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Abstract

We study the regularity of the stochastic representation of the solution of a class of initial–boundary
value problems related to a regime-switching diffusion. This representation is related to the value function
of a finite-horizon optimal stopping problem such as the price of an American-style option in finance.
We show continuity and smoothness of the value function using coupling and time-change techniques.
As an application, we find the minimal payoff scenario for the holder of an American-style option in the
presence of regime-switching uncertainty under the assumption that the transition rates are known to lie
within level-dependent compact sets.
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MSC 2010: primary 60k37; 60G17; 60J70; secondary 93C30; 35B65; 91G80

Keywords: Regime-switching; Markov-modulated; Time-change; Coupling; American option; Initial–boundary value
problem

1. Introduction 1

Let B = (Bt )t≥0 be a Brownian motion and Y = (Yt )t≥0 be a continuous-time finite-state 2

Markov chain, with respect to a common filtered probability space (Ω ,F , (Ft )t≥0, P), where 3

(Ft )t≥0 satisfies the usual conditions. Note that Lemma 2.5 of [14] tells us that B and Y are 4

independent. 5
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Let S = {1, 2, . . . , m} denote the state space of Y and π = (π [i, j]) its Q-matrix so that1

π [i, j] ≥ 0, for i ̸= j and
m∑

j=1

π [i, j] = 0 for i = 1, 2, . . . , m.2

Suppose that the process X = (X t )t≥0 obeys the stochastic differential equation with regime-3

switching4

X t = x +

∫ t

0
a(Xs, Ys)d Bs +

∫ t

0
µ(Xs, Ys)ds, x ∈ R, (1)5

where, for each y ∈ S, a(·, y) and µ(·, y) are, locally Lipschitz continuous on the state space of6

X and a is positive. Denote by Lπ the operator related to the generator of the Markov process7

(X, Y ), given by8

Lπw(x, y, t) =
1
2

a2(x, y)wxx (x, y, t) +µ(x, y)wx (x, y, t) − wt (x, y, t)

+

∑
y′∈S,y′ ̸=y

[w(x, y′, t) − w(x, y, t)]π [y, y′]. (2)9

For a given rate matrix π , consider the value of the optimal stopping problem with finite time10

horizon T > 0 and regime-switching associated with (X, Y ):11

v(x, y, t) = sup
τ≤t

Ex,y[e−ατ g(Xτ )], (x, y, t) ∈ R × S × [0, T ], (3)12

where α ≥ 0 and g : R → [0, ∞) is assumed to be a β-Hölder continuous function for some13

0 < β ≤ 1. We write Ex,y to denote the expectation conditioned on (X0 = x, Y0 = y).14

We are primarily interested in analytical properties of the value function in (3). In particular,15

we will show that for each y ∈ S the function v(·, y, ·) : R × [0, T ] → R is β/2-Hölder16

continuous and v solves the initial–boundary value problem17

(Lπ
− α )v(x, y, t) = 0, in C

v(x, y, 0) = g(x), in R × S × {0}

v(x, y, t) = g(x), on ∂C
(4)18

where C = {(x, y, t) ∈ R×S × (0, T ] : v(x, y, t) > g(x)}. This in turn yields that v(·, y, ·) is of19

the class C2,1 in the set20

Cy = {(x, t) ∈ R × (0, T ] : v(x, y, t) > g(x)}.21

The stochastic representation of the solution of a problem of the form in (4) and in the setting22

where X is a diffusion without regime-switching is of course very well-known (see [13]) and the23

relation to an optimal stopping problem is standard [20,21]. This relationship allows the use of24

PDE methods to tackle the latter problem [21], such as finding a solution to an American option25

problem. However, in order to establish the desired connection, one typically requires continuity26

of the value function v. To this end, a number of subtle regularity conditions on the parameters27

of the problem must be imposed. In Section 2 we show that v(·, y, ·) is locally β/2-Hölder28

continuous (Theorem 2.4). Our results generalize those of Fleming and Soner [12] and Bayraktar,29

Song and Yang [4] in the context of optimal stopping (although they deal with combined control30

and stopping), since they assume uniformly Lipschitz coefficients and payoff and do not allow31

the jumps present in our model.32

In the context of regime-switching diffusions, an early explicit example is Di Masi, Kabanov33

and Runggaldier [9], where they consider option pricing in an incomplete market with regime34
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switching. More recently Baran, Yin and Zhu [3] studied the stochastic representation for a 1

generic initial–boundary value problem generalizing the results by Friedman [13]. A standing 2

assumption in their theory is that the PDE problem is defined on an open and bounded domain 3

on the state space of X . In practice, such domains may be unbounded but we can get around this 4

issue by a local argument which requires some continuity of the underlying value function (see 5

proof of Theorem 3.1). Continuity of v also plays a central role for instance, in the derivation of 6

optimal stopping rules and to determine the shape of the optimal stopping boundary. In general, 7

so-called tangency problems (see [12]) may prevent continuity of the value function, but in our 8

model this is precluded by a local ellipticity assumption (see the proof of Proposition 2.3). 9

The study of the solution of an American-style option problem of the form in (3) has 10

been addressed in the literature under Markov-modulated geometric Brownian motion dynamics 11

d St = St (σ (Yt )d Bt + µ(Yt )dt). For instance, Buffington and Elliott [6] analyze the American 12

put, with g(x) = (K − x)+, and discuss the determination of the value function and the shape of 13

the optimal stopping boundary by means of a direct application of Itô’s formula. More recently, 14

Le and Wang [18] studied analytical properties of value function of an American-style option 15

under the condition that g belongs to the class of non-negative, non-increasing, convex functions 16

with bounded support and twice differentiable on the support. 17

In Sections 2 and 3, we only assume that g is Hölder continuous. 18

Our approach is of interest because it uses coupling arguments as well as classical path 19

properties of Brownian motion, which are purely probabilistic tools. The smoothness results 20

ensure that standard numerical schemes for solving the optimal stopping problem are stable. 21

