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Abstract

We give necessary and sufficient criteria for the Feller–Dynkin property of solutions to martingale
problems in terms of Lyapunov functions. Moreover, we derive a Khasminskii-type integral test for
the Feller–Dynkin property of multidimensional diffusions with random switching. For one dimensional
switching diffusions with state-independent switching, we provide an integral-test for the Feller–Dynkin
property.
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1. Introduction

It is a classical question for a Markov process whether its transition semigroup is a self-
map on the space of bounded continuous functions and on the space of continuous functions
vanishing at infinity, respectively. If the first property holds we call the Markov process a
Cb-Feller process and when the second property holds we call it a Feller–Dynkin process.
In the literature Feller–Dynkin processes are often also called Feller processes, see, for
instance, [26,29,34]. Our terminology is borrowed from [35].

Let us give some examples for applications of the Feller–Dynkin property. For empirical
laws of i.i.d. processes it is interesting to study the probability of large deviations. Sanov’s
theorem implies that a large deviation principle holds, see, for instance, [10, Section 6.2].
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However, the rate function is in general given in terms of an entropy and therefore hard
to understand. In [22] it was recently shown that for empirical laws of i.i.d. Feller–Dynkin
processes whose generators have suitable cores the rate function can be decomposed into a
rate function for the initial time and an integral over a Lagrangian depending on position and
speed. This decomposition opens up the possibility for further analysis.

From an analytical perspective, the Feller–Dynkin semigroup and its generator play an
important role in the study of evolution equations. Namely, if (L ,D(L)) is the generator
of a Feller–Dynkin semigroup and X = (C0, ∥ · ∥∞) is the Banach space of continuous
functions vanishing at infinity, then for any non-linearity h satisfying a Lipschitz condition
the deterministic evolution equation

du(t) =
(
Lu(t) + h(t, u(t))

)
dt, u(0) = f ∈ C0,

has a mild solution in X, see, for instance, [31, Section 6.1]. While such an existence result
is of purely analytic nature, the connection of the semigroup and its generator to a stochastic
process can be useful to verify its prerequisites. Another point of contact between analysis and
probability theory is the stochastic representation of solutions to evolution equations on X via
the Feynman–Kac formula, see, for instance, [29, Theorem 3.47]. The stochastic interpretations
provided by these representations can help to understand the behavior of solutions.

Because Markov processes are usually defined by its infinitesimal description, it is particu-
larly interesting to find criteria for the Feller properties in terms of the generalized infinitesimal
generator of the Markov process.

In this article we give such criteria for Markov processes defined via abstract martingale
problems (MPs). Our contributions are two-fold. First, we show that the Feller–Dynkin property
can be described by a Lyapunov-type criterion in the spirit of the classical Lyapunov-type
criteria for explosion, recurrence and transience, see, e.g., [20,32]. More precisely, we prove a
sufficient condition for the Feller–Dynkin property, see Theorem 1, and a condition to reject the
Feller–Dynkin property, see Theorem 2. Under additional assumptions on the input data, we
extend the sufficient condition for the Feller–Dynkin property to be necessary, see Theorem 3.
The necessity is for instance useful when one studies coupled processes, i.e. processes whose
infinitesimal description is built from the infinitesimal description of other processes. We
illustrate this in our applications. Moreover, we provide a technical condition for a reduction
or an enlargement of the input data of a MP, see Proposition 3. A reduction helps to check
the additional assumption of our necessary and sufficient criterion, while an enlargement
simplifies finding Lyapunov functions for our sufficient conditions. We apply our criteria to
derive conditions for the Feller–Dynkin property of multidimensional diffusions with random
switching. In particular, we derive a Khasminskii-type integral test for the Feller–Dynkin
property.

Our second contribution is a systematic study of the Feller–Dynkin property of switching
diffusions with state-independent switching. In other words, we consider a process (Yt , Z t )t≥0,
where (Z t )t≥0 is a continuous-time Feller–Dynkin Markov chain and (Yt )t≥0 solves the
stochastic differential equation (SDE)

dYt = b(Yt , Z t )dt + σ (Yt , Z t )dWt ,

where (Wt )t≥0 is a Brownian motion. One may think of the process (Yt )t≥0 as a diffusion in
a random environment given by the Markov chain (Z t )t≥0. The process (Yt )t≥0 has a natural
relation to processes with fixed environments, i.e. solutions to the SDEs

dY k
t = b(Y k

t , k)dt + σ (Y k
t , k)dWt , (1.1)
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where k is in the state space of (Z t )t≥0. When (Yt , Z t )t≥0 is a Cb-Feller process and the SDEs
(1.1) satisfy weak existence and pathwise uniqueness, we show that (Yt , Z t )t≥0 is a Feller–
Dynkin process if and only if the processes in the fixed environments are Feller–Dynkin
processes. Furthermore, using a limit theorem for switching diffusions, see Theorem 5, we
show that (Yt , Z t )t≥0 is a Cb-Feller process whenever it exists uniquely and the coefficients are
continuous. We also explain that the uniqueness of (Yt , Z t )t≥0 is implied by weak existence
and pathwise uniqueness of the diffusions in the fixed environments. For the one dimensional
case we deduce an equivalent integral-test for the Feller–Dynkin property of (Yt , Z t )t≥0 and
for multidimensional settings we give a Khasminskii-type integral test.

We end this introduction with comments on related literature. To the best of our current
knowledge, Lyapunov-type criteria for the Feller–Dynkin property are only used in specific
case studies and a systematic study as given in this article does not appear in the literature.
For continuous-time Markov chains, explicit conditions for the Feller–Dynkin property can be
found in [28,33]. In [28] also a Lyapunov-type condition appears. Infinitesimal conditions for
the Feller–Dynkin property of diffusions are given in [2]. In the context of jump-diffusions,
linear growth conditions for the Feller–Dynkin property were recently proven in [24,25]. The
proofs include a Lyapunov-type argument based on Gronwall’s lemma. For switching diffusions
the Cb-Feller and the strong Feller property are studied profoundly, see, for instance, [30,37,
40,41]. Here, we say that the strong Feller property holds if the transition semigroup maps
bounded functions to bounded continuous functions. It is clear that the strong Feller property
implies the Cb-Feller property. We stress that neither the strong Feller property nor the Feller–
Dynkin property implies the other. An easy example for a Feller–Dynkin process which does
not have the strong Feller property is the linear motion and an example for a strong Feller
process, which does not have the Feller–Dynkin property is given in Example 5. We think that
our study of the Feller–Dynkin property for switching diffusions is the first of its kind. Also
our continuity criterion for the Cb-Feller property in the state-independent case seems to be
new.

The article is structured as follows. In Section 2 we explain our setup. In particular, in
Section 2.2 we recall the different concepts for the Feller properties of martingale problems.
In Section 3 we discuss Lyapunov-type conditions for the Feller–Dynkin property in a general
abstract setting and in Section 4 we discuss the case of switching diffusions. A Skorokhod-type
existence result for state-independent switching diffusions can be found in Appendix A.

2. The Feller properties of martingale problems

2.1. The setup

Let S be a locally compact Hausdorff space with countable base (LCCB space), define Ω
to be the space of all càdlàg functions R+ → S and let (X t )t≥0 be the coordinate process on
Ω , i.e. the process defined by X t (ω) = ω(t) for ω ∈ Ω and t ∈ R+. We set F ≜ σ (X t , t ∈ R+)
and Ft ≜

⋂
s>t Fo

s , where Fo
t ≜ σ (Xs, s ∈ [0, t]). If not stated otherwise, all terms such as

local martingale, supermartingale, etc. refer to (Ft )t≥0 as the underlying filtration. In general,
we equip Ω with the Skorokhod topology (see [11,16]). In this case, F is the Borel σ -field on
Ω , see [11, Proposition 3.7.1].

