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Abstract

The Bernoulli sieve is the infinite Karlin “balls-in-boxes” scheme with random probabilities of stick-
breaking type. Assuming that the number of placed balls equals n, we prove several functional limit
theorems (FLTs) in the Skorohod space D[0, 1] endowed with the J1- or M1-topology for the number K ∗n (t)
of boxes containing at most [nt

] balls, t ∈ [0, 1], and the random distribution function K ∗n (t)/K ∗n (1), as
n → ∞. The limit processes for K ∗n (t) are of the form (X (1) − X ((1 − t)−))t∈[0,1], where X is either
a Brownian motion, a spectrally negative stable Lévy process, or an inverse stable subordinator. The small
value probabilities for the stick-breaking factor determine which of the alternatives occurs. If the logarithm
of this factor is integrable, the limit process for K ∗n (t)/K ∗n (1) is a Lévy bridge. Our approach relies upon
two novel ingredients and particularly enables us to dispense with a Poissonization-de-Poissonization step
which has been an essential component in all the previous studies of K ∗n (1). First, for any Karlin occupancy
scheme with deterministic probabilities (pk)k≥1, we obtain an approximation, uniformly in t ∈ [0, 1], of
the number of boxes with at most [nt

] balls by a counting function defined in terms of (pk)k≥1. Second, we
prove several FLTs for the number of visits to the interval [0, nt] by a perturbed random walk, as n →∞.
If the stick-breaking factor has a beta distribution with parameters θ > 0 and 1, the process (K ∗n (t))t∈[0,1]
has the same distribution as a similar process defined by the number of cycles of length at most [nt

] in a
θ -biased random permutation a.k.a. a Ewens permutation with parameter θ . As a consequence, our FLT
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with Brownian limit forms a generalization of a FLT obtained earlier in the context of Ewens permutations
by DeLaurentis and Pittel (1985), Hansen (1990), Donnelly et al. (1991), and Arratia and Tavaré (1992).
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. The Bernoulli sieve and regenerative compositions

Given a sequence W1,W2, . . . of independent copies of a (0, 1)-valued random variable W ,
consider the random partition of (0, 1] into the subintervals (Vi , Vi−1], i ∈ N, called boxes
hereafter, where

V0 := 1, and Vn :=

n
i=1

Wi for n ∈ N.

One may also think of the Vi as the successive cut points in a stick-breaking procedure at the end
of which a stick with endpoints 0 and 1 is broken into the infinitely many pieces with endpoints Vi
and Vi−1, i ∈ N. Next, let (U j ) j∈N be a sequence of independent uniform (0, 1) random variables
which is also independent of (Wk)k∈N. The Bernoulli sieve is a random occupancy scheme in
which balls, labeled by 1, 2, . . . and of random weights (or random locations) U1,U2, . . . , are
placed into the boxes in accordance with their weight. Hence, a ball of weight U goes into the box
(Vi , Vi−1] iff Vi < U ≤ Vi−1. Since its introduction by Gnedin [7], the model has been studied
in a series of articles [9–11,13,12,18,19,22]. The term “Bernoulli sieve” can be understood when
interpreting the occupancy scheme in terms of a randomized leader-election procedure (see [7]
for more details).

Defining the (infinite) vector of occupancy counts

Z∗n,i := #{1 ≤ j ≤ n : U j ∈ (Vi , Vi−1]}, i ∈ N, (1)

thus Z∗n,i ≥ 0 for i ∈ N and


i≥1 Z∗n,i = n, we see that the Z∗n := (Z∗n,i )i∈N induces a weak
composition of the integer n. The attribute “weak” is intended to emphasize that zero parts of
the composition are allowed. By sequentially allocating the points U1,U2, . . . , the sequence
(Z∗n )n≥0 is consistently defined for all n ∈ N0, and it further has the following two distinguished
regenerative properties:

• Sampling consistency: If one out of n points is removed uniformly at random from the interval
it belongs to, then the resulting weak composition of n − 1 has the same law as Z∗n−1.
• The deletion property: If the first interval (V1, 1] contains m points and is removed, then a

weak composition of n − m with the same law as Z∗n−m is obtained.

The class of random compositions generated by a Bernoulli sieve does not cover all regener-
ative compositions (i.e., those having the two aforementioned properties). In fact, Theorem 5.2
in [14] states that every consistent family of regenerative compositions can be constructed by
allocating the points U1,U2, . . . to countably many open intervals forming the complement of
the closed range of a multiplicative zero-drift subordinator (e−L t )t≥0 independent of the uniform
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sample. Within this more general framework, weak compositions pertaining to a Bernoulli sieve
are those corresponding to a compound Poisson process (L t )t≥0.

In the classical occupancy scheme of Karlin [23] balls are placed independently in an infinite
array of boxes in accordance with a probability vector (pk)k∈N, where pk denotes the probability
of choosing box k. The Bernoulli sieve is the Karlin occupancy scheme with random probability

p∗k = Vk−1 − Vk = W1 · · ·Wk−1(1−Wk) (2)

of choosing box k ∈ N and such that, given (p∗k )k∈N, balls are allocated independently. The
Bernoulli sieve can therefore be thought of as an occupancy scheme in random environment, the
latter being defined by the i.i.d. random variables W1,W2, . . ..

For r = 1, . . . , n, denote by K ∗n,r :=


i≥1 1{Z∗n,i=r} the number of boxes containing exactly r

balls, and let K ∗n :=
n

r=1 K ∗n,r =


i≥1 1{Z∗n,i≥1} denote the number of nonempty boxes. Then
define

K ∗n (t) :=
[nt
]

r=1

K ∗n,r =

i≥1

1{Z∗n,i∈[1,nt ]}

for t ∈ [0, 1].
Throughout the rest of the paper, we will use the following notational rule. Quantities related

to the Bernoulli sieve are starred, whereas corresponding quantities for the general Karlin scheme
are not. The same rule applies, for the most part, to perturbed random walks to be defined in
Section 3.

1.2. J1- and M1-topology: a brief review

For T > 0, let D[0, T ] denote the Skorohod space of real-valued functions on [0, T ], which
are right-continuous with left-hand limits. We will need the J1- and the M1-topology on D[0, T ]
which are commonly used and were introduced in a famous paper by Skorohod [25]. The
J1-topology is generated by the metric

d( f, g) := inf
λ∈Λ


sup

y∈[0,T ]
| f (λ(t))− g(t)| ∨ sup

t∈[0,T ]
|λ(t)− t |


,

where Λ denotes the class of strictly increasing, continuous functions λ : [0, T ] → [0, T ] with
λ(0) = 0 and λ(T ) = T . Functions fn which are J1-convergent to a limit function f are allowed
to have a single jump in the vicinity of a jump of f . Furthermore, the positions of the jumps of
fn and their magnitudes should converge to the positions of the jumps of f and their magnitude.
This is in contrast to locally uniform convergence which requires the positions of jumps of fn
and f to be the same rather than asymptotically equal.