Throughout the paper we make the following standing assumption: 22

(A1) Ex,y

(
sup

0≤t≤T
(|a(X t , Yt )| + |µ(X t , Yt )|)

)
≤ N for some 23

N = N (x, y, T ) < ∞ and N is continuous as a function of x . 24

Notice that if a(·, y) and µ(·, y) satisfy linear growth conditions for each y then (A1) follows by 25

results on estimates of the moments of regime-switching diffusions (see Appendix A). 26

In financial applications, regime-switching processes have been used to better reproduce 27

asset price behavior from market data. For example, they can generate a volatility smile [25], 28

which is impossible under a constant volatility. Commodity prices such as electricity are prone 29

to spikes [7], and modeling based on regime-switching coefficients has been proposed [19]. 30

A similar effect of dramatic price rises and crashes appears in so-called asset price bubbles. 31

Bubbles have been addressed as following a regime-switching structure [1] and characterized as 32

strict local martingales (see [8,15,23] and references therein). 33

Typically, the transition rates of the Markov chain are specified via a constant Q-matrix. 34

However, empirical studies suggest that time-varying transition and path-dependent rates 35

improve the forecasting ability of the phases of an economy such as expansions, contractions 36

and duration of the regimes (see [10,11,16] and references therein). 37

In Section 4, we use the results of the foregoing sections to find the minimal payoff scenario 38

for the holder of an American-style option who only knows level-dependent bounds on the 39

transition rates of the Markov chain. More precisely, we let π denote an admissible time-varying, 40

(Ft )-adapted rate matrix π = (πt )t≥0 such that for each t ≥ 0, the Q-matrix πt = (πt [i, j]) 41

satisfies 42

πt [i, i + z] ∈ A+

i,z, πt [i, i − z] ∈ A−

i,z, t ≥ 0 (5) 43
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where A+

i,z, A−

i,z are compact subsets of (0, ∞). Denote by A the set of all admissible rate1

matrices. We aim to find, for each initial condition (x, y, t), an admissible rate matrix π l that2

attains the infimum3

V l(x, y, t) = inf
π∈A

v(x, y, t; π ). (6)4

Here, v(x, y, t; π ) is as in (3) and the notation is to emphasize the dependence on π .5

2. Continuity of v6

First we show that the function v(x, y, ·) is β/2-Hölder continuous on [0, T ] over a7

neighborhood of x . This is where assumption (A.1) is used. Next we will see that v(·, y, t) is8

locally Lipschitz continuous in the set {x : v(x, y, t) > g(x)} via path properties of Brownian9

motion. As a consequence, it is seen that these properties together imply the main result of this10

section, Theorem 2.4.11

Proposition 2.1. For each (x, y) ∈ R × S, the function v(x, y, ·) is β/2-Hölder continuous12

uniformly over a neighborhood of x.13

Proof. Fix (x, y) ∈ R × S. Take C > 0 such that |g(z) − g(z′)| ≤ C |z − z′
|
β for all z, z′

∈ R,14

with 0 < β ≤ 1.15

Let 0 ≤ t1 < t2 ≤ T and take an arbitrary ϵ > 0. Suppose that τ2 is an ϵ-optimal stopping16

time for the problem v(x, y, t2) and set τ1 = τ2 ∧ t1 so that τ1 is suboptimal for v(x, y, t1). Then17

τ1 ≤ τ2 ≤ t2 and since v(x, y, ·) must be an increasing function of time we have, defining the18

martingale M by Mt =
∫ t

0 a(Xs, Ys)d Bs ,19

0 ≤ v(x, y, t2) − v(x, y, t1) ≤ ϵ + Ex,ye−ατ2 g(Xτ2 ) − Ex,ye−ατ1 g(Xτ1 )
≤ ϵ + Ex,ye−ατ2 |g(Xτ2 ) − g(Xτ1 )| ≤ ϵ + C Ex,y |Xτ2 − Xτ1 |

β

≤ ϵ + C Ex,y(|Xτ2 − X t1 |
β I{t1<τ2})

≤ ϵ + C ′ Ex,y

({
|Mτ2 − Mt1 |

β
+

⏐⏐⏐⏐∫ τ2

t1

µ(Xs, Ys)ds
⏐⏐⏐⏐β
}

I{t1<τ2}

)

≤ ϵ + C ′ Ex,y

(
sup

t1≤t≤t2
|Mt − Mt1 |

β
+

[
sup

t1≤t≤t2
|µ(X t , Yt )|(t2 − t1)

]β
)

≤ ϵ + C ′′ Ex,y

(
[⟨M⟩t2 − ⟨M⟩t1 ]

β
2 +

[
sup

t1≤t≤t2
|µ(X t , Yt )|(t2 − t1)

]β
)

(7)20

where the last inequality follows from the Burkholder–Davis–Gundy inequalities [24, Corollary21

IV.4.2], and constants vary from line to line.22

Now23

⟨M⟩t =

∫ t

0
a2(Xs, Ys)ds24

so the last line of (7) is dominated by25

ϵ + C ′′ Ex,y

⎛⎝[∫ t2

t1

a2(Xs, Ys)ds
] β

2

+

[
sup

t1≤t≤t2
|µ(X t , Yt )|(t2 − t1)

]β

⎞⎠
≤ ϵ + C ′′ Ex,y

⎛⎝[ sup
t1≤t≤t2

a2(X t , Yt )(t2 − t1)
] β

2
+

[
sup

t1≤t≤t2
|µ(X t , Yt )|(t2 − t1)

]β

⎞⎠ .