We use standard notation for function spaces, i.e. for example we denote by M(S) the set
of Borel functions S → R, by B(S) the set of bounded Borel functions S → R, by C(S) the
set of continuous functions S → R and by C0(S) the space of continuous functions S → R
which are vanishing at infinity, etc. We take the following four objects as input data for our
abstract MP:
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(i) A set D ⊆ C(S) of test functions.
(ii) A map L : D → M(S) satisfying∫ t

0

⏐⏐L f (Xs(ω))
⏐⏐ds < ∞ (2.1)

for all t ∈ R+, ω ∈ Ω and f ∈ D. We think of L as a candidate for an extended
generator in the spirit of [34, Definition VII.1.8].

(iii) A set Σ ∈ F , which can be seen as the state space for the paths.
(iv) A Borel probability measure η on S, which we use as initial law.

Definition 1. A probability measure P on (Ω ,F) is called a solution to the MP (D,L,Σ , η)
if P(Σ ) = 1, P ◦ X−1

0 = η and for all f ∈ D the process

f (X t ) − f (X0) −

∫ t

0
L f (Xs)ds, t ∈ R+, (2.2)

is a local P-martingale. When η = δx for some x ∈ S, we write (D,L,Σ , x) instead of
(D,L,Σ , δx ). Here, δx denotes the Dirac measure on the point x ∈ S.

Example 1. The following MP corresponds to the classical MP of Stroock and Varadhan [38].
Let S ≜ Rd , D ≜ C2

b (Rd ),

L f (x) ≜ ⟨∇ f (x), b(x)⟩ +
1
2 trace (∇2 f (x)a(x)), (2.3)

where ∇ denotes the gradient, ∇
2 denotes the Hessian matrix and b : Rd

→ Rd and a : Rd
→

Sd are locally bounded Borel functions with Sd denoting the set of all real symmetric non-
negative definite d × d matrices, and Σ ≜ {ω ∈ Ω : t ↦→ ω(t) is continuous}. We have Σ ∈ F ,
because Σ is a closed subset of Ω , see [11, Problem 3.25].

In the remaining of this article we impose the following assumption.

Standing Assumption. For all x ∈ S the MP (D,L,Σ , x) has a solution Px .

Conditions for the existence of solutions in diffusion settings can be found in [19,34,38].
For conditions in jump-diffusions setups we refer to [5,8,23]. Conditions for abstract MPs
can be found in [11]. For switching diffusions with state-independent switching we provide a
Skorokhod-type existence result in Appendix A.

2.2. The Markov, the Cb-Feller and the Feller–Dynkin property of MPs

The family (Px )x∈S is called a Markov family or simply Markov if the map x ↦→ Px (A) is
Borel for all A ∈ F and for all x ∈ S, t ∈ R+ and all G ∈ F we have Px -a.s.

Px
(
θ−1

t G|Ft
)

= PX t (G), (2.4)

where θtω(s) ≜ ω(t + s) denotes the shift operator. We call (2.4) the Markov property. The
family (Px )x∈S is called a strong Markov family or simply strongly Markov if (Px )x∈S is Markov
and for all x ∈ S, all stopping times ξ and all G ∈ F we have Px -a.s. on {ξ < ∞}

Px
(
θ−1
ξ G|Fξ

)
= PXξ (G). (2.5)

The identity (2.5) is called the strong Markov property. As the following proposition shows,
many families of solutions to MPs are strongly Markov. For reader’s convenience we provide
a sketch of the proof, which mimics the proof of [11, Theorem 4.4.2].
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Proposition 1. If D is countable, D ⊆ Cb(S),L(D) ⊆ Bloc(S), (Px )x∈S is unique and
Σ ⊆ θ−1

ξ Σ for all bounded stopping times ξ , then (Px )x∈S is strongly Markov.

Sketch of Proof. Due to Proposition 9 in Appendix B, the map x ↦→ Px (A) is Borel
for all A ∈ F and, due to the argument used in the solution to [19, Problem 2.6.9] (see
[19, p. 121]), it suffices to show the strong Markov property for all bounded stopping times.
Let ξ be a bounded stopping time, set P ≡ Px and fix F ∈ Fξ with P(F) > 0. Using the
argument from the proof of [19, Lemma 5.4.19] one checks that the probability measures

P1 ≜
E P

[
1F P(θ−1

ξ · |Fξ )
]

P(F)
, P2 ≜

E P
[
1F PXξ

]
P(F)

both solve the MP (D,L,Σ , ζ ), where ζ ≜ P(F)−1 E P [1F 1{Xξ ∈ · }]. Due to Proposition 9
in Appendix B, we have P1 = P2, which implies that

E P[
1F P(θ−1

ξ G|Fξ )
]

= E P[
1F PXξ (G)

]
, G ∈ F .

Because this identity holds trivially when P(F) = 0, for all G ∈ F we conclude that P-a.s.
P(θ−1

ξ G|Fξ ) = PXξ (G). In other words, the strong Markov property holds for all bounded
stopping times. □

If (Px )x∈S is not unique it might still be possible to pick a Markov family from the set of
solutions. For instance, in the setting of Example 1, this is the case when a and b are bounded
and continuous, see [38, Theorem 12.2.3]. Conditions for the selection of a Markov family in
jump-diffusion cases can be found in [23].

In the case where (Px )x∈S is Markov, we can define a semigroup (Tt )t≥0 of positive
contraction operators on B(S) via

Tt f (x) ≜ Ex
[

f (X t )
]
, f ∈ B(S).

It is obvious that Tt is a positive contraction, i.e. if f (S) ⊆ [0, 1] then also Tt f (S) ⊆ [0, 1],
and the semigroup property follows easily from the Markov property (2.4).

If (Px )x∈S is Markov and

Tt (Cb(S)) ⊆ Cb(S), (2.6)

we call (Px )x∈S a Cb-Feller family or simply Cb-Feller. The inclusion (2.6) is called the
Cb-Feller property. The Cb-Feller property of the family (Px )x∈S has a natural relation to the
continuity of x ↦→ Px for which many conditions are known, see, e.g., [16, Theorem IX.4.8]
for conditions in a jump diffusion setting. Here, x ↦→ Px is said to be continuous if Pxn → Px

weakly as n → ∞ whenever xn → x as n → ∞. In the setup of Example 1, if (Px )x∈S is
unique, (Px )x∈S is Cb-Feller whenever b and a are continuous. However, in the same setting,
if (Px )x∈S is not unique, it might not be possible to choose a Cb-Feller family from the set of
solutions, even if the coefficients are continuous and bounded, see [38, Exercise 12.4.2].

We call (Px )x∈S a Feller–Dynkin family or simply Feller–Dynkin if it is a Cb-Feller family
and

Tt (C0(S)) ⊆ C0(S). (2.7)

The inclusion (2.7) is called the Feller–Dynkin property. From a semigroup point of view,
the definition of a Feller–Dynkin semigroup also includes strong continuity in zero, see, e.g.,
[35, Definition III.6.5]. In our case, when (Px )x∈S is Feller–Dynkin, the semigroup (Tt )t≥0
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is strongly continuous in zero due to the right-continuous paths of (X t )t≥0, the dominated
convergence theorem and [35, Lemma III.6.7]. Any Feller–Dynkin family is also strongly
Markov, see, e.g., [18, Theorem 17.17]. Let us also comment on the issue of uniqueness. If
(Px )x∈S is Feller–Dynkin and (L ,D(L)) is its generator, i.e.

L f ≜ lim
t↘0

Tt f − f
t

(2.8)

for f ∈ D(L), where

D(L) ≜
{

f ∈ C0(S) : ∃g ∈ C0(S) such that lim
t↘0

Tt f − f
t

− g


∞

= 0
}
, (2.9)

then Px is the unique solution to the MP (D, L ,Σ , x), where D is any core for L , see
[21, Theorem 4.10.3]. Consequently, conditions for the Feller–Dynkin property imply in some
cases also uniqueness.

