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Abstract

We consider the large deviation principle for the empirical measure of a diffusion in Euclidean space,
which was first established by Donsker and Varadhan. We employ a weak convergence approach and obtain
a characterization for the rate function that is dual to the one obtained by Donsker and Varadhan, and
which allows us to evaluate the variational form of the rate function for both reversible and nonreversible
diffusions.
c⃝ 2017 Elsevier B.V. All rights reserved.
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1. Introduction

In this work we employ a weak convergence approach to prove the large deviation principle
(LDP) for the empirical measure of a diffusion in Euclidean space. Given a positive integer d,
let Rd denote d-dimensional Euclidean space, B(Rd ) be the σ -algebra of Borel subsets of Rd

and P(Rd ) be the space of probability measures on (Rd ,B(Rd )) equipped with the topology of
weak convergence. Let Md×d denote the set of real-valued d × d nonnegative definite symmetric
matrices. Suppose a and b are continuous functions on Rd taking values in Md×d and Rd ,
respectively, and for each x in Rd let σ (x) ∈ Md×d be the unique nonnegative definite square
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root of a(x). Consider the stochastic differential equation (SDE)

d X (t) = b(X (t))dt + σ (X (t))dW (t), (1.1)

where X = {X (t), t ≥ 0} is a d-dimensional continuous process, W = {W (t), t ≥ 0} is a
d-dimensional Brownian motion and the integral with respect to dW is the Itô integral. Given a
solution X of the SDE (1.1), define the associated empirical measure process L = {L t , t > 0}

taking values in P(Rd ), for t > 0, by

L t (A) .=
1
t

∫ t

0
δX (s)(A)ds, A ∈ B(Rd ). (1.2)

Here δx ∈ P(Rd ) is the Dirac delta measure at x ∈ Rd . In this work we establish the LDP for the
family {L t , t > 0} on P(Rd ) as t → ∞.

The LDP for the empirical measure process {L t , t > 0} is a classical result that follows from
the works of Donsker and Varadhan [5–7], which established the LDP for the empirical measure
process associated with a large class of discrete and continuous time Markov processes. Let
(L,D) denote the infinitesimal generator associated with a diffusion X satisfying the SDE (1.1).
Then C2

b (Rd ), the space of twice continuously differentiable real-valued functions on Rd whose
first and second partial derivatives are bounded, lies in D and for φ ∈ C2

b (Rd ),

Lφ .
=

1
2

d∑
i=1

d∑
j=1

ai j
∂2φ

∂xi∂x j
+

d∑
i=1

bi
∂φ

∂xi
. (1.3)

Let D+ denote the subset of functions φ ∈ D that are uniformly bounded below by a positive
constant on Rd . Donsker and Varadhan [7] showed that under certain stability and regularity
conditions, {L t , t > 0} satisfies the LDP on P(Rd ) with rate function J : P(Rd ) → [0,∞]
defined, for µ ∈ P(Rd ), by

J (µ) .= sup
φ∈D+

−

∫
Rd

(Lφ)(x)
φ(x)

µ(dx). (1.4)

Other approaches have been developed by Gärtner [12] and Fleming, Sheu and Soner [11] for
the empirical measure of Markov processes taking values in compact manifolds; and by Feng
and Kurtz [10, Chapter 12] for the empirical measure of Markov processes taking values in more
general metric spaces.

We use weak convergence methods to prove the LDP for the empirical measure of a diffusion
in Euclidean space. These techniques have been developed more generally for large deviation
problems in the book by Dupuis and Ellis [8], and for empirical measures associated with
specific classes of continuous time Markov processes in [3,4,9]. There are a couple advantages
of our approach that we highlight here. First, we use standard techniques in the theory of weak
convergence and SDEs, which are applied directly to the continuous time diffusion process.
We find this probabilistic approach to the classical problem appealing. Second, we obtain a
variational formulation of the rate function (see (3.3)) that is dual to the one defined in (1.4),
and we evaluate the variational form of the rate function for the large class of both reversible
and nonreversible diffusions in Euclidean space that are strong solutions of the SDE (1.1) (see
Proposition 6.5). In particular, the rate function evaluated at a probability measure µ is the
µ-weighted L2-cost of a feedback control u that is reversible with respect to µ and such that µ
is formally invariant under the infinitesimal generator associated with the u-controlled diffusion.

In summary, the main contributions of this work are as follows:
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• A weak convergence approach to establish the LDP for the empirical measure of a
diffusion.

• A variational form of the rate function that is the dual of the Donsker-Varadhan variational
form of the rate function.

• Evaluation of the variational form of the rate function for reversible and nonreversible
diffusions in Euclidean space.

To our knowledge the variational form of the rate function associated with a general diffusion
in Euclidean space has not been evaluated on its domain of finiteness. Some prior results along
these lines include [5, Theorem 5] which evaluates the variational form of rate function defined
in (1.4) when the diffusion is reversible and takes values in a compact manifold; [16, Theorem
1.4] which provides a more tractable form of the rate function defined in (1.4) and [17, Theorem
1.4] which uses the results in [16] to evaluate the rate function defined in (1.4) for diffusions in
compact regions in Rd with reflection along the boundary of the region; and [12, Theorem 3.2]
which expresses the rate function associated with diffusions on compact manifolds evaluated at
measures with sufficiently smooth densities in terms of the solution to a certain partial differential
equation (PDE), and the solution can be explicitly identified when the diffusion is reversible.
More recently, [18] considers a diffusion in a compact manifold whose drift can a priori be
decomposed into sufficiently smooth reversible and nonreversible (with respect to the invariant
measure of the diffusion) components. The authors use the results in [12] to explicitly express
the rate function in terms of the rate function associated with a related reversible diffusion and
the solution to a certain elliptic PDE (see [18, Theorem 2.2]).

The remainder of the paper is organized as follows. In Section 2 we present the assumptions
for our main result, which is stated in Section 3. We prove the empirical measure process satisfies
the Laplace principle, which is equivalent to the LDP (see the remark following Theorem 3.3).
In Section 4 we state a variational representation for exponential functionals of the empirical
measure that is used in Section 5 to prove the Laplace principle upper bound and in Section 7 to
prove the Laplace principle lower bound. In Section 6 we state and prove properties of the rate
function.

2. Preliminaries

In this section we provide conditions on the drift and diffusion coefficients that ensure
existence, uniqueness and stability of solutions to the SDE (1.1). We first introduce some
commonly used notation. Let C(Rd ) denote the set of continuous functions on Rd . For k = 1, 2,
let Ck(Rd ) denote the subset of functions in C(Rd ) whose partial derivatives up to order k exist
and are continuous, let Ck

b (Rd ) denote the subset of functions in Ck(Rd ) that are bounded and
whose partial derivatives up to order k are bounded, and given α ∈ (0, 1), let Ck,α(Rd ) denote the
subset of functions in Ck(Rd ) whose kth partial derivatives are Hölder continuous with exponent
α. Given f ∈ C1(Rd ) we let ∇ f denote the gradient of f . Let C∞

b (Rd ) denote the subset of
functions in C(Rd ) that are bounded and have bounded continuous derivatives of all order and
let C∞

c (Rd ) denote the subset of function in C∞

b (Rd ) that are compactly supported.
The following local Lipschitz continuity condition ensures pathwise uniqueness of solutions.

Let ∥ · ∥ denote a fixed norm on the set of d × d matrices.

Condition 2.1. For each R < ∞, there exists K R < ∞ such that for all x, y ∈ Rd satisfying
|x |, |y| ≤ R,

|b(x) − b(y)| + ∥σ (x) − σ (y)∥ ≤ K R|x − y|.
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The next condition imposes a strong stability condition on the diffusion that will be used to
prove the Laplace principle upper bound. As we explain below, the first part of the condition is a
version of the stability condition imposed by Donsker and Varadhan [7]. The second part of the
condition is a mild technical on the growth rate of the drift b(·) that is imposed to ensure that the
rate function (defined in (3.3)) can be explicitly evaluated.

Condition 2.2. There is a nonnegative function V ∈ C2(Rd ) and constants c1, c2 < ∞ such
that

lim
R→∞

inf
{
g(x) : x ∈ Rd , |x | > R

}
= ∞, (2.1)

and

|b(x)|2 ≤ c1 + c2g(x), x ∈ Rd , (2.2)

where g : Rd
→ R is defined by

g(x) .= −(LV )(x) −
1
2
|σ (x)∇V (x)|2, x ∈ Rd . (2.3)

Remark 2.3. Under Condition 2.1, g is a continuous function and therefore, by (2.1), has
compact level sets.

Remark 2.4. Condition 2.2 is a stronger stability condition than the one needed to ensure
positive recurrence of X . For instance, a sufficient condition for X to be positive recurrent is
the existence of V ∈ C2(Rd ) and a constant k > 0 such that LV (x) ≤ −k for all |x | sufficiently
large (see [14, Theorem 3.9]). In [3] the authors demonstrated that without a stronger stability
condition, the empirical measure process may charge points at infinity (in the large deviations
limit).