(8)26
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Now taking t2 ≤ t1 + 1 and noting that β ≤ 1, we see that the last line in (8) is dominated by 1

ϵ + C ′′′ Ex,y

(
sup
t≤T

(|a(X t , Yt )| + |µ(X t , Yt )|)
)

(t2 − t1)
β
2 ≤ ϵ + C ′′′N (x, y, T )(t2 − t1)

β
2 . 2

Finally, recalling that ϵ > 0 can be made arbitrarily small, we obtain 3

0 ≤ v(x, y, t2) − v(x, y, t1) ≤ C ′′′(t2 − t1)β/2 N (9) 4

where N depends on x, y and T only and is continuous in x . We conclude that v is β/2-Hölder 5

continuous in t , uniformly in a neighborhood of x . □ 6

The proof of the next lemma uses standard techniques so we defer the proof to Appendix B. 7

We note that we only impose continuity and boundedness from below as conditions on g in this 8

result and Proposition 2.3. 9

Lemma 2.2. Assume that g is continuous. For each (y, t) ∈ S × (0, T ], the function v(·, y, t) is 10

lower semi-continuous in R. 11

We now establish that v is locally Lipschitz continuous as a function of x in the continuation 12

region C = {(x, y, t) ∈ R × S × (0, T ] : v(x, y, t) > g(x)} via coupling of stochastic processes 13

and elementary properties of Brownian motion. Let us introduce the following notation. For each 14

(y, t) ∈ S × (0, T ] the (y, t)-section of the continuation region is 15

Cy,t = {x ∈ R : v(x, y, t) > g(x)}. (10) 16

As a consequence of the lower semi-continuity of v(·, y, t), for t > 0, the (y, t)-section Cy,t is 17

an open subset of R. Notice that if t = 0 then v(x, y, 0) = g(x) for all (x, y) and so Cy,0 = ∅. 18

Similarly for each y ∈ S, the y-section is 19

Cy = {(x, t) ∈ R × (0, T ] : v(x, y, t) > g(x)}. (11) 20

Proposition 2.3. Assume that g is continuous. For each (y, t) ∈ S×(0, T ], the function v(·, y, t) 21

is locally Lipschitz continuous in the section Cy,t . 22

Proof. Fix (y, t) ∈ S×(0, T ] and note that without loss of generality, we may assume that Cy,t is 23

non-empty. Let I be an open and bounded interval whose closure is in Cy,t . Since v is increasing 24

in t , the open subsets Cy,t increase in t as well and we must have that Cy,t0 ⊆ Cy,t ⊆ Cy,t1 25

whenever 0 < t0 < t < t1 ≤ T . Let t0 < t be sufficiently large so that I ⊂ Cy,t0 . In particular, 26

for some t1 < T , 27

R := I × (t0, t1) ⊊ Cy . 28

Let x, x ′
∈ I and assume without loss of generality that x > x ′ (the reverse case follows 29

by symmetry). Suppose that X t = x +
∫ t

0 a(Xs, Ys)d Bs +
∫ t

0 µ(Xs, Ys)ds starts from x and let 30

X ′
t = x ′

+
∫ t

0 a(X ′
s, Ys)d B ′

s +
∫ t

0 µ(X ′
s, Ys)ds be started from x ′, with driving Brownian motion 31

B ′
= −B. Note that, by uniqueness in law of the solution to (1), 32

v(x ′, y, t) = sup
τ≤t

Ee−ατ g(X ′

τ ). 33
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Define Z = (Zs)s≥0 by Zs := Xs − X ′
s so that Zs = r + Ms + As where r = x − x ′ > 0 and1

Ms =

∫ s

0
[ a(Xu, Yu) + a(X ′

u, Yu) ]d Bu,

As =

∫ s

0
[µ(Xu, Yu) − µ(X ′

u, Yu)]du, s ≥ 0.

(12)2

Consider the coupling time τ (x, x ′) := inf{s > 0 : Zs ≤ 0} of X and X ′. Let t2 = t − t0. The3

function v(·, y, t) is bounded on I (as it is lower semi-continuous and finite), say by K/2. Thus4

upon stopping Xs and X ′
s at first exit from the interval I it follows that5

|v(x, y, t) − v(x ′, y, t)| ≤ K P( t2 < τ (x, x ′) ). (13)6

We next show that P(t2 < τ (x, x ′)) is O(x − x ′) as r = x − x ′
→ 0, which implies Lipschitz7

continuity on the interval I . Since a and µ are continuous, we must have that a(·, ·) ≥ δ > 0 and8

µ(·, ·) ≤ η on I × S. Setting k(s) = 4δ2 s and ν =
η

2δ2 we obtain9

⟨M⟩s =

∫ s

0
[ a(Xu) + a(X ′

u) ]2σ 2(Yu)du

≥

∫ s

0
[ 2 min{a(Xu, Yu), a(X ′

u, Yu)} ]2du ≥ k(s)
10

and11

As ≤ ηs ≤ ν⟨M⟩s .12

Using the Dubins–Dambis–Schwarz Theorem (see [24, V.1.6]), there is a standard Brownian13

motion W = (Ws)s≥0 such that Ms = W⟨M⟩s . Moreover, ⟨M⟩s has continuously increasing paths14

and so15

{ t2 < τ (x, x ′) } ⊆ { W⟨M⟩s + ν⟨M⟩s > −r, ∀ s ≤ t2 }

= { Ws + νs > −r, ∀s ≤ ⟨M⟩t2 }

⊆ { inf
s≤⟨M⟩t2

Ws + νs ≥ −r } ⊆ { inf
s≤k(t2)

Ws + νs ≥ −r }.
(14)16

It follows that (see e.g. [5])17

P(t2 < τ (x, x ′)) ≤ P
(

inf
s≤k(τ2)

Ws + νs ≥ −r
)

≤ 1 − Φ

(
−r − νk(t2)

√
k(t2)

)
− e−2νrΦ

(
−r + νk(t2)

√
k(t2)

