional Brownian motion, we are able to bound
Z, and to apply Hoeffding lemma to the sum of the martingale increments (Z,)i<,<n. Let

Sy =Y N Z,, then

t t
/ fu(B:’)du=SN+E[ / fu(Bdu

fs] . (14)

Let us first estimate the conditional expectation in Eq. (14): for all # > 0 we have

'E[/l fu(BHEYdu ]-"s}

since Var(Wul’s) = C(u — 5)*". But we also have the trivial bound

t
E [ / fu(B)du fs}

t
‘E[/ fu(BHydu ]—'S]

Next we bound Z,, by decomposing it into three pieces which are easier to estimate. We have

t
= ‘/ PVar(Wl}'S)fu(Wuz,s)du
N

t
S f |PVar(Wul§)fu|oodu <Cr < +o0
s R

<t =l

Hence

<t —s|'2cy? (15)

! t
U, = / ELfu (B, ldu = / ELA (W), + W2, )\F, Jdu
In

In

t
2
:/t‘ PVar(WulJn)f”(W“v’n)du
t

Int1
2 2
= [ PVar(Wul_,n)f“(Wan)du + / PVar(W;_t”)fu(Wan)du'

1
Hence

Iyl H
Zy = fu(Bu Ydu + Uy — Uy,
I3

n

moreover

t t
Ul </t |PVar(WulJn)f"‘(Wuz,ln”du </t |PVar(WLj_,n)f”|°°d” SCp <+00
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and of course |ff”+l fu(BH)du| < (t — 5)/N, which implies that |Z,| < (t — s)/N + Cy. By
the standard Hoeffding inequality we obtain

P(ISn| > 2) S exp(—=222/((t — )N~ V2 4 N12Cp)?).
Hence for 0 < v < 1, we have
Elexp2v|Sy|*/((t — s)N™V2 + N'2C M1 Sv/(l—v) + 1

Now, we can choose N = [1 + |t — 5|/ Cy], hence

((t —s)NTV2 L NV2Cp) < e —s|Cy,
and thanks to (15) we have

¢ 2
E[exp(,u/fu(BuH)du /(|r—s|cf))

S Elexp(CulSn*/(t = s|IC)IS, 1. O

As an immediate corollary we have the wanted result for the p-irregularity constant for the
fractional Brownian motion.

Corollary 4.4. For A small enough,
Eexp(t(1 + D782 (€)12/1 — s) < € < +o0
uniformly in &, t, s.
Proof. When & < 1, we have
exp(h(1+ [EDVH 02 (€)12/If = s]) < exp(:2V/H).
For |£] > 1, we have (1 + [&])'/# < ||1/H But we also have
|Pan f(x)| = |E[exp(i&(x + B))1| = exp(—|£|**H /2),
therefore |§|~'/# < Cy, < |&17"/H  Finally there exists a constant C > 0 such that
Eexp(h(1+ 6D/ 182" €)/It — s) < Eexp(CAlE, €)%/t —sICp.)

and for A small enough, thanks to Theorem 4.3 the right hand side is bounded by a constant
independent of £, s,7..

We are now in condition to prove Theorem 1.4 (p-irregularity of the fBm paths for all
p < 1/2H).

Proof of Theorem 1.4. By Lemma 3.4 we have

H H

y 1087 (&) — oB7 (&)
|85 lyppr = sup  sup (1 + |E[)P— s
! geRd 0<s<1<1 ls —t|”

< 1+ log P (@H1B I Ko (1)),
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Moreover by Theorem 4.1 the quantity ¢*18 %

readily have that

is almost surely finite and by Corollary 4.4 we

H
E[K £ ()] < +00

as soon as A is small enough. [J

Remark 4.5. A byproduct of the proof of Theorem 1.4 is that the irregularity constant
I oB" ||W{w is exponentially square integrable, as easily shown: for small A > O and all y > 1/2
and p < 1/2H we have

AMeYI2
E |:e W{)y:| < +o0.