The M1-topology is weaker than the J1-topology and M1-convergence of fn to f is equivalent
to the convergence of the closed graph of fn to the closed graph of f . For instance, choosing
fn(t) := 1[1−1/n, 1+1/n)(t)+2 ·1[1+1/n, 2](t) and f (t) := 2 ·1[1, 2](t), the fn do converge to f in
the M1-topology, but not in the J1-topology on D[0, 2]. Without going into details, we mention
that the M1-topology is typically used in functional limit theorems in which the limit process has
jumps unmatched in the convergent sequence of processes. This may happen, for example, if the
converging processes are a.s. continuous or have asymptotically vanishing jumps, while the limit
process is discontinuous with positive probability. We refer the reader to the monograph [26] for
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a comprehensive exposition of the J1- and the M1-topologies as well as some other topologies
on D[0, T ].

Throughout the paper
J1
=⇒ and

M1
=⇒ will mean weak convergence in the Skorohod space when

endowed with the J1-topology and the M1-topology, respectively. Furthermore, we will use
P
→

and also P−lim to denote convergence in probability with respect to P. Finally,
d
= will stand for

equality in distribution.

1.3. Ewens permutations and Ewens sampling formula

Let Sn be the symmetric group of order n. The Ewens family of random permutations
is a parametric family Πn := Πn(θ), θ > 0, of random variables taking values in Sn with
probabilities

P{Πn = σ } =
Γ (θ)θ |σ |

Γ (n + θ)
, σ ∈ Sn,

where |σ | denotes the number of cycles in σ and Γ is the Euler gamma function. Plainly, Πn(1)
is a uniform random permutation of {1, . . . , n} for which all n! permutations are equally likely.

For r = 1, . . . , n, denote by Cn,r the number of cycles of length r in Πn . The following is the
famous Ewens sampling formula:

P{Cn,1 = c1, . . . ,Cn,n = cn} =
n!Γ (θ)

Γ (θ + n)

n
i=1

θci

ici ci !
1{n

i=1 ici=n}.

Define Cn(t) :=
[nt

]

r=1 Cn,r for t ∈ [0, 1]. A remarkable result, originally due to DeLaurentis
and Pittel [5] for the uniform case θ = 1 and to Hansen [17] for the general case θ > 0, asserts
that 

Cn(t)− θ t log n
θ log n


t∈[0,1]

J1
=⇒ (B(t))t∈[0,1], n→∞, (3)

where (B(t))t∈[0,1] denotes a standard Brownian motion. Later, much simpler proofs of (3) were
found by Donnelly, Kurtz and Tavaré [6] and Arratia and Tavaré [3]. While the first work is based
on a Poisson embedding, the second one uses Feller coupling [2, p. 16] as a key tool.

The connection between the Ewens permutations and the Bernoulli sieve emerges when
choosing W to have a beta distribution with parameters θ > 0 and 1, i.e. P{W ∈ dx} =
θxθ−11(0,1)(x)dx . In this case (see, for instance, Example 2 in [14] or Section 5.4 in [2])

(K ∗n,1, . . . , K ∗n,n)
d
= (Cn,1, . . . ,Cn,n), n ∈ N

which implies that

(K ∗n (t))t∈[0,1]
d
= (Cn(t))t∈[0,1]. (4)

2. Main results and discussion

The asymptotic behavior of the small-parts counts in the Bernoulli sieve is well-understood
if E(| log W |) < ∞. According to Theorem 3.3 in [13], the vector (K ∗n,1, . . . , K ∗n, j ), with j
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fixed, converges in distribution to a similar vector defined in terms of a limiting “balls-in-boxes”
scheme in which ball weights are identified with the arrival times of a standard Poisson process
on [0,∞) and boxes are formed by successive points of exp(A) for a stationary renewal point
process A on R driven by the distribution of | log W |. A criterion for weak convergence of K ∗n
is given in Theorem 1.1 and Corollary 1.1 of [10]. One consequence of these results is that,
if E(| log W |) < ∞, the contribution of the small-parts counts to K ∗n becomes asymptotically
negligible, as n → ∞, and it raises the natural question which components of the vector
(K ∗n,1, . . . , K ∗n,n) provide the main contribution to K ∗n for large n. If E| log W | <∞, the answer
is provided by Proposition 2.1, and for the case E| log W | = ∞ see (13).

Proposition 2.1. If µ := E| log W | <∞, then

P−lim n→∞ sup
t∈[0,1]

K ∗n (t)

K ∗n
− t

 = 0. (5)

Thus, if µ < ∞, the random distribution function t → K ∗n (t)/K ∗n converges uniformly in
probability to the uniform distribution function. This provides a definite answer to the question
above, namely, for each t < s, t, s ∈ [0, 1], the asymptotic contribution (in probability) of the
vector (K ∗n,[nt ]

, . . . , K ∗n,[ns ]) to K ∗n is proportional to s − t .
Let us compare this observation with some results of a similar flavor from the literature and

point out beforehand that ρ∗(x), defined by

ρ∗(x) := #{k ∈ N : p∗k ≥ 1/x} = #{k ∈ N : W1 · · · · ·Wk−1(1−Wk) ≥ 1/x} (6)

for x > 0, exhibits a logarithmic growth (see Proposition 3.1). Consider now the Karlin occu-
pancy scheme with deterministic or random pk such that ρ(x), defined by

ρ(x) := #{k ∈ N : pk ≥ 1/x}, x > 0 (7)

is regularly varying at infinity of index α, α ∈ (0, 1). Let Kn and Kn,r denote the number of
occupied boxes and the number of boxes containing exactly r balls, respectively, after n balls
have been placed. Then limn→∞ Kn,r/Kn = c(r) a.s. for explicitly known constants c(r) > 0,
see Theorems 8 and 9 in [23], Theorem 2.1 in [15] and Corollary 21 in [8] (interesting extensions
can be found in [24]). Thus, in sharp contrast to (5), the major contribution to Kn is made by the
small-parts counts.

In view of Proposition 2.1, it is natural to ask how fast K ∗n (t)/K ∗n approaches uniformity
in D[0, 1]. We will answer this question by first proving a FLT for the process (K ∗n (t))t∈[0,1],
properly centered and normalized, and then make use of the continuous mapping theorem. Our
main results, Theorems 2.2 and 2.5 treat the case of finite and infinite µ, respectively.

Theorem 2.2. Assume that

E| log(1−W )|a <∞ (8)

for some a > 0. Set

un(t) := µ
−1
 log n

(1−t) log n
P{| log(1−W )| ≤ s} ds

and

vn(t) := µ
−1
 log n

(1−t) log n
P{| log(1−W )| > s} ds = µ−1t log n − un(t)
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for t ∈ [0, 1], where µ = E| log W |.