)18

and the right-hand side is O(r ) as r → 0, which concludes the proof. □19

Theorem 2.4. Consider the value function v in (3). For each y ∈ S, the function v(·, y, ·) :20

R × [0, T ] → R is locally β/2-Hölder continuous.21

Proof. Let K be a compact subset of R × [0, T ] and (x, t), (x ′, t ′) ∈ K . Fixing y ∈ S , we shall22

write v(x, t) ≡ v(x, y, t) and v(x ′, t ′) ≡ v(x ′, y, t ′).23

By Proposition 2.1, v(x ′, ·) is β/2-Hölder continuous. Recall that the Hölder constant in (9)24

depends on x continuously. In particular, it is bounded in the compact set K as a function of x ,25

say by some N̄ > 0. Then we have26

|v(x ′, t) − v(x ′, t ′)| ≤ N̄ |t − t ′
|
β/2

.27
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Also, by Proposition 2.3, v(·, t) is locally Lipschitz continuous in Cy,t and β-Hölder continuous 1

everywhere else (since v = g outside Cy,t ). Thus v(·, t) is β/2-Hölder continuous on the bounded 2

set {x ∈ R : (x, t) ∈ K }, and so for some C = C(K ) > 0 we have 3

|v(x, t) − v(x ′, t)| ≤ C |x − x ′
|
β/2

. 4

Setting M = max{C, N̄ }, the triangle inequality yields 5

|v(x, t) − v(x ′, t ′)| ≤ C |x − x ′
|
β/2

+ N̄ |t − t ′
|
β/2

≤ M 21−β/4 (
√

|x − x ′|
2
+ |t − t ′|

2 )β/2.
6

This shows that v is locally β/2-Hölder continuous. □ 7

3. Smoothness of v 8

In this section we use the continuity of v to show smoothness via a localization argument. 9

Theorem 3.1. For each fixed y ∈ S , define f : R × [0, T ] → R+ by 10

f (x, t) :=

∑
y′ ̸=y

π [y, y′] v(x, y′, t). 11

By Theorem 2.4, v(·, y′, ·) is a β/2-Hölder continuous function and so is f . 12

Define L̃ to be the linear operator given by 13

L̃ :=
1
2

a(x, y)2 ∂2

∂ x2 + µ(x, y)
∂

∂x
−

∂

∂ t
− π [y], 14

where −π [y] =
∑

y′ ̸=yπ [y, y′] is the rate of leaving y. 15

The function v in (3) is the probabilistic solution of the initial–boundary value problem 16

(Lπ
− α )v(x, y, t) = 0, in C

v(x, y, 0) = g(x), in R × S × {0}

v(x, y, t) = g(x), on ∂C
17

t where C = {(x, y, t) ∈ R × S × (0, T ] : v(x, y, t) > g(x)}, and Lπ is given in Eq. (2). In 18

particular, v(·, y, ·) ∈ C2,1(C). 19

Proof. By definition of C and v, it is clear that v = g on ∂C and also v(x, y, 0) = g(x). 20

Fix y ∈ S and consider the y-section Cy which is an open subset of R × [0, T ]. Let 21

R = (x0, x1) × (t0, t1) be an open and bounded rectangle in Cy . Now consider the classical 22

initial–boundary value problem 23

(L̃ − α)H (x, t) = − f (x, t), in R ∪ Bu

H (x, t) = v(x, y, t), on ∂ R \ Bu,
(15) 24

where Bu
= (x0, x1) × {t1}. 25

Given that both a and − f are uniformly Hölder in R, and that the operator L̃ −α is uniformly 26

Hölder parabolic in R (as a2(·, y) is bounded away from zero in R), there exists a unique solution 27

H to (15) which is continuous in R̄ and such that H ∈ C2,1(R) (see Theorem 6.3.6 in [13]). 28

Recall that y ∈ S is fixed from the beginning. Now, for each (x, t) ∈ R and y′
∈ S, extend H 29

as follows: 30

h(x, y′, t) :=

{
H (x, t) if y′

= y
v(x, y′, t) if y′

̸= y.
31
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Fix (x, t) ∈ R and consider the stopping times T1 = inf{s ≥ 0 : (Xs, t − s) ̸∈ R} and1

T2 = inf{s ≥ 0 : Ys ̸= y}, and set τ = T1 ∧ T2. Notice that T1 ≤ t Px,y-a.s. Since Ys ≡ y2

up to the time τ , an application of Dynkin’s formula yields3

h(x, y, t) = Ex,y
(
e−ατ h(Xτ , Yτ , t − τ )

)
−Ex,y

(∫ τ

0
e−ατ (Lπ

− α)h(Xs, Ys, t − s)ds
)

.
4

Now, h(Xτ , Yτ , t − τ ) = v(Xτ , Yτ , t − τ ) Px,y-a.s. Indeed, if τ = T1 we use the boundary5

condition in (15), otherwise the equality still holds by the definition of h. Moreover, after a6

simple algebraic manipulation it can be seen that, for each (x, t) ∈ R,7

(Lπ
− α)h(x, y, t) = (L̃ − α)h(x, y, t) + f (x, t) = 0.8

We then arrive to the expression9

h(x, y, t) = Ex,y
(
e−ατv(Xτ , Yτ , t − τ )

)
, (x, t) ∈ R.10

Given that τ is bounded above by the first exit time of (Xs, t−s) from the continuation region, the11

dynamic programming principle implies that h(·, y, ·) = v(·, y, ·) in the rectangle R. Therefore12

v(·, y, ·) ≡ H in R and so v(·, y, ·) ∈ C2,1(R) and13

(Lπ
− α)v(x, y, t) = 0 in R14

which concludes the proof since R was arbitrary. □15

4. Extremal payoff scenarios16

In this section, we assume that a and µ are both in product form and give conditions under17

which the function V l in (6) is the value function of an optimal stopping problem associated18

with an extremal jump rate scenario. To emphasize the dependence on π , we write (Xπ , Y π ) and19

v(x, y, t; π ) instead of (X, Y ) and v(x, y, t), respectively. Roughly, one expects that increasing20

the variance of Xπ (controlled by π ) expedites the time at which Xπ reaches the high values of21

g, hence increasing the payoff since the penalty for the elapsed time via the discount factor is22

smaller. This intuition leads to the natural candidate strategy: to choose minimal (resp. maximal)23

variance to achieve the infimum (resp. supremum).24

We make the following standing assumption25

(A2) Ex,y
(
sup0≤t≤T [e−ατ g(Xπ

t )]
)