Remark 2.5. The first part of Condition 2.2 (i.e., (2.1)) is a slightly stronger stability condition
than the one imposed by Donsker and Varadhan [7]. The condition in [7] requires the existence
of a real-valued function g on Rd and a sequence {un, n ∈ N} in the domain of the generator
L such that g has compact level sets, the sequence {un, n ∈ N} satisfies certain boundedness
conditions and g = −limn→∞(Lun)/un holds pointwise. Under Condition 2.2, setting un

.
= eV

for each n ∈ N, and g as in (2.3), we see from the definition of L given in (1.3) and the stability
condition (2.1) that the condition in [7] holds.

The third and final condition imposes regularity and uniform ellipticity conditions which are
used in the proof of the Laplace principle lower bound.

Condition 2.6. The diffusion coefficient a is bounded, uniformly Lipschitz continuous and
uniformly elliptic. In addition, there exists 0 < α < 1 such that bi belongs to C1,α(Rd ) for
1 ≤ i ≤ d and ai j belongs to C2,α(Rd ) for 1 ≤ i, j ≤ d.

Throughout this work we let (Ω ,F , P) denote a complete probability space, X0 be a d-
dimensional random vector on (Ω ,F , P) and W = {W (t), t ≥ 0} be a d-dimensional Brownian
motion on (Ω ,F , P) that is independent of X0. We define the right-continuous filtration {Ft } by

Ft
.
= σ ({W (s), 0 ≤ s ≤ t}, X0, N ), t ≥ 0, (2.4)
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where N is the set of all P-null sets in Ω . Under Conditions 2.1 and 2.2, there exists a pathwise
unique strong solution X of the SDE (1.1) with initial condition X (0) = X0, and X is a
time-homogeneous Feller Markov process (see, e.g., [14, Theorem 3.5]). We let Px denote the
probability measure P on (Ω ,F) conditioned on X0 = x and Ex denote expectation under
Px . Furthermore, if Condition 2.6 also holds, X is positive recurrent, has a unique stationary
distribution π ∈ P(Rd ), and for all x ∈ Rd , Px a.s. L t ⇒ π as t → ∞, where we use the double
arrow “⇒” to denote weak convergence (see, e.g., [14, Chapter 4]).

3. A large deviation principle

In order to define the rate function, we define, for y ∈ Rd , the operator Ly on C2
b (Rd ) by

Lyφ
.
= Lφ + ⟨σ y,∇φ⟩, φ ∈ C2

b (Rd ), (3.1)

where L is defined as in (1.3) and ⟨·, ·⟩ denotes the usual inner product on Rd . Let P(Rd
× Rd )

denote the set of probability measures on Rd
× Rd equipped with the product topology.

Remark 3.1. Throughout this work, given θ ∈ P(Rd
× Rd ), let [θ ]i ∈ P(Rd ) denote the i th

marginal of θ , for i = 1, 2.

Given µ ∈ P(Rd ), let

Sµ
.
=

⎧⎨⎩ν ∈ P(Rd
× Rd ) :

[ν]1 = µ and ∀ φ ∈ C2
b (Rd )∫

Rd×Rd
(Lyφ)(x)ν(dx dy) = 0

⎫⎬⎭ . (3.2)

The rate function I : P(Rd ) → [0,∞] evaluated at µ ∈ P(Rd ) is given by

I (µ) .=

⎧⎨⎩ inf
ν∈Sµ

1
2

∫
Rd×Rd

|y|
2ν(dx dy) if b ∈ L2

µ and Sµ ̸= ∅,

∞ otherwise.
(3.3)

Remark 3.2. The condition b ∈ L2
µ in (3.3) is a consequence of the mild growth condition

on the drift (2.2) that we impose in Condition 2.2. The condition ensures regularity properties of
measures µ ∈ P(Rd ) satisfying I (µ) < ∞ (see Lemma 6.4), which are used to obtain an explicit
form for the variational form of the rate function in Proposition 6.5.

The rate function I (µ) evaluated at µ ∈ P(Rd ) can equivalently be defined as the infimum
over the µ-weighted L2-cost over all feedback controls u under which µ is formally invariant
under the infinitesimal generator of the associated controlled diffusion (see Lemma 6.3). The
minimizing control u is identified in Proposition 6.5.

We now state our main result.

Theorem 3.3. Suppose Conditions 2.1, 2.2 and 2.6 hold. Let I be defined in (3.3) and the
empirical measure process {L t , t > 0} be defined as in (1.2). Then I has compact level sets
and the following uniform Laplace principle holds: for any compact set K in Rd and bounded
continuous function h mapping P(Rd ) into R, we have

lim
t→∞

sup
x∈K

⏐⏐⏐⏐1
t

log Ex
[
exp {−th(L t )}

]
+ inf

γ∈P(Rd )
{I (γ ) + h(γ )}

⏐⏐⏐⏐ = 0. (3.4)
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Proof. The fact that I has compact level sets follows from Lemma 6.1. The uniform Laplace
principle (3.4) follows from the uniform upper and lower bounds shown in Proposition 5.1 and
Proposition 7.1, respectively. ■

Due to the equivalence between the Laplace principle and the LDP (see, e.g., [8, Theo-
rem 1.2.3]), it follows that {L t , t > 0} satisfies the LDP on P(Rd ) with rate I , and the LDP
is uniform for initial conditions in compact sets.

Remark 3.4. Since the rate function is unique (see, e.g., [8, Theorem 1.3.1]), it follows that our
rate function I defined in (3.3) coincides with the Donsker-Varadhan rate function J defined in
(1.4).

4. Variational representation

In this section we establish a variational representation for exponential functions of L t , which
will be used to prove both the Laplace principle upper and lower bounds. For t < ∞ let Vt

denote the set of processes v = {v(s), 0 ≤ s ≤ t} that are progressively measurable with respect
to the filtration {Ft } defined in (2.4) and satisfy

E
[∫ t

0
|v(s)|2ds

]
< ∞.

The following representation was shown in [2, Theorem 4.1].

Proposition 4.1. For t < ∞ let X = {X (s), 0 ≤ s ≤ t} be the pathwise unique solution to the
SDE (1.1) on [0, t]. Then for any bounded Borel measurable function G mapping C([0, t],Rd )
into R the following representation holds:

log E
[
exp (−G(X ))

]
= − inf

v∈Vt
E

[
1
2

∫ t

0
|v(s)|2ds + G (Xv)

]
,

where Xv
= {Xv(s), 0 ≤ s ≤ t} denotes the pathwise unique solution to the SDE

d Xv(s) = b(Xv(s))ds + σ (Xv(s))dW (s) + σ (Xv(s))v(s)ds, (4.1)

for 0 ≤ s ≤ t , with initial condition Xv(0) = X0.

Using Proposition 4.1, we obtain a variational representation for functionals of the empirical
measure process.

Proposition 4.2. Let h be a bounded Borel measurable function mapping P(Rd ) into R. Then
for all t < ∞,

1
t

log E
[
exp {−th(L t )}

]
= − inf

v∈Vt
E

[
1
2t

∫ t

0
|v(s)|2ds + h(Lvt )

]
, (4.2)

where Lvt denotes the empirical measure of Xv on the interval [0, t] defined by

Lvt (A) .=
1
t

∫ t

0
δXv (s)(A)ds, A ∈ B(Rd ).
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Proof. Let t < ∞. Let g be the continuous function mapping C([0, t],Rd ) into P(Rd ) defined
by

G(w)(·) .=
1
t

∫ t

0
δw(s)(·)ds, w ∈ C([0, t],Rd ).

Then L t = G(X ) and the composite function h ◦ G mapping C([0, t],Rd ) into R is bounded and
Borel measurable. Thus, by Proposition 4.1 and the fact that Lvt = G(Xv), (4.2) holds. ■

5. Laplace principle upper bound

In this section we prove the uniform Laplace principle upper bound, which is stated in the
following proposition.

Proposition 5.1. Suppose b and σ satisfy Conditions 2.1 and 2.2. Define I as in (3.3). Then for
each compact subset K of Rd and any bounded continuous function h mapping P(Rd ) into R,
we have

lim sup
t→∞

sup
x∈K

1
t

log Ex
[
exp {−th(L t )}

]
≤ − inf

γ∈P(Rd )
{I (γ ) + h(γ )} . (5.1)

The remainder of this section is devoted to the proof of Proposition 5.1. Throughout this
section we assume b and σ satisfy Conditions 2.1 and 2.2. We fix a compact subset K of Rd

and a bounded continuous function h mapping P(Rd ) into R. Let {tn, n ∈ N} be an increasing
sequence in (0,∞) and {xn, n ∈ N} be a sequence in K such that tn → ∞ as n → ∞ and

lim
n→∞

1
tn

log Exn

[
exp

{
−tnh(L tn )

}]
(5.2)

= lim sup
t→∞

sup
x∈K

1
t

log Ex
[
exp {−th(L t )}

]
.

Due to the representation stated in Proposition 4.2, for each n ∈ N, there is a progressively
measurable process vn in Vtn such that

1
tn

log Exn

[
exp

{
−tnh(L tn )

}]
(5.3)

≤ −Exn

[
1

2tn

∫ tn

0
|vn(s)|2ds + h(Lv

n

tn )
]

+
1
n
.

