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Existence and estimates of moments for Lévy-type processes

Franziska Kühn∗

Abstract

In this paper, we establish the existence of moments and moment estimates for Lévy-type

processes. We discuss whether the existence of moments is a time dependent distributional

property, give sufficient conditions for the existence of moments and prove estimates of frac-

tional moments. Our results apply in particular to SDEs and stable-like processes.

Keywords: Lévy-type processes, existence of moments, generalized moments, fractional mo-

ments.
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1 Introduction

For a Lévy process (Xt)t≥0 and a submultiplicative function f ≥ 0 it is known

(i) . . . that the existence of the generalized moment Ef(Xt) does not depend on time, i. e.

Ef(Xt0) < ∞ for some t0 > 0 implies Ef(Xt) < ∞ for all t ≥ 0, see e. g. [15, Theorem

25.18].

(ii) . . . that the existence of moments be characterized in terms of the Lévy triplet, see e. g.

[15, Theorem 25.3].

(iii) . . . what the small-time asymptotics of fractional moments E(∣Xt∣α), α > 0, looks like, cf.

[5] and [12].

The first two problems are of fundamental interest; the asymptotics of fractional moments has

turned out to be of importance in various parts of probability theory, e. g. to obtain Harnack

inequalities [5] or to prove the existence of densities for solutions of stochastic differential

equations [7]. Up to now, there is very little known about the answers for the larger class of

Lévy-type processes which includes, in particular, stable-like processes, affine processes and

solutions of (Lévy-driven) stochastic differential equations. The aim of this work is to extend

results which are known for Lévy processes from the Lévy case to Lévy-type processes.

In the last years, heat kernel estimates for Lévy(-type) processes have attracted a lot of

attention. Let us point out that the results obtained here have several applications in this

area. In a future work, we will show that any rich Lévy-type process (Xt)t≥0 with triplet

(b(x),Q(x),N(x, dy)) satisfies the integrated heat kernel estimate

Px(∣Xt − x∣ ≥ R)
t

t→0ÐÐ→ N(x,{y ∈ Rd; ∣y∣ ≥ R}) (1)

for all R > 0 such that N(x,{y ∈ Rd; ∣y∣ = R}) = 0. Combining this with the statements from

Section 4 gives the small-time asymptotics of t−1Exf(Xt) for a large class of functions f ;

the functions need not to be bounded or differentiable. The corresponding results for Lévy

processes have been discussed by Jacod [10] and Figueroa-López [6]. As suggested in [6],

∗Institut für Mathematische Stochastik, Fachrichtung Mathematik, Technische Universität Dresden, 01062 Dres-

den, Germany, franziska.kuehn1@tu-dresden.de

1

*Manuscript



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

this gives the possibility to extend the generator of the process to a larger class of functions.

Moreover, following a similar approach as Fournier and Printems [7], the estimates of the

fractional moments show the existence of (L2-)densities for Lévy-type processes with Hölder-

continuous symbols.

The structure of this paper is as follows. In Section 2, we introduce basic definitions and

notation. The problems mentioned above will be answered in Sections 3–5; starting with the

question whether the existence of moments is a time dependent distributional property in

Section 3, we give sufficient conditions for the existence of moments in Section 4 and finally

present estimates of fractional moments in Section 5. In each of these sections, we give a brief

overview on known results, state some generalizations and illustrate them with examples.

2 Basic definitions and notation

Let (Ω,A,P) be a probability space. For a random variable X on (Ω,A,P) we denote by

PX the distribution of X with respect to P. We say that two functions f, g ∶ Rd → R are

comparable and write f ≍ g if there exists a constant c > 0 such that c−1f(x) ≤ g(x) ≤ cf(x)
for all x ∈ Rd. Moreover, we denote by Bb(Rd) the space of all bounded Borel-measurable

functions u ∶ Rd → R and by C2
c (Rd) the space of functions with compact support which are

twice continuously differentiable. For x ∈ Rd and r > 0 we set B(x, r) ∶= {y ∈ Rd; ∣y−x∣ < r} and

B[y, r] ∶= {y ∈ Rd; ∣y−x∣ ≤ r}. The j-th unit vector in Rd is denoted by ej and x ⋅y = ∑nj=1 xjyj

is the Euclidean scalar product. For a function u ∶ Rd → R we denote by ∂kxju(x) the k-th

order partial derivative with respect to xj . The Fourier transform of an integrable function

u ∶ Rd → R is defined as

û(ξ) ∶= 1

(2π)d ∫Rd e
−i x⋅ξu(x)dx, ξ ∈ Rd.

We call a stochastic process (Lt)t≥0 a (d-dimensional) Lévy process if L0 = 0 almost surely,

(Lt)t≥0 has stationary and independent increments for all s ≤ t and t ↦ Lt(ω) is càdlàg for

almost all ω ∈ Ω. It is well-known, cf. [15], that (Lt)t≥0 can be uniquely characterized via its

characteristic exponent,

ψ(ξ) = −i b ⋅ ξ + 1

2
ξ ⋅Qξ + ∫

Rd/{0}
(1 − ei y⋅ξ + i y ⋅ ξ1(0,1](∣y∣)) ν(dy), ξ ∈ Rd;

here, b ∈ Rd, Q ∈ Rd×d is a symmetric positive semidefinite matrix and ν is a measure on

(Rd/{0},B(Rd/{0})) such that ∫Rd/{0}(∣y∣
2 ∧1) ν(dy) < ∞. The triplet (b,Q, ν) is called Lévy

triplet. Our standard reference for Lévy processes is the monograph by Sato [15]. A stochastic

process (Xt)t≥0 is said to be a (rich) Lévy-type process (or (rich) Feller process) if (Xt)t≥0 is

a Markov process whose associated semigroup is Feller on the space of continuous functions

vanishing at infinity and the domain of the generator contains the compactly supported smooth

functions C∞
c (Rd); for further details we refer the reader to [3]. A theorem due to Courrège

and Waldenfels, cf. [3, Corollary 2.23], states that the generator A restricted to C∞
c (Rd) is a

pseudo-differential operator of the form

Au(x) = −∫
Rd
ei x⋅ξq(x, ξ)û(ξ)dξ, u ∈ C∞

c (Rd),

where

q(x, ξ) = q(x,0) − i b(x) ⋅ ξ + 1

2
ξ ⋅Q(x)ξ + ∫

Rd
(1 − ei y⋅ξ + i yξ1(0,1](∣y∣)))N(x, dy) (2)

is the symbol. For each fixed x ∈ Rd, (b(x),Q(x),N(x, dy)) is a Lévy triplet. Throughout this

work, we will assume that q(x,0) = 0. Using well-known results from Fourier analysis, it is

not difficult to see that

Lu(x) = b(x)⋅∇u(x)+ 1

2
div(Q(x)∇u(x))+∫

Rd/{0}
(u(x+y)−u(x)−∇u(x)⋅y1(0,1)(∣y∣)) ν(x, dy)

2
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for any u ∈ C∞
c (Rd), see e. g. [3, Theorem 2.21]. We write (Xt)t≥0 ∼ (b(x),Q(x),N(x, dy)) to

indicate that (Xt)t≥0 is a Lévy-type process with triplet (b(x),Q(x),N(x, dy)). The symbol

of a Lévy-type process is locally bounded, cf. [3, Theorem 2.27(d)]. A Lévy-type process has

bounded coefficients if ∣q(x, ξ)∣ ≤ C(1 + ∣ξ∣2) for some constant C > 0 which does not depend

on x ∈ Rd. By [18, Lemma 6.2], the following statements are equivalent for any compact set

K ⊆ Rd:

(i) supx∈K sup∣ξ∣≤1 ∣q(x, ξ)∣ < ∞,

(ii) supx∈K ∣q(x, ξ)∣ ≤ CK(1 + ∣ξ∣2) for all ξ ∈ Rd,

(iii) supx∈K(∣b(x)∣+∣Q(x)∣+∫Rd/{0}(∣y∣
2∧1)N(x, dy)) < ∞; here ∣ ⋅ ∣ denotes an arbitrary vector

norm and matrix norm, respectively.

If (Xt)t≥0 has bounded coefficients, then the statements are also equivalent for K = Rd. We

will use the following result frequently; it is compiled from [4, Theorem 3.13]. We remind the

reader that a Cauchy process is a Lévy process with characteristic exponent ψ(ξ) = ∣ξ∣.