(A1) If σ 2
:= Var| log W | ∈ (0,∞), then, as n→∞,

K ∗n (t)− un(t)
µ−3σ 2 log n


t∈[0,1]

J1
=⇒ (B(t))t∈[0,1]

and 
µσ−2 log n


K ∗n (t)

K ∗n
− t +

vn(t)− tvn(1)
un(1)


t∈[0,1]

J1
=⇒ (B(t)− t B(1))t∈[0,1],

where (B(t))t∈[0,1] is a standard Brownian motion.
(A2) If σ 2

= ∞ and

E(log W )21{| log W |≤x} ∼ ℓ(x), x →∞,

for some ℓ slowly varying at infinity, then, as n→∞,
K ∗n (t)− un(t)

µ−3/2c(log n)


t∈[0,1]

J1
=⇒ (B(t))t∈[0,1]

and √
µ log n

c(log n)


K ∗n (t)

K ∗n
− t +

vn(t)− tvn(1)
un(1)


t∈[0,1]

J1
=⇒ (B(t)− t B(1))t∈[0,1]

where c is a positive function satisfying limx→∞ c(x)−2xℓ(c(x)) = 1.
(A3) If

P{| log W | > x} ∼ x−αℓ(x), x →∞, (9)

for some α ∈ (1, 2) and some ℓ slowly varying at infinity, then, as n→∞,
K ∗n (t)− un(t)

µ−(α+1)/αc(log n)


t∈[0,1]

M1
=⇒ (Sα(t))t∈[0,1]

and 
µ1/α log n

c(log n)


K ∗n (t)

K ∗n
− t +

vn(t)− tvn(1)
un(1)


t∈[0,1]

M1
=⇒ (Sα(t)− t Sα(1))t∈[0,1],

where c is a positive function satisfying limx→∞ c(x)−αxℓ(c(x)) = 1 and (Sα(t))t∈[0,1] is
a spectrally negative α-stable Lévy process such that Sα(1) has characteristic function

u → exp{−|u|αΓ (1− α)(cos(πα/2)+ i sin(πα/2) sgn(u))}, u ∈ R, (10)

with Γ being the gamma function.

Remark 2.3. Along similar lines as in [10] where weak convergence of K ∗n is proved, it can
be checked that moment condition (8) is not needed to ensure weak convergence of the finite-
dimensional distributions of (K ∗n (t))t∈[0,1]. Our proof of Theorem 2.2 is based on the decompo-
sition

K ∗n (t)− un(t) =

K ∗n (t)−


ρ∗(n)− ρ∗


n(1−t)−

+

ρ∗(n)− ρ∗


n(1−t)−

− un(t)

(11)

with ρ∗(x) as defined in (6). It will be shown that, irrespective of (8), the first term on the right-
hand side of (11), properly normalized, converges to zero uniformly in probability. However, for
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dealing with the second term, we need condition (8) (see the proof of Theorem 3.2) but do not
know whether it is really necessary.

Remark 2.4. Whenever the second-order term vn(t) of the centering of K ∗n (t) is killed by the
normalizing constants which is the case, for instance, if E| log(1 − W )| < ∞, the “true”
centering for K ∗n (t) is µ−1t log n. Similarly, the term vn(t)−tvn(1)

un(1)
may then be omitted in the limit

theorems for K ∗n (t)/K ∗n because it vanishes asymptotically when multiplied by the corresponding
normalization.

Assume now that W has a beta distribution with parameters θ > 0 and 1, giving

E| log W | = θ−1, Var| log W | = θ−2 and E| log(1−W )|a <∞ for all a > 0.

Then part (A1) of Theorem 2.2 together with the preceding remark yields
K ∗n (t)− θ t log n

θ log n


t∈[0,1]

J1
=⇒ (B(t))t∈[0,1], n→∞,

and in view of (4), this limit relation is equivalent to (3). Thus, we found yet another proof of (3).
In fact, our Theorem 2.2 constitutes a generalization of (3).

As shown in [11,13], respectively, similar generalizations exist for the Erdös–Túran law for
the order of Ewens permutations [2, Theorem 5.15 on p. 116] and for the weak laws for small
cycles in Ewens permutations [2, Theorem 5.1 on p. 96]. On the other hand, the independence-
based tools used in the proofs related to these permutations [2, Section 5] are no longer available
in the more general framework of the Bernoulli sieve and must therefore be replaced by methods
of advanced renewal theory.

Theorem 2.5. If relation (9) holds with α ∈ (0, 1), then, as n→∞,
ℓ(log n)K ∗n (t)

(log n)α


t∈[0,1]

J1
=⇒


W←α (1)−W←α ((1− t)−)


t∈[0,1] (12)

and 
K ∗n (t)

K ∗n


t∈[0,1]

J1
=⇒


1−

W←α ((1− t)−)

W←α (1)


t∈[0,1]

, (13)

where W←α (t) := inf{s ≥ 0 : Wα(s) > t} for t ≥ 0 and (Wα(s))s≥0 is an α-stable subordinator
(nondecreasing Lévy process) with Laplace exponent − log E(−zWα(1)) = Γ (1− α)zα, z ≥ 0.

In the remaining part of this section, we briefly describe our approach and the organization of
the paper.

The following heuristic sheds some light on the asymptotic behavior of the number Kn of
occupied boxes in the Karlin scheme. Given (p j ) j∈N, call a box k large if pk ≥ 1/n. On average,
a large box k is occupied because the (conditional) mean number of balls in it is npk ≥ 1. One
may therefore expect that Kn is asymptotically close to the number of large boxes, which is ρ(n)
(see (7) for the definition). For the Bernoulli sieve, this heuristic was justified in [10] by showing
that K ∗n = K ∗n (1), properly centered and normalized, converges weakly iff ρ∗(n), defined in (6)
and centered and normalized by the same constants, converges weakly to the same law. Arguing
similarly, one may expect that (K ∗n − K ∗n (t))t∈[0,1] is well-approximated by (ρ∗(n1−t ))t∈[0,1]. It
will actually be shown in Section 4 that the time-reversal

ρ∗(n)− ρ∗(n(1−t)−) = #{k ∈ N : n−1 < p∗k ≤ nt−1
}, t ∈ [0, 1]
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provides a uniform approximation for (K ∗n (t))t∈[0,1] which is tight enough to derive that
(K ∗n (t))t∈[0,1], properly centered and normalized, converges weakly in the Skorohod space if
the same is true for (ρ∗(n) − ρ∗(n(1−t)−))t∈[0,1]. This new observation allows us to replace
the existing methods based on Poissonization-de-Poissonization used in earlier works on the
Bernoulli sieve and constitutes the first principal contribution of the present paper. We stress
that our Proposition 4.1 essentially shows that the behavior of Kn(t) :=

[nt
]

k=1 Kn,r for large n
is driven by that of ρ(n) − ρ(n(1−t)−) for any Karlin occupancy scheme with deterministic or
random (pk)k∈N provided that ρ(x) exhibits a logarithmic growth and its increments satisfy an
additional condition.

Once a functional limit theorem for (ρ∗(nt ))t∈[0,1] has been proved, the corresponding
functional limit theorem for (ρ∗(n) − ρ∗(n(1−t)−))t∈[0,1] follows by an application of the
continuous mapping theorem. Put

T ∗n := | log W1| + · · · + | log Wn−1| + | log(1−Wn)|, n ∈ N (14)

and note that ρ∗(nt ) = #{k ∈ N : T ∗k ≤ t log n} equals the number of visits of the perturbed
random walk (T ∗n )n∈N to the interval [0, t log n]. Theorem 3.2 stated in Section 3 provides several
functional limit theorems for the number of visits of a general perturbed random walk, not
necessarily related to the Bernoulli sieve. Being of independent interest, this result is the second
principal contribution of the present paper.