Let ∥h∥∞

.
= sup{|h(γ )| : γ ∈ P(Rd )} < ∞. Rearranging the last display, we see that for each

n ∈ N,

Exn

[
1

2tn

∫ tn

0
|vn(s)|2ds

]
≤ 2∥h∥∞ + 1. (5.4)

For each n ∈ N, define νn ∈ P(Rd
× Rd ) by

νn(A × B) .=
1
tn

∫ tn

0
δ(Xvn (s),vn (s))(A × B)ds (5.5)

for Borel subsets A and B of Rd .
Since Xvn and vn are {Ft }-adapted and the mappings (Xvn

, vn) ↦→ νn and Xvn
↦→ [νn]1

are continuous, it follows that νn and [νn]1 are Ftn -measurable random variables taking values
in P(Rd

× Rd ) and P(Rd ), respectively. Our next step is to establish tightness of the family
{νn, n ∈ N}. Before doing so, we recall a useful result (see, e.g., [8, Theorem A.3.12]).
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Lemma 5.2. Let c : Rd
× Rd

→ (−∞,∞] be bounded below and lower semicontinuous.
Suppose {θn, n ∈ N} is a sequence in P(Rd

× Rd ) converging weakly to θ in P(Rd
× Rd ). Then

lim inf
n→∞

∫
Rd×Rd

c(x, y)θn(dx dy) ≥

∫
Rd×Rd

c(x, y)θ (dx dy).

Given V ∈ C2(Rd ) as in Condition 2.2, let g ∈ C(Rd ) be defined as in (2.3) so that g has
compact level sets and by a completion of squares argument, for each x ∈ Rd ,

g(x) = inf
{
−(Ly V )(x) +

1
2
|y|

2
: y ∈ Rd

}
. (5.6)

Lemma 5.3. The sequence {νn, n ∈ N} of P(Rd
× Rd )-valued random elements is tight.

Proof. Let ε > 0. We claim there exist compact sets Γ1 and Γ2 in P(Rd ) such that for each
n ∈ N,

Pxn ([νn]1 ∈ Γ1) ≥ 1 − ε (5.7)

Pxn ([νn]2 ∈ Γ2) ≥ 1 − ε. (5.8)

Then Γ
.
= {ν ∈ P(Rd

× Rd ) : [ν]i ∈ Γi , i = 1, 2} is a compact subset of P(Rd
× Rd ) and

Pxn (νn ∈ Γ ) ≥ 1 − 2ε for each n ∈ N, which will complete the proof.
We first define the compact set Γ1 ⊂ P(Rd ) satisfying (5.7). Let

M1
.
=

1
t1

supx∈K V (x) + 2∥h∥∞ + 1

ε
< ∞ (5.9)

and set

Γ1
.
=

{
γ ∈ P(Rd ) :

∫
Rd

g(x)γ (dx) ≤ M1

}
. (5.10)

An application of Chebyshev’s inequality and the fact that g is continuous shows that Γ1 is tight,
and hence compact, in P(Rd ). Let n ∈ N. By (5.6), (4.1), Itô’s formula, the martingale property
of the stochastic integral and the nonnegativity of V ,

V (xn) − Exn

[∫ tn

0
g(Xvn

(s))ds +
1
2

∫ tn

0
|vn(s)|2ds

]
≥ Exn

[
V (Xvn

(tn))
]

≥ 0.

Then, by the definition of [νn]1, the last display and (5.4), we have

Exn

[∫
Rd

g(x)[νn]1(dx)
]

≤
1
tn

V (xn) + 2∥h∥∞ + 1. (5.11)

Thus, due to (5.10), Chebyshev’s inequality, (5.11) and the definition of M1 in (5.9), we have
Pxn ([νn]1 ̸∈ Γ1) < ε. This proves (5.7).

Next we construct the compact set Γ2 ⊂ P(Rd ) satisfying (5.8). Let

M2 >
4∥h∥∞ + 2

ε
(5.12)

and set

Γ2
.
=

{
γ ∈ P(Rd ) :

∫
Rd

|y|
2γ (dy) ≤ M2

}
. (5.13)
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It follows from Lemma 5.2 that the function mapping γ to
∫
Rd |y|

2γ (dy) has closed level sets
and so Γ2 is a closed set. An application of Chebyshev’s inequality shows that the family Γ2 is
tight, and hence compact, in P(Rd ). Let n ∈ N. By (5.13), the definition (5.5) of νn , Chebyshev’s
inequality, (5.4) and (5.12), Pxn ([νn]2 ̸∈ Γ2) < ε. This proves (5.8). ■

In light of Lemma 5.3, we can take a weakly convergent subsequence of {νn, n ∈ N}, which we
also denote by {νn, n ∈ N}, and let ν denote its limit point. For the remainder of this section we
fix such a convergent subsequence with limit point ν in P(Rd

×Rd ). According to the Skorokhod
representation theorem, there is a probability space (Ω̄ , F̄ , P̄) and random elements {ν̄n, n ∈ N}

and ν̄ on (Ω̄ , F̄ , P̄) taking values in P(Rd
× Rd ) such that ν̄n is equal in distribution to νn for

each n ∈ N, ν̄ is equal in distribution to ν and P̄ a.s.

ν̄n ⇒ ν̄ as n → ∞. (5.14)

Let Ē denote expectation under P̄ . The following decomposition of ν̄ was shown to hold in
[8, Theorem A.5.6].

Lemma 5.4. For each A ∈ B(Rd ), the mapping from (Ω̄ , F̄) to ([0, 1],B([0, 1])) given by
ω̄ ↦→ [ν̄(ω̄)]1(A) is measurable. Furthermore, there exists a family of probability measures
[ν(ω̄)]2|1(dy|x) on Rd parameterized by (ω̄, x) ∈ Ω̄ × Rd such that for each A ∈ B(Rd ), the
mapping from (Ω̄ × Rd , F̄ ⊗ B(Rd )) to ([0, 1],B([0, 1])) given by (ω̄, x) ↦→ [ν̄(ω̄)]2|1(A|x) is
measurable, and P̄-a.s.

ν̄(A × B) =

∫
A
[ν̄]2|1(B|x)[ν̄]1(dx), A, B ∈ B(Rd ). (5.15)

In preparation for proving Proposition 5.1, we have the following lemma.

Lemma 5.5. The following limit holds:

lim inf
n→∞

Ē
[

1
2

∫
Rd×Rd

|y|
2ν̄n(dx dy)

]
≥ Ē [I ([ν̄]1)] ,

where I is defined in (3.3).

Proof. We have the following inequalities, which are explained below:

Ē
[

1
2

∫
Rd×Rd

|y|
2ν̄(dx dy)

]
≤ lim inf

n→∞
Ē

[
1
2

∫
Rd×Rd

|y|
2ν̄n(dx dy)

]
(5.16)

≤ 2∥h∥∞ + 1.

The first inequality is due to (5.14), Lemma 5.2 and Fatou’s lemma. The second inequality is a
consequence of the Skorokhod representation theorem, the definition of νn in (5.5) and the bound
(5.4). It follows that for P̄-a.e. ω̄ ∈ Ω̄ ,

lim inf
n→∞

1
2

∫
Rd×Rd

|y|
2ν̄n(ω̄; dx dy) < ∞.

By taking a subsequence {nk(ω̄), k ∈ N}, we can assume that

sup
k

1
2

∫
Rd×Rd

|y|
2ν̄nk (ω̄)(ω̄; dx dy) < ∞.
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Along this subsequence we have

lim
C→∞

sup
k

∫
Rd×Rd

|y|1{|y|>C}ν̄nk (ω̄)(ω̄; dx dy)

≤ lim
C→∞

1
C

sup
k

∫
Rd×Rd

|y|
2ν̄nk (ω̄)(ω̄; dx dy)

= 0.

By the uniform integrability shown in the last display,∫
Rd×Rd

(Lyφ)(x)ν̄(ω̄; dx dy) = lim
k→∞

∫
Rd×Rd

(Lyφ)(x)ν̄nk (ω̄)(ω̄; dx dy).

Since νn and ν̄n are equal in distribution for each n ∈ N, in order to show that the left hand side
of the last display is equal to zero for P̄-a.e. ω̄ ∈ Ω̄ , it suffices to show that∫

Rd×Rd
(Lyφ)(x)νn(dx dy) (5.17)

converges to zero in probability as n → ∞. By (5.5), (4.1) and Itô’s formula, the last display is
equal to

1
tn
φ(Xvn

(tn)) −
1
tn
φ(x) −

1
tn

∫ tn

0
⟨∇φ(Xvn

(s)), σ (Xvn
(s))dW (s)⟩.

Since φ is bounded, the first two terms converge to zero a.s. as n → ∞. For the third term,
Chebyshev’s inequality and the Itô isometry imply that for all 1 ≤ i, j ≤ d and ε > 0,

Pxn

(⏐⏐⏐⏐ 1
tn

∫ tnk

0
σi j (Xvn

(s))
∂φ

∂xi
(Xvn

(s))dW j (s)
⏐⏐⏐⏐ ≥ ε

)
≤

1
t2
n ε

2 Ex

[∫ tn

0

⏐⏐⏐⏐σi j (Xvn
(s))

∂φ

∂xi
(Xvn

(s))
⏐⏐⏐⏐2

ds

]
.