2.1 Theorem Let (Xt)t≥0 be a Lévy-type process with triplet (b(x),Q(x),N(x, dy)). There

exist a Markov extension (Ω○,A○,F○
t ,P

○,x), a Brownian motion (W ○
t )t≥0 and a Cauchy process

(L○t)t≥0 with jump measure N○ on (Ω○,A○,F○
t ,P

○,x) such that

Xt −X0 =X1
t +X2

t

with

X1
t ∶= ∫

t

0
b(Xs−)ds + ∫

t

0
σ(Xs−)dW ○

s + ∫
t

0
∫∣k∣≤1

k(Xs−, z) (N○(dz, ds) − ν○(dz)ds)

X2
t ∶= ∫

t

0
∫∣k∣>1

k(Xs−, z)N○(dz, ds)

for measurable functions σ ∶ Rd → Rd×d and k ∶ Rd × (R/{0}) → Rd satisfying

N(x,B) = ∫
R/{0}

1B(k(x, z)) ν○(dz), B ∈ B(Rd/{0}), x ∈ Rd, (3)

and Q(x) = σ(x)σ(x)T ; here ν○(dz) = (2π)−1z−2 dz denotes the Lévy measure of a (one-

dimensional) Cauchy process.

3 Existence of moments - time independence

In this section we adress the question whether the existence of moments is a time dependent

distributional property in the class of Lévy-type processes. Given a Lévy-type process (Xt)t≥0

and a measurable function f ∶ Rd → [0,∞), then under which additional assumptions on

(Xt)t≥0 and f does the equivalence

Exf(Xt) < ∞ for some t > 0 ⇐⇒ Exf(Xt) < ∞ for all t > 0 (4)

hold true? It is well-known that (4) holds for any Lévy process (Xt)t≥0 if f is a locally bounded

function which is submultiplicative (i. e. there exists c > 0 such that f(x + y) ≤ cf(x)f(y) for

all x, y ∈ Rd), see [15, Theorem 25.3]. Analogous results for Lévy-type processes seem to be

unknown. First we discuss whether moments exist backward in time, i. e. whether

Exf(Xt) < ∞ for some t > 0 ⇐⇒ Exf(Xs) < ∞ for all s ≤ t. (5)

The following theorem is the main result of this section.

3.1 Theorem Let (Xt)t≥0 be a Lévy-type process with bounded coefficients and f ∶ Rd → (0,∞)
measurable.

3
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(i) Suppose there exists a bounded measurable function g ∶ Rd → [0,∞), such that inf ∣y∣≤r g(y) >
0 for r > 0 sufficiently small and

inf
y∈Rd

f(z + y)
f(y) ≥ g(z) (6)

for all z ∈ Rd. Then

E
xf(Xt) < ∞ ⇐⇒ sup

s≤t
E
xf(Xs) < ∞. (7)

(ii) (6), hence (7), holds if one of the following conditions is satisfied.

(a) f is submultiplicative and locally bounded.

(b) log f is Hölder continuous.

(c) f is Hölder continuous and infx∈Rd f(x) > 0.

(d) f is differentiable, infx∈Rd f(x) > 0 and supx∈Rd
∣∇f(x)∣
f(x) < ∞.

For the proof of Theorem 3.1 we need two auxiliary results.

3.2 Lemma (Maximal inequality) Let (Xt)t≥0 be a Lévy-type process with symbol q and denote

by τxr ∶= inf{t > 0;Xt ∉ B(x, r)} the exit time from the open ball B(x, r) = {y ∈ Rd; ∣y − x∣ < r}.

Then there exists C > 0 such that

P
x (sup

s≤σ
∣Xs − x∣ ≥ r) ≤ CEx

⎛
⎝∫[0,σ∧τxr )

sup
∣ξ∣≤r−1

∣q(Xs, ξ)∣ds
⎞
⎠

(8)

for all stopping times σ and r > 0. In particular,

P
x (sup

s≤σ
∣Xs − x∣ ≥ r) ≤ CEx(σ) sup

∣y−x∣≤r
sup

∣ξ∣≤r−1
∣q(y, ξ)∣. (9)

Let us remark that (9) is already known for σ ∶= t, see [3, Theorem 5.1] for a proof.

Proof. By the truncation inequality, see e. g. [14, (Proof of) Lemma 1.6.2], we have

P
x (sup

s≤σ
∣Xs − x∣ ≥ r) ≤ Px(∣Xσ∧τxr − x∣ ≥ r) ≤ 7rd ∫[−r−1,r−1]d

Re(1 −Exei ξ(Xσ∧τxr −x))dξ.

An application of Dynkin’s formula yields

P
x (sup

s≤t
∣Xs − x∣ ≥ r) = 7rd ∫[−r−1,r−1]d

ReEx (∫[0,σ∧τxr )
q(Xs, ξ)ei ξ(Xs−x) ds) dξ.

Now (8) follows from the triangle inequality and Fubini’s theorem; (9) is a direct consequence

of (8).

3.3 Lemma Let (Xt)t≥0 be a Lévy-type process with bounded coefficients and g ∈ Bb(Rd),

g ≥ 0, such that infy∈B[0,r] g(y) > 0 for r > 0 sufficiently small. Then

∃α > 0, δ > 0 ∀x ∈ Rd, t ∈ (0, δ] ∶ E
xg(Xt − x) ≥ α.

Proof. Denote by τxr ∶= inf{t > 0;Xt ∉ B(x, r)} the exit time from B(x, r). Obviously,

E
xg(Xt − x) = Ex(g(Xt − x)1{τxr >t} + g(Xt − x)1{τxr ≤t})

≥ inf
∣y−x∣≤r

g(y − x)(1 −Px(τxr ≤ t)) − ∥g∥∞Px(τxr ≤ t)

≥ inf
∣y∣≤r

g(y) − 2∥g∥∞Px(τxr ≤ t).

By the maximal inequality and boundedness of the coefficients of the symbol, we have

sup
x∈Rd

P
x(τxr ≤ t) ≤ Ct(1 + 1

r2
)

for some constant C > 0 which does not depend on t, r. The claim follows by choosing r > 0

and δ > 0 sufficiently small.

4



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Proof of Theorem 3.1. (i) Obviously, it suffices to prove “⇒”. By Lemma 3.3, there exist

δ > 0, α ∈ (0,1) such that Eyg(Xr −y) ≥ α for all y ∈ Rd and r ∈ (0, δ]. Using the Markov

property, we get

E
xf(Xt) = Ex (EXsf(Xt−s))

= ∫
Ω
∫
Rd

f((z − y) + y)
f(y) f(y)PyXt−s(dz)∣y=Xs dP

x

≥ ∫
Ω
∫
Rd
f(y)g(z − y)PyXt−s(dz)∣y=Xs dP

x

≥ αExf(Xs)

for all s ∈ [t − δ, t]. Iterating this procedure gives Exf(Xt) ≥ αnExf(Xs) for any s ∈
[t − nδ, t]. Choosing n ∈N sufficiently large proves sups≤tE

xf(Xs) ≤ α−nExf(Xt).
(ii) We have to check that there exists a suitable function g satisfying (6).

(a) Since f(y) ≤ cf(y + z)f(−z), we have

inf
y∈Rd

f(z + y)
f(y) ≥ 1

c

1

f(−z) ≥ min{1,
1

c

1

f(−z)} =∶ g(z), z ∈ Rd.

Moreover, as f is locally bounded, infy∈B[0,r] g(y) > 0 for r sufficiently small.

(b) ∣ log f(z) − log f(y)∣ ≤ c∣z − y∣γ implies

f(z + y)
f(y) = exp (log f(z + y) − log f(y)) ≥ exp (−c∣z∣γ) =∶ g(z), z ∈ Rd.

(c) As f > c > 0, Hölder continuity of f implies Hölder continuity of log f , and the claim

follows from (b).

(d) We have

f(z + y) = f(y) + ∇f(y) ⋅ z + ∣z∣ϕ(z), z ∈ Rd,
for some function ϕ satisfying limz→0 ϕ(z) = 0. By the Cauchy-Schwarz inequality,

f(z + y)
f(y) ≥ min{1,1 − sup

x∈Rd
∣∇f(x)∣
f(x) ∣z∣ − 1

infx∈Rd f(x)
∣z∣ ∣ϕ(z)∣} =∶ g(z).

The proof of Theorem 3.1 actually shows that, under the assumptions of Theorem 3.1(i),

sup
x∈K

E
xf(Xt − x) < ∞ Ô⇒ sup

x∈K
sup
s≤t
E
xf(Xs − x) < ∞

for any set K ⊆ Rd. Next we show that the moments also exist forward in time provided that

Exf(Xt − x) is bounded in x and f is submultiplicative.

3.4 Corollary Let (Xt)t≥0 be a Lévy-type process with bounded coefficients and f ∶ Rd →
(0,∞) a locally bounded measurable submultiplicative function. Then

∃t > 0 ∶ sup
x∈Rd

E
xf(Xt − x) < ∞ Ô⇒ ∀s ≥ 0 ∶ sup

r≤s
sup
x∈Rd

E
xf(Xr − x) < ∞.