3. Perturbed random walks

Let (ξk, ηk)k∈N be a sequence of independent copies of a R2-valued random vector (ξ, η)with
positive components. Set S0 := 0, Sn := ξ1 + · · · + ξn, n ∈ N and then

Tn := Sn−1 + ηn, n ∈ N.

The sequence (Tn)n∈N is called a perturbed random walk and has recently attracted some interest
in the literature, see [1] and the references therein. Let N (x) denote the number of visits of
(Tn)n∈N to the interval [0, x], i.e.,

N (x) :=

k≥1

1{Tk≤x} =

k≥0

1{Sk+ηk+1≤x}, x ≥ 0.

We start with an assertion that will be used in the proof of Proposition 2.1.

Proposition 3.1. If m := Eξ <∞, then

lim
n→∞

sup
t∈[0,1]

m(N (n)− N (n(1− t)−))

n
− t

 = 0 a.s. (15)

If Eη < ∞, the weak convergence of the finite-dimensional distributions of (N (nt))t≥0,
properly centered and normalized, follows from Theorem 2.4 in [21], see also Example 3.2
there. Theorem 3.2 given next is an extension of the aforementioned result to convergence in
the Skorohod space. The standard approach to such a strengthening would be to prove tightness.
Since this turned out beyond our reach we use an alternative approach.

Theorem 3.2. Let T > 0 and F(x) = P{η ≤ x}, x ≥ 0. In (B1), (B2) and (B3) below, assume
further that Eηa <∞ for some a > 0.
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(B1) If s2
:= Var ξ ∈ (0,∞), then

N (nt)−m−1
 nt

0 F(u) du
√

m−3s2n


t∈[0,T ]

J1
=⇒ (B(t))t∈[0,T ] (16)

as n→∞, where m = Eξ <∞ and (B(t))t∈[0,T ] is a standard Brownian motion.

(B2) If s2
= ∞ and

Eξ21{ξ≤x} ∼ ℓ(x), x →∞

for some ℓ slowly varying at infinity, then
N (nt)−m−1

 nt
0 F(u) du

m−3/2c(n)


t∈[0,T ]

J1
=⇒ (B(t))t∈[0,T ] (17)

as n→∞, where c is a positive function satisfying limx→∞ c(x)−2xℓ(c(x)) = 1.

(B3) If

P{ξ > x} ∼ x−αℓ(x), x →∞ (18)

for some α ∈ (1, 2) and some ℓ slowly varying at infinity, then
N (nt)−m−1

 nt
0 F(u) du

m−(α+1)/αc(n)


t∈[0,T ]

M1
=⇒ (Sα(t))t∈[0,T ] (19)

as n → ∞, where (Sα(t))t∈[0,T ] is an α-stable Lévy process, Sα(1) has characteristic
function (10), and c is a positive function satisfying limx→∞ c(x)−αxℓ(c(x)) = 1.

(B4) If (18) holds with α ∈ (0, 1), then
ℓ(n)N (nt)

nα


t∈[0,T ]

J1
=⇒ (W←α (t))t∈[0,T ] (20)

as n→∞, where W←α (t) is as defined in Theorem 2.5.

We close this section with two further results that will be needed in our analysis. The first one
tells us that the maximal number of visits of a perturbed random walk to subintervals of [0, n+b]
of length b grows stochastically more slowly than any positive power of n.

Proposition 3.3. For all positive b and c,

P−lim n→∞n−c sup
t∈[0,1]


N (nt + b)− N (nt)


= 0. (21)

The second result is a straightforward extension of the fact from renewal theory that the
expected number of visits of a random walk with positive increments to intervals of length y
is bounded by a linear function in y.

Proposition 3.4. For all x, y ≥ 0 and appropriate positive C and D,

E

N (x + y)− N (x)


≤ Cy + D. (22)
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4. The Karlin occupancy scheme: an approximation result

In this section, we focus on the Karlin occupancy scheme with deterministic (pk)k∈N. For
j = 1, . . . , n, let Zn, j denote the number of balls in the j th box, so that

Kn(t) :=

j≥1

1{Zn, j∈[1,nt ]}, t ∈ [0, 1],

gives the number of occupied boxes containing at most [nt
] balls. Proposition 4.1 is the first main

ingredient to the proof of Theorem 2.2. The connection with the Bernoulli sieve becomes clear
when conditioning on (Wk).

Proposition 4.1. Let ρ(x) be as defined in (7). Then

E sup
t∈[0,1]

Kn(t)−


ρ(n)− ρ


n(1−t)− ≤ 6


ρ(n)− ρ


x−1

0 n(log n)−2
+

3ρ(n)
log n

+


∞

1
t−2(ρ(nt)− ρ(n)) dt + 2 sup

t∈[0,1]


ρ(en1−t )− ρ(e−1n1−t )


,

where x0 > 1 denotes an absolute constant that does not depend on n, nor on (p j ) j∈N.

Proof. Without further notice, all subsequent estimates, including nt
− n3t/4 > 1 for t ∈ [ln, 1]

with ln :=
2 log log n

log n , are meant under the proviso that n be sufficiently large. We start with the
basic inequalityKn(t)−


ρ(n)− ρ


n(1−t)− ≤

j≥1

1{Zn, j>nt , np j∈[1,nt ]} +


j≥1

1{Zn, j=0, np j∈[1,nt ]}

+


j≥1

1{Zn, j∈[1,nt ], np j>nt } +


j≥1

1{Zn, j∈[1,nt ], np j<1}

=: S(1)n (t)+ S(2)n (t)+ S(3)n (t)+ S(4)n (t)

and intend to estimate E supt∈[0,1] S
(i)
n (t) for i = 1, 2, 3, 4.

As for the first summand, we have

sup
t∈[0,1]


j≥1

1{Zn, j>nt , np j∈[1,nt ]}

≤ sup
t∈[0, ln)


j≥1

1{np j∈[1,nt ]} + sup
t∈[ln ,1]


j≥1

1{Zn, j>nt , np j∈[1,nt−n3t/4]}

+ sup
t∈[ln , 1]


j≥1

1{Zn, j>nt , np j∈(nt−n3t/4, nt ]}

≤


j≥1

1{np j∈[1,nln )} + sup
t∈[ln , 1]


j≥1

1{Zn, j−np j>n3t/4, np j∈[1,nt−n3t/4]}

+ sup
t∈[ln , 1]


j≥1

1{np j∈(nt−n3t/4, nt ]}

≤


j≥1

1
{np j∈[1, log2 n)} +


j≥1

1{Zn, j−np j>(np j )
3/4, np j∈[1,n]}

+ sup
t∈[ln , 1]


j≥1

1{np j∈(nt−n3t/4, nt ]}

=: S(11)
n + S(12)

n + S(13)
n .
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By the definition of ρ,

S(11)
n = ρ(n)− ρ(n(log n)−2).

The random variable Zn, j has a binomial distribution with parameters n and p j , so that
EZn, j = np j and Var Zn, j = np j (1− p j ). Use Chebyshev’s inequality to obtain

ES(12)
n ≤


j≥1

np j (1− p j )

(np j )3/2
1{np j∈[1,n]} ≤


j≥1

(np j )
−1/21{np j∈[1,n]}

=


[1,n/(log n)2]

n−1/2x1/2 dρ(x)+

(n/(log n)2, n]

n−1/2x1/2 dρ(x)

≤
ρ(n)

log n
+


ρ(n)− ρ


n(log n)−2.