For an overview on different concepts of Feller properties from a semigroup point of view
we refer to the first chapter in [5].

If S = Rd and (Px )x∈Rd is Feller–Dynkin with generator (L ,D(L)) such that C∞
c (Rd ) ⊆

D(L), then L is of the following form

L f (x) = −

∫
ei⟨x,y⟩q(x, y) f̂ (y)dy, f ∈ C∞

c (Rd ),

where i is the imaginary number, f̂ (y) ≜ (2π )−d
∫

e−i⟨y,x⟩ f (x)dx denotes the Fourier
transform of f and

q(x, ξ ) = q(x, 0) − i⟨b(x), ξ⟩ +
1
2 ⟨a(x)ξ, ξ⟩

+

∫ (
1 − ei⟨y,ξ⟩

+ i⟨y, ξ⟩1{∥y∥ ≤ 1}
)
K (x, dy)

for a Lévy triplet (b(x), a(x), K (x, dy)), see [5, Corollary 2.23]. The function q is called the
symbol of the family (Px )x∈Rd . Starting with a candidate q for a symbol corresponds to a MP
with input data Σ ≜ Ω , D ≜ C∞

c (Rd ) and

L f (x) ≜ −

∫
ei⟨x,y⟩q(x, y) f̂ (y)dy, f ∈ D.

We refer to the second and the third chapter of [5] for a survey on the approach via the symbol.
Most of the general conditions for the Feller–Dynkin property are formulated in terms of the

semigroup (Tt )t≥0 and therefore are often not easy to check, see, e.g., [5, Theorem 1.10] and the
discussion below its proof. In the following section we give a criterion for the Feller–Dynkin
property in terms of the existence of Lyapunov functions.

3. Lyapunov criteria for the Feller–Dynkin property

Lyapunov-type criteria often appear in the context of explosion, recurrence and transience
of a Markov process, see, e.g., [20,32]. In this section we present such criteria for the
Feller–Dynkin property of (Px )x∈S . We start with a sufficient condition.
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Theorem 1. Fix t ∈ R+ and suppose that Tt (C0(S)) ⊆ C(S). Assume that for any compact
set K ⊆ S there exists a function V : S → R+ with the following properties:

(i) V ∈ D ∩ C0(S).
(ii) V ≜ minx∈K V (x) > 0.

(iii) LV ≤ cV for a constant c > 0.

Then, Tt (C0(S)) ⊆ C0(S). The function V is called a Lyapunov function for K .

Proof. We first explain that it suffices to show that for all compact sets K ⊆ S and all ε > 0
there exists a compact set O ⊆ S such that

Px (X t ∈ K ) < ε

for all x ̸∈ O . To see this, let f ∈ C0(S) and ε > 0. By the definition of C0(S), there exists a
compact set K ⊆ S such that

| f (x)| < ε
2

for all x ̸∈ K . By hypothesis, there exists a compact set O ⊆ S such that

sup
y∈S

| f (y)| Px (X t ∈ K ) < ε
2

for all x ̸∈ O . Thus, for all x ̸∈ O we have⏐⏐Ex
[

f (X t )
]⏐⏐ ≤ Ex

[
| f (X t )|

(
1{X t ∈ K } + 1{X t ̸∈ K }

)]
≤ sup

y∈S
| f (y)| Px (X t ∈ K ) +

ε
2

< ε.

In other words, Tt f ∈ C0(S), i.e. the claim is proven.
Next, we verify that this condition holds under the hypothesis of the theorem. Fix x ∈ S and

a compact set K ⊆ S. Let V be as described in the prerequisites of the theorem. The following
lemma is an easy consequence of the integration by parts formula. For completeness, we give
a proof after the proof of Theorem 1 is complete.

Lemma 1. Assume that f ∈ C(S) and L f ∈ M(S) are such that (2.1) holds and such that
the process (2.2) is a local martingale. Moreover, let c : R+ → R be an absolutely continuous
function with Lebesgue density c′. Then, the process

f (X t )c(t) − f (X0)c(0) −

∫ t

0

(
f (Xs)c′(s) + c(s)L f (Xs)

)
ds, t ∈ R+, (3.1)

is a local martingale.

Since V ∈ D, the definition of the martingale problem and Lemma 1 imply that the process

Ys ≜ V (Xs)e−cs
−

∫ s

0
e−cr (LV (Xr ) − cV (Xr )) dr, s ∈ R+,

is a local Px -martingale. Using (iii), we see that Ys ≥ V (Xs)e−cs
≥ 0 for all s ∈ R+. Thus,

since non-negative local martingales are supermartingales due to Fatou’s lemma, (Ys)s≥0 is a
Px -supermartingale.
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Using Markov’s inequality, we obtain that

Px (X t ∈ K ) ≤ Px (V (X t ) ≥ V )

≤ V −1 Ex
[
V (X t )

]
≤ ect V −1 Ex

[
Yt

]
≤ ect V −1 Ex

[
Y0

]
= ect V −1V (x).

Take an ε > 0. Since we assume that V ∈ C0(S), there exists a compact set O ⊆ S such that

V (y) < e−ct V ε

for all y ̸∈ O . We conclude that

Px (X t ∈ K ) ≤ ect V −1V (x) < ε

for all x ̸∈ O . This finishes the proof. □

Proof of Lemma 1. Denote the local martingale (2.2) by (Mt )t≥0. Moreover, set

Nt ≜
∫ t

0
L f (Xs)ds, t ∈ R+.

As an absolutely continuous function, c is of finite variation over finite intervals. Thus,
integration by parts yields that

d
(
Mt c(t)

)
= c(t)d Mt +

(
f (X t ) − f (X0)

)
c′(t)dt − d

(
Nt c(t)

)
+ c(t)L f (X t )dt.

We see that the process (3.1) equals the local martingale (
∫ t

0 c(s)d Ms)t≥0. □

Next, we give a condition for rejecting the Feller–Dynkin property.

Theorem 2. Suppose that S is not compact and that there exist compact sets K ,C ⊂ S, a
constant α > 0 and a bounded function U : S → R+ with the following properties:

(i) U ∈ D.
(ii) maxy∈K U (y) > 0.

(iii) infy∈S\C U (y) > 0.
(iv) LU ≥ αU on S\K .

Then, (Px )x∈S cannot be Feller–Dynkin. The function U is called a Lyapunov function for the
sets K ,C.

Proof. For contradiction, assume that (Px )x∈S is Feller–Dynkin. For a moment we fix x ∈ S.
Let (F x

t )t≥0 be the Px -completion of (Ft )t≥0, i.e.

F x
t ≜ σ

(
Ft ,Nx

)
=

⋂
s>t

σ
(
Fo

s ,Nx
)
, (3.2)

where

Nx ≜
{

F ⊆ Ω : ∃G ∈ F with F ⊆ G, Px (G) = 0
}
,

see [18, Lemma 6.8] for the equality in (3.2). We set

τ ≜ inf
(
t ∈ R+ : X t ∈ K

)
, (3.3)
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which is well-known to be an (F x
t )t≥0-stopping time, see [18, Theorem 6.7].

Step 1: The proof of the following observation is given after the proof of Theorem 2 is
complete.

Proposition 2. Assume that (Px )x∈S is Feller–Dynkin and denote its generator by (L ,D(L))
(see (2.8) and (2.9)). For any compact set K ⊆ S and any α > 0 there exists a function
V : S → R+ with the following properties:

(i) V ∈ D(L).
(ii) miny∈K V (y) > 0.

(iii) LV ≤ αV .