Since ∂φ

∂xi
and σi j are bounded for 1 ≤ i, j ≤ d, the right hand side converges to zero as n → ∞.

Thus, P̄ a.s. ν̄ lies in S[ν̄]1 .
According to the definition of I in (3.3), we are left to show that P̄ a.s. b lies in L2

[ν̄]1
. Let

V ∈ C2(Rd ) be as in Condition 2.2 and define g ∈ C(Rd ) as in (2.3). By Condition 2.2,∫
Rd

|b(x)|2[ν̄]1(dx) ≤ c1 + c2

∫
Rd

g(x)[ν̄]1(dx).

Using (5.14), Lemma 5.2, the Skorokhod representation theorem and following the exact
argument carried out in the proof of Lemma 5.3 to obtain (5.11), we see that

Ē
[∫

Rd
g(x)[ν̄]1(dx)

]
≤ lim inf

n→∞
Exn

[∫
Rd

g(x)[νn]1(dx)
]

≤ lim inf
n→∞

1
tn

V (xn) + 2∥h∥∞ + 1.

Since {xn, n ∈ N} take values in the compact set K and V is continuous, the last two displays
together prove that P̄ a.s. b lies in L2

[ν̄]1
. ■

Proof of Proposition 5.1. Fix a compact set K in Rd and a bounded continuous function h
mapping P(Rd ) into R. Let {xn, n ∈ N} be a sequence in K and {tn, n ∈ N} be an increasing
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sequence in (0,∞) such that tn → ∞ as n → ∞ and (5.2) holds. By (5.3), (5.5) and the
Skorokhod representation theorem, for each n ∈ N,

1
tn

log Exn

[
exp

(
−tnh(L tn )

)]
≤ −Exn

[
1

2tn

∫ tn

0
|vn(s)|2ds + h(Lv

n

tn )
]

+
1
n

= −Ē
[

1
2

∫
Rd×Rd

|y|
2ν̄n(dx dy) + h([ν̄n]1)

]
+

1
n
.

Then by the last display, Lemma 5.5 and (5.14), we have

lim
n→∞

1
tn

log Exn

[
exp

(
−tnh(L tn )

)]
≤ −Ē [I ([ν̄]1) + h([ν̄]1)]

≤ − inf
γ∈P(Rd )

{I (γ ) + h(γ )}.

Along with (5.2), this proves (5.1). ■

6. Properties of the rate function

In this section we study properties of the function I defined in (3.3). In the following two
lemmas we show that I has compact level sets and is convex. Let R+

.
= [0,∞). For each n ∈ N,

let αn : R+ → R+ be a smooth (i.e., αn is continuous and its restriction to (0,∞) has continuous
derivatives of all orders) nondecreasing function such that

αn(r ) = r, 0 ≤ r ≤ n,

αn(r ) = 2n, r ≥ 3n, (6.1)
α′′

n (r ) ≤ 0, r ≥ 0.

Lemma 6.1. Suppose Conditions 2.1 and 2.2 hold. Then the function I defined in (3.3) has
compact level sets.

Proof. As is typical in the weak convergence approach, the following proof that the rate function
I has compact level sets uses arguments that are similar to those used to prove the Laplace
principle upper bound in Section 5.

Fix M < ∞. We first show that the family {γ ∈ P(Rd ) : I (γ ) ≤ M} is tight in P(Rd ). Let
ε > 0. Let V ∈ C2(Rd ) and g ∈ C(Rd ) be as in Condition 2.2. Set

K1
.
=

{
x ∈ Rd

: g(x) ≤
M + ε

ε

}
. (6.2)

By (2.1), K1 is compact. Suppose µ ∈ P(Rd ) satisfies I (µ) ≤ M . Then there exists ν ∈ Sµ such
that

1
2

∫
Rd×Rd

|y|
2ν(dx dy) < M + ε. (6.3)

For each n ∈ N, define Vn ∈ C2
b (Rd ) by Vn

.
= αn ◦ V . Then

(Ly Vn)(x) = (α′

n ◦ V )(x)(Ly V )(x) +
1
2

(α′′

n ◦ V )(x)|σ (x)∇V (x)|2

and (Ly Vn)(x) converges to (Ly V )(x) uniformly for (x, y) in compact subsets of Rd
× Rd as

n → ∞. Since, for each n ∈ N, 0 ≤ α′
n(r ) ≤ 1 and α′′

n (r ) ≤ 0 for all r > 0, the last display
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implies that (Ly Vn)(x) ≤ max{(Ly V )(x), 0}. Then by (5.6),

− (Ly Vn)(x) +
1
2
|y|

2
≥ min{−(Ly V )(x), 0} +

1
2
|y|

2
≥ min

{
g(x),

1
2
|y|

2
}
,

which is bounded below by Condition 2.2. Therefore, by (5.6), (2.1), Fatou’s lemma, the facts
that ν ∈ Sµ and Vn ∈ C2

b (Rd ), and (6.3),∫
Rd

g(x)µ(dx) ≤ −

∫
Rd×Rd

(Ly V )(x)ν(dx dy) +
1
2

∫
Rd×Rd

|y|
2ν(dx dy) (6.4)

≤ lim inf
n→∞

[
−

∫
Rd×Rd

(Ly Vn)(x)µ(dx) +
1
2

∫
Rd×Rd

|y|
2ν(dx dy)

]
< M + ε.

Thus, by (6.2), Chebyshev’s inequality and the last display, µ(K c
1 ) < ε. This proves that the level

set {γ ∈ P(Rd ) : I (γ ) ≤ M} is tight in P(Rd ).
We are left to show that I is lower semicontinuous. Let {µn, n ∈ N} be a sequence in

P(Rd ) that converges weakly to µ and satisfies lim infn→∞ I (µn) < ∞. By choosing an
appropriate subsequence, also denoted {µn, n ∈ N}, we can assume R .

= supn I (µn) < ∞

and limn→∞ I (µn) = lim infn→∞ I (µn). By the definition of I given in (3.3), for each n ∈ N we
can choose νn ∈ Sµn such that

1
2

∫
Rd×Rd

|y|
2νn(dx dy) ≤ I (µn) +

1
n

≤ R + 1. (6.5)

We show that {νn, n ∈ N} is tight in P(Rd
×Rd ). Since [νn]1 = µn for each n ∈ N and µn ⇒ µ

as n → ∞, {[νn]1, n ∈ N} is tight in P(Rd ). Next, let ε > 0 and define the compact set K2 by

K2
.
=

{
y ∈ Rd

: |y|
2

≤
R + 1
ε

}
.

Then by Chebyshev’s inequality and (6.5), for each n ∈ N,

[νn]2(K c
2 ) ≤

ε

R + 1

∫
Rd×Rd

|y|
2νn(dx dy) ≤ 2ε.

This proves that {[νn]2, n ∈ N} is tight in P(Rd ) and hence {νn, n ∈ N} is tight in P(Rd
× Rd ).

By possibly taking a further subsequence, also denoted {νn, n ∈ N}, we can assume there exists
ν ∈ P(Rd

× Rd ) such that [ν]1 = µ and νn ⇒ ν in P(Rd
× Rd ) as n → ∞. By (6.5),

lim
C→∞

sup
n

∫
Rd×Rd

1{|y|≥C}|y|νn(dx dy) ≤ lim
C→∞

1
C

sup
n

∫
Rd×Rd

|y|
2νn(dx dy)

= 0.

Let φ ∈ C2
b (Rd ). Due to the uniform integrability shown in the last display and the weak

convergence νn ⇒ ν, we have∫
Rd×Rd

⟨σ (x)y,∇φ(x)⟩ν(dx dy) = lim
n→∞

∫
Rd×Rd

⟨σ (x)y,∇φ(x)⟩νn(dx dy).

Consequently,∫
Rd×Rd

(Lyφ)(x)ν(dx dy) = lim
n→∞

∫
Rd×Rd

(Lyφ)(x)νn(dx dy) = 0.
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It follows that ν ∈ Sµ. In addition, by (2.2) of Condition 2.2 and (6.4), b ∈ L2
µ holds. Therefore,

we have the following relations, which are explained below:

lim inf
n→∞

I (µn) ≥
1
2

lim inf
n→∞

∫
Rd×Rd

|y|
2νn(dx dy)

≥
1
2

∫
Rd×Rd

|y|
2ν(dx dy)

≥ I (µ).

The first inequality follows from (6.5). The second inequality is due to Lemma 5.2. The final
inequality is due to the facts that ν ∈ Sµ and b ∈ L2

µ, and the definition of I in (3.3). This
completes the proof that I is lower semicontinuous. ■

Lemma 6.2. The function I defined in (3.3) is convex.