Finally, the third term S(13)
n can be estimated as follows:

S(13)
n = sup

t∈[ln , 1]


j≥1

1{p j∈(nt−1−n3t/4−1, nt−1]}

≤ sup
t∈[ln ,1]


j≥1

1{p j∈(nt−1(1−n−ln/4), nt−1]}

≤ sup
t∈[0,1]


j≥1

1{p j∈(nt−1(1−n−ln/4), nt−1]}

= sup
t∈[0,1]


j≥1

1{p j∈(nt−1(1−(log n)−1/2), nt−1]}

≤ sup
t∈[0,1]


ρ

en1−t

− ρ

n1−t.

Summarizing,

E sup
t∈[0,1]

S(1)n (t) ≤ 2

ρ(n)− ρ


n(log n)−2

+
ρ(n)

log n
+ sup

t∈[0,1]


ρ

en1−t

− ρ

n1−t.

Since S(2)n (t) and S(4)n (t) are monotone in t , we further infer more easily that

E sup
t∈[0,1]

S(2)n (t) =

j≥1

P{Zn, j = 0}1{np j∈[1,n]} =

j≥1

(1− p j )
n1{np j∈[1,n]}

≤


j≥1

e−p j n1{1/n≤p j≤1}

=


[1,n/ log n]

e−n/x dρ(x)+

(n/ log n, n]

e−n/x dρ(x)

≤
ρ(n)

n
+


ρ(n)− ρ(n


log n)−1

≤
ρ(n)

log n
+


ρ(n)− ρ


n(log n)−2

and, with the help of Markov’s inequality,

E sup
t∈[0,1]

S(4)n (t) =

j≥1

P{Zn, j ≥ 1}1{np j≤1} ≤

j≥1

np j 1{np j≤1}

=


[n,∞)

nx−1 dρ(x) =

[1,∞)

x−1 d(ρ(nx)− ρ(n)).
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Upon integration by parts and a use of the fact that limx→∞ x−1ρ(x) = 0 (see Lemma 3 in [23]),
we arrive at

E sup
t∈[0,1]

S(4)n (t) ≤

∞

1
x−2(ρ(nx)− ρ(n)) dx +


ρ(n)− ρ(n−)


≤


∞

1
x−2(ρ(nx)− ρ(n)) dx +


ρ(n)− ρ


n(log n)−2.

Left with S(3)n (t), we write

sup
t∈[0,1]


j≥1

1{Zn, j∈[1,nt ], np j>nt }

≤ sup
t∈[0,1]


j≥1

1{Zn, j≤nt , np j−(np j )
3/4≥nt } + sup

t∈[0,1]


j≥1

1{np j−(np j )
3/4<nt≤np j }

≤


j≥1

1{Zn, j≤np j−(np j )
3/4, np j≥1} + sup

t∈[0,1]


j≥1

1{np j−(np j )
3/4<nt≤np j }

=


j≥1

1{n−Zn, j−n(1−p j )≥(np j )
3/4, np j∈[1,n]} + sup

t∈[0,1]


j≥1

1{np j−(np j )
3/4<nt≤np j }

.

Since n− Zn, j has a binomial distribution with parameters n and 1− p j , Chebyshev’s inequality

along with the estimates used for ES(12)
n yields

E

j≥1

1{n−Zn, j−n(1−p j )≥(np j )
3/4, np j∈[1,n]} ≤

ρ(n)

log n
+


ρ(n)− ρ


n(log n)−2.

To find a proper bound for the second summand, we first verify that

x − x3/4 < y ≤ x and y ≥ 1

entail

y ≤ x < y + (x0 − 1)y3/4, (23)

where x0 > 1 is the unique positive solution to the equation x − x3/4
= 1. Indeed, if x < x0,

then

x = (x − x3/4)+ x3/4 < y + x3/4
0 = y + (x0 − 1) ≤ y + (x0 − 1)y3/4,

where the last inequality is a consequence of y ≥ 1. On the other hand, if x ≥ x0 we have

x = (x − x3/4)+ (1− x−1/4)−3/4(x − x3/4)3/4

< y + (1− x−1/4
0 )−3/4(x − x3/4)3/4

< y + (1− x−1/4
0 )−3/4 y3/4

= y + (x0 − 1)y3/4,

where the first inequality follows from the fact that x → (1 − x−1/4)−3/4 is nonincreasing on
(1,∞), giving (1− x−1/4)−3/4

≤ (1− x−1/4
0 )−3/4 for x ≥ x0. In view of (23),

sup
t∈[0,1]


j≥1

1{np j−(np j )
3/4<nt≤np j }

≤ sup
t∈[0,1]


j≥1

1{nt≤np j<nt+(x0−1)n3t/4}

≤ sup
t∈[0, ln ]


j≥1

1{nt≤np j<nt+(x0−1)n3t/4} + sup
t∈[ln , 1]


j≥1

1{nt≤np j<nt+(x0−1)n3t/4}
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≤


j≥1

1{1≤np j<x0nln } + sup
t∈[ln , 1]


j≥1

1{p j∈[nt−1, nt−1(1+(x0−1)n−t/4))}

≤


ρ(n)− ρ


x−1

0 n(log n)−2
+ sup

t∈[ln , 1]


j≥1

1{p j∈[nt−1, nt−1(1+(x0−1)n−ln/4))}

≤


ρ(n)− ρ


x−1

0 n(log n)−2
+ sup

t∈[0,1]


j≥1

1{p j∈[nt−1, nt−1(1+(x0−1)(log n)−1/2))}

≤


ρ(n)− ρ


x−1

0 n(log n)−2
+ sup

t∈[0,1]


ρ

n1−t

− ρ

e−1n1−t,

where ln = 2 log log n/ log n should be recalled. A combination of the previous estimates
completes the proof of the proposition. �

5. Proofs for Section 3

Proof of Proposition 3.1. If we can prove that

lim
n→∞

N (ns)

n
= lim

n→∞

N (ns−)

n
=

s

m
a.s., (24)

for any s > 0, then

lim
n→∞

m

N (n)− N (n(1− t)−)


n

= t a.s.

for all t ∈ [0, 1], and this yields (15) because, by Dini’s theorem, convergence of monotone
functions to a continuous limit is uniform on compact sets.

Proof of (24). Since N (ns)−N (ns−) ≤ 1 for all n ∈ N and s > 0, it suffices to consider N (ns).
Setting

ν(t) := inf{k ∈ N : Sk > t} =

k≥0

1{Sk≤t}, t ∈ R, (25)

we use the following estimate

ν(ns − y)

n
−

1
n

ν(ns)
k=1

1{ηk>y} ≤
N (ns)

n
≤
ν(ns)

n
a.s. (26)

valid for any y > 0 and n sufficiently large. The strong law of large numbers provides
us with limn→∞ n−1n

k=1 1{ηk>y} = P{η > y}, while the same law for renewal counting
processes [16, Theorem 5.1 on p. 57] gives limn→∞ n−1ν(ns) = m−1s a.s. Consequently,
limn→∞ n−1ν(ns)

k=1 1{ηk>y} = m−1sP{η > y} a.s. Finally, (24) follows from (26) by first letting
n and then y tend to infinity. �

Proof of Theorem 3.2. (B4) is covered by Corollary 2.6 in [21], see also Example 3.2 there.