Proof. Fix t > 0 such that supx∈Rd E
xf(Xt − x) < ∞. It follows from Theorem 3.1 that M1 ∶=

1 ∨ supx∈Rd sups≤tE
xf(Xs − x) < ∞. Using the Markov property and the submultiplicativity

of f , we find

E
xf(Xr − x) = Ex (Eyf(Xr−t − x)∣y=Xt) ≤ cE

x (Eyf(Xr−t − y)f(y − x)∣y=Xs) ≤ cM
2
1

for all r ∈ [t,2t] and x ∈ Rd. Hence, M2 ∶= 1 ∨ supr≤2t supx∈Rd E
xf(Xr − x) < ∞. By iteration,

we obtain Mk ∶= 1 ∨ supr≤kt supx∈Rd E
xf(Xr − x) < ∞ for all k ∈N and

sup
x∈Rd

sup
r≤(k+1)t

E
xf(Xr − x) ≤ cM2

k < ∞.

Remark If f is not submultiplicative, then Corollary 3.4 does, in general, not hold true. For

a counterexample in the Lévy case see e. g. [15, Remark 25.9].
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4 Existence of moments - sufficient conditions

In this part, we present sufficient conditions for the existence of moments for Lévy-type pro-

cesses. Let us recall the corresponding well-known result for Lévy processes (cf. [15, Theorem

25.3]): For a Lévy process (Xt)t≥0 with Lévy triplet (b,Q, ν), we have

E
xf(Xt) < ∞ for some (all) t > 0 ⇐⇒ ∫∣y∣≥1

f(y) ν(dy) < ∞

for any locally bounded measurable submultiplicative function f ∶ Rd → (0,∞). In [3, Theorem

5.11] it was observed that for f(y) ∶= exp(ζy), ζ ∈ Rd, the implication

sup
x∈Rd
∫∣y∣≥1

f(y)N(x, dy) < ∞ Ô⇒ ∀x ∈ Rd, t ≥ 0 ∶ Exf(Xt) < ∞ (10)

still holds true for any Lévy-type process (Xt)t≥0 with bounded coefficients. In Theorem 4.1

we extend this result and show (10) for any function f ≥ 0 which is comparable to a submul-

tiplicative C2-function. In the second part of this section, we discuss the connection between

differentiability of the symbol and existence of moments.

4.1 Theorem Let (Xt)t≥0 ∼ (b(x),Q(x),N(x, dy)) be a Lévy type process and K ⊆ Rd a

compact set. Let f ∶ Rd → [0,∞) be a measurable function and g ∈ C2 submultiplicative such

that g ≥ 0 and f ≍ g. Then for any t > 0

sup
x∈K
∫∣y∣≥1

f(y)N(x, dy) < ∞ Ô⇒ sup
s≤t

sup
x∈K

E
xf(Xs∧τK − x) < ∞

and

E
xf(Xt∧τK ) ≤ Cf(x) exp (C(M1 +M2)t) (11)

where τK ∶= inf{t > 0;Xt ∉ K} denotes the exit time from the set K, C = C(K) > 0 is a

constant (which does not depend on (Xt)t≥0 and t) and

M1 ∶= sup
x∈K

(∣b(x)∣ + ∣Q(x)∣ + ∫
Rd/{0}

(∣y∣2 ∧ 1)N(x, dy)) < ∞ M2 ∶= sup
x∈K
∫∣y∣≥1

f(y)N(x, dy) < ∞.

If (Xt)t≥0 has bounded coefficients, then the claim holds for K = Rd.

Proof. To keep notation simple, we only give the proof for d = 1. We can assume without loss

of generality that f ∈ C2 is submultiplicative (otherwise replace f by g). Let (Ω○,A○,F○
t ,P

○,x),
(W ○

t )t≥0, (L○t)t≥0, N○ and k, σ be as in Theorem 2.1. For fixed R > 0 define an F○
t -stopping

time by

τxR ∶= inf{t > 0; max{∣X1
t ∣, ∣X2

t ∣} ≥ R}

and set τ ∶= τK ∧ τxR. By the submultiplicativity of f , we have

f(Xt −X0) = f(X1
t +X2

t ) ≤ cf(X1
t )f(X2

t )

for some constant c > 0. Since a submultiplicative function growths at most exponentially, cf.

[15, Lemma 25.5], there exist constants a, b > 0 such that

f(Xt −X0) ≤ a exp (b(
√

(X1
t )2 + 1 − 1)) f(X2

t ) =∶ h(X1
t )f(X2

t ).

Moreover, a straightforward calculation shows

∣h′(x)∣ + ∣h′′(x)∣ ≤ C1h(x), x ∈ R, (12)
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for some constant C1 > 0. By Itô’s formula and optional stopping,

E
○,x(h(X1

t∧τ)f(X2
t∧τ)) − af(0)

= E○,x (∫[0,t∧τ)
h′(X1

s−)f(X2
s−)b(Xs−)ds) +

1

2
E
○,x (∫[0,t∧τ)

h′′(X1
s−)f(X2

s−)σ2(Xs−)ds)

+E○,x (∫[0,t∧τ) ∫∣k∣≤1
f(X2

s−)(h(X1
s− + k(Xs−, y)) − h(X1

s−) − h′(X1
s−)k(Xs−, y)) ν○(dy)ds)

+E○,x (∫[0,t∧τ) ∫∣k∣>1
h(X1

s−)(f(X2
s− + k(Xs−, y)) − f(X2

s−)) ν○(dy)ds)

=∶ I1 + I2 + I3 + I4.

Recall that ν○ denotes the Lévy measure of the Cauchy process (L○t)t≥0. We estimate the

terms separately. By (12) and the definition of M1, it follows easily that

∣I1∣ + ∣I2∣ ≤ C1M1E
○,x (∫[0,t∧τ)

h(X1
s−)f(X2

s−)ds) .

For I4 we note that by the submultiplicativity of f and (3),

∣I4∣ ≤ cE○,x (∫[0,t∧τ)∫∣k∣>1
h(X1

s−)f(X2
s−)(1 + f(k(Xs−, y))) ν○(dy)ds)

≤ c(M1 +M2)E○,x (∫[0,t∧τ)
h(X1

s−)f(X2
s−)ds) .

It remains to estimate I3. By Taylor’s formula, we have

∣h(x + z) − h(x) − h′(x)z∣ ≤ 1

2
∣h′′(ξ)∣z2

for some intermediate value ξ = ξ(x, z) ∈ (x,x + z). Since there exists C2 > 0 such that

∣h′′(ξ)∣ ≤ C2h(x) for all ∣z∣ ≤ 1 and x ∈ R, we get

∣I3∣ ≤ C2M1E
○,x (∫[0,t∧τ)

h(X1
s−)f(X2

s−)ds) .

Combining all estimates shows that ϕ(t) ∶= E○,x(h(X1
t∧τ)f(X2

t∧τ)1{t<τ}) satisfies

ϕ(t) ≤ E○,x (h(X1
t∧τ)f(X2

t∧τ)) ≤ af(0) +C3 ∫
t

0
ϕ(s)ds

for some constant C3 = C3(M1,M2, f). Now it follows from Gronwall’s inequality, see e. g. [16,

Theorem A.43], that ϕ(t) ≤ af(0)eC3t. Finally, using Fatou’s lemma, we can let R → ∞ and

obtain

E
xf(Xt∧τK − x) ≤ E○,x(h(X1

t∧τK )f(X2
t∧τK )) ≤ af(0)eC3t.

This proves supx∈K sups≤tE
xf(Xs∧τK −x) < ∞; (11) follows from f(Xt) ≤ cf(Xt −x)f(x) and

the previous inequality.

Remark The proof of Theorem 4.1 shows that the statement holds true for any function f

such that there exist g1 ∈ C2 submultiplicative, g2 ∈ C2 subadditive, g1 ≥ 0, infx∈Rd g2(x) > 0

and f ≍ g ∶= g1 ⋅ g2.

4.2 Example (i) Let (Xt)t≥0 be a Lévy-type process with uniformly bounded jumps, i. e.

there exist R1,R2 > 0 such that suppN(x, ⋅) ⊆ {y ∈ Rd;R1 ≤ ∣y∣ ≤ R2} for all x ∈ Rd.
Then we have

sup
x∈Rd

sup
s≤t
E
xf(Xs − x) < ∞ for all t ≥ 0

for any measurable function f ≥ 0 which is comparable to a submultiplicative C2-function

(e. g. f(x) = ∣x∣α ∨ 1, α > 0, f(x) = exp(∣x∣β), β ∈ (0,1], f(x) = log(∣x∣ ∨ e), . . . )

7
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(ii) Let (Xt)t≥0 be a stable-like process, that is a Lévy-type process with symbol q(x, ξ) =
∣ξ∣α(x) for some function α ∶ Rd → (0,2); for the existence of such processes see [9]. If we

set αl ∶= infx∈Rd α(x), then, by Theorem 4.1,

sup
x∈Rd

sup
s≤t
E
x(∣Xs − x∣α) < ∞ for all α ∈ [0, αl).