Let V be as in Proposition 2. Due to Dynkin’s formula (see [34, Proposition VII.1.6]) and
Lemma 1 the process

Z t ≜ e−αt V (X t ) +

∫ t

0
e−αs(αV (Xs) − LV (Xs)

)
ds, t ∈ R+,

is a local Px -martingale. We stress that the conclusion of Dynkin’s formula also holds for the
right-continuous filtration (Ft )t≥0, because any (right-continuous) (Fo

t )t≥0-martingale is also an
(Ft )t≥0-martingale. This follows from the downward theorem ([35, Theorem II.51.1]) as in the
proof of [35, Lemma II.67.10]. Because (Z t )t≥0 is bounded (recall that D(L) ⊆ C0(S) and that
L f ∈ C0(S) for all f ∈ D(L)), the process (Z t )t≥0 is even a true Px -martingale. Consequently,
for s < t we have Px -a.s.

Ex
[
e−αt V (X t )|Fs

]
≤ Ex

[
Z t |Fs

]
−

∫ s

0
e−αr(αV (Xr ) − LV (Xr )

)
dr

= Zs −

∫ s

0
e−αr(αV (Xr ) − LV (Xr )

)
dr = e−αs V (Xs),

(3.4)

which implies that the process (e−αt V (X t ))t≥0 is a non-negative Px -supermartingale, which
has a terminal value due to the submartingale convergence theorem (see, e.g.,
[19, Theorem 1.3.15]). In particular, due to [35, Lemma 67.10], (e−αt V (X t ))t≥0 is also a non-
negative bounded Px -supermartingale for the filtration (F x

t )t≥0. Recalling that τ as defined in
(3.3) is an (F x

t )t≥0-stopping time, we deduce from the optional stopping theorem (see, e.g.,
[18, Theorem 6.29]) that

V (x) ≥ Ex
[
e−ατV (Xτ )

]
≥ Ex

[
e−ατV (Xτ )1{τ < ∞}

]
≥ Ex

[
e−ατ

]
min
y∈K

V (y).
(3.5)

Here, we use the fact that Xτ ∈ K on {τ < ∞}, which follows from the right-continuity of
(X t )t≥0 because K is closed.

Step 2: In the following all terms such as local martingale, submartingale, etc. refer to
(F x

t )t≥0 as the underlying filtration. Lemma 1 and [35, Lemma 67.10] imply that the stopped
process

Yt ≜ e−α(t∧τ )U (X t∧τ ) +

∫ t∧τ

0
e−αs(αU (Xs) − LU (Xs)

)
ds, t ∈ R+,

is a local Px -martingale. Due to property (iv) of the function U , we have

Yt ≤ e−α(t∧τ )U (X t∧τ ) ≤ const.
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for all t ∈ R+. We note that local martingales bounded from above are submartingales.
To see this, let (Mt )t≥0 be a local martingale bounded from above by a constant c. Then,
the process (c − Mt )t≥0 is a non-negative local martingale and hence a supermartingale by
Fatou’s lemma. This implies that (Mt )t≥0 is submartingale. Therefore, the process (Yt )t≥0 is a
Px -submartingale and it follows similar to (3.4) that the stopped process (e−α(t∧τ )U (X t∧τ ))t≥0
is a non-negative bounded Px -submartingale, which has a terminal value e−ατU (Xτ ) by the
submartingale convergence theorem. Because U is bounded, we note that on {τ = ∞} up to a
null set we have e−ατU (Xτ ) = 0. Another application of the optional stopping theorem yields
that

U (x) ≤ Ex
[
e−ατU (Xτ )

]
= Ex

[
e−ατU (Xτ )1{τ < ∞}

]
≤ max

y∈K
U (y)Ex

[
e−ατ

]
.

(3.6)

Step 3: We deduce from (3.5) and (3.6) that for all x ̸∈ C
infy∈S\C U (y)
maxy∈K U (y)

≤ Ex
[
e−ατ

]
≤

V (x)
miny∈K V (y)

.

Because V ∈ D(L) ⊆ C0(S), we find a compact set G ⊂ S such that for all x ̸∈ G

V (x) ≤
1
2

infy∈S\C U (y) miny∈K V (y)
maxy∈K U (y)

> 0,

which implies that for all x ̸∈ C ∪ G ̸= S

0 <
infy∈S\C U (y)
maxy∈K U (y)

≤ Ex
[
e−ατ

]
≤

1
2

infy∈S\C U (y)
maxy∈K U (y)

.

This is a contradiction and the proof of Theorem 2 is complete. □

Proof of Proposition 2. We construct V via the α-potential operator of (Tt )t≥0, i.e. the operator
Uα : C0(S) → C0(S) defined by

Uα f (x) ≜
∫

∞

0
e−αs Ts f (x)ds, f ∈ C0(S), x ∈ S.

Take a function f ∈ C0(S) with 0 ≤ f ≤ 1 and f ≡ 1 on K . Such a function exists
due to Urysohn’s lemma for locally compact spaces (see, e.g., [7, Proposition 7.1.9]). We set
V ≜ Uα f . It is well-known that V = Uα f ∈ D(L) and

(α1 − L)V = (α1 − L)Uα f = f ≥ 0, (3.7)

see, e.g., [26, Proposition 6.12]. Thus, V has the first and the third property. It remains to
show that V has the second property. Since Uα is positivity preserving we have V ≥ 0. For
contradiction, assume that miny∈K V (y) = 0. Then, there exists an x0 ∈ K such that V (x0) = 0
and we obtain

LV (x0) = lim
t↘0

1
t

(
Tt V (x0) − V (x0)

)
= lim

t↘0

1
t Ex0

[
V (X t )

]
≥ 0.

Therefore, we conclude from (3.7) that

αV (x0) = f (x0) + LV (x0) = 1 + LV (x0) ≥ 1.

This is a contradiction and it follows that V has also the second property. □
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Remark 1. The arguments from the proofs of Theorems 1 and 2 imply a version of
[2, Proposition 3.1] beyond a diffusion setting. More precisely, when (Px )x∈S is Cb-Feller,
the following are equivalent:

(i) (Px )x∈S is Feller–Dynkin.
(ii) For all compact sets K ⊂ S and all constants α > 0 the function x ↦→ Ex

[
e−ατ

]
vanishes

at infinity, where τ is defined in (3.3).
(iii) For all compact sets K ⊂ S and all constants α > 0 the function x ↦→ Px (τ ≤ α)

vanishes at infinity, where τ is defined in (3.3).

The implication (i) ⇒ (ii) is shown in the proof of Theorem 2. The implication (ii) ⇒ (iii)
follows from the inequality

Px
(
τ ≤ α

)
≤ eα

2
Ex

[
e−ατ1{τ ≤ α}

]
≤ eα

2
Ex

[
e−ατ

]
,

and the final implication (iii) ⇒ (i) follows from the fact that

Px
(
Xα ∈ K

)
≤ Px

(
τ ≤ α

)
and the argument in the proof of Theorem 1. A version of the equivalence of (i) and (iii) is
also given in [12, Theorem 4.8].

In some cases Theorem 1 and Proposition 2 can be combined to one sufficient and necessary
Lyapunov-type condition for the Feller–Dynkin property:

Example 2. Suppose that S is a countable discrete space and let Q = (qi j )i, j∈S be a
conservative Q-matrix, i.e. qi j ∈ R+ for all i ̸= j and

−qi i =

∑
j ̸=i

qi j < ∞.

Set Σ ≜ Ω ,

D ≜
{

f ∈ C0(S) : Q f ∈ C0(S)
}
,

and L ≜ Q, where Q f is defined by

Q f (i) =

∑
j∈S

qi j f ( j). (3.8)

We stress that the r.h.s. of (3.8) converges absolutely whenever f ∈ C0(S). If (Px )x∈S is
Feller–Dynkin, the corresponding generator (L ,D(L)) is given by (L, D), see [33, Theorem 5].
Thus, when (Px )x∈S is Markov (or, equivalently, Cb-Feller, because of the discrete topology),
Theorem 1 and Proposition 2 imply that the following are equivalent:

(i) (Px )x∈S is Feller–Dynkin.
(ii) For each x ∈ S there exists a function V : S → R+ such that V ∈ D, V (x) > 0,

QV ≤ cV for a constant c > 0.