Proof of (B1)–(B3). By Theorem 1.1 in [20] applied to h(t) = F(t) = P{η ≤ t}, we know that
relations (16), (17) and (19) hold true with


k≥0 F(nt − Sk)1{Sk≤nt} in place of N (nt). Put

X (t) :=

k≥0


1{Sk+ηk+1≤t} − F(t − Sk)1{Sk≤t}


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for t ≥ 0. In view of the representation

N (t)−
1
m

 t

0
F(u) du = X (t)+


k≥0

F(t − Sk)1{Sk≤t} −
1
m

 t

0
F(u)du


and Slutsky’s lemma, it suffices to check that

P−lim n→∞n−1/2 sup
0≤t≤T

|X (nt)| = 0, (27)

using also limn→∞ n−1/2c(n) = ∞ in the situation of (B2) and (B3) (see Lemma A.1 in the
Appendix).

Suppose we can prove that

lim
t→∞

t−1/2 X (t) = 0 a.s. (28)

Then, by using

n−1/2 sup
0≤t≤T

|X (nt)| ≤ n−1/2 sup
0≤t≤s

|X (t)| + n−1/2 sup
s≤t≤nT

|X (t)|

≤ n−1/2 sup
0≤t≤s

|X (t)| + T 1/2 sup
t≥s
|t−1/2 X (t)|

for 0 < s < nT and sending first n and then s to infinity, we see that (28) implies (27).
Passing to the proof of (28), we first observe that for each t ≥ 0, there exists m ∈ N0 such

that t ∈ [m,m + 1) and

t−1/2 X (t) ≤ m−1/2

k≥0


1{Sk+ηk+1≤m+1} − F(m + 1− Sk)1{Sk≤m+1}


+ m−1/2


k≥0


F(m + 1− Sk)1{Sk≤m+1} − F(m − Sk)1{Sk≤m}


.

Obviously, a lower estimate of similar kind holds as well so that (28) is a consequence of the two
limit assertions

lim
N∋m→∞

m−1/2 X (m) = 0 a.s. (29)

and

lim
N∋m→∞

m−δ

k≥0


F(m + 1− Sk)1{Sk≤m+1} − F(m − Sk)1{Sk≤m}


= 0 a.s. (30)

for any δ > 0.1

Proof of (29). We start by noting that X (t) equals the terminal value of the martingale
(R(k, t),Fk)k∈N0 , where R(0, t) := 0,F0 := {Ω ,⊘} denotes the trivial σ -algebra,

R(k, t) :=
k−1
j=0


1{S j+η j+1≤t} − F(t − S j )1{S j≤t}



1 At this point it is enough to prove (30) for δ = 1/2 only. However, we shall need (30) for arbitrary δ > 0 later on.
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and Fk := σ((ξ j , η j ) : 1 ≤ j ≤ k) for k ∈ N. For any l ∈ N, use the Burkholder–Davis–Gundy
inequality [4, Theorem 11.3.2] to obtain

E(X (t))2l

≤ C

E


k≥0

E

(R(k + 1, t)− R(k, t))2|Fk

l

+


k≥0

E

R(k + 1, t)− R(k, t)

2l


= C

E


k≥0

F(t − Sk)(1− F(t − Sk))1{Sk≤t}

l

+


k≥0

E

1{Sk+ηk+1≤t} − F(t − Sk)1{Sk≤t}

2l


=: C(I1(t)+ I2(t))

for a positive constant C .
Since


k≥0 F(t − Sk)(1− F(t − Sk))1{Sk≤t} ≤


k≥0(1− F(t − Sk))1{Sk≤t}, we find

I1(t) = O

 t

0
(1− F(y))dy

l 
, t →∞ (31)

when applying Lemma A.3 to the nonincreasing function t → 1− F(t). Furthermore,

E


1{Sk+ηk+1≤t} − F(t − Sk)1{Sk≤t}
2l
Fk


=

F(t − Sk)(1− F(t − Sk))

2l
+ (1− F(t − Sk))(F(t − Sk))

2l1{Sk≤t}

≤ (1− F(t − Sk))1{Sk≤t},

giving I2(t) ≤ E


k≥0(1− F(t − Sk))1{Sk≤t} and thereupon

I2(t) = O

 t

0
(1− F(y))dy


, t →∞

by Lemma A.3 in the Appendix. We have thus shown that

EX (t)2l
= O

 t

0
(1− F(y)) dy

l

, t →∞, (32)

and so EX (t)2l is of order O(1) in the case Eη =

∞

0 (1 − F(y))dy < ∞. If Eη = ∞, then
our assumption Eηa < ∞ for some a > 0 entails a ∈ (0, 1). Using (32) in combination with
limt→∞ ta(1 − F(t)) = 0, clearly a consequence of Eηa < ∞, yields EX (m)2l

= O(ml(1−a))

as m →∞. Hence, for all ε > 0,

P{|X (m)| > εm1/2
} ≤

EX (m)2l

εlml = O(m−la), m →∞,

by Markov’s inequality. Choosing l := min{ j ∈ N : ja ≥ 2} in the last estimate yields (29) by
the Borel–Cantelli lemma.
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Proof of (30). Set J (m) :=

[0,m]


F(m + 1 − y) − F(m − y)


dν(y) for m ∈ N, where ν(·) is

defined by (25). We will use the following estimate

0 ≤

k≥0


F(m + 1− Sk)1{Sk≤m+1} − F(m − Sk)1{Sk≤m}


=


[0,m+1]

F(m + 1− y) dν(y)−

[0,m]

F(m − y) dν(y)

≤ J (m)+ ν(m + 1)− ν(m).

Since limm→∞ m−δ(ν(m + 1) − ν(m)) = 0 a.s. by Lemma A.2 in the Appendix, it remains to
examine J (m). But

J (m) = F(m + 1)− F(m)+
m−1
k=0


(k, k+1]


F(m + 1− y)− F(m − y)


dν(y)

≤ 1+
m−1
k=0


F(m + 1− k)− F(m − 1− k)


(ν(k + 1)− ν(k))

≤ 1+ (F(m)+ F(m + 1)− F(1)) max
0≤k≤m−1

(ν(k + 1)− ν(k)),

implies limm→∞ m−δ J (m) = 0 a.s. by Lemma A.2, and this completes the proof of Theo-
rem 3.2. �

Proof of Proposition 3.3. Here it is obviously enough to prove that

lim
t→∞

t−c(N (t + b)− N (t)) = 0 a.s. (33)

for b > 0, w.l.o.g. b = 1 and t →∞ along integers only. Put

Y (t) :=

j≥0

1{t<S j+η j+1≤t+1} −

j≥0

(F(t + 1− S j )1{S j≤t+1} − F(t − S j )1{S j≤t}).

In view of (30), relation (33) follows if we can show that

lim
n→∞

n−cY (n) = 0 a.s.

which in turn follows from

EY (t)2l
= O(1), t →∞ (34)

for every l ∈ N by a similar argument as in the previous proof using Markov’s inequality and the
Borel–Cantelli lemma.