Proof. Suppose µ1, µ2 ∈ P(Rd ) are such that I (µ1) and I (µ2) are finite and λ1, λ2 ∈ (0, 1)
satisfy λ1 + λ2 = 1. Let ε > 0. For each k = 1, 2, by the definition of I in (3.3) we can choose
νk ∈ Sµk such that

1
2

∫
Rd×Rd

|y|
2νk(dx dy) ≤ I (µk) + ε. (6.6)

Define µ ∈ P(Rd ) by µ .
= λ1µ1 + λ2µ2 and ν ∈ P(Rd

× Rd ) by ν .
= λ1ν1 + λ2ν2 so that

[ν]1 = µ. Let φ ∈ C2
b (Rd ). By the definition of Ly in (3.1), the definition of ν, and the fact that

νk ∈ Sµk for k = 1, 2, we have∫
Rd×Rd

(Lyφ)(x)ν(dx dy) =

∑
k=1,2

λk

∫
Rd×Rd

(Lyφ)(x)νk(dx dy) = 0.

Hence, ν ∈ Sµ. The fact that b ∈ L2
µ1

∩ L2
µ2

and the definition of µ imply that b ∈ L2
µ. Then, by

the definition of I , the fact that ν = λ1ν1 + λ2ν2 and (6.6),

I (µ) ≤
1
2

∫
Rd×Rd

|y|
2ν(dx dy) ≤ λ1 I (µ1) + λ2 I (µ2) + 2ε.

Since ε > 0 was arbitrary, this completes the proof that I is convex. ■

We now show that the rate function I (µ) can be expressed as the infimum over feedback
controls u in L2

µ such that µ is formally invariant under the controlled infinitesimal generator.
For µ ∈ P(Rd ), define

I †(µ) .=

⎧⎨⎩ inf
u∈Rµ

1
2

∫
Rd×Rd

|u(x)|2µ(dx) if b ∈ L2
µ and Rµ ̸= ∅,

∞ otherwise,
(6.7)

where

Rµ
.
=

{
u ∈ L2

µ :

∫
Rd

((Lφ)(x) + ⟨σ (x)u(x),∇φ(x)⟩)µ(dx) = 0 ∀ φ ∈ C∞

c (Rd )
}
. (6.8)

Lemma 6.3. I (µ) = I †(µ) for all µ ∈ P(Rd ).
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Proof. Let µ ∈ P(Rd ). We first show that I †(µ) ≤ I (µ). We can assume that I (µ) < ∞. Let
ε > 0. By (3.3), we can choose ν ∈ Sµ such that∫

Rd×Rd
|y|

2ν(dx dy) < I (µ) + ε.

Define

u(x) .=
∫
Rd

y[ν]2|1(dy|x), x ∈ Rd ,

where [ν]2|1(dy|x) denotes the stochastic kernel on Rd given Rd (see [8, Theorem A.5.4]). Since
x ↦→ [ν]2|1(dy|x) is a measurable function from (Rd ,B(Rd )) to P(Rd ) (equipped with the weak
topology), the function u : Rd

→ Rd is Borel measurable. By Jensen’s inequality,∫
Rd

|u(x)|2µ(dx) ≤

∫
Rd×Rd

|y|
2ν(dx dy) < I (µ) + ε.

In addition, by (3.2), for all φ ∈ C∞
c (Rd ),∫

Rd
((Lφ)(x) + ⟨σ (x)u(x),∇φ(x)⟩)µ(dx) =

∫
Rd×Rd

(Lyφ)(x)ν(dx dy) = 0.

Thus, µ ∈ Rµ and so I †(µ) ≤ I (µ) + ε. Since ε > 0 was arbitrary, I †(µ) ≤ I (µ).
Next, we show that I (µ) ≤ I †(µ), which will complete the proof. We can assume that

I †(µ) < ∞. Let ε > 0 and choose u ∈ Rµ such that∫
Rd

|u(x)|2µ(dx) < I †(µ) + ε.

Define ν ∈ P(Rd
× Rd ) by

ν(A × B) .=
∫

A
δu(x)(B)µ(dx), A, B ∈ B(Rd ).

Then ∫
Rd×Rd

|y|
2ν(dx dy) =

∫
Rd

|u(x)|2ν(dx) < I †(x) + ε.

In addition, by (3.1) and (6.8), for all φ ∈ C∞
c (Rd ),∫

Rd×Rd
(Lyφ)(x)ν(dx dy) =

∫
Rd

(L(x) + ⟨u(x)σ (x),∇φ(x)⟩)µ(dx) = 0.

Thus, ν ∈ Sµ and so I (µ) ≤ I †(µ)+ε. Since ε > 0 was arbitrary, this proves I (µ) ≤ I †(µ). ■

Next we obtain an explicit characterization of the rate function. Given µ ∈ P(Rd ) we equip
L2
µ with the inner product

⟨ f, g⟩L2
µ

.
=

∫
Rd

⟨a(x) f (x), g(x)⟩µ(dx). (6.9)

Then L2
µ is a separable Hilbert space. Let Gµ be the linear subspace of L2

µ defined as the
L2
µ-closure of the set

G .
=

{
∇φ : φ ∈ C∞

c (Rd )
}
,

where C∞
c (Rd ) denotes the space of real-valued functions on Rd with compact support and

continuous derivatives of all orders. We let Πµ denote the orthogonal projection of L2
µ onto
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Gµ. Suppose b ∈ L2
µ and Condition 2.6 holds. Define the continuous function β : Rd

→ Rd by

βi
.
= bi −

1
2

d∑
j=1

∂ai j

∂x j
, 1 ≤ i ≤ d. (6.10)

Since b ∈ L2
µ and Condition 2.6 holds, a−1β ∈ L2

µ. For the following lemma, let H 1(Rd ) denote
the Sobolev space of real-valued functions f on Rd that are weakly differentiable and such that
f and its weak first partial derivatives are L2-integrable with respect to Lebesgue measure.

Lemma 6.4. Suppose Condition 2.6 holds and µ ∈ P(Rd ) satisfies I (µ) < ∞. Then µ
is absolutely continuous with respect to Lebesgue measure, ϕ .

=
√
ρ lies in H 1(Rd ) and

(∇ρ/ρ)1{ρ>0} coincides µ-a.e. with Πµ(a−1β + σ−1u).

Proof. Suppose I (µ) < ∞. By Lemma 6.3 and (6.8), we can choose u ∈ L2
µ such that, for all

φ ∈ C∞
c (Rd ),∫
Rd

((Lφ)(x) + ⟨σ (x)u(x),∇φ(x)⟩)µ(dx) = 0. (6.11)

Since σ is bounded and b ∈ L2
µ by (3.3), it follows that b + σu ∈ L2

µ. The conclusion of the
lemma then follows from (6.11) and [1, Theorem 1.1] (with A = a and B = b + σu). ■

Proposition 6.5. Suppose Conditions 2.2 and 2.6 hold and µ ∈ P(Rd ) satisfies I (µ) < ∞. Then

I (µ) =
1
2

∫
Rd

|u(x)|2µ(dx), (6.12)

where u : Rd
→ Rd is the Borel measurable function given by

u = σ

{
1
2

∇ρ

ρ
1{ρ>0} − Πµ(a−1β)

}
, (6.13)

where ρ .
= dµ/dx is the density of µ with respect to Lebesgue measure. Moreover, if ρ ∈

C2
b (Rd ) and is strictly positive on Rd , then ui lies in C1,α(Rd ) for 1 ≤ i ≤ d.

Remark 6.6. This result can be compared to the characterization of the variational form of
the Donsker-Varadhan rate function for diffusions in compact regions (with reflection along the
boundary) that was obtained in equations (1.7) and (1.8) of [17]. When the reflection vector in
[17] is normal to the boundary of the region (i.e., when T = 0), the characterization of the
rate function in (1.7) and (1.8) of [17] takes a similar form as our characterization in (6.12) and
(6.13). The main difference being that in [17] the projection term Πµ(a−1β) is characterized as
∇h, where h is the solution to the variational problem (1.8) of [17].

Remark 6.7. A useful interpretation of the feedback control u in (6.13) is as the product of σ
and the difference between half the logarithmic gradient of ρ and the component of a−1β that is
reversible with respect to µ. This interpretation can be compared to [15, Corollary 1.5], which
provides a probabilistic interpretation of the Donsker-Varadhan rate function for diffusions in
compact regions (with reflection along the boundary of the region) in terms of invariant measures
for such diffusions.
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Proof. We first show that u ∈ Rµ. Due to the definition of u given in (6.13), the definition of
⟨·, ·⟩L2

µ
given in (6.9), the fact that ∇φ ∈ Gµ and the definition of β given in (6.10), we have∫
Rd

⟨σ (x)u(x),∇φ(x)⟩µ(dx) =
1
2
⟨ρ−1

∇ρ,∇φ⟩L2
µ

− ⟨a−1β,∇φ⟩L2
µ

=
1
2

d∑
i=1

d∑
j=1

∫
Rd

∂(ai jρ)
∂xi

(x)
∂φ

∂x j
(x)dx

−

∫
Rd

⟨b(x),∇φ(x)⟩µ(dx).

By the last display and integration by parts, we obtain∫
Rd

((Lφ)(x) + ⟨σ (x)u(x),∇φ(x)⟩)µ(dx)

=
1
2

d∑
i=1

d∑
j=1

∫
Rd

ai j (x)
∂2φ

∂xi∂x j
(x)ρ(x)dx

+
1
2

d∑
i=1

d∑
j=1

∫
Rd

∂(ai jρ)
∂xi

(x)
∂φ

∂x j
(x)dx

= 0.