Now we turn to the question whether regularity of the symbol is related to the existence of

moments. It is a classical result that for the characteristic function χ(ξ) ∶= Eei ξX of a random

variable X,

χ is 2n times differentiable at ξ = 0 ⇐⇒ E(X2n) < ∞

for all n ∈N. In particular for a Lévy process (Xt)t≥0 with characteristic exponent ψ it follows

easily from the Lévy-Khintchine formula that

ψ is 2n times differentiable at ξ = 0 Ô⇒ ∀t ≥ 0 ∶ E(∣Xt∣2n) < ∞.

Theorem 4.4 below shows that this result can be extended to Lévy-type processes. For the

proof we use the following statement which is of independent interest. To keep notation simple

we state the result only in dimension d = 1; it can be easily extended to higher dimensions by

considering qj(x, η) ∶= q(x, ηej), η ∈ R, for j ∈ {1, . . . , d}. Here, ej denotes the j-th unit vector

in Rd.

4.3 Lemma Let (q(x, ξ))x∈R be a family of negative definite functions with Lévy-Khintchine

representation (2) and assume that q(x,0) = 0 for all x ∈ R. Let n ∈N and K ⊆ R be a compact

set. Then the following statements are equivalent.

(i) q(x, ⋅) is 2n times differentiable for all x ∈K, ξ ∈ R and supx∈K supξ∈R ∣∂2n
ξ q(x, ξ)∣ < ∞.

(ii) q(x, ⋅) is 2n times differentiable at ξ = 0 for all x ∈K and supx∈K ∣∂2n
ξ q(x,0)∣ < ∞.

(iii) supx∈K ∫R/{0} y
2nN(x, dy) < ∞.

In this case,

∂k

∂ξk
q(x, ξ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−ib(x) +Q(x)ξ + i ∫R/{0}(1(0,1](∣y∣)) − ei yξ)yN(x, dy), k = 1,

Q(x) + ∫R/{0} y
2ei y ξN(x, dy), k = 2,

ik+2 ∫R/{0} y
kei yξN(x, dy), k ∈ {3, . . . ,2n}.

(13)

If q has bounded coefficients, then (i)-(iii) are equivalent for K = R.

Proof. Obviously, (i) ⇒ (ii), so it suffices to prove (ii) ⇒ (iii) ⇒ (i). We prove the claim by

induction.

n = 1: Suppose that (ii) holds true. Using the classical identities

1

2
= lim
y→0

1 − cos(y)
y2

and lim
h→0

φ(2h) − 2φ(0) + φ(−2h)
4h2

= φ′′(0) (14)

for φ twice differentiable at 0, we find by Fatou’s lemma

∫
R/{0}

y2N(x, dy) = 2∫
R/{0}

y2 lim
h→0

1 − cos(2hy)
(2hy)2

N(x, dy)

≤ lim inf
h→0

1

2h2 ∫
R
(1 − cos(2hy))N(x, dy)

= 2 lim inf
h→0

(q(x,2h) + q(x,−2h)
4h2

−Q(x))

= 2
∂2

∂ξ2
q(x,0) − 2Q(x).

Since Q is locally bounded, cf. [3, Theorem 2.27], (iii) follows. On the other hand, if (iii) holds,

then it is obvious from the Lévy-Khintchine representation that q(x, ⋅) is twice differentiable

and that (13) holds for k = 1,2.

8
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n − 1→ n: Suppose that (ii) holds for n ≥ 2. Then, by the induction hypothesis, we get as

in the first part of the proof

∫
R/{0}

y2nN(x, dy) ≤ lim inf
h→0

1

2h2 ∫
R/{0}

y2(n−1)(1 − cos(2hy))N(x, dy)

= 2(−1)n−1 lim inf
h→0

1

4h2
( ∂2n−2

∂ξ2n−2
q(x,2h) − 2

∂2n−2

∂ξ2n−2
q(x,0) + ∂2n−2

∂ξ2n−2
q(x,−2h))

= 2(−1)n−1 ∂
2n

∂ξ2n
q(x,0).

This shows (iii). If (iii) holds, then we can use again the Lévy-Khintchine representation to

conclude that q(x, ⋅) is 2n times differentiable, supx∈K supξ∈R ∣q(2n)(x, ξ)∣ < ∞ and that (13)

holds.

Using Lemma 4.3, we obtain the following statement.

4.4 Theorem Let (Xt)t≥0 = (X(1)
t , . . . ,X

(d)
t )t≥0 ∼ (b(x),Q(x),N(x, dy)) be a Lévy-type pro-

cess with symbol q and let K ⊆ Rd be compact. Suppose that R ∋ ξ ↦ qj(x, ξ) ∶= q(x, ξej) is 2n

times differentiable at ξ = 0 for all x ∈ Rd and

∣ ∂
k

∂ξk
qj(x,0)∣ ≤ ck(1 + ∣xj ∣k), k = 1, . . . ,2n, (15)

for some constants ck > 0. Then there exist C1,C2 > 0 such that

sup
x∈K

sup
s≤t
E
x((X(j)

s − xj)2n) ≤ C1te
C2t for all t ≥ 0.

Proof. We show the result only for d = 1; for d > 1 replace h by h ⋅ ej . Throughout this proof,

we denote by L the operator

Lf(x) ∶= b(x)f ′(x)+ 1

2
Q(x)f ′′(x)+∫

R/{0}
(f(x+y)−f(x)−f ′(x)y1(0,1)(∣y∣))N(x, dy), x ∈ R,

which is well-defined for any f ∈ C2
b (R). We remind the reader that any function f ∈ C2

c (R)
is contained in the domain of the generator A of (Xt)t≥0 and that Af = Lf .

We prove the claim by induction and start with n = 1. By Lemma 4.3, supx∈K ∫R/{0} y
2N(x, dy) <

∞. Set fh,x(z) ∶= ei (z−x)h − 1 for fixed h,x ∈ R. Using Taylor’s formula and the identity

Lfh,x(z)+Lf−h,x(z)
= −2h sin((z − x)h)b(z) − 2 cos(h(z − x))h2Q(z)

+ 2∫
R/{0}

(cos((z + y − x)h) − 1) − (cos((z − x)h) − 1) + yh1(0,1](∣y∣)) sin(h(z − x))N(z, dy),

it follows easily that sup∣h∣≤1(Lfh,x(z) + Lf−h,x(z))/h2 is locally bounded (in z). For fixed

R > 0 set τ ∶= τxR ∶= inf{t > 0;Xt ∉ B(x,R)} and ϕ(t) ∶= Ex(∣Xt∧τ − x∣21{t<τ}). By (14),

ϕ(t) ≤ Ex(∣Xt∧τ − x∣2) = 2∫
Ω
∣Xt∧τ − x∣2 lim

h→0

1 − cos(2h(Xt∧τ − x))
4h2(Xt∧τ − x)2

dP

≤ lim inf
h→0

1

4h2
(−Exei2h(Xt∧τ−x) + 2 −Exe−i2h(Xt∧τ−x)) .

Pick a cut-off function χ ∈ C2
c (R) such that 1B(0,1) ≤ χ ≤ 1B(0,2). Applying Dynkin’s formula

to the truncated functions y ↦ (−e−i2h(y−x) + 1)χ(y/n) ∈ C2
c (R) and y ↦ (−ei2h(y−x)+1 +

1)χ(y/n) ∈ C2
c (R) and letting n→∞ using the dominated convergence theorem, we find

ϕ(t) ≤ lim inf
h→0

E
x (∫[0,t∧τ)

Lf2h,x(Xs) +Lf−2h,x(Xs)
4h2

ds) .

By the above considerations, we may apply the dominated convergence theorem and obtain

using (14)

ϕ(t) ≤ Ex (∫[0,t∧τ)
∂2

∂h2
Lfh,x(Xs)∣

h=0

ds) = Ex (∫[0,t∧τ)
Lgx(Xs)ds)

9
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where gx(z) ∶= (z − x)2. The growth assumptions (15) for k = 1,2 imply, by (13), that

∣b(z) + ∫∣y∣≥1
yN(z, dy)∣ ≤ c1(1 + ∣z∣) and Q(z) + ∫

R/{0}
y2N(z, dy) ≤ c2(1 + z2)

for all z ∈ R. Therefore it is not difficult to see from the definition of L that there exist

constants C1,C2 > 0 (which depend (continuously) on x, but not on R) such that ϕ satisfies

the integral inequality

ϕ(t) ≤ C1t +C2 ∫
t

0
ϕ(s)ds for all t ≥ 0.

By the Gronwall inequality, cf. [16, Theorem A.43], we get ϕ(t) ≤ C1t exp(C2t). Since the

constants C1,C2 do not depend on R, the claim follows from Fatou’s lemma.