Left with (34), the subsequent argument is very similar to the corresponding one for EX (t)2l

in the previous proof. Again, Y (t) is the terminal value of a martingale with respect to the
filtration (Fk)k∈N0 from there, viz.

Y (k, t) :=
k−1
j=0

1{t<S j+η j+1≤t+1} −

k−1
j=0

(F(t + 1− S j )1{S j≤t+1} − F(t − S j )1{S j≤t}).
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By another use of the Burkholder–Davis–Gundy inequality, one finds that

E(Y (t))2l
≤ C


E


k≥0

p(t − Sk)(1− p(t − Sk))1{Sk≤t}

l

+ 1



≤ C


E


k≥0

p(t − Sk)1{Sk≤t}

l

+ 1


for a positive constant C and with p(x) := F(x + 1)− F(x). By Lemma A.3,

E


k≥0

p(t − Sk)1{Sk≤t}

l

= O


[t]
j=0

sup
y∈[ j, j+1)

(F(y + 1)− F(y))

l

= O(1)

because [t]
j=0

sup
y∈[ j, j+1)

(F(y + 1)− F(y))

l

≤

 [t]
j=0

(F( j + 2)− F( j))

l

≤ 2l .

This establishes (34) thereby finishing the proof of Proposition 3.3. �

Proof of Proposition 3.4. Note that

U (x) := Eν(x) =

j≥1

P{S j−1 ≤ x}, x ∈ R,

is the renewal function associated with (Sn)n∈N. As a consequence of the distributional
subadditivity of ν (see formula (5.7) on p. 58 in [16]), the monotonicity of ν, and the fact that
ν(x) = 0 for x < 0,U is subadditive on R, i.e. U (x+ y) ≤ U (x)+U (y) for all x, y ∈ R, and so

U (x) ≤ Cx+ + C2

for all x ∈ R and some positive C and D. By using these facts, we finally obtain

E

N (x + y)− N (x)


=


j≥1

P{x < T j ≤ x + y}

=


j≥1


[0,∞)

P{x − z < S j−1 ≤ x + y − z} P{η ∈ dz}

=


[0,∞)


U (x + y − z)−U (x − z)


P{η ∈ dz}

≤ U (y) ≤ Cy + D.

for all x, y ≥ 0. �

6. Proofs for Section 2

Recall that the Bernoulli sieve is the Karlin occupancy scheme with the random probabilities
(p∗k )k∈N defined in (2). Condition on (p∗k )k∈N and apply Proposition 4.1 to obtain

E


sup
t∈[0,1]

|K ∗n (t)− (ρ
∗(n)− ρ∗(n(1−t)−))|

(p∗j )
≤ 6


ρ∗(n)− ρ∗


x−1

0 n(log n)−2
+

3ρ∗(n)
log n
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+


∞

1

ρ∗(nx)− ρ∗(n)

x2 dx

+ 2 sup
t∈[0,1]


ρ∗(en1−t )− ρ∗(e−1n1−t )


=: εn (35)

with ρ∗(x) defined in (6). The next lemma shows that εn does not grow faster in probability than
any power of log n.

Lemma 6.1. For all c > 0,

P−lim n→∞
εn

(log n)c
= 0.

Proof. Observe that

ρ∗(x) = N (log x) (36)

for N (·) corresponding to ξ = | log W | and η = | log(1 − W )|. Using (22), we infer that the
expectation of the first three terms of (35) is O(log log n). Hence the sum of these terms divided
by (log n)c converges to zero in probability by Markov’s inequality. Finally, the fourth term

sup
t∈[0,1]


ρ∗(en1−t )− ρ∗(e−1n1−t )


= sup

t∈[0,1]


N (t log n + 1)− N (t log n − 1)


is of order o((log n)c) in probability for any c > 0 by Proposition 3.3. �

Proof of Proposition 2.1. By Lemma 6.1,

P−lim n→∞
1

log n
E


sup
t∈[0,1]

|K ∗n (t)− (ρ
∗(n)− ρ∗(n(1−t)−))|

(p∗j ) = 0

which implies

P−lim n→∞
1

log n
sup

t∈[0,1]

K ∗n (t)− (ρ∗(n)− ρ∗(n(1−t)−))
 = 0 (37)

by Markov’s inequality and the dominated convergence theorem. Furthermore, K ∗n
µ−1 log n

− 1

 ≤ |K ∗n − ρ∗(n)|µ−1 log n
+

 ρ∗(n)

µ−1 log n
− 1

 a.s.

The first term on the right-hand side converges to zero in probability by (37) (recall that
K ∗n = K ∗n (1)), and the second does so by (36) and Proposition 3.1. Hence,2

P−lim n→∞
K ∗n

log n
=

1
µ
. (38)

2 Though not needed here, let us note that the convergence in (38) holds a.s. Just apply the Borel–Cantelli lemma
to K ∗

[exp(n2)]
and then use the monotonicity of K ∗n in n. Alternatively, this follows from Theorem 1′ and 8 in [23] in

combination with limn→∞(log n)−1ρ∗(n) = µ−1 a.s. provided by Proposition 3.1.
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To complete the proof, we observe that

sup
t∈[0,1]

K ∗n (t)

K ∗n
− t

 = µ−1 log n

K ∗n

 sup
t∈[0,1]

|K ∗n (t)− t K ∗n |

µ−1 log n


≤
µ−1 log n

K ∗n

 sup
t∈[0,1]

|K ∗n (t)−

ρ∗(n)− ρ∗(n(1−t)−)


|

µ−1 log n

+ sup
t∈[0,1]

µ(ρ∗(n)− ρ∗(n(1−t)−))

log n
− t

+  K ∗n
µ−1 log n

− 1


and note that the right-hand side converges to zero in probability by (37), (38) and Proposi-
tion 3.1. �

Proof of Theorem 2.2. Proof for K ∗n (t). Denote by an the normalization used for K ∗n (t) in the
respective parts of Theorem 2.2. Observe that an grows faster than some power of the logarithm.
Hence, by (35), Lemma 6.1 and Markov’s inequality,

P−lim n→∞P


sup

t∈[0,1]
|K ∗n (t)− (ρ

∗(n)− ρ∗(n(1−t)−))| > εan

(p∗j )

= 0

for all ϵ > 0. Using the dominated convergence theorem, this yields

P−lim n→∞a−1
n sup

t∈[0,1]
|K ∗n (t)− (ρ

∗(n)− ρ∗(n(1−t)−))| = 0.

In view of representation (11), it remains to prove Theorem 2.2 with ρ∗(n) − ρ∗(n(1−t)−)

replacing K ∗n (t). Using (36), we see that this is accomplished by an application of Theorem 3.2
to the process (ρ∗(nt ))t∈[0,1] and the subsequent use of the continuous mapping theorem. For the
latter, three supporting facts are:

(1) in the J1- (M1-) topology on D[0, 1] × D[0, 1]
ρ∗(n)− un(1)

an
,
−ρ∗(n(1−t)−)+ un(1)− un(t)

an


=⇒


X (1),−X ((1− t)−)


,

as n→∞, where X is a Brownian motion and the convergence is in the J1-topology in (C1)
and (C2), whereas X is an α-stable Lévy process and the convergence is in the M1-topology
in (C3);

(2) if D[0, 1] × D[0, 1] is equipped with the J1 or M1-topology (which is stronger than the
product topology), then the mapping ψ : D[0, 1] × D[0, 1] → D[0, 1], defined by
ψ(x, y) := x + y is continuous;

(3) (Y (1)− Y ((1− t)−))t∈[0,1]
d
= (Y (t))t∈[0,1] for any Lévy process Y .