This proves u ∈ Rµ.
Now suppose ũ also lies in Rµ. Then by the definition of ⟨·, ·⟩L2

µ
,∫

Rd
|ũ(x)|2µ(dx) −

∫
Rd

|u(x)|2µ(dx) ≥

∫
Rd

|ũ(x) − u(x)|2µ(dx)

+ 2⟨σ−1(ũ − u), σ−1u⟩L2
µ
.

According to Lemma 6.3, once we show ⟨σ−1(ũ − u), σ−1u⟩L2
µ

= 0, the proof of (6.12) will
be complete. By Lemma 6.4, (∇ρ/ρ)1{ρ>0} ∈ Gµ. Then (6.13) and the definition of Πµ imply
σ−1u ∈ Gµ. Therefore, there exists {φn, n ∈ N} in C∞

c (Rd ) such that

⟨σ−1(ũ − u), σ−1u⟩L2
µ

= lim
n→∞

⟨σ−1(ũ − u),∇φn⟩L2
µ
.

For each n ∈ N, since u, ũ ∈ Rµ, we have

⟨σ−1(ũ − u),∇φn⟩L2
µ

=

∫
Rd

⟨σ (x)(ũ(x) − u(x)),∇φn(x)⟩µ(dx dy)

=

∫
Rd

((Lφn)(x) + ⟨σ (x)ũ(x),∇φ(x)⟩)µ(dx)

−

∫
Rd

((Lφn)(x) + ⟨σ (x)u(x),∇φ(x)⟩)µ(dx)

= 0.

Thus, (6.13) holds.
Lastly, suppose ρ lies in C2

b (Rd ) and is strictly positive on Rd . Since Πµ(a−1β) ∈ Gµ,
there exists a weakly differentiable function ψ : Rd

→ R such that ∇ψ = Πµ(a−1β). Thus,
⟨∇ψ,∇φ⟩L2

µ
= ⟨a−1β,∇φ⟩L2

µ
for all φ ∈ C∞

c (Rd ). Using the definition of ⟨·, ·⟩L2
µ

in (6.9),
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integrating by parts and dividing both sides by ρ, we see that ψ is a weak solution to the PDE

∇ · (a∇ψ) + ⟨∇ log ρ,∇ψ⟩ = ∇ · (ρβ). (6.14)

Then according to [13, Theorem 9.19] and because Conditions 2.1 and 2.6 hold, ψ belongs to
C2,α(Rd ). Since ψ ∈ C2,α(Rd ), ρ ∈ C2

b (Rd ) and ρ is strictly positive on Rd , it follows from
(6.13) that ui ∈ C1,α(Rd ) for 1 ≤ i ≤ d. ■

Lemma 6.8. Suppose Condition 2.6 holds and µ ∈ P(Rd ) satisfies I (µ) < ∞. Then there exists
a sequence {µn, n ∈ N} in P(Rd ) such that for each n ∈ N, µn is absolutely continuous with
respect to Lebesgue measure, its density ρn

.
= dµn/dx belongs in C∞

b (Rd ) and is strictly positive
on Rd , µn ⇒ µ as n → ∞ and I (µn) → I (µ) as n → ∞.

The proof of Lemma 6.8 is given in the Appendix.

7. Laplace principle lower bound

The following proposition is the main result of this section.

Proposition 7.1. Suppose Conditions 2.1, 2.2 and 2.6 hold. For each compact subset K of
Rd and bounded continuous function h mapping P(Rd ) into R we have the following uniform
Laplace principle lower bound

lim inf
t→∞

inf
x∈K

1
t

log Ex
[
exp {−th(L t )}

]
≥ − inf

γ∈P(Rd )
{I (γ ) + h(γ )} . (7.1)

Proof. Fix a bounded continuous function h mapping P(Rd ) into Rd . Let ε > 0 be arbitrary.
According to Lemma 6.8 and the continuity of h, there existsµ ∈ P(Rd ) such thatµ is absolutely
continuous with respect to Lebesgue measure, its density with respect to Lebesgue measure
ρ
.
= dµ/dx lies in C∞

b (Rd ) and is strictly positive on Rd , and

I (µ) + h(µ) ≤ inf
γ∈P(Rd )

{I (γ ) + h(γ )} + ε. (7.2)

Define u ∈ L2
µ as in (6.13). Since ρ ∈ C∞

b (Rd ) it follows from Proposition 6.5 that u
is continuously differentiable and hence locally Lipschitz continuous. Therefore, along with
Conditions 2.1 and 2.2, this ensures there exists a pathwise unique solution Xu

= {Xu(t), t ≥ 0}

of the controlled SDE

d Xu(t) = b(Xu(t))dt + σ (Xu(t))u(Xu(t))dt + σ (Xu(t))dW (t), t ≥ 0,

with Xu(0) = X0. We let Lu
t denote the associated empirical measure process. Since u and Xu

are continuous, the process {u(Xu(t)), t ≥ 0} is continuous and hence progressively measurable
with respect to the filtration {Ft }.

Let {tn, n ∈ N} and {xn, n ∈ N} be sequences in (0,∞) and K , respectively, such that tn → ∞

as n → ∞. By Proposition 4.2, for each n ∈ N, we have

1
tn

log Exn

[
exp

{
−tnh(L tn )

}]
≥ −Exn

[
1

2tn

∫ tn

0
|u(Xu(s))|2ds + h(Lu

tn )
]

= −Exn

[
1
2

∫
Rd

|u(x)|2Lu
tn (dx) + h(Lu

tn )
]
.
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We claim that

lim
n→∞

Exn

[
1
2

∫
Rd

|u(x)|2Lu
tn (dx) + h(Lu

tn )
]

=
1
2

∫
Rd

|u(x)|2µ(dx) + h(µ) (7.3)

= I (µ) + h(µ),

which along with (7.2) will complete the proof. Since the proof of the claim is analogous to a
portion of the proof of [8, Proposition 8.6.1], which establishes the uniform Laplace principle
lower bound for discrete time Markov chains, we provide a sketch of the argument here and refer
the reader to [8] for the details.

Let Pµ denote the probability measure on (Ω ,F) given by Pµ(A) .
=

∫
Rd Px (A)µ(dx) for

all A ∈ F , and let Eµ denote expectation under µ. Since µ is a stationary distribution of the
controlled diffusion Xu , an application of the L1 ergodic theorem implies that

lim
n→∞

Eµ

[∫
Rd

|u(x)|2Lu
tn (dx)

]
=

∫
Rd

|u(x)|2µ(dx).

Then, using the definition of Pµ, Chebyshev’s inequality, the Borel–Cantelli lemma and by
possibly taking a subsequence, which we also denote by {tn, n ∈ N}, we have for µ-a.e. x ∈ Rd ,

lim
n→∞

Ex

[∫
Rd

|u(x)|2Lu
tn (dx)

]
=

∫
Rd

|u(y)|2µ(dy).

Next, given a bounded, uniformly continuous function mapping Rd to R, the pointwise ergodic
theorem implies that Pµ a.s.

lim
n→∞

∫
Rd

g(y)Lu
tn (dy) =

∫
Rd

g(y)µ(dy). (7.4)

Since there is a metric on Rd under which the space of bounded, uniformly continuous functions
on Rd is separable (see [8, Theorem A.6.1]), the definition of Pµ and last display implies that
for µ-a.e. x ∈ Rd , Px a.s. Lu

tn ⇒ µ. Combining our results so far, we have (7.3) holds for
µ-a.e. x ∈ Rd . The extension to all x ∈ Rd then follows from an argument using the Feller
continuity of the diffusion X . This completes the proof of our claim. ■
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Appendix A. Properties of weighted L2-projection operators

Let µ ∈ P(Rd ) and {µn, n ∈ N} be a sequence in P(Rd ) satisfying the following condition.



Please cite this article in press as: P. Dupuis, D. Lipshutz, Large deviations for the empirical measure of a diffusion via weak convergence methods,
Stochastic Processes and their Applications (2017), https://doi.org/10.1016/j.spa.2017.09.020.

P. Dupuis, D. Lipshutz / Stochastic Processes and their Applications ( ) – 19

Condition A.1. The following hold:

• L2
µ ⊂ L2

µn
for each n ∈ N,

• limn→∞⟨ f, g⟩L2
µn

= ⟨ f, g⟩L2
µ

for all f, g ∈ L2
µ.

Let Gµ be an infinite-dimensional linear subspace of L2
µ and let Πµ denote the orthogonal

projection from L2
µ onto Gµ. For each n ∈ N, let Gµn denote the closure of Gµ in L2

µn
and let

Πµn denote the orthogonal projection from L2
µn

onto Gµn . The following proposition is the main
result of this section.

Proposition A.2. Suppose Condition A.1 holds. Then for all f ∈ L2
µ, ⟨Πµn f,Πµn f ⟩L2

µn
→

⟨Πµ f,Πµ f ⟩L2
µ

as n → ∞.

The remainder of this section is devoted to proving Proposition A.2. Throughout the section
we assume Condition A.1 holds and, given γ ∈ P(Rd ) and f ∈ L2

γ , we let ∥ f ∥L2
γ

.
=

√
⟨ f, f ⟩L2

γ
.