< ∞.26

Notice that if g satisfies a polynomial growth condition, that is |g(x)| ≤ K (1 + |x |
q ) for27

some constants K > 0 and q ≥ 0, then (A2) follows by results on estimates of the moments28

of regime-switching diffusions. In particular, the expectation is uniformly bounded over all π29

because it does not depend on the transition rates (see Appendix A).30

We rewrite Eq. (1) in the following form31

X t = x +

∫ t

0
a(Xs)σ (Ys)d Bs +

∫ t

0
r (Xs)µ(Ys)ds (16)32

and assume that r is positive. Before we state the main result of this section we need some33

preliminary results and definitions.34
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Definition 4.1. We say that transition rates qi, j on S are well-ordered if 1∑
w≥z

qi,w ≤

∑
w≥z

q j,w for any i < j < z

and ∑
w≤z

qi,w ≥

∑
w≤z

q j,w for any z < i < j.
(17) 2

Definition 4.2. We say that a coupling of Y and Y ′, copies of a Markov chain on S with 3

Y0 = y < Y0 = y′ is an ordered coupling if Y ′
t ≥ Yt for all t a.s. 4

The following theorem, although fairly obvious, may be of some independent interest. 5

Theorem 4.1. Suppose that (qi, j )(i, j)∈S×S is a Q-matrix on S, then we can find an ordered 6

coupling on S with transition rates q for every y < y′ if and only if the transition rates qi, j are 7

well-ordered. 8

Proof. Let the coupling measure be P. Consider Y and Y ′. Since they are ordered, 9

P(Yt ≥ z) ≤ P(Y ′

t ≥ z) for all t. (18) 10

Dividing both sides of (18) by t and letting t → 0, we obtain for z > y′: 11∑
w≥z

qi,w ≤

∑
w≥z

q j,w. 12

A similar argument gives the second inequality in (17). 13

Conversely, suppose that the transition rates qi, j satisfy (17), we sketch a standard argument 14

based on thinning Poisson processes. Define independent Poisson processes L and M with suit- 15

ably large rates λ and µ respectively. Define an independent sequence of independent, identically 16

distributed Uniform[0,1] random variables (Un)n≥1; these will be used for randomization. We use 17

jumps of L to generate (possible) up-jumps of the copies of the Markov chain and jumps of M 18

to generate down-jumps. 19

Define the (joint) process Y as follows. First set 20

Y i
0 = i for i ∈ S. 21

Then let Y be constant until the first jump time J1 of L + M . Now, if the first jump is a jump of 22

L , define Y i
J1

by Y i
J1

≥ i and, for k > i 23

Y i
J1

≥ k if and only if U1 ≥ 1 −

∑
w≥k qi,w

λ
. 24

Similarly, if the first jump is a jump of M , define Y i
J1

by Y i
J1

≤ i and, for k < i 25

Y i
J1

≤ k if and only if U1 ≤

∑
w≥k qi,w

µ
. 26

Now proceed recursively, using the successive jumps of L + M and the successive randomizing 27

Un . It is clear that the i th component of Y is a copy of the MC started at i . Then a quick 28

comparison of the jump constructions shows that the components of Y remain ordered thanks 29

to (17) and an inductive argument on the chain at jump times of L + M . □ 30
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Remark 4.1. Note that any skip-free chain, i.e. one where qi, j = 0 for |i − j | > 1, is well-1

ordered.2

Definition 4.3. For any Q-matrix, q , on S define qσ by3

qσ
i, j =

qi, j

σ 2(i)
.4

Remark 4.2. If Y is a Markov chain with Q-matrix, π , then πσ is the Q-matrix, for Ỹ ,5

the Markov chain obtained by time-changing Y using the additive functional A given by6

At =
∫ t

0 σ 2(Ys)ds.7

Theorem 4.2. Define π l by8

π l[y, y + z] = inf A+

y,z π l[y, y − z] = sup A−

y,z . (19)9

Suppose that σ (·) is monotone increasing, and (π l)σ is well-ordered, then in the following three10

cases,11

1. µ = 0;12

2. µ/σ 2 is decreasing and g is decreasing;13

3. µ/σ 2 is increasing and g is increasing;14

the constant rate matrix π l attains the infimum in (6).15

Remark 4.3. Theorem 4.2 covers the case of pricing American put options with stochastic/regime-16

switching volatility. Here µ = 1, a(x) = x , r (x) = αx > 0 and it is normally assumed that Y is17

skip-free. Thus σ 2 increasing is enough for the result to hold.18

Lemma 4.3. Suppose that π is such that πσ
= (πσ [i, j]), i, j ∈ S = {1, 2, . . . , m} is well-19

ordered, then in case 1,2 and 3 of Theorem 4.2 above v(x, ·, t; π ) is also increasing on S , for20

each (x, t) ∈ R × [0, T ].21

Proof. Suppose that σ (·) is increasing. In case 1, the result is proved in exactly the same way22

as Theorem 2.5 by Assing et al. [2] with Y replaced by σ (Y ). There it is insisted that π l is23

skip-free, but only stochastic monotonicity of Y is actually used. In case 2 a very similar, but24

extended argument can be used, time-changing away the Y dependence in the diffusion term in25

the SDE for X to26

d X̃ t = a(X̃ t )dWt + r (X̃ t )
µ(Ỹt )