When we consider the spaces ¢’ instead of .7 L* the p-irregularity of the fractional Brownian
path is not enough. Nevertheless Theorem 4.3 allows us to give the correct bound for TB" A f
in order to define 78" f forany f € €.

Corollary 4.6. Let B be a d-dimensional fractional Brownian motion of Hurst parameter
H € (0, 1). There exists . > 0 such that for f € C([0, T1; 8'(R%)), alli > —1

sup  E[exp( 2/ 71T (A; £) () 12/t — 5111 4; fI2Z )] < +o0.

xeR9,i>—1,s#t

Proof. The function g, = A; fu/llA; f lo is bounded by 1. Furthermore, for i > 0, suppg, C
2' A where A is an annulus. Hence by the Lemma 2.4 page 54 of [3], there exists a constant ¢ > 0
independent of g such that
1P gulloo S exp(—ct®H2%),
hence C, < 27i/H and the result follows immediately by applying Theorem 4.3 to g.
When i = —1, we have

2
< 2VH e — s 1AZ £11%

t
[ At

and the result follows. [

The result is exactly the needed hypothesis of Theorem 3.7, but also Propositions 3.9 and 3.10,
depending on the regularity of f. Hence, the averaging operator TBH, or its finite dimensional
marginals depending of the space, is well defined and has the right range for applying results
of Section 2. This operator is defined almost surely, hence, almost surely (depending of b when
b € €*) the following equation has a solution

t BH
6, = B + / 75" b(6,),
0

when b € %“. The existence of such a solution is guaranteed by Theorem 2.9. Furthermore,
when b € €2, a > —1/2H (or €*T7T!) there is uniqueness and the flow is Lipschitz-
continuous, thanks to Corollary 2.18. As the set where T%b is not defined does not depend
on b when b € .Z L%, those results does not depend on b. The uniqueness for b € €**! or
b € ZL**! is a more probabilistic argument and is the subject of the following section.
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Remark 4.7. If the regularity of b is not enough to guarantee uniqueness by the above arguments
the solution constructed via Theorem 2.9 lacks, a priori, measurability with respect to BH . If a
measurable solution is needed the fix-point argument of Theorem 2.9 has to be repeated in a
space of random processes, for example in L?(£2, €7 ([0, 1]; RY)).

4.2. Averaging for absolutely continuous perturbations of the fBm

In this section, we analyse the properties of the averaging operator along a path of the form
BH 40" where 6" is a solution to the approximate equation df” = lef,Hb" (6™). In order to do so
we will use a version of the Girsanov theorem for fractional Brownian motion. The results holds
of course for both types of functions spaces ¥**! and .7 L**!. We will only give the proof for
b € €**!, and give some comments for the case .# L*T!. Let (b"),>1 be a sequence of smooth
vector fields such that ||0" ||, < C uniformly in n > 1. By a standard fixed point argument, it is
well known that the following equation

t
X" = xo+ / b"(X"ds + B} (16)
0

has an adapted solution X” (to the standard filtration of the fractional Brownian motion).

Here we analyse the averaging constant of X, and we prove that it satisfy the requirements
of Theorem 2.17 implying uniqueness of the limit ODE for b € ¥**! and convergence of X"
to this unique solution. Furthermore, if we consider, as in Section 2.2.1, the averaged translation
by 0" = X" — B, we only have to check the hypothesis of Theorem 2.17. Indeed, if @ is the
solution of

t
H
o, :90+/ T2 b(6y)
0
and 6" is the solution of
! H
or =90+/ TE" b 61,
0

then 0" + B! = X" and by the averaged translation by 6", as Tyn 78"p = TX1p. Then 6 — 6"
is the solution of the following Young equation

t t
© — 6™, :/0 Tqunb(eu—Q;’)—f—/o T2 b (om).