Now suppose that q satisfies the assumptions of Theorem 4.4 for n ≥ 2 and that the

claim holds true for n − 1. Then q(x, ⋅) is 2(n − 1) times differentiable at ξ = 0 and it fol-

lows from the inductional hypothesis and Lemma 4.3 that supx∈K ∫R/{0} ∣y∣
2n−2N(x, dy) < ∞,

supx∈K E
x(∣Xt − x∣2n−2) < ∞ and

∂2n−2

∂ξ2n−2
q(x, ξ) = Q(x)δ2,n + (−1)n−1 ∫

R/{0}
y2n−2ei yξN(x, dy). (16)

(Here, δk,n denotes the Kronecker delta.) For fixed h,x ∈ R, set fh,x(z) ∶= (z−x)2n−2(eih(z−x)−
1). By Taylor’s formula and (16), it is not difficult to see that sup∣h∣≤1(Lfh,x(z)+Lf−h,x(z))/h2

is locally bounded (in z). As in the first part, an application of Fatou’s lemma and Dynkin’s

formula yields

E
x(∣Xt∧τ − x∣2n) ≤ lim inf

h→0

1

4h2
(Exf2h,x(Xt∧τ) − f2h,x(0) − f−2h,x(0) +Exf−2h,x(Xt∧τ))

= lim inf
h→0

E
x (∫[0,t∧τ)

Lf2h,x(Xs) +Lf−2h,x(Xs)
4h2

ds) .

Since sup∣h∣≤1(Lfh,x(z)+Lf−h,x(z))/h2 is locally bounded, it follows from the dominated con-

vergence theorem that

E
x(∣Xt∧τ − x∣2n) ≤ Ex (∫[0,t∧τ)

∂2

∂h2
Lfh,x(Xs)∣h=0

ds) = Ex (∫[0,t∧τ)
Lgx(Xs)ds)

for gx(z) ∶= (z −x)2n. Using again the growth assumptions and Taylor’s formula, we find that

ϕ(t) ∶= Ex(∣Xt∧τ − x∣2n1{t<τ}) satisfies

ϕ(t) ≤ C1t +C2 ∫
t

0
ϕ(s)ds, t ≥ 0,

for C1,C2 > 0 (not depending on R). Applying Gronwall’s inequality and Fatou’s lemma

finishes the proof.

Remark Let (Xt)t≥0 be a geometric Brownian motion, i. e. a solution to the SDE

dXt = µXt dt + σXt dBt

where (Bt)t≥0 is a one-dimensional Brownian motion and µ ∈ R, σ > 0. One can easily verify

that

E
x((Xt − x)2) = x2(e2µt(eσ

2t − 2) + 1).

This means that exponential growth for large t and linear growth for small t is the best we

can expect; in this sense the estimate in Theorem 4.4 is optimal.

4.5 Example Let (Lt)t≥0 be a (d-dimensional) Lévy process with characteristic exponent ψ.

Suppose that the Lévy-driven SDE

dXt = f(Xt−)dLt, X0 = x, (17)

10
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has a unique solution (Xt)t≥0 which is a Lévy-type process and suppose that its symbol is

given by q(x, ξ) = ψ(f(x)T ξ). If ψ is 2n-times differentiable at ξ = 0, i. e. if E(∣Lt∣2n) < ∞,

then it follows from Theorem 4.4 that sups≤t supx∈K E
x(∣Xs − x∣k) < ∞ for any compact set

K ⊆ Rd and k ≤ 2n.

Important classes of examples are the following:

(i) If f is bounded and locally Lipschitz continuous, then the (unique) solution to (17) is a

Lévy-type process with symbol q(x, ξ) = ψ(f(x)T ξ), cf. [18]. The boundedness of f is

needed to ensure that (Xt)t≥0 is a Lévy-type process; see [18, Rem. 3.4] for an example

where f is locally Lipschitz continuous, but the solution fails to be a Lévy-type process.

(ii) (d = 2) The generalized Ornstein-Uhlenbeck process is the solution to the SDE

dXt =Xt− dL(1)
t + dL(2)

t , X0 = x.

In [1, Theorem 3.1], it was shown that (Xt)t≥0 is a Lévy-type process with symbol

q(x, ξ) = ψ((x,1)T ξ).

5 Fractional moments

This section is devoted to estimates of fractional moments, i. e. we study the small-time and

large-time asymptotics of Ex (sups≤t ∣Xs − x∣α) for α > 0. Depending on α, there are different

techniques to prove such estimates; the following ones have recently been used to obtain

estimates for Lévy processes:

(i) α ∈ (0,1]: bounded variation technique, cf. [12, Theorem 1].

(ii) α ≥ 1: martingale technique based on the Burkholder–Davis–Gundy inequality, cf. [12,

Theorem 1].

(iii) α ∈ (0,2): characterization via Blumenthal–Getoor indices, cf. [5, Section 3].

Combining the bounded variation and martingale techniques with Theorem 2.1, we will extend

[12, Theorem 1] to Lévy-type processes in the first part of this section (Theorem 5.1, Theo-

rem 5.2). In the second part, we will introduce generalized Blumenthal–Getoor indices and

prove extensions of the results presented in [5]; cf. Theorem 5.3, Corollary 5.5 and Theorem 5.6.

Let us remark that the small-time estimate

E
x (sup

s≤t
∣Xs − x∣α) ≤ Ct

is the best we can expect; otherwise, the Kolmogorov–Chentsov theorem would imply the

existence of a modification with exclusively continuous sample paths.

We start with a combination of the bounded variation and martingale technique. A cru-

cial ingredient to obtain estimates is the Burkholder–Davis–Gundy inequality; for continuous

martingales this inequality is standard, but for discontinuous martingales the proof is more

involved, see e. g. [13] or [11]. The following theorem generalizes [5, Theorem 3.1] and the

corresponding result in [12].

5.1 Theorem Let (Xt)t≥0 ∼ (b(x),Q(x),N(x, dy)) be a Lévy-type process with bounded coef-

ficients and suppose that

M ∶= sup
x∈Rd

(∫∣y∣>1
∣y∣αN(x, dy) + ∫∣y∣≤1

∣y∣βN(x, dy)) < ∞

for some α ∈ (0,1] and β ∈ [0,2].

11
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(i) β ∈ [1,2]: Then there exists C > 0 such that

E
x (sup

s≤t
∣Xs − x∣κ) ≤ tκ sup

x∈Rd
∣b(x)∣κ +Ctκ/2 sup

x∈Rd
∣Q(x)∣κ/2

+Ctκ/β ( sup
x∈Rd
∫∣y∣≤1

∣y∣βN(x, dy))
κ/β

+ tκ/α sup
x∈Rd

(∫∣y∣>1
∣y∣αN(x, dy))

κ/α

for all t ≥ 0 and κ ∈ [0, α].

(ii) β ∈ [α,1]: Then there exists C > 0 such that

E
x (sup

s≤t
∣Xs − x∣κ) ≤ tκ sup

x∈Rd
∣b(x) + ∫∣y∣≤1

yN(x, dy)∣
κ

+Ctκ/2 sup
x∈Rd

∣Q(x)∣κ/2

+ tκ/β ( sup
x∈Rd
∫∣y∣≤1

∣y∣βN(x, dy))
κ/β

+ tκ/α sup
x∈Rd

(∫∣y∣>1
∣y∣αN(x, dy))

κ/α

for all t ≥ 0 and κ ∈ [0, α].

(iii) β ∈ [0, α]: Then there exists C > 0 such that

E
x (sup

s≤t
∣Xs − x∣κ) ≤ tκ sup

x∈Rd
∣b(x) + ∫∣y∣≤1

yN(x, dy)∣
κ

+Ctκ/2 sup
x∈Rd

∣Q(x)∣κ/2

+ tκ/α sup
x∈Rd

(∫
Rd/{0}

∣y∣αN(x, dy))
κ/α

for all t ≥ 0 and κ ∈ [0, α].

Since any Lévy-type process with bounded coefficients satisfies supx∈Rd ∫∣y∣≤1 ∣y∣2N(x, dy) <
∞, Theorem 5.1(i) is applicable with β = 2 whenever supx∈Rd ∫∣y∣>1 ∣y∣αN(x, dy) < ∞ for

some α ∈ (0,1]. Moreover, by the Markov property, Theorem 5.1 gives also bounds for

Ex (sups≤t ∣Xs+r −Xr ∣κ) for any fixed r ≥ 0.