This observation is also contained in [28, Theorem 3.2].

Under reasonable assumptions on the input data, we can deduce a related equivalence
for more general martingale problems. To formulate it we need further terminology. By an
extension of the input data (D,L) we mean a pair (D′,L′) consisting of D′

⊆ C(S) and
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L′
: D′

→ M(S) such that D ⊆ D′, L′
= L on D,∫ t

0

⏐⏐L′ f (Xs(ω))
⏐⏐ds < ∞

for all t ∈ R+, ω ∈ Ω and f ∈ D′, and such that for all x ∈ S the probability measure Px

solves the MP (D′,L′,Σ , x).

Theorem 3. Suppose that for all f ∈ D ∩ C0(S) we have L f ∈ C0(S) and that (Px )x∈S is
Cb-Feller. Then, the following are equivalent:

(i) (Px )x∈S is Feller–Dynkin.
(ii) The input data (D,L) can be extended such that for any compact set K ⊂ S a Lyapunov

function for K in the sense of Theorem 1 exists.

Proof. The implication (ii) ⇒ (i) is due to Theorem 1. Assume that (i) holds, let (L ,D(L))
be the generator of (Px )x∈S and set D′ ≜ D ∪ D(L) and

L′ f ≜

{
L f, f ∈ D,
L f, f ∈ D(L).

Of course, we have to explain that L′ is well-defined, i.e. that L f = L f for all f ∈ D ∩D(L).
Because L f ∈ C0(S) for any f ∈ D ∩ D(L) by assumption, the process

f (X t ) − f (x) −

∫ t

0
L f (Xs)ds, t ∈ R+,

is a Px -martingale for all x ∈ S, because it is a bounded (on finite time intervals) local
Px -martingale. Consequently, [34, Proposition VII.1.7] implies L f = L f . Due to Dynkin’s
formula, Px solves also the MP (D′,L′,Σ , x) for all x ∈ S. In other words, (D′,L′) is an
extension of (D,L). Now, (ii) follows from Proposition 2. □

Let us comment on the prerequisites of the previous theorem. Even if the coefficients are
continuous, in the case of Example 1 it is not always true that L f ∈ C0(Rd ) whenever
f ∈ D ∩ C0(Rd ) = C2

b (Rd ) ∩ C0(Rd ). However, if we could take D = C2
c (Rd ) instead

of D = C2
b (Rd ), then L f ∈ C0(Rd ) holds for all f ∈ D = D ∩ C0(Rd ) provided the

coefficients are continuous. In other words, when we could reduce the input data, we would
get an equivalent characterization of the Feller–Dynkin property from Theorem 3. Next, we
explain that a reduction of the input data is often possible.

A sequence ( fn)n∈N ⊂ M(S) is said to converge locally bounded pointwise to a function
f ∈ M(S) if

(i) supn∈N supy∈K | fn(y)| < ∞ for all compact sets K ⊆ S;
(ii) limn→∞ fn(x) = f (x) for all x ∈ S.

Moreover, we say that ( fn)n∈N ⊂ B(S) converges bounded pointwise to f ∈ M(S) if fn → f
as n → ∞ locally bounded pointwise and supn∈N ∥ fn∥∞ < ∞.

For a set A ⊆ C(S)×M(S) we denote by cl(A) the set of all ( f, g) ∈ C(S)×M(S) for which
there exist sequences ( fn, gn)n∈N ⊂ A such that fn → f as n → ∞ bounded pointwise and
gn → g as n → ∞ locally bounded pointwise. The following proposition can be viewed as an
extension of [11, Proposition 4.3.1], which allows a local convergence in the second variable.
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Proposition 3. Let D1, D2 ⊆ C(S),L1 : D1 → M(S) and L2 : D2 → M(S) be such that∫ t

0

(⏐⏐L1 f (Xs(ω))
⏐⏐ +

⏐⏐L2g(Xs(ω))
⏐⏐)ds < ∞

for all t ∈ R+, ω ∈ Ω , f ∈ D1 and g ∈ D2. Suppose that{
( f,L2 f ) : f ∈ D2

}
⊆ cl

({
( f,L1 f ) : f ∈ D1

})
. (3.9)

If P is a solution to the MP (D1,L1,Σ , η), then P is also a solution to the MP (D2,L2,Σ , η).

Proof. Due to [39, Proposition 6.2.10], there exists a sequence (Kn)n∈N ⊂ S of compact sets
such that Kn ⊂ int(Kn+1) and

⋃
n∈N Kn = S. Now, define

τn ≜ inf
(
t ∈ R+ : X t ̸∈ int(Kn) or X t− ̸∈ int(Kn)

)
, n ∈ N. (3.10)

It is well-known that τn is a stopping time, see [11, Proposition 2.1.5], and that τn ↗ ∞

as n → ∞, see [11, Problem 4.27]. Take f ∈ D2. Due to (3.9) there exists a sequence
( fn)n∈N ⊂ D1 such that fn → f as n → ∞ bounded pointwise and L1 fn → L2 f as n → ∞

locally bounded pointwise. For i = 1, 2 and g ∈ Di we set

Mg,i
t ≜ g(X t ) − g(X0) −

∫ t

0
Li g(Xs)ds, t ∈ R+.

Since the class of local martingales is stable under stopping, the process (M fn ,1
t∧τm )t≥0 is a local

P-martingale. Furthermore,

sup
s∈[0,t]

⏐⏐M fn ,1
s∧τm

⏐⏐ ≤ 2 sup
k∈N

∥ fk∥∞ + t sup
k∈N

sup
y∈Km

|L1 fk(y)| < ∞,

by the definition of (local) bounded pointwise convergence. Consequently, (M fn ,1
t∧τm )t≥0 is a

P-martingale by the dominated convergence theorem. Since

sup
s∈[0,t∧τm )

|L1 fn(Xs−)| ≤ sup
k∈N

sup
y∈Km

|L1 fk(y)| < ∞,

the dominated convergence theorem also yields that for any t ∈ R+ we have ω-wise M fn ,1
t∧τm →

M f,2
t∧τm as n → ∞. Thus, for all s < t , applying the dominated convergence theorem a third

time yields that M f,2
t∧τm ,M f,2

s∧τm ∈ L1(P) and that for all G ∈ Fs

E P[
M f,2

t∧τm 1G
]

= lim
n→∞

E P[
M fn ,1

t∧τm 1G
]

= lim
n→∞

E P[
M fn ,1

s∧τm 1G
]

= E P[
M f,2

s∧τm 1G
]
.

In other words, the stopped process (M f,2
t∧τm )t≥0 is a P-martingale. Because τm ↗ ∞ as

m → ∞, we conclude that P solves the MP (D2,L2,Σ , x). □

Example 1 (continued). We have{
( f,L f ) : f ∈ C2

b (Rd )
}

⊆ cl
({

( f,L f ) : f ∈ C2
c (Rd )

})
.