These considerations are the motivation to introduce the comparison principle based on averaged
translations in the proof of uniqueness in Section 2.2.

Below we will take advantage of the absolute continuity of the law of X" w.r.t. the law of the
fractional Brownian motion B to transfer the averaging properties of the fractional Brownian
motion to the stochastic process X”. This approach is an extension of an observation of Davie [7]
to the fractional Brownian motion’s context.

A drawback of this approach is that the exceptional set will necessarily depend on the initial
point xo and on the vector field b. This prevents us from easily applying the uniqueness result to
the case of random b and to the analysis of the flow of the ODE.

The computation of the Radon—Nikodym derivative between the law of X" and the law of B
will result in a Girsanov transform. For technical reasons we will do this transformation only on
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a subinterval [0, Tg;-] C [0, 1]. For b" regular enough, and as X" is regular enough, according to
Nualart and Ouknine [18], there exist a Brownian motion W adapted to the filtration associated
with BH and a probability [P, such that the process (X7})¢[0,7g;,] is a fractional Brownian motion
of Hurst parameter H, where

dpP TGir 1 rTeir
" —exp(-— H" . dW, — = |H">dt ),
t 2 t
0 0

dP
wherefoer%
H-1 t A_Hn n L Hin n
tH—2 1 27N (X)) — 527 hN(X
H' = —— tl‘ZHb”(r,X?H(H——)/ A°7 N ; s X5 s
r %—H) 2) Jo (t —s)H+2

and for H < %

tHf% ! 1
H' = / (s(t — )2 Hb"(X")ds.
L_ H) 0

r (2

. H .
Thanks to that Girsanov transform, the almost sure bound for TbB can be used to estimate TbX”
since P, and P are equivalent.

Lemma4.8. Let 0 > o > —1/2H. There exist a constant A > 0 and a constant C)_independent
of n such that for allb € €H—¢ ([O, 11; ‘5“*1) N+l (Rd, ¢H-1/2+¢ (|0, T])),

E[K 4 1o (] < Cy.
Until the end of the section, we will only consider K lf 120 For simplicity we only write it as
X
K.
Proof. Let K > 0. By using the notation above, we have
e 7?
dpP,

dP \?
< Ep, [K)" (M)?]Ep, [( 5 ) }

T T
< E[K2" (20)]Es, [exp (2 f H'dW, + / Hl”dt>:|
0 0

where we have used that under P,, X" is a fractional Brownian motion of same Hurst parameter
H. If p is small enough the first term is finite by the above results. To prove the lemma, it is
sufficient to prove that

T T
Ep, [exp (z f H'dW,; + / |H,"|2dt)]
0 0

is bounded by a constant independent of n. As W is a Brownian motion, it is enough to bound

Ep, [exp (/OT |H[’|2dt>:| .

E[K;"(M)]? = Ep, [K;(" )
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The arguments are quite different depending whether H > 1/2 or H < 1/2. First suppose that
H<3i
3

2

|th|2 = KITII (/b;‘(X;’)ds) ()
0

tHf% ! 1 ’
= —/ (s(t — )2 Hp"(X")ds
H) 0

r(

_(i_ g tH—% s
- (1) ft(su _s))‘(“H)(t—Zs)f by (X,)du ds
0 \0_\,_.1

(TX"b™)(0)

8l —

t
< tZH/ (s(t — 5)) "2 25| |(TX" ) (0)*ds
0
t
< B 12 (1 + log 2 (K7 (1)) 262 / (s(¢ — )02 251577 ds
0

1
S B2 (1 4 log (K" (3))) 2= H) /0 (1 —w) "2 — 2ulu? ds
< Cb, H,y, M)(1 +log (K™ (1))

Hence,

T
Ep, [CXP (/ Ithl2df>] < E]P’,,[KZ(" (CM]
0
< BIKE" (cn).

For A small enough, this quantity is bounded, and the lemma is proved in this case.