Since L2
µ is separable, there is a sequence {gi , i ∈ N} of linearly independent vector fields in

Gµ such that Gµ is equal to the closure of G .
= span {gi , i ∈ N} in L2

µ. For each m ∈ N, define
the finite dimensional linear subspace Gm by

Gm .
= span {gi , i = 1, . . . ,m} .

Let Π m
µ denote the orthogonal projection of L2

µ onto Gm . We can recursively construct these
projections via Gram–Schmidt as follows: Set

Π 1
µ f .

=

⟨ f, g1⟩L2
µ

∥g1∥
2
L2
µ

g1, (A.1)

and for m ∈ N, set

Π m+1
µ f .

= Π m
µ f +

⟨ f, gm+1 − Π m
µ gm+1⟩L2

µ

∥gm+1 − Π m
µ gm+1∥

2
L2
µ

(gm+1 − Π m
µ gm+1). (A.2)

Here the linear independence of the vector fields G ensures that (A.1) and (A.2) are well defined.
For each n,m ∈ N, let Π m

µn
denote the orthogonal projection from L2

µn
onto Gm . Given n ∈ N,

we can similarly recursively construct the projections Π m
µn

, m ∈ N, via Gram–Schmidt. Since the
procedure is analogous to the one explained above, we omit the details.

Lemma A.3. For each m ∈ N and all f ∈ L2
µ,

lim
n→∞

∥Π m
µn

f ∥L2
µn

= ∥Π m
µ f ∥L2

µ
.

Proof. We proceed with a proof by induction. Let f ∈ L2
µ. By (A.1) and Condition A.1,

lim
n→∞

∥Π 1
µn

f ∥L2
µn

= lim
n→∞

⟨ f, g1⟩L2
µn

∥g1∥L2
µn

=

⟨ f, g1⟩L2
µ

∥g1∥L2
µ

= ∥Π 1
µ f ∥L2

µ
.

This establishes the base case. Now let m ≥ 1 and assume the following induction hypothesis:
limn→∞∥Π m

µn
f ∥L2

µn
= ∥Π m

µ f ∥L2
µ

for all f ∈ L2
µ. Since the orthogonal projection operators are

idempotent and self-adjoint,

⟨ f,Π m
µn

g⟩L2
µn

= ⟨Π m
µn

f,Π m
µn

g⟩L2
µn

→ ⟨Π m
µ f,Π m

µ g⟩L2
µ

= ⟨ f,Π m
µ g⟩L2

µ
(A.3)
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as n → ∞ for all f, g ∈ L2
µ, where the convergence follows from the identity

4⟨Π m
µn

f,Π m
µn

g⟩L2
µn

= ∥Π m
µn

( f + g)∥L2
µn

− ∥Π m
µn

( f − g)∥L2
µn

and the induction hypothesis. Then by orthogonality, the induction hypothesis, Condition A.1
and (A.3), given f ∈ L2

µ,

lim
n→∞

∥Π m+1
µn

f ∥L2
µn

= lim
n→∞

∥Π m
µn

f ∥L2
µn

+ lim
n→∞

⟨ f, gm+1 − Π m
µn

gm+1⟩L2
µn

∥gm+1 − Π m
µn

gm+1∥L2
µn

= ∥Π m
µ f ∥L2

µ
+

⟨ f, gm+1 − Π m
µ gm+1⟩L2

µ

∥gm+1 − Π m
µ gm+1∥L2

µ

= ∥Π m+1
µ f ∥L2

µ
.

This proves the induction step. The lemma now follows from the principle of mathematical
induction. ■

Lemma A.4. For all f ∈ L2
µ,

lim inf
n→∞

∥Πµn f ∥
2
L2
µn

≥ ∥Πµ f ∥
2
L2
µ
.

Proof. By Lemma A.3, for each m ∈ N, we have

lim inf
n→∞

∥Πµn f ∥
2
L2
µn

≥ lim inf
n→∞

∥Π m
µn

f ∥
2
L2
µn

= ∥Π m
µ f ∥

2
L2
µ
.

Letting m → ∞ yields the conclusions of the lemma. ■

Let G⊥
µ denote the orthogonal complement of Gµ in L2

µ and let Π ⊥
µ denote the orthogonal

projection operator from L2
µ onto G⊥

µ . Similarly, for each n ≥ 1, let G⊥
µn

denote the orthogonal
complement of Gµn in L2

µn
and let Π ⊥

µn
denote the orthogonal projection operator from L2

µn
onto

G⊥
µn

. The next lemma follows immediately from Lemma A.4, but with Π ⊥
µn

and Π ⊥
µ in place of

Πµn and Πµ, respectively. (Lemma A.4 assumes that Gµ is infinite-dimensional; however, it is
readily checked that the result still holds if Gµ is finite-dimensional.)

Lemma A.5. For all f ∈ L2
µ,

lim inf
n→∞

∥Π ⊥

µn
f ∥

2
L2
µn

≥ ∥Π ⊥

µ f ∥
2
L2
µ
.

Proof of Proposition A.2. Let f ∈ L2
µ. By orthogonality, Condition A.1 and Lemma A.5,

lim sup
n→∞

∥Πµn f ∥
2
L2
µn

≤ lim sup
n→∞

∥ f ∥
2
L2
µn

− lim inf
n→∞

∥Π ⊥

µn
f ∥

2
L2
µn

≤ ∥ f ∥
2
L2
µ

−∥Π ⊥

µ f ∥
2
L2
µ

= ∥Πµ f ∥
2
L2
µ
.

Along with Lemma A.4, this completes the proof. ■

Appendix B. Proof of Lemma 6.8

Throughout this section we fix µ ∈ P(Rd ) with I (µ) < ∞. By Lemma 6.4, µ is absolutely
continuous with respect to Lebesgue measure and if ϕ .

=
√

dµ/dx , then ϕ lies in H 1(Rd ).
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For each n ∈ N, let αn : R+ → R+ be a smooth function such that |α′
n(r )| ≤ 1 for all

r ∈ R+ and (6.1) holds. In addition, define ζn : R+ → R+ be a nonincreasing smooth function
that satisfies ζn(r ) = 1 for all r ≤ n, ζn(r ) = 0 for all r ≥ n + 2 and −1 ≤ ζ ′

n(r ) ≤ 0 for all
n ≤ r ≤ n + 2. Define ϕn ∈ H 1(Rd ) by

ϕn(x) .= (αn ◦ ϕ(x))ζn(|x |), x ∈ Rd .

Then, for all n ∈ N sufficiently large, ϕn(x) is positive on a set of positive measure. Without loss
of generality, we assume that for all n ∈ N, ϕn is positive on a set of positive measure. Since
ζn(r ) = 1 and αn(r ) = r for all r ≤ n and ϕ lies in H 1(Rd ), we have∫

Rd
|ϕ(x) − ϕn(x)|2dx ≤ 4

∫
max{|x |,|ϕ(x)|}≥n

|ϕ(x)|2dx → 0

as n → ∞, and∫
Rd

|∇ϕ(x) − ∇ϕn(x)|2dx ≤ 2
∫
Rd

|∇ϕ(x)|2|1 − (α′

n ◦ ϕ(x))ζn(|x |)|2dx

+ 2
∫
Rd

|(αn ◦ ϕ(x))ζ ′

n(|x |)|2dx

≤ 4
∫

max{|x |,|ϕ(x)|}≥n
|∇ϕ(x)|2dx

+ 2
∫

|x |≥n
|ϕ(x)|2dx

→ 0

as n → ∞. Thus, ϕn → ϕ in H 1(Rd ) as n → ∞.
Let η ∈ C∞

c (Rd ) be given by η(x) .
= c exp(−(1 − |x |

2)−1) for |x | < 1 and η(x) .
= 0

for all |x | ≥ 1, where the normalization constant c > 0 is chosen so that
∫
Rd η(x)dx = 1.