To see this, let gn ∈ C2
c (Rd ) be such that 0 ≤ gn ≤ 1 and gn ≡ 1 on {x ∈ Rd

: ∥x∥ ≤ n}.
For any f ∈ C2

b (Rd ) it is easy to verify that fn ≜ f gn ∈ C2
c (Rd ), fn → f as n → ∞

bounded pointwise and L fn → L f as n → ∞ locally bounded pointwise. Consequently, a
Borel probability measure on Ω solves the MP (C2

b (Rd ),L,Σ , η) if and only if it solves the
MP (C2

c (Rd ),L,Σ , η). This fact is of course well-known, see, e.g., [19, Proposition 5.4.11].
In summary, if the family (Px )x∈Rd is unique and b and a are continuous, then (Px )x∈Rd is
Cb-Feller (see [38, Corollary 11.1.5]) and Theorem 3 implies that the following are equivalent:
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(i) (Px )x∈Rd is Feller–Dynkin.
(ii) The input data (C2

c (Rd ),L) can be extended such that for all compact sets K ⊂ Rd a
Lyapunov function for K (in the sense of Theorem 1) exists.

The larger the set D, the easier it is to find a suitable Lyapunov function and to apply
Theorems 1 and 2. Thus, when we have applications in mind, we would like to choose D
as large as possible. We stress that Proposition 3 also works in this direction, i.e. it gives a
condition such that D can be enlarged.

Proposition 3 can also be used to verify the prerequisites of Proposition 1 as the following
example shows.

Example 3. Suppose that

A ≜
{
( f,L f ) : f ∈ D

}
⊆ C0(S) × C0(S).

Because C0(S) endowed with the uniform metric is a separable metric space, the space A is a
separable metric space endowed with the metric d given by

d(( f1, g1), ( f2, g2)) ≜ ∥ f1 − f2∥∞ + ∥g1 − g2∥∞, ( f1, g1), ( f2, g2) ∈ A.

Consequently, we find a countable set C ⊆ D such that for any ( f, g) ∈ A there exists a
sequence ( fn)n∈N ⊂ C with

d(( fn,L fn), ( f, g)) → 0

as n → ∞. Now, Proposition 3 implies that a Borel probability measure on Ω solves the MP
(D,L,Σ , η) if and only if it solves the MP (C,L,Σ , η).

Let us summarize the observations from this section. We have seen a sufficient condition for
the Feller–Dynkin property (Theorem 1) and a sufficient condition to reject the Feller–Dynkin
property (Theorem 2). Moreover, we gave one sufficient and necessary condition under some
additional assumptions (Theorem 3) and discussed its prerequisites (Proposition 3).

4. The Feller–Dynkin property of switching diffusions

In this section we derive Khasminskii-type integral tests for the Feller–Dynkin property of
diffusions with random switching. Moreover, we give an equivalent characterization for the
state-independent case and present equivalent integral-type conditions for the Feller–Dynkin
property for one dimensional state-independent switching diffusions.

Before we start our program, we fix some notation. Let Sd be a countable discrete space
and let S ≜ Rd

× Sd equipped with the product topology. Take the following coefficients:

(i) b : S → Rd being Borel and locally bounded.
(ii) a : S → Sd being Borel and locally bounded.

(iii) For each x ∈ Rd , let Q(x) = (qi j (x))i, j∈Sd be a conservative Q-matrix (see Example 2
for a definition), such that the map x ↦→ Q(x) is Borel.

4.1. Conditions for the Feller–Dynkin property

For i, j ∈ Sd , we set

q i j ≜

⎧⎪⎪⎨⎪⎪⎩
sup
x∈Rd

qi j (x), i ̸= j,

−

∑
k ̸=i

q ik, i = j.
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In this section, we impose the following standing assumption.

Standing Assumption. For all i ∈ Sd we have |q i i | < ∞ and

sup
j∈Sd

sup
x∈Rd

|q j j (x) − q j j | < ∞. (4.1)

Set Q ≜ (q i j )i, j∈Sd and note that Q is a conservative Q-matrix. Denote

C ≜
{

f ∈ C0(Sd ) : Q f ∈ C0(Sd )
}

and

Σd ≜
{
ω : R+ → Sd : t ↦→ ω(t) is càdlàg

}
.

We also impose the following standing assumption.

Standing Assumption. For all i ∈ Sd the MP (C, Q,Σd , i) has a unique solution Pd
i such

that the family (Pd
i )i∈Sd is Feller–Dynkin. Here, the state space for the MP is assumed to

be Sd .

If |Sd | < ∞ this standing assumption holds. In the following remark we collect also some
conditions when the previous standing assumption holds for the case |Sd | = ∞.

Remark 2.

(i) Conditions for the existence of (Pd
i )i∈Sd can be found in [1, Corollary 2.2.5,

Theorem 2.2.27] and [6, Theorem 16]. If, in addition to one of these conditions, we
have

∀λ > 0, k ∈ Sd , {y ∈ l1 : y(λ1 − Q) = 0} = {0} and q ·k ∈ C0(Sd ), (4.2)

then (Pd
i )i∈Sd is Feller–Dynkin, see [33, Theorem 8]. Here, l1 denotes the space of all

functions f : Sd → R with
∑

i∈Sd
| f (i)| < ∞.

(ii) If supn∈Sd
|qnn| < ∞, then (Pd

i )i∈Sd exists, see [1, Corollary 2.2.5, Proposition 2.2.9],
and {y ∈ l1 : y(λ1 − Q) = 0} = {0} holds for all λ > 0, see [33, pp. 273]. In this case,
the second part of (4.2) is necessary and sufficient for (Pd

i )i∈Sd to be Feller–Dynkin,
see [33, Theorem 9].

(iii) If Sd = {0, 1, 2, . . . } and q i j = 0 for all i ≥ j + 2, then [27, Proposition 2] yields that
the following are equivalent:

(a) {y ∈ l1 : y(λ1 − Q) = 0} = {0}.
(b) {y ∈ l+1 : y(λ1 − Q) = 0} = {0}.

Part (b) is necessary for (Pd
i )i∈Sd to be Feller–Dynkin, see [33, Theorem 7]. Here, l+1

denotes the set of all non-negative f ∈ l1.

For reader’s convenience we recall our notation: Ω denotes the space of all càdlàg functions
R+ → S equipped with the Skorokhod topology, F is the corresponding Borel σ -field, (X t )t≥0

is the coordinate process on Ω and D ⊆ C(S) is a set of test functions.
We suppose that{

f, f g, g : f ∈ C2
b (Rd ), g ∈ C

}
⊆ D,
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and set

Σ ≜
{
(ω1, ω2) ∈ Ω : ω1

: R+ → Rd is continuous
}

and

L f (x, i) ≜ K f (x, i) +

∑
j∈Sd

qi j (x) f (x, j), (x, i) ∈ S, (4.3)

where

K f (x, i) ≜ ⟨∇x f (x, i), b(x, i)⟩ +
1
2 trace (∇2

x f (x, i)a(x, i)), (x, i) ∈ S.

In the proof of Lemma 11 we explain that Σ is closed, which yields Σ ∈ F . Recalling the
Standing Assumption in Section 2.1, we assume that for each x ∈ S there exists a solution Px

to the MP (D,L,Σ , x).
By our assumption that (Pd

x )x∈Sd is Feller–Dynkin, due to Proposition 2 (see also Ex-
ample 2), for any compact subset of Sd there exists a Lyapunov function (in the sense of
Theorem 1) for (Pd

x )x∈Sd . We will combine these Lyapunov functions with Lyapunov functions
for the diffusion part, which we can define under each of the following two conditions.

Condition 1. There exist two locally Hölder continuous functions ad : [ 1
2 ,∞) → (0,∞) and

bd : [ 1
2 ,∞) → R such that

⟨x, a(x, i)x⟩ ≤ ad

(
∥x∥

2

2

)
,

trace a(x, i) + 2⟨x, b(x, i)⟩ ≥ bd

(
∥x∥

2

2

)
⟨x, a(x, i)x⟩

for all i ∈ Sd and x ∈ Rd
: ∥x∥ ≥ 1. Moreover, either

p(r ) ≜
∫ r

1
exp

(
−

∫ y

1
bd (z)dz

)
dy, lim

r→∞
p(r ) < ∞, (4.4)

or

lim
r→∞

p(r ) = ∞ and
∫

∞

1
p′(y)

∫
∞

y

dz
ad (z)p′(z)

dy = ∞. (4.5)

Furthermore, we have

sup
j∈Sd

sup
∥x∥≤1

(∥b(x, j)∥ + trace a(x, j)) < ∞. (4.6)

Condition 2. There exists a constant β > 0 such that

∥b(x, i)∥ ≤ β(1 + ∥x∥), trace a(x, i) ≤ β(1 + ∥x∥
2),

for all (x, i) ∈ S.