σ 2(Ỹt )
27

and deducing by uniqueness in law that the two time-changed solutions, (X̃ , Ỹ ) and (X̃ ′, Ỹ ′), to28

the dynamics started at x, y and x ′, y′ with y ≤ y′ and x ≥ x ′ have components which can be29

ordered:30

X̃ ′
≤ X̃ and Ỹ ′

≥ Ỹ .31

A similar argument with ordering on X and X ′ reversed, works in case 3. □32
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Since π ∈ A, the generator Lπ takes the form 1

Lπw(x, y, t) =
1
2

a2(x) σ 2(y)wxx (x, y, t) + r (x) − wt (x, y, t)

+

m−y∑
z=1

[w(x, y + z, t) − w(x, y, t)]π [y, y + z]

+

y−1∑
z=1

[w(x, y − z, t) − w(x, y, t)]π [y, y − z].

(20) 2

The following verification result gives sufficient conditions for a suitable function w to be a 3

lower bound for V l . 4

Proposition 4.4 (Lower bounds on V l). Suppose that w : R × S × [0, T ] → R is a function 5

such that for each y ∈ S, the restriction of w(·, y, ·) on the open set {(x, t) ∈ R × [0, T ] : 6

w(x, y, t) > g(x)} is C2,1. Suppose that w satisfies: 7

inf
π

(Lπ
− α )w(x, y, t) = 0 in C,

w(x, y, 0) = g(x) on R × S × {0},
w(x, y, t) = g(x) on R × S × (0, T ] \ C,

(21) 8

where C = {(x, y, t) ∈ R × S × [0, T ] : w(x, y, t) > g(x)} and the infimum is taken over all 9

constant and admissible rate matrices. Then, for each initial condition (x, y, u), 10

w(x, y, u) ≤ V l(x, y, u). (22) 11

Proof. If u = 0 then V l(x, y, 0) = g(x) = w(x, y, 0). Fix an initial condition (x, y, u) ∈ 12

R × S × (0, T ]. Pick an arbitrary π ∈ A and define the process N (π ) = (Nt (π ))t≥0 by 13

Nt (π ) := e−αtw(Xπ
t , Y π

t , u − t), 0 ≤ t ≤ u. 14

Let τ̂ ≡ τ̂π
:= inf{t ≥ 0 : (Xπ

t , Y π
t , u − t) ̸∈ C} ≤ u and, for each R > 0, let UR ⊂ R2 be an 15

open ball centered at (x, y) of radius R. Let τR be given by 16

τR = min{τ̂ , inf{t ≥ 0 : (Xπ
t , Y π

t ) ̸∈ UR} }. 17

Notice that τR → τ̂ almost surely as R → ∞. 18

Since w is sufficiently smooth in C, we can apply Itô’s formula for semimartingales (see 19

Theorem II.33 in [22]) to obtain, for each 0 ≤ t ≤ u, 20

Nt∧τR (π ) − w(x, y, u) =

∫ t∧τR

0
e−αu(Lπ

s − α)w(Xπ
s , Y π

s , t − s)ds + Mt∧τR , 21

where Mt =
∫ t

0 e−αswx (Xπ
s , Y π

s , t − s) a(Xπ
s )σ (Y π

s )d Bs and Lπ
s is Lπs as in (20). 22

Given that wx (·, y, ·), wy(·, y, ·) and a(·) are continuous in C, and UR is a bounded domain, it 23

follows that Mt∧τR has bounded quadratic variation for each t ≥ 0, and hence the process M·∧τR 24

is a true martingale. Moreover, by (21) we have that 25

(Lπ
s − α )w(x, y, t − s) ≥ 0 ∀ (x, y, t − s) ∈ C, 26

which yields, for each R > 0, Nt∧τR (π ) − w(x, y, u) ≥ Mt∧τR . After taking expectation we 27

obtain 28

w(x, y, u) ≤ Ex,y Nt∧τR (π ). (23) 29
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Using that τR → τ̂ and the boundary conditions in (21), we obtain the limit1

lim
t,R→∞

Nt∧τR (π ) = e−ατ̂w(Xπ
τ̂ , Y π

τ̂ , u − τ̂ ) = e−ατ̂ g(Xπ
τ̂ ), a.s.2

Thus by dominated convergence (recall that (A2) is assumed), after taking the limit as R → ∞3

and t → ∞ in (23), we obtain4

w(x, y, u) ≤ Ex,y e−ατ̂ g(Xπ
τ̂ ) ≤ sup

τ≤u
Ex,y e−ατ g(Xπ

τ ), (24)5

and this is true for each π ∈ A. Therefore6

w(x, y, u) ≤ inf
π∈A

sup
τ≤u

Ex,y e−ατ g(Xπ
τ ) ≡ V l(x, y, u)7

and the proof is complete. □8

Proof of Theorem 4.2. Suppose that σ is increasing. First note that9

v(x, y, t; π l) ≡ sup
τ≤t

Ex,y e−ατ g(Xπ l

τ ) ≥ inf
π∈A

sup
τ≤t

Ex,y e−ατ g(Xπ
τ ),10

so that it remains to show the reverse inequality. By Lemma 4.3, v(x, ·, t; π l) is increasing and11

so we have that12

arg min
λ∈A+

y,z

[v(x, y + z, t; π l) − v(x, y, t; π l)] λ = inf A+

y,z = π l[y, y + z],

arg min
µ∈A−

y,z

[v(x, y − z, t; π l) − v(x, y, t; π l)] µ = sup A−

y,z = π l[y, y − z]
(25)13

so that the infimum in (21) is attained at π = π l . This fact and Theorem 3.1 together imply14

that w(x, y, t) = v(x, y, t; π l) satisfies the system in (21). Therefore all the conditions of15