For each m ∈ N, define ηm(x) .
= mdη(mx) for all x ∈ Rd . Given n,m ∈ N, define

ϕn,m ∈ C∞
c (Rd ) ∩ H 1(Rd ) by

ϕn,m(x) .= (αn ◦ (ϕ ∗ ηm)(x))ζn(|x |), x ∈ Rd (B.1)

where ϕ ∗ ηm denotes the convolution of ϕ and ηm . Since ϕ and ηm both take values in R+, their
convolution also takes values in R+, so the above expression is well defined. It is well known
that ϕ ∗ ηm → ϕ in H 1(Rd ) and a.e. as m → ∞. Since |α′

n(r )| ≤ 1, |ζn(r )| ≤ 1 and |ζ ′
n(r )| ≤ 1

for all r ≥ 0, we have, for each n ∈ N,∫
Rd

|ϕn,m(x) − ϕn(x)|2dx ≤

∫
Rd

|(ϕ ∗ ηm)(x) − ϕ(x)|2dx

→ 0

as m → ∞. In addition, because ϕ ∗ ηm → ϕ in H 1(Rd ) and a.e. as m → ∞, and due to the
bounds |ζn(r )| ≤ 1, |ζ ′

n(r )| ≤ 1 and |α′
n(r )| ≤ 1 for all r ∈ R+, we also have∫

Rd
|∇ϕn,m(x) − ∇ϕn(x)|2dx

≤ 2
∫
Rd

|(α′

n ◦ (ϕ ∗ ηm)(x))(∇ϕ ∗ ηm)(x) − (α′

n ◦ ϕ(x))∇ϕ(x)|2dx

+ 2
∫
Rd

|αn ◦ (ϕ ∗ ηm)(x) − αn ◦ ϕ(x)|2dx
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≤ 2
∫
Rd

|α′

n ◦ (ϕ ∗ ηm)(x)|2|(∇ϕ ∗ ηm)(x) − ∇ϕ(x)|2dx

+ 2
∫
Rd

|α′

n ◦ (ϕ ∗ ηm)(x) − α′

n ◦ ϕ(x)|2|∇ϕ(x)|2dx

+ 2
∫
Rd

|(ϕ ∗ ηm)(x) − ϕ(x)|2dx

→ 0

as m → ∞. Hence, ϕn,m → ϕn in H 1(Rd ) as m → ∞. For n,m ∈ N, set

Zn,m
.
=

∫
Rd
ϕ2

n,m(x)dx ∈ (0,∞), (B.2)

and define γn,m ∈ P(Rd ) to be absolutely continuous with respect to Lebesgue measure with
density

dγn,m

dx
.
=

1
Zn,m

ϕ2
n,m . (B.3)

Lemma B.1. Suppose that on each compact set K in Rd , ϕ is strictly bounded from below by a
positive constant. Then there exists a subsequence {mn, n ∈ N} such that mn → ∞ as n → ∞

and, upon setting µn
.
= γn,mn for each n ∈ N, Condition A.1 holds, µn ⇒ µ as n → ∞ and

√
dµn/dx →

√
dµ/dx in H 1(Rd ) as n → ∞.

Proof. Let f, g ∈ L2
µ. Given n,m ∈ N, due to (B.1) and the facts that αn is bounded above by

2n, the support of ζn is contained in Kn
.
= {x ∈ Rd

: |x | ≤ n + 2} and ϕ is bounded below by a
positive constant on Kn , we have∫

Rd
|⟨a(x) f (x), g(x)⟩|γn,m(dx) =

1
Zn,m

∫
Rd

|⟨a(x) f (x), g(x)⟩|
ϕ2

n,m(x)
ϕ2(x)

µ(dx)

≤
4n2

Zn,m

⟨ f, g⟩L2
µ

infx∈Kn ϕ
2(x)

< ∞.

Thus, f, g ∈ L2
γn,m

. By dominated convergence, given n ∈ N,∫
Rd

⟨a(x) f (x), g(x)⟩ϕ2
n,m(x)dx →

∫
Rd

⟨a(x) f (x), g(x)⟩ϕ2
n (x)dx

as m → ∞. Now for each n ∈ N,∫
Rd

|⟨a(x) f (x), g(x)⟩|ϕ2
n (x)dx ≤

∫
Rd

|⟨a(x) f (x), g(x)⟩|ϕ2(x)dx < ∞.

Therefore, again by dominated convergence,∫
Rd

⟨a(x) f (x), g(x)⟩ϕ2
n (x)dx →

∫
Rd

⟨a(x) f (x), g(x)⟩ϕ2(x)dx

as n → ∞. Hence, we can choose a subsequence {mn, n ∈ N} such that mn → ∞ as n → ∞

and ∫
Rd

⟨a(x) f (x), g(x)⟩ϕ2
n,mn

(x)dx →

∫
Rd

⟨a(x) f (x), g(x)⟩ϕ2(x)dx
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as n → ∞. Since ϕn,m → ϕn in H 1(Rd ) as m → ∞ and ϕn → ϕ in H 1(Rd ) as n → ∞, by
possibly selecting mn ∈ N larger for each n ∈ N, we can assume that ϕn,mn → ϕ in H 1(Rd )
as n → ∞, and thus Zn,mn →

∫
Rd |ϕ(x)|2dx = 1 as n → ∞. It follows that Condition A.1

holds and
√

dµn/dx →
√

dµ/dx in H 1(Rd ) as n → ∞, which implies the weak convergence
µn ⇒ µ as n → ∞. This completes the proof. ■

Proposition B.2. Suppose µ ∈ P(Rd ) is such that I (µ) < ∞ and µ admits a density with
respect to Lebesgue measure, denoted ρ .

= dµ/dx, such that on each compact set K its density
ρ is bounded below by a positive constant. Then there is a sequence {µn, n ∈ N} in P(Rd ) such
that for each n ∈ N,µn is absolutely continuous with respect to Lebesgue measure and its density
ρn

.
= dµn/dx lies in C∞

c (Rd ), µn ⇒ µ as n → ∞ and I (µn) → I (µ) as n → ∞.

Proof. Define the sequence {µn, n ∈ N} in P(Rd ) as in Lemma B.1. Then we are left to show
that I (µn) → I (µ) as n → ∞. Set ρ .

= dµ/dx and, for each n ∈ N, set ρn
.
= dµn/dx . By

Proposition 6.5, in order to show that I (µn) → I (µ) as n → ∞, it suffices to show that

lim
n→∞

⟨ρ−1
n ∇ρn, ρ

−1
n ∇ρn⟩L2

µn
= ⟨ρ−1

∇ρ, ρ−1
∇ρ⟩L2

µ
(B.4)

and

lim
n→∞

⟨Πµn (a−1β),Πµn (a−1β)⟩L2
µn

= ⟨Πµ(a−1β),Πµ(a−1β)⟩L2
µ
. (B.5)

By Lemma B.1,
√
ρn →

√
ρ in H 1(Rd ) and Condition A.1 holds. Since σ is bounded, we have

lim
n→∞

⟨ρ−1
n ∇ρn, ρ

−1
n ∇ρn⟩L2

µn
= 4 lim

n→∞

∫
Rd

|σ (x)(∇
√
ρn)(x)|2dx

= 4
∫
Rd

|σ (x)(∇
√
ρ)(x)|2dx

= ⟨ρ−1
∇ρ, ρ−1

∇ρ⟩L2
µ
.

This proves (B.4). Since a−1β ∈ L2
µ due to the facts that b ∈ L2

µ, a−1 is bounded and a has
bounded derivatives, it follows from Proposition A.2 that

lim
n→∞

⟨Πµn (a−1β),Πµn (a−1β)⟩L2
µn

= ⟨Πµ(a−1β),Πµ(a−1β)⟩L2
µ
.

This establishes (B.5), thus completing the proof. ■

Proof of Lemma 6.8. Suppose µ ∈ P(Rd ) satisfies I (µ) < ∞. Choose µ∗
∈ P(Rd ) such

that I (µ∗) < ∞, µ∗ is absolutely continuous with respect to Lebesgue measure with density
dµ∗/dx that lies in C∞

b (Rd ) and is strictly positive on Rd . (One is tempted to use the stationary
distribution π here for µ∗; however, in this way we avoid having to verify that π satisfies
the desired regularity properties. The existence of µ∗ with the stated regularity and satisfying
I (µ∗) < ∞ can be readily inferred from (6.12) and (6.13).) For each δ ∈ (0, 1), define
µδ ∈ P(Rd ) by

µδ
.
= (1 − δ) µ+ δµ∗. (B.6)

By the convexity of the rate function shown in Lemma 6.2, I (µδ) ≤ (1 − δ)I (µ) + δ I (µ∗) < ∞.
Then by Lemma 6.4 and the fact that dµ∗/dx is continuous and strictly positive on Rd , µδ admits
a density with respect to Lebesgue measure such that for each compact subset K of Rd , dµδ/dx
is bounded below by a positive constant on K . Thus, by Proposition B.2, there is a sequence
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{µδm,m ∈ N} in P(Rd ) such that for each m ∈ N, µδm is absolutely continuous with respect
to Lebesgue measure and its density ρδm

.
=

dµδm
dx lies in C2

c (Rd ), µδm ⇒ µδ as m → ∞ and
I (µδm) → I (µδ) as m → ∞. For each δ > 0, choose mδ ∈ N sufficiently large so that

|I (µδ) − I (µδmδ )| < δ, (B.7)

and dw(µδ, µδmδ ) < δ, where dw(·, ·) is a metric on P(Rd ) compatible with the topology of weak
convergence. For each n ∈ N, set δn

.
=

1
n and define

µn
.
= (1 − δn)µδnmδn

+ δnµ
∗. (B.8)

Then µn admits a strictly positive continuous density with respect to Lebesgue measure and

dw(µn, µ) ≤ dw(µn, µ
δn
mδn

) + dw(µδnmδn
, µδn ) + dw(µδn , µ).

By (B.6)–(B.8), each term on the right converges to zero as n → ∞, and so µn ⇒ µ as n → ∞.
By (B.6)–(B.8) and the convexity of the rate function,

I (µn) ≤ I (µ) + δn(1 + 2I (µ∗)).

This, along with the fact thats I (µ∗) < ∞, µn ⇒ µ as n → ∞ and the lower semicontinuity of
the rate function shown in Lemma 5.2, implies that I (µn) → I (µ) as n → ∞. ■
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