Proposition 4. If the family (Px )x∈S is Cb-Feller and one of Conditions 1 and 2 holds, then
(Px )x∈S is also Feller–Dynkin.

Proof. We assume that Condition 1 holds. Fix an arbitrary compact set K ⊂ S. Since the
projections π1 : S → Rd and π2 : S → Sd are continuous for the product topology, the sets
π1(K ) and π2(K ) are compact and K ⊆ π1(K ) × π2(K ).
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Because we assume the family (Pd
x )x∈Sd to be Feller–Dynkin, Proposition 2 (see also

Example 2) implies that there exists a function ζ : Sd → R+ such that ζ ∈ C, ζ > 0 on
π2(K ) and Qζ ≤ cζ for a constant c > 0. Applying the change of variable as explained in
[2, Section 4.1] together with [2, Lemma 4.2], we obtain that there exists a twice continuously
differentiable decreasing solution u : [ 1

2 ,∞) → (0,∞) to the differential equation
1
2 adbdu′

+
1
2 adu′′

= u, u
( 1

2

)
= 1, (4.7)

which satisfies limx↗+∞ u(x) = 0. For the last property we require that either (4.4) or (4.5)
holds. We find a twice continuously differentiable function φ : [0,∞) → (0,∞) such that
φ ≥ 1 on [0, 1

2 ] and φ = u on ( 1
2 ,∞). Now, we define

V (x, i) ≜ φ
(

∥x∥
2

2

)
ζ (i), (x, i) ∈ S.

We see that V ≥ 0, V ∈ D and that V > 0 on K and one readily checks that V ∈ C0(S). It
remains to show that LV ≤ const. V . For all i ∈ Sd and x ∈ Rd

: ∥x∥ > 1 we have

KV (x, i) = ζ (i) 1
2

(
⟨x, a(x, i)x⟩u′′

(
∥x∥

2

2

)
+ (trace a(x, i) + 2⟨x, b(x, i)⟩) u′

(
∥x∥

2

2

))
≤ ζ (i) ⟨x,a(x,i)x⟩

2

(
u′′

(
∥x∥

2

2

)
+ bd

(
∥x∥

2

2

)
u′

(
∥x∥

2

2

))
,

where we used that u is decreasing, i.e. that u′
≤ 0. Due to (4.7), we have

u′′
+ bdu′

=
2u
ad

≥ 0.

Thus, we obtain

KV (x, i) ≤ ζ (i) 1
2 ad

(
∥x∥

2

2

) (
u′′

(
∥x∥

2

2

)
+ bd

(
∥x∥

2

2

)
u′

(
∥x∥

2

2

))
= V (x, i), (4.8)

for all i ∈ Sd and x ∈ Rd
: ∥x∥ > 1. Due to (4.6), we find a constant c∗

≥ 1 such that
KV (x, i) ≤ c∗ζ (i) ≤ c∗V (x, i) for all i ∈ Sd and x ∈ Rd

: ∥x∥ ≤ 1. In summary, using (4.1)
and (4.8), we obtain

LV (x, i) ≤ c∗V (x, i) +

(∑
j ̸=i

qi j (x)ζ ( j) + qi i (x)ζ (i)
)
φ

(
∥x∥

2

2

)
≤ c∗V (x, i) +

(∑
j∈Sd

q i jζ ( j) + (qi i (x) − q i i )ζ (i)
)
φ

(
∥x∥

2

2

)
≤

(
c∗

+ c + sup
j∈Sd

sup
y∈Rd

|q j j (y) − q j j |

)
V (x, i) = const. V (x, i).

Consequently, Theorem 1 implies the claim.
For the case where Condition 2 holds, we only have to replace φ(x) by (1 + 2x)−1. The

remaining argument stays unchanged. We omit the details. □

Conditions for the Cb-Feller property of (Px )x∈S can be found in [30,37,40,41]. We collect
some of these in the following corollary, where we also assume that

D ≡
{

f : S → R : x ↦→ f (x, j) ∈ C2
b (Rd ), i ↦→ f (y, i) ∈ B(Sd ) for all (y, j) ∈ S

}
.
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Corollary 1. Suppose the following:

(i) Sd = {0, 1, . . . , N } for 1 ≤ N ≤ ∞, where we mean Sd = N0 when N = ∞.
(ii) There exists a constant c1 > 0 such that for all (x, i) ∈ S we have qi j (x) = 0 for all

j ∈ Sd with | j − i | > c1.
(iii) There exists a constant c2 > 0 such that for all i ∈ Sd

sup
x∈Rd

|qi i (x)| ≤ c2(i + 1).

(iv) There exists a constant c3 > 0 such that for all i ∈ Sd and x, y ∈ Rd∑
j ̸=i

|qi j (x) − qi j (y)| ≤ c3∥x − y∥.

(v) Condition 2 holds and there exist a constant c4 > 0 and a root a
1
2 of a such that for all

i ∈ Sd and x, y ∈ Rd

∥b(x, i) − b(x, i)∥ + ∥a
1
2 (x, i) − a

1
2 (y, i)∥ ≤ c4∥x − y∥.

Then, a Feller–Dynkin family (Px )x∈S exists.

Proof. The existence of a family (Px )x∈S follows from [40, Theorem 2.1]. Furthermore,
[40, Theorem 3.3] yields that (Px )x∈S is Cb-Feller. Thus, Proposition 4 implies that (Px )x∈S
is Feller–Dynkin, too. □

Remark 3.

(i) Assumption (ii) in Corollary 1 can be replaced by a weaker, but less explicit, condition
of Lyapunov-type, see [40, Assumption 1.2].

(ii) In general, the conditions from Corollary 1 do not imply the strong Feller property of
(Px )x∈S . For example, it is allowed to take the first coordinate as linear motion, which
gives a process without the strong Feller property.
If, in addition to (i)–(v) in Corollary 1, we assume that there exists a constant c > 0
such that for all (x, i) ∈ S and y ∈ Rd

⟨y, a(x, i)y⟩ ≥ c∥y∥
2,

then [37, Theorem 3.1] implies that (Px )x∈S has the strong Feller property, too. In this
case, (Px )x∈S has the Cb-Feller, the strong Feller and the Feller–Dynkin property.

The following example illustrates that our results include cases where Q is unbounded.

Example 4. Suppose that Q corresponds to a classical birth–death chain, i.e. Sd ≜
{0, 1, 2, . . . } and

q i j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λi , j = i + 1, i ≥ 0,
µi , j = i − 1, i ≥ 1,
−(λi + µi ), i = j, i ≥ 0,
0, otherwise,

for strictly positive sequences (λn)n∈N and (ρn)n∈N and µ0 = 0 and λ0 > 0. Set

r ≜
∞∑

n=1

(
1
λn

+
µn

λnλn−1
+

µnµn−1

λnλn−1λn−2
+ · · · +

µn · · ·µ2

λn · · · λ2λ1

)
,
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s ≜
∞∑

n=1

1
µn+1

(
1 +

λn

µn
+
λnλn−1

µnµn−1
+ · · · +

λnλn−1 · · · λ2λ1

µnµn−1 · · ·µ2µ1

)
.