Proposition 4.4 are fulfilled by w(x, y, t) = v(x, y, t; π l) and the proof is complete. □16

Reversing the labeling of the states in S yields:17

Corollary 4.5. Suppose that σ (·) is monotone decreasing. and (π s)σ is well-ordered, where18

π l
s [y, y + z] = sup A+

y,z π l
s [y, y − z] = inf A−

y,z19

then in the following three cases,20

1. µ = 0;21

2. µ/σ 2 is increasing and g is decreasing;22

3. µ/σ 2 is decreasing and g is increasing;23

Then the result in Theorem 4.2 remains true.24
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Appendix A. Estimates of moments and integrability28

The main goal of this Appendix is to derive some estimates of the moments of the solution to29

a stochastic differential equation with regime-switching coefficients.30
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The proof of the proposition below is inspired by ideas in Krylov [17], and it is somewhat an 1

extension of Corollary 2.5.12 in that text. This result is of independent interest, and this is the 2

reason why we assume the following general set-up. 3

Let (Wt ,Ft ) be a d1-dimensional Brownian motion. Suppose that y = (yt )t≥0 is a continuous- 4

time Markov chain, adapted to (Ft )t≥0, with finite state space S ⊂ R. The process r determines 5

the regime-switching dynamics. 6

For d ∈ N and x0 ∈ Rd , x = (xt )t≥0 is a progressively measurable process in Rd , with respect 7

to (Ft )t≥0, satisfying that 8

xt = x0 +

∫ t

0
σs(xs, ys)dWs +

∫ t

0
bs(xs, ys)ds, a.s. (A.1) 9

where σt (x, y) is a random matrix of dimension d × d1; and bt (x, y) is a random vector of 10

dimension d. 11

The next result corresponds to Corollary 2.5.12 in [17] in the particular case when S is a 12

singleton. 13

Proposition A.1. Fix T > 0, and the initial condition (x0, y0). Let there exist a constant K > 0 14

such that 15

∥σt (x, y)∥ + |bt (x, y)| ≤ K (1 + |x |), for all t ≥ 0, x ∈ Rd , y ∈ S. (A.2) 16

Then for all t ∈ [0, T ] and q ≥ 0, there exists a positive constant N = N (x0, K , t, q) such that 17

E sup
s≤t

|xs |
q

≤ N . (A.3) 18

Proof. Fix an arbitrary t ∈ [0, T ] and q ≥ 0. We split the proof into three parts. 19

(I). Assume that xt (ω) is bounded in ω and t . Notice that 20

|xt |
2

≤ 4

[
|x0|

2
+

⏐⏐⏐⏐∫ t

0
σs(xs, ys)dWs

⏐⏐⏐⏐2 +

⏐⏐⏐⏐∫ t

0
bs(xs, ys)ds

⏐⏐⏐⏐2
]

. 21

The linear growth condition in (A.2) implies the following. First, the stochastic integral 22

M· =
∫

·

0 σs(xs, ys)dWs satisfies 23

E ⟨M⟩t = E
(∫ t

0
∥σs(xs, ys)∥2ds

)
≤ 2K 2 E

(∫ t

0
(1 + |xs |

2)ds
)

< ∞ 24

for all t ≥ 0, since xt is assumed to be bounded. Then M is a martingale. Second, using Hölder’s 25

inequality, 26⏐⏐⏐⏐∫ t

0
bs(xs, ys)ds

⏐⏐⏐⏐2 ≤ t
∫ t

0
|bs(xs, ys)|2ds ≤ 2K 2t

∫ t

0
(1 + |xs |

2)ds. 27

Putting the last assertions together we obtain, after taking supremum over [0, t] and expectation, 28

E
(

sup
0≤s≤t

|xs |
2
)

≤ 4
[

|x0|
2
+ E

(
sup

0≤s≤t
|Ms |

2
)

+ 2K 2t E
(∫ t

0
(1 + |xs |

2)ds
)]

≤ 4
[

|x0|
2
+ 4 E |Mt |

2
+ 2K 2t E

(∫ t

0
(1 + |xs |

2)ds
)]

≤ 4
[

|x0|
2
+ (2K 2)4 E

(∫ t

0
(1 + |xs |

2)ds
)

+ 2K 2t E
(∫ t

0
(1 + |xs |

2)ds
)]

≤ 4|x0|
2
+ 8K 2(4 + t)

∫ t

0

(
1 + E

(
sup

0≤u≤s
|xu |

2
))

ds

29
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where we have used Doob’s inequality, the fact that M2
t − ⟨M⟩t is a martingale (see for1

instance [24, II.1.7 and IV.1.3]), the linear growth condition in (A.2), Fubini’s Theorem and2

the boundedness of xt .3

Now set ϕ(t) = sup0≤s≤t |xs |
2, a = 1 + 4|x0|

2, and b = 8K 2(4 + t), so that4

1 + Eϕ(t) ≤ a + b
∫ t

0
{ 1 + Eϕ(s) }ds.5

Then, by Gronwall’s lemma, we have that 1 + Eϕ(t) ≤ a ebt , that is6

E
(

sup
0≤s≤t

|xs |
2
)

≤ N̄ (x0, K , t)7

where N̄ (x0, K , t) = (1 + 4|x0|
2)e8K 2t(4+t).8

(II). Since xt is continuous and bounded in t , it follows that sups≤t |xs |
p

= (sups≤t |xs |)p for9

any p ≥ 0. Using this equality with p = q and then with p = 2, we obtain that10

E
(

sup
0≤s≤t

|xs |
q
)

≤

(
E sup

0≤s≤t
|xs |

2
)q/2

≤ N (x0, K , t, q)11

where we also used Hölder’s inequality in the form Eηq
≤ [Eη2]q/2. Here, N ≡ N (x0, K , t, q) =12