It is well-known that a Lévy process (Xt)t≥0 with Lévy triplet (0,0, ν(dy)) has sample

paths of bounded variation and satisfies E(∣Xt∣α) < ∞ if, and only if, ∫Rd/{0} ∣y∣
α ν(dy) <

∞ for some α ∈ (0,1], cf. [15, Theorem 21.9, Theorem 25.3]. Theorem 5.1 extends this

statement to Lévy-type processes. If (Xt)t≥0 ∼ (0,0,N(x, dy)) is a Lévy-type process such

that supx∈Rd ∫Rd/{0} ∣y∣
αN(x, dy) < ∞ for some α ∈ (0,1], then Theorem 5.1 shows that (Xt)t≥0

has Px-almost surely a finite (strong) p-variation on compact t-intervals for any p > α and

x ∈ Rd.

Proof of Theorem 5.1. Because of Jensen’s inequality, it suffices to prove the claim for κ =
α. By Theorem 2.1, there exist a Markov extension (Ω○,A○,F○

t ,P
○,x), a Brownian motion

(W ○
t )t≥0, a Cauchy process (L○t)t≥0 with jump measure N○ and k, σ such that (3) holds and

Xt − x = ∫
t

0
b(Xs−)ds + ∫

t

0
σ(Xs−)dW ○

s + ∫
t

0
∫∣k∣>1

k(Xs−, z)N○(dz, ds)

+ ∫
t

0
∫∣k∣≤1

k(Xs−, z) (N○(dz, ds) − ν○(dz)ds)
(18)

P○,x-almost surely. First, we prove (i). By (18), we have

Xt − x = ∫
t

0
b(Xs−)ds + ∫

t

0
σ(Xs−)dW ○

s + ∑
0≤s≤t

k(Xs−,∆L○s)1{∣k(Xs−,∆L○s)∣>1}

+ ∫
t

0
∫∣k∣≤1

k(Xs−, z) (N○(dz, ds) − ν○(dz, ds)).

12
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Using the elementary estimate (u + v)α ≤ uα + vα, u, v ≥ 0, α ∈ (0,1], yields

sup
s≤t

∣Xs − x∣α ≤ sup
s≤t

∣∫
s

0
b(Xr−)dr∣

α

+ sup
s≤t

∣∫
s

0
σ(Xr−)W ○

r ∣
α

+ ∑
0≤s≤t

∣k(Xs−,∆L○s)∣α1{∣k(Xs−,∆L○s)∣>1}

+ sup
s≤t

∣∫
s

0
∫∣k∣≤1

k(Xr−, z) (N○(dz, dr) − ν○(dz, dr))∣
α

≤ sup
x∈Rd

∣b(x)∣αtα + sup
s≤t

∣∫
s

0
σ(Xr−)dW ○

r ∣
α

+ ∫
t

0
∫∣k∣>1

∣k(Xs−, z)∣αN○(dz, ds)

+ sup
s≤t

∣∫
s

0
∫∣k∣≤1

k(Xr−, z) (N○(dz, dr) − ν○(dz, dr))∣
α

.

Integrating both sides and using that, by Jensen’s inequality,

E○,x (sup
s≤t

∣∫
s

0
σ(Xr−)W ○

r ∣
α

) ≤ E○,x (sup
s≤t

∣∫
s

0
σ(Xr−)W ○

r ∣
2

)
α/2

and

E○,x( sup
s≤t

∣∫
s

0
∫∣k∣≤1

k(Xr−, z) (N○(dz, dr) − ν○(dz, dr))∣
α

)

≤ E○,x( sup
s≤t

∣∫
s

0
∫∣k∣≤1

k(Xr−, z) (N○(dz, dr) − ν○(dz, dr))∣
β

)
α/β

,

the assertion follows (for κ = α) from Itô’s isometry and the Burkholder–Davis–Gundy in-

equality [13, Theorem 1].

If β ∈ [0,1], then

E○,x (∫
t

0
∫∣k∣≤1

∣k(Xs−, z)∣ ν○(dz)ds) = E○,x (∫
t

0
∫∣y∣≤1

∣y∣N(Xs−, dy)ds) ≤Mt < ∞.

Therefore, we can write

Xt − x = ∫
t

0
b̃(Xs−)ds + ∫

t

0
σ(Xs−)dW ○

s + ∫
t

0
∫
Rd/{0}

k(Xs−, z)N○(dz, ds)

= ∫
t

0
b̃(Xs−)ds + ∫

t

0
σ(Xs−)dW ○

s + ∑
0≤s≤t

k(Xs−,∆L○s)

where b̃(x) ∶= b(x) + ∫∣y∣≤1 yN(x, dy). The bounds for drift and diffusion are obtained as in

the first part of this proof; it remains to estimate the jump part. If 1 ≥ β ≥ α, then another

application of the inequality (u + v)β ≤ uβ + vβ and Jensen’s inequality yield

E
○,x (sup

s≤t
∣ ∑
0≤r≤s

k(Xr−,∆Lr)1{∣k(Xr−,∆Lr)∣≤1}∣
α

) ≤ E○,x ⎛
⎝

sup
s≤t

∣ ∑
0≤r≤s

k(Xr−,∆Lr)1{∣k(Xr−,∆Lr)∣≤1}∣
β⎞
⎠

α/β

≤ E○,x ( ∑
0≤r≤t

∣k(Xr−,∆Lr)∣β1{∣k(Xr−,∆Lr)∣≤1})
α/β

= E○,x (∫
t

0
∫∣y∣≤1

∣y∣βN(Xs−, dy)ds)
α/β

.

Estimating the large jumps in exactly the same way (but without applying Jensen’s inequality),

we get

E
○,x (sup

s≤t
∣ ∑
0≤r≤s

k(Xr−,∆Lr)∣
α

) ≤ tα/β sup
x∈Rd

[∫∣y∣≤1
∣y∣βN(x, dy)]

α/β
+ t sup

x∈Rd
∫∣y∣>1

∣y∣αN(x, dy).

Finally, if β ∈ [0, α], then M < ∞ for β = α, and the claim follows from (ii).

Remark (i) Let κ ∈ (0,1] be such that infθ∈[κ,1] supx∈Rd ∫Rd/{0} ∣y∣
θN(x, dy) < ∞ and

q(x, ξ) = ∫
Rd/{0}

(1 − eiyξ)N(x, dy).

13
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Then an application of Jensen’s inequality and Theorem 5.1 show that

E
x (sup

s≤t
∣Xs − x∣κ) ≤ inf

θ∈[κ,1]
(t sup

x∈Rd
∫
Rd/{0}

∣y∣θN(x, dy))
κ/θ

for any Lévy-type process (Xt)t≥0 with symbol q. This generalizes [5, Theorem 3.2]

where the inequality was proved for Lévy processes.

(ii) Let (Xt)t≥0 be a Lévy-type process and α ∈ (0,1] such that

f(t) ∶= sup
s≤t

sup
x∈Rd

E
x(∣Xs − x∣α) < ∞ for all t ≥ 0. (⋆)

Then limt→∞ f(t)/t exists and is finite.

Indeed: Since (u + v)α ≤ uα + vα, u, v ≥ 0, the Markov property gives

E
x(∣Xt+s − x∣α) ≤ Ex [EXt(∣Xs −X0∣α)] +Ex(∣Xt − x∣α) ≤ f(s) + f(t).

Consequently, f is subadditive. Applying [8, Theorem 6.6.4] finishes the proof.

Note that, by Theorem 5.1, assumption (⋆) is, in particular, satisfied if (Xt)t≥0 has

bounded coefficients and α,β are as in Theorem 5.1.

The Burkholder–Davis–Gundy inequality yields also estimates of fractional moments for

α ≥ 1:

5.2 Theorem Let (Xt)t≥0 ∼ (b(x),Q(x),N(x, dy)) be a Lévy-type process with bounded coef-

ficients and α ≥ 1, β ∈ [1,2] such that

M ∶= sup
x∈Rd

(∫∣y∣≤1
∣y∣βN(x, dy) + ∫∣y∣>1

∣y∣αN(x, dy)) < ∞.

(i) If α ∈ [1,2], then there exists C > 0 such that

E
x (sup

s≤t
∣Xs − x∣κ) ≤ C sup

x∈Rd
(tκ ∣b(x) + ∫∣y∣>1

yN(x, dy)∣
κ

+ tκ/2∣Q(x)∣κ/2)

+C sup
x∈Rd

(tκ/β [∫∣y∣≤1
∣y∣βN(x, dy)]

κ/β
+ tκ/α [∫∣y∣>1

∣y∣αN(x, dy)]
κ/α

)

for all t ≥ 0 and κ ∈ [0, α ∧ β].

(ii) If α > 2, then there exists C > 0 such that

E
x (sup

s≤t
∣Xs − x∣κ) ≤ C sup

x∈Rd
(tκ ∣b(x) + ∫∣y∣>1

yN(x, dy)∣
κ

+ tκ/2∣Q(x)∣κ/2)

+C sup
x∈Rd

(tκ/α [∫
Rd/{0}

∣y∣αN(x, dy)]
κ/α

+ tκ/2 [∫
Rd/{0}

∣y∣2N(x, dy)]
κ/2

)

for all t ≥ 0 and κ ∈ [0, α].