For H > %, b" is (1 4+ «)-Holder continuous and [|5"|lge+1 S ||Dllge+i. Furthermore,
[("(0, 0)),| is uniformly bounded, then

t J1)2—Hpn yny _ J1/2—Hpn yn
% 2 ) — sV d)\

(t — S)H—H/Z

tH—1/2 <t1_2an(t, X;Z) +/
0
S EHE D g + 16" O o) (IXE — X317 + 1)

t
+tH_l/2/ (t _ S)_(H+1/2)|(t1/2_H _ sl/z—H)(b;l(X;l) +b?(X;l))|dS
0

t
+ 112 / [(t — ) HFYD V270 o 12=Hy (pr(x™y — b (X™))|ds.
0
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The first term is bounded by (/6" [l« + 16" (0)lloc) (IX™ || 5% + D¢'/>~H and is integrable. The
second is bounded by

172 -/tds(t _ )~ HHD 121 _ (12
0
x (|bf (X]) = b" (¢, 0)] + |5 (XY) — b} (0)] + 2[15.(0) [|o0)
'
< tH71/2+17H7]/2+1/27H/ (1 — w)y~H=12(] — 1/2=H)y
0

X (16" lo 4 15" 0) o) 1 X" 1%
S 1TH D o+ 18" O o) IX" 1%L + 1)

~5X(

F 1B (X =1 246t — s| 7712,

The third term is bounded by
t
=3 /
0

_1

S UL e + 1BC, Ol =1 /24) NX" 1 + D 2

t 1
y / (t — S)—(H+§)s%—H <|t _ SlH—%-ﬁ-a T+t — Sl(a+1)(H—s)) ds
0

S U0 e + 10" O | H—1/24¢ + 167 (O)][o0)

(¢ — s TP b= o ey — (x| + 167 (X = B (XD s

1
x (IX" I + l)tE/ (1 — )y~ 1+ey~H¥12g,,
0

Finally, we choose b" such that (||6" |l 4+ |67 (0) || z7—1/2+¢ + 167 (0)|loc) Sy 1, hence
|H'| S Cog (IX" 12 + Dt

Under P,, X" is a fractional Brownian motion of Hurst parameter H. Thanks to Fernique

theorem, || X"|| };“" is exponentially integrable in P, and the result follows. [

—&

This bound in L' is not enough to use Theorem 2.17, as we need an almost surely, uniformly
in n, bound for ||TX”b||<5y. 1.y . Nevertheless, by using the results of Section 3.2.3, we already
know that

exp (CITY Bllgrav) S 1+ KX (0.
‘We have all the tools to prove the following theorem

Theorem 4.9. Assume that b € €*t'. There then there exists & > 0 and sequence of smooth
vector fields (b™), such that b* — b in €% for all &' < o and almost surely

Xn
K, "6 — b"lor+1 — O,
which implies uniqueness of the Young equation for b by Theorem 2.17.

Proof. By the previous result we have that the L' norm of K 2( "(A) is uniformly bounded in n.
Moreover consider 5" such that b" = p, xb where p,, (x) = %nd exp(—n|x|). Then " is smooth,
b" — bin €11 forall o/ < « by the dominated convergence theorem and there exists a
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subsequence which will still denote with b" such that ||b — b" |71 < n~2. On this subsequence
(which depends on b) consider the random variable

D=3 Ky Wb —b"llas1.

n>1
Then
ED =Y E[K)" Wb —b"lwp1 Y 0251,
n>1 n>1

so that almost surely D < oo which implies that K;(" M = b"|gry1 — 0. O

Note that this argument give an exceptional set of zero measure which a priori depends on b
(and on the sequence (b"),) and of xg. As remarked previously, this fact prevents straightforward
extension of the uniqueness results in 4’* to random b. Furthermore, it also prevent to consider
the regularity of the flow of the equation by pathwise methods.
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