Proof for K ∗n (t)/K ∗n . Write

log n

µan


K ∗n (t)

K ∗n
− t +

vn(t)− tvn(1)
un(1)


=

log n

µK ∗n


K ∗n (t)− t K ∗n + vn(t)− tvn(1)

an


+

log n

µK ∗n

vn(t)− tvn(1)
un(1)

K ∗n − un(1)
an

(39)
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with an as before. By what has already been proved, we know that
K ∗n (t)− un(t)

an


t∈[0,1]

=⇒ (Z(t))t∈[0,1], n→∞ (40)

with some Lévy process Z depending on the respective case. Use the continuous mapping
theorem along with continuity of the summation mapping and (38) to obtain

log n

µK ∗n


K ∗n (t)− t K ∗n + vn(t)− tvn(1)

an


=⇒ (Z(t)− t Z(1))t∈[0,1], n→∞.

In view of (38), (40) and

sup
t∈[0,1]

vn(t)− tvn(1)
un(1)

 ≤ 2vn(1)
un(1)

→ 0, n→∞,

the second term in (39) converges to zero in probability uniformly in t ∈ [0, 1]. The proof is
completed by an appeal to Slutsky’s lemma. �

Proof of Theorem 2.5. As for K ∗n (t), the argument used in the proof of Theorem 2.2 applies
here without changes, and (12) follows. Passing to the proof for K ∗n (t)/K ∗n , we immediately
conclude that (12) entails

ℓ(log n)K ∗n (t)

(log n)α
,

(log n)α

ℓ(log n)K ∗n


=⇒


W←α (1)−W←α ((1− t)−),

1
W←α (1)


, n→∞

in the J1-topology on D[0, 1] × D[0, 1]. To complete the proof, use once again the continuous
mapping theorem together with the following fact: if D[0, 1] × D[0, 1] is equipped with the
J1-topology, then the mapping φ : D[0, 1] × D[0, 1] → D[0, 1] defined by φ(x, y) := xy is
continuous. �
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Appendix

We collect three auxiliary results that have been used in the proofs of the main results.

Lemma A.1. Let c(x) be a function as defined in (B2) or (B3) of Theorem 3.2. Then

lim
x→∞

x−1/2c(x) = ∞.

Proof. For (B3), this is immediate because limx→∞ c−α(x)xℓ(c(x)) = 1 implies that c
varies regularly with index 1/α > 1/2. Suppose now the assumptions of part (B2) be valid.
Since c(x) is the asymptotic inverse of x → x2/ℓ(x) and limx→∞ x2/ℓ(x) = ∞, we in-
fer that limx→∞ c(x) = ∞. Moreover, limx→∞ ℓ(x) = ∞ in view of s2

= ∞. Thus,
limx→∞ ℓ(c(x)) = ∞ which in combination with x−1c2(x) ∼ ℓ(c(x)), x → ∞, entails
limx→∞ x−1/2c(x) = ∞. �
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Let (Sn)n∈N0 be a zero-delayed standard random walk with positive steps as in Section 3.
Recall the notation ν(t) = inf{k ∈ N : Sk > t} for t ∈ R. Plainly, ν(t) ≡ 0 for t ≤ 0.

Lemma A.2. For all δ > 0,

lim
N∋n→∞

n−δ max
0≤ j≤n

(ν( j + 1)− ν( j)) = 0 a.s. (41)

Proof. Fix a > 0. Since limγ→∞ Ee−γ S1 = P{S1 = 0} = 0, we can pick γ > 0 such that
eaEe−γ S1 < 1. Then

ea Eeaν(1)
− 1

ea − 1
=


j≥1

eaj P{ν(1) ≥ j} =

j≥1

eaj P{S j−1 ≤ 1}

≤ eγ

j≥1

eaj Ee−γ S1
 j−1

< ∞ (42)

by Markov’s inequality. Hence, for all ε > 0,

P{ν(k + 1)− ν(k) > εkδ} ≤ P{ν(1) > εkδ} ≤ e−aεkδEeaν(1)

having utilized the distributional subadditivity of ν(t) [16, formula (5.7) on p. 58] for the first
inequality and Markov’s inequality for the second. By the Borel–Cantelli lemma, we conclude
that limn→∞ n−δ(ν(n + 1)− ν(n)) = 0 a.s. and thereupon (41). �

Lemma A.3. Let G : [0,∞) → [0,∞) be a locally bounded function, l ∈ N be an arbitrary
integer, and [t] denote the integer-part of t . Then, as t →∞,

E


k≥0

G(t − Sk)1{Sk≤t}

l

= O

 [t]
j=0

sup
y∈[ j, j+1)

G(y)

l

. (43)

If G is nonincreasing, then

E


k≥0

G(t − Sk)1{Sk≤t}

l

= O

 t

0
G(y)dy

l


(44)

as t →∞.

Proof. The result is trivial if G ≡ 0. Assuming that G is not identically zero, we have

G(t) ≤
[t]

n=0


sup

y∈[n, n+1)
G(y)


1[n, n+1)(t), t ≥ 0.

Hence, for t so large that the right-hand side is positive, we infer
k≥0

(G(t − Sk))1{Sk≤t}

l

≤


[t]

n=0


sup

y∈[n,n+1)
G(y)


(ν(t − n)− ν(t − (n + 1)))

l

≤

 [t]
k=0

sup
y∈[k, k+1)

G(y)

l [t]
n=0

sup
y∈[n, n+1)

G(y)

[t]
k=0

sup
y∈[k, k+1)

G(y)

(ν(t − n)− ν(t − (n + 1)))l , (45)
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having utilized


j≥0 1{a<S j≤b} = ν(b)− ν(a) a.s. for a < b and the convexity of x → x l . It is
clear that

ν(t − [t])− ν(t − [t] − 1) = ν(t − [t]) ≤ ν(1) a.s.

Moreover, P{ν(t − n)− ν(t − (n + 1)) > x} ≤ P{ν(1) > x} for n = 0, . . . , [t] − 1 and x ≥ 0
by the distributional subadditivity of ν(t) mentioned earlier. Consequently,

E(ν(t − n)− ν(t − (n + 1)))l ≤ E(ν(1))l <∞ for n = 0, . . . , [t], (46)

where the finiteness follows from (42).
Passing to expectations in (45) and using (46), we see that

E


j≥0

G(t − S j )1{S j≤t}

l

≤

 [t]
n=0

sup
y∈[n, n+1)

G(y)

l

Eν(1)l

which proves (43). If G is nonincreasing, then

[t]
n=0

sup
y∈[n, n+1)

G(y) =
[t]

n=0

G(n) =
 t

0
G(y)dy + O(1), t →∞,

and (44) follows. �
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