(iii) (Wald’s identity) Suppose that q is of martingale-type, i. e.

q(x, ξ) = ∫
Rd/{0}

(1 − eiy⋅ξ + iy ⋅ ξ)N(x, dy),

and supx∈Rd ∫Rd/{0} ∣y∣
αN(x, dy) < ∞ for some α ∈ [1,2]. Then Ex(Xτ) = x holds for

any stopping time τ such that Ex(τ1/α) < ∞.

Proof. As in the proof of Theorem 5.1, we fix a Markov extension (Ω○,A○,F○
t ,P

○,x), a Brownian

motion (W ○
t )t≥0, a Cauchy process (L○t)t≥0 with jump measure N○ and k, σ such that (3) and

(18) hold. As

E
○,x (∫

t

0
∫∣k∣>1

∣k(Xs−, z)∣ ν○(dz)ds) = E○,x (∫
t

0
∫∣y∣>1

∣y∣N(x, dy)) ≤Mt,

14
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we can write

Xt − x = ∫
t

0
b̄(Xs−)ds + ∫

t

0
σ(Xs−)dW ○

s + ∫
t

0
∫∣k∣>1

k(Xs−, z) (N○(dz, ds) − ν○(dz)ds)

+ ∫
t

0
∫∣k∣≤1

k(Xs−, z) (N○(dz, ds) − ν○(dz)ds)

where b̄(x) ∶= b(x) + ∫∣y∣>1 yN(x, dy). Note that b̄ is well-defined since

∫∣y∣>1
∣y∣N(x, dy)

α≥1
≤ ∫∣y∣>1

∣y∣αN(x, dy) ≤M < ∞.

Using the elementary estimate

(
4

∑
i=1

ui)
α

≤ 4α−1
4

∑
i=1

uαi , ui ≥ 0,

(i) and (ii) follow from [13, Theorem 1], (3), Jensen’s inequality and Itô’s isometry for κ = α.

Again we apply Jensen’s inequality to obtain the estimate for κ ∈ [0, α]. Wald’s identity is a

direct consequence of [13, Theorem 2].

Remark By Theorem 5.1 und Theorem 5.2,

sup
x∈Rd
∫
Rd/{0}

∣y∣αN(x, dy) < ∞ Ô⇒ ∀t ≤ 1 ∶ sup
x∈Rd

E
x (sup

s≤t
∣Xs − x∣α) ≤ Ct

for any Lévy-type process (Xt)t≥0 ∼ (0,0,N(x, dy)) and α > 0. One can show that at least a

partial converse holds true:

∀t ≤ 1 ∶ Ex(∣Xt − x∣α) ≤ Ct Ô⇒ ∫
Rd/{0}

∣y∣αN(x, dy) < ∞.

This follows by combining the integrated heat kernel estimate (1) with Fatou’s lemma and the

identity

∫∣y∣≥1
∣y∣αN(x, dy) = α∫[1,∞)

rα−1N(x,{y ∈ Rd; ∣y∣ ≥ r})dr.

In the last part of this section, we describe the asymptotics of fractional moments in terms

of the growth of the symbol. To this end, we recall the notion of Blumenthal–Getoor indices.

Blumenthal and Getoor [2] introduced various indices for Lévy processes; we will use the

following ones: For a Lévy process (Lt)t≥0 with characteristic exponent ψ and Lévy triplet

(b,Q, ν), we call

β0 ∶= sup{α ≥ 0; lim
∣ξ∣→0

∣ψ(ξ)∣
∣ξ∣α = 0} = sup{α ≥ 0; lim sup

∣ξ∣→0

∣ψ(ξ)∣
∣ξ∣α < ∞} ,

β∞ ∶= inf {α ≥ 0; lim
∣ξ∣→∞

∣ψ(ξ)∣
∣ξ∣α = 0} = inf {α ≥ 0; lim sup

∣ξ∣→∞

∣ψ(ξ)∣
∣ξ∣α < ∞}

(19)

the Blumenthal–Getoor index at 0 and ∞, respectively. Then β0, β∞ ∈ [0,2] and

β0 = sup{α ≤ 2;∫∣y∣≥1
∣y∣α ν(dy) < ∞} = sup{α ≤ 2;E∣Lt∣α < ∞} .

For a proof of the first equality see e. g. [17, Proposition 5.4]; the second equality follows from

[15, Theorem 25.3]. There are several ways to define so-called generalized Blumenthal–Getoor

indices for Lévy-type processes, cf. [17] and [3, Section 5.2]. Following [3], we define for a

family (q(x, ξ))x∈Rd of characteristic exponents the generalized Blumenthal–Getoor index at 0

and ∞, respectively, as

βx0 ∶= sup

⎧⎪⎪⎨⎪⎪⎩
α ≥ 0; lim sup

∣ξ∣→0

1

∣ξ∣α sup
∣y−x∣≤∣ξ∣−1

sup
∣η∣≤∣ξ∣

∣q(y, η)∣ < ∞
⎫⎪⎪⎬⎪⎪⎭
,

βx∞ ∶= inf

⎧⎪⎪⎨⎪⎪⎩
α ≥ 0; lim sup

∣ξ∣→∞

1

∣ξ∣α sup
∣y−x∣≤∣ξ∣−1

sup
∣η∣≤∣ξ∣

∣q(y, η)∣ < ∞
⎫⎪⎪⎬⎪⎪⎭

(20)

for x ∈ Rd. The next theorem is one of our main results.
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5.3 Theorem Let (Xt)t≥0 be a Lévy-type process with symbol q and let x ∈ Rd. Suppose that

there exist α,β ∈ (0,2], γ < β and C > 0 such that

∣q(y, ξ)∣ ≤ C(1 + ∣y∣γ)∣ξ∣β , for all ∣ξ∣ ≤ 1, ∣y − x∣ ≤ ∣ξ∣−1,

∣q(y, ξ)∣ ≤ C(1 + ∣y∣γ)∣ξ∣α, for all ∣ξ∣ ≥ 1, ∣y − x∣ ≤ ∣ξ∣−1.

Then

E
x (sup

s≤t
∣Xs − x∣κ) ≤ Cf(t)κ/γ for all t ≤ 1, κ ∈ [0, γ],

where C = C(x, γ,α, β) and

f(t) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

t
γ
α
∧1, α ≠ γ,

t∣ log t∣, α = γ.

Note that under the assumptions of Theorem 5.3 we can choose for any κ ∈ (0, β) some

γ < β such that κ ∈ (0, γ]; therefore Theorem 5.3 gives moment estimates for all κ ∈ (0, β).

Proof of Theorem 5.3. Throughout this proof the constant C1 = C1(γ,α, β) > 0 may vary

from line to line. Again, we denote by τx(r) ∶= τxr the exit time from B(x, r). Fix R > 0. By

Lemma 3.2,

E
x ⎛
⎝

sup
s≤t∧τx

R

∣Xs − x∣γ
⎞
⎠
= ∫

∞

0
P
x ⎛
⎝

sup
s≤t∧τx

R

∣Xs − x∣ ≥ r1/γ⎞
⎠
dr

≤ ∫
∞

0
min

⎧⎪⎪⎨⎪⎪⎩
1, C1E

x ⎛
⎝∫[0,t∧τx(r1/γ)∧τx

R
)

sup
∣ξ∣≤r−1/γ

∣q(Xs, ξ)∣ds
⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
dr.

Using the growth assumptions on q, we get

E
x (sup

s≤t
∣Xs − x∣γ) ≤ ∫

tγ/α

0
1dr +C1 ∫

∞

tγ/α
E
x ⎛
⎝∫[0,t∧τx(r1/γ)∧τx

R
)

sup
∣ξ∣≤r−1/γ

∣q(Xs, ξ)∣ds
⎞
⎠
dr

≤ tγ/α +C1 (∫
1

tγ/α
r−α/γ dr + ∫

∞

1
r−β/γ dr)Ex (∫[0,t∧τx

R
)
(1 + ∣Xs∣γ)ds)

≤ f(t) +C1f(t)∫
t

0
(1 +Ex(∣Xs∣γ1{s<τx

R
}))ds

for all t ≤ 1. This shows that ϕ(t) ∶= Ex (sups≤t∧τx
R
∣Xs − x∣γ1{t<τx

R
}) satisfies

ϕ(t) ≤ Ex
⎛
⎝

sup
s≤t∧τx

R

∣Xs − x∣γ
⎞
⎠
≤ C1f(t)(1 + t(1 + ∣x∣γ)) +C1f(t)∫

t

0
ϕ(s)ds.

Hence, by Gronwall’s inequality,

ϕ(t) ≤ C1f(t)(1 + t(1 + ∣x∣γ)) exp (C1f(t)t) .

Finally, since the constant C1 does not depend on R, we can let R →∞ using Fatou’s lemma.