N̄ (x0, K , t)q/2.13

(III). We now assume the general case for xt (ω).14

For each R > 0, consider the stopping time τR = inf{t ≥ 0 : |xt | ≥ R}. Then the stopped15

process xt∧τR (ω) is bounded in ω, t and moreover,16

xt∧τR = x0 +

∫ t∧τR

0
σs(xs, ys)dWs +

∫ t∧τR

0
bs(xs, ys)ds

= x0 +

∫ t

0
I {s < τR}σs(xs∧τR , ys∧τR )dWs

+

∫ t

0
I {s < τR}bs(xs∧τR , ys∧τR )ds.

17

Notice that xt∧τR solves (A.1) only that with the coefficients σs(x, y), bs(x, y) replaced by18

I {s < τR}σs(x, y), I {s < τR}bs(x, y), respectively. However, for each fixed ω,19

∥I {s < τR}σs(x, y)∥ ≤ ∥σt (x, y)∥, and |I {s < τR}bt (x, y)| ≤ |bt (x, y)|.20

Then the linear growth condition in (A.2) is satisfied for the coefficients of xt∧τR .21

From parts (I)–(II), we know that22

E sup
0≤s≤t

|xs∧τR |
q

≤ N , for each R > 0.23

Given that limR→∞τR = ∞ a.s., it follows that limR→∞|xs∧τR |
q

= |xs |
q a.s. by continuity of the24

paths of xt . As this is true for each s ≤ t , we must have |xs |
q

≤ limR→∞supu≤t |xu∧τR |
q for each25

s ≤ t . Hence26

sup
0≤s≤t

|xs |
q

≤ lim
R→∞

sup
0≤s≤t

|xs∧τR |
q , a.s.27

Finally, Fatou’s lemma implies28

E sup
0≤s≤t

|xs |
q

≤ lim inf
R→∞

E sup
0≤s≤t

|xs∧τR |
q

≤ N ,29

and the proof is complete. □30
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Notice that the bound N on (A.3) does not depend on the transition rates of the Markov 1

chain y. 2

Appendix B. Proof of Lemma 2.2 3

Proof of Lemma 2.2. Let us fix y ∈ S throughout. Given an initial condition x ∈ R, we shall 4

denote by X x
= (X x

t )t≥0 the solution to 5

X t = x +

∫ t

0
a(Xs, Ys)d Bs +

∫ t

0
b(Xs, Ys)ds, t ≥ 0, Y0 = y. (B.1) 6

We will show that, for every stopping time τ ≤ t with t ∈ (0, T ], the mapping x ↦→ E e−ατ g(X x
τ ) 7

is lower semi-continuous. This implies that 8

x ↦→ sup
τ≤t

E e−ατ g(X x
τ ) ≡ v(x, y, t) is lower semi-continuous, 9

concluding the proof. 10

Fix x ∈ R and let N be a neighborhood of x . For any x ′
∈ N , define the stopping times 11

τ x ′

R = inf{t ≥ 0 : |X x ′

t | ≥ R} for R > 0. Let τR := τ x
R ∧ τ x ′

R , it follows that 12

(X x
t∧τR

− X x ′

t∧τR
)2

≤ 4

[
|x − x ′

|
2
+

⏐⏐⏐⏐∫ t∧τR

0
{a(X x

s , Ys) − a(X x ′

s , Ys)}d Bs

⏐⏐⏐⏐2 13

+

(∫ t∧τR

0
(µ(X x

s , Ys) − µ(X x ′

s , Ys))ds
)2
]

. 14

Taking expectation on both sides we obtain 15

E |X x
t∧τR

− X x ′

t∧τR
|
2

≤ 4|x − x ′
|
2
+ 4 D2

R(1 + T )
∫ t

0
E (|X x

s∧τR
− X x ′

s∧τR
|
2
)ds 16

where DR > 0 is a Lipschitz constant for a(·, y) and µ(·, y) uniformly in y. So, Gronwall’s 17

Inequality implies 18

E |X x
t∧τR

− X x ′

t∧τR
|
2

≤ 4|x − x ′
|
2e(4 D2

R (1+T )) t , 19

so it is clear that X x ′

t∧τR
→ X x

t∧τR
in L2-norm as x → x ′, for each t > 0 and R > 0. 20

Let {xn} be a sequence in N such that xn → x . By the previous argument (after passing to a 21

subsequence and relabeling if necessary) X xn
t∧τR → X x

t∧τR
a.s. for each t > 0. Since the paths of 22

X xn and X x are continuous and τR → ∞ as R → ∞ a.s., we have that 23

lim
n→∞

X xn
t = X x

t , ∀ t > 0 a.s. 24

after letting R → ∞. Finally, as g is continuous and bounded from below, Fatou’s lemma yields 25

E e−ατ g(X x
τ ) ≤ lim inf

n→∞
E e−ατ g(X xn

τ ) 26

for every stopping time τ ≤ t , that is, the mapping x ↦→ E e−ατ g(X x
τ ) is lower semi-continuous 27

and the proof is complete. □ 28
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[16] T. Kanamura, K. Ōhashi, On transition probabilities of regime switching in electricity prices, Energy Econ. 3024

(2008) 1158–1172.25

[17] N.V. Krylov, Controlled Diffusion Processes, Springer-Verlag, Berlin-Heidelberg, 1980.26

[18] H. Le, C. Wang, A finite time horizon optimal stopping problem with regime switching, SIAM J. Control Optim.27

48 (2010) 5193–5213.28

[19] T.D. Mount, Y. Ning, X. Cai, Predicting price spikes in electricity markets using a regime-switching model with29

time-varying parameters, Enery Economics 28 (2008) 62–80.30

[20] B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, sixth ed., Springer-Verlag,31

Berlin Heidelberg, 2003 fourth corrected printing 2007.32

[21] G. Peskir, A. Shiryaev, Optimal Stopping and Free-Boundary Problems, Birkhäuser Verlag, 2006.33
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