For κ ∈ [0, γ] apply Jensen’s inequality.

5.4 Example Let (Xt)t≥0 be a Lévy-type process which is a solution to an SDE of the form

dXt = f(Xt−)dLt, X0 = x,

where (Lt)t≥0 is a Lévy process with characteristic exponent ψ and f a function of sublinear

growth, i. e. ∣f(x)∣ ≤ C(1 + ∣x∣1−ε) for some C, ε > 0. Denote by β0 and β∞ the Blumenthal–

Getoor indices of ψ at 0 and ∞, cf. (19). Then

E
x (sup

s≤t
∣Xs − x∣κ) ≤ Ctκ/β∞∧1 for all t ≤ 1, κ ∈ [0, β0), κ ≠ β∞.
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5.5 Corollary Let (Xt)t≥0 be a Lévy-type process with symbol q. Assume that

lim sup
∣ξ∣→∞

1

∣ξ∣α sup
∣y−x∣≤∣ξ∣−1

sup
∣η∣≤∣ξ∣

∣q(y, η)∣ < ∞ (21)

for some α ∈ (0,2]. Then

E
x (sup

s≤t
∣Xs − x∣κ) ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ct
κ
α
∧1, κ ≠ α,

Ct∣ log t∣, κ = α

for all t ≤ 1 and κ ∈ [0, βx0 ). Here βx0 and βx∞ denote the generalized Blumenthal–Getoor indices

at 0 and ∞, respectively, cf. (20).

Proof. Because of the assumptions on q, the growth conditions in Theorem 3.2 are satisfied

for any γ ∈ (0, β); in particular we can choose γ = κ.

Remark (i) Applying Corollary 5.5 to α-stable and tempered α-stable processes shows that

the estimates are optimal, cf. [12, p. 431-32].

(ii) By the very definition of the Blumenthal–Getoor index (see (20)), we know that the limit

lim sup
∣ξ∣→∞

1

∣ξ∣α sup
∣y−x∣≤∣ξ∣−1

sup
∣η∣≤∣ξ∣

∣q(y, η)∣

is finite (infinite) if α > βx∞ (if α < βx∞). Therefore, (21) is violated for any α ∈ (0, βx∞) and

automatically satisfied for α ∈ (βx∞,2]. The case α = βx∞ has to be checked individually.

(iii) Combining Corollary 5.5 and Fatou’s lemma shows that

lim inf
t→0

1

t1/α
sup
s≤t

∣Xs − x∣ = 0 P
x-a.s.

for any α > βx∞; see also [3, Theorem 5.16].

(iv) Corollary 5.5 can be proved using a very similar argument as in the proof of Theorem 5.6.

The proof then shows in particular that the estimate

E
x (sup

s≤t
∣Xs − x∣κ ∧ 1) ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ct
κ
α
∧1, κ ≠ α,

Ct∣ log t∣, κ = α

holds true for any κ > 0 and t ≤ 1.

There is an analogous result for the large-time asymptotics; it extends [5, Theorem 3.3].

5.6 Theorem Let (Xt)t≥0 be a Lévy-type process with symbol q and β ∈ (0,2] such that

lim sup
∣ξ∣→0

1

∣ξ∣β sup
∣x−y∣≤∣ξ∣−1

sup
∣η∣≤∣ξ∣

∣q(x, η)∣ < ∞,

then

E
x (sup

s≤t
∣Xs − x∣κ) ≤ Ctκ/β for all t ≥ 1, κ ∈ [0, β).

Proof. An application of the maximal inequality (9) yields

E
x (sup

s≤t
∣Xs − x∣κ) = ∫

∞

0
P
x (sup

s≤t
∣Xs − x∣ ≥ r1/κ) dr

≤ ∫
∞

0
min

⎧⎪⎪⎨⎪⎪⎩
1,Ct sup

∣y−x∣≤r1/κ
sup

∣η∣≤r−1/κ
∣q(y, η)∣

⎫⎪⎪⎬⎪⎪⎭
dr.

Hence,

E
x (sup

s≤t
∣Xs − x∣κ) ≤ ∫

tκ/β

0
1dr +C′t∫

∞

tκ/β
r−β/κ dr = O(tκ/β).
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5.7 Example Let (Xt)t≥0 be a stable-like process, i. e. a Lévy-type process with symbol

q(x, ξ) = ∣ξ∣α(x) for a (continuous) function α ∶ Rd → (0,2). Then βx0 ≥ αl ∶= infy∈Rd α(y) and

βx∞ = α(x). Hence, by Corollary 5.5, we have for any α > α(x) and κ ∈ [0, αl),

E
x (sup

s≤t
∣Xs − x∣κ) ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ct
κ
α
∧1, κ ≠ α,

Ct∣ log t∣, κ = α

for all t ≤ 1. Moreover, by Theorem 5.7,

E
x (sup

s≤t
∣Xs − x∣κ) ≤ Ctκ/β

for all t ≥ 1 and any β < αl, κ ∈ [0, β).

For the readers’ convenience we sum up conditions and results in Table 1.
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assumptions on the symbol assumptions on the moments Ex (sups≤t ∣Xs − x∣
κ) reference

“bounded variation”-type:
q(x, ξ) = ∫Rd/{0}(1 − e

i yξ)N(x, dy)

supx∈Rd ∫∣y∣>1 ∣y∣
αN(x, dy) < ∞

supx∈Rd ∫∣y∣≤1 ∣y∣
βN(x, dy) < ∞

α ∈ (0,1]
β ∈ [0, α]

O(tκ/α) for κ ∈ [0, α] Theorem 5.1

“bounded variation”-type:
q(x, ξ) = ∫Rd/{0}(1 − e

i yξ)N(x, dy)

supx∈Rd ∫∣y∣>1 ∣y∣
αN(x, dy) < ∞

supx∈Rd ∫∣y∣≤1 ∣y∣
βN(x, dy) < ∞

α ∈ (0,1]
β ∈ [α,1]

O(tκ/α + tκ/β) for κ ∈ [0, α] Theorem 5.1

“pure-jump”-type:
q(x, ξ) = ∫Rd/{0}(1 − e

i yξ + iyξ1(0,1](∣y∣)))N(x, dy)

supx∈Rd ∫∣y∣>1 ∣y∣
αN(x, dy) < ∞

supx∈Rd ∫∣y∣≤1 ∣y∣
βN(x, dy) < ∞

α ∈ (0,1]
β ∈ [1,2]

O(tκ/α + tκ/β) for κ ∈ [0, α] Theorem 5.1

“martingale”-type:
q(x, ξ) = ∫Rd/{0}(1 − e

i yξ + iyξ)N(x, dy)

supx∈Rd ∫∣y∣>1 ∣y∣
αN(x, dy) < ∞

supx∈Rd ∫∣y∣≤1 ∣y∣
βN(x, dy) < ∞

α ∈ [1,2]
β ∈ [1,2]

O(tκ/α + tκ/β) for κ ∈ [0, α ∧ β] Theorem 5.2

“martingale”-type:
q(x, ξ) = ∫Rd/{0}(1 − e

i yξ + iyξ)N(x, dy)

supx∈Rd ∫∣y∣>1 ∣y∣
αN(x, dy) < ∞

supx∈Rd ∫∣y∣≤1 ∣y∣
2N(x, dy) < ∞

α > 2 O(tκ/α + tκ/2) for κ ∈ [0, α] Theorem 5.2

∀∣ξ∣ ≤ 1 ∶ sup
∣y−x∣≤∣ξ∣−1 ∣q(y, ξ)∣ ≤ C(1 + ∣x∣γ)∣ξ∣β

∀∣ξ∣ ≥ 1 ∶ sup
∣y−x∣≤∣ξ∣−1 ∣q(y, ξ)∣ ≤ C(1 + ∣x∣γ)∣ξ∣α

γ < β O(tκ(α
−1
∧γ−1)), t→ 0, for κ ∈ [0, β), κ ≠ α

O(t
κ
γ ∣ log t∣

κ
γ ), t→ 0, for κ = α < β

Theorem 5.3

∀∣ξ∣ ≥ 1 ∶ sup
∣y−x∣≤∣ξ∣−1 sup

∣η∣≤∣ξ∣ ∣q(y, η)∣ ≤ C ∣ξ∣α O(tκ/α∧1), t→ 0, for κ ∈ [0, βx0 ), κ ≠ α
O(t∣ log t∣), t→ 0, for κ = α < βx0

Corollary 5.5

∀∣ξ∣ ≤ 1 ∶ sup
∣y−x∣≤∣ξ∣−1 sup

∣η∣≤∣ξ∣ ∣q(y, η)∣ ≤ C ∣ξ∣β O(tκ/β), t→∞, for κ ∈ [0, β) Theorem 5.6

Table 1: Estimates of fractional moments of (pure-jump) Lévy-type processes.
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