If r = s = ∞ it is well-known that a Feller–Dynkin family (Pd
i )i∈Sd exists, see

[1, Theorems 3.2.2, 3.2.3] and Remark 2(i) and (iii). In this case, if also one of Conditions 1
and 2 holds, the family (Px )x∈S is Feller–Dynkin whenever it is Cb-Feller. To be more concrete,
if we choose

λn ≜ nαλ, µn ≜ nαµ, α ≥ 0, λ, µ > 0,

then s = r = ∞ if and only if either α ≤ 1 or [α ∈ (1, 2] and λ = µ]. In other words, we find
coefficients a, b and Q which satisfy the conditions from Corollary 1 with an unbounded Q.

4.2. Conditions not to be Feller–Dynkin

Next, we give conditions for rejecting the Feller–Dynkin property under the following
standing assumption.

Standing Assumption. |Sd | < ∞.

Let Σ and L be as in Section 4.1 and define

D ≜
{

f, f g, g : f ∈ C2
b (Rd ), g : Sd → R

}
.

Proposition 5. Assume that there exist an r > 0 and two locally Hölder continuous functions
bd : [r,∞) → R and ad : [r,∞) → (0,∞) such that for all i ∈ Sd and x ∈ Rd

: ∥x∥ ≥ 2r

⟨x, a(x, i)x⟩ ≥ ad

(
∥x∥

2

2

)
,

trace a(x, i) + 2⟨x, b(x, i)⟩ ≤ bd

(
∥x∥

2

2

)
⟨x, a(x, i)x⟩,

and

p(t) ≜
∫ t

r+1
exp

(
−

∫ y

r+1
bd (z)dz

)
dy → ∞ as t → ∞,

and ∫
∞

r+1
p′(y)

∫
∞

y

dz
ad (z)p′(z)

dy < ∞.

Then (Px )x∈S is not Feller–Dynkin.

Proof. Applying the change of variable as explained in [2, Section 4.1] together with
[2, Lemma 4.2], we obtain that there exists a twice continuously differentiable decreasing
solution u : [r,∞) → (0,∞) to the differential equation

1
2 adbdu′

+
1
2 adu′′

= u, u(r ) = 1,

which satisfies limx↗+∞ u(x) > 0. We find a twice continuously differentiable function
φ : [0,∞) → (0,∞) such that φ ≥ 1 on [0, r ] and φ = u on (r,∞). It follows similarly
to the proof of Proposition 4 that

U (x, i) ≜ φ
(

∥x∥
2

2

)
, (x, i) ∈ S,



Please cite this article as: D. Criens, Lyapunov criteria for the Feller–Dynkin property of martingale problems, Stochastic Processes and their
Applications (2019), https://doi.org/10.1016/j.spa.2019.07.016.

20 D. Criens / Stochastic Processes and their Applications xxx (xxxx) xxx

has the properties from Theorem 2 for the compact sets C ≡ K ≜ {x ∈ Rd
: ∥x∥ ≤

√
2r}× Sd ,

which implies the claim. □

4.3. Equivalent characterization for the state-independent case

In this section we study the state-independent case and characterize the Feller–Dynkin
property via the Feller–Dynkin property of diffusions in fixed environments.

4.3.1. The setup
We impose the following:

Standing Assumption. We have Sd = {1, . . . , N } for 1 ≤ N ≤ ∞, Q(x) ≡ Q and there
exists a continuous-time Markov chain with Q-matrix Q. For us a Markov chain is always
non-explosive. We denote its unique law by (P⋆

i )i∈Sd , where the subscript indicates the starting
value. Furthermore, (P⋆

i )i∈Sd is Feller–Dynkin.

From now on we fix a root a
1
2 of a. Let L and Σ be as in Section 4.1 and set

D ≜
{

f, f g, g : f ∈ C2
b (Rd ), g ∈ C

}
, C ≜

{
g ∈ C0(Sd ) : Q f ∈ C0(Sd )

}
. (4.9)

Due to [33, Theorem 5], (Q,C) is the generator of (P⋆
i )i∈Sd and, consequently, for each i ∈ Sd

the probability measure P⋆
i is the unique solution to the MP (C, Q,Σd , i). It seems to be known

that the family (Px )x∈S has a one-to-one relation to a switching diffusion defined via an SDE,
see, for instance, [3] for a partial result in this direction. However, we did not find a complete
reference, such that we provide a statement and a proof.

Lemma 2. Fix y = (x, i) ∈ S. A probability measure Py solves the MP (D,L,Σ , y) if and
only if there exists a filtered probability space with right-continuous complete filtration (Gt )t≥0

which supports a Markov chain (Z t )t≥0 for the filtration (Gt )t≥0 with Q-matrix Q and initial
value Z0 = i and a continuous, (Gt )t≥0-adapted process (Yt )t≥0 satisfying the SDE

dYt = b(Yt , Z t )dt + a
1
2 (Yt , Z t )dWt , Y0 = x, (4.10)

where (Wt )t≥0 is a Brownian motion for the filtration (Gt )t≥0, such that the law of (Yt , Z t )t≥0

is given by Py and the σ -fields σ (Wt , t ∈ R+) and σ (Z t , t ∈ R+) are independent.

Proof. The implication ⇐ is a consequence of the integration by parts formula.
It remains to show the implication ⇒. We consider the completion of the filtered probability

space (Ω ,F , (Ft )t≥0, Py) as underlying filtered probability space. Denote (X t )t≥0 = (Yt , Z t )t≥0,
where (Yt )t≥0 is Rd -valued and (Z t )t≥0 is Sd -valued. In view of [19, Remark 5.4.12], we
can argue as in the proof of [19, Proposition 5.4.6] to conclude the existence of a Brow-
nian motion (Wt )t≥0 (possibly defined on a standard extension of the filtered probability
space (Ω ,F , (Ft )t≥0, Py), see [19, Remark 3.4.1]) such that (Yt )t≥0 satisfies the SDE (4.10).
With abuse of notation, we denote the standard extension of (Ω ,F , (Ft )t≥0, Py) again by
(Ω ,F , (Ft )t≥0, Py). Due to [14, Proposition 10.46] the martingale property is not affected by
a standard extension. Thus, we deduce from Examples 2 and 3, Proposition 9 in Appendix B
and [11, Theorem 4.4.2] that (Z t )t≥0 is a Markov chain for the filtration (Ft )t≥0 with Q-matrix
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Q and Z0 = i . It remains to explain that the σ -fields σ (Wt , t ∈ R+) and σ (Z t , t ∈ R+) are
independent. We adapt an idea from [11, Theorem 4.10.1]. For all f ∈ C the process

M f
t ≜ f (Z t ) − f (i) −

∫ t

0
Q f (Zs)ds, t ∈ R+,

is a Py-martingale. For g ∈ C2
c (Rd ) with infx∈Rd g(x) > 0 set

K g
t ≜ g(Wt ) exp

(
−

1
2

∫ t

0

∆g(Ws)
g(Ws)

ds
)
, t ∈ R+,

where ∆ denotes the Laplacian. Itô’s formula yields that

d K g
t = exp

(
−

1
2

∫ t

0

∆g(Ws)
g(Ws)

ds
)

⟨∇g(Wt ), dWt ⟩,

which implies that also (K g
t )t≥0 a Py-martingale, because it is a bounded (on finite time

intervals) local Py-martingale. Because (Z t )t≥0 has only finitely many jumps in a finite interval,
(M f

t )t≥0 is of finite variation on finite intervals and we have Py-a.s.

[M f , K g]t = 0 for all t ∈ R+,

see [16, Proposition I.4.49]. Here, [·, ·] denotes the quadratic variation process. Consequently,
integration by parts yields that (M f

t K g
t )t≥0 is a local Py-martingale and a true Py-martingale

due to its boundedness on finite time intervals. Fix an arbitrary bounded stopping time ψ and
define

Q(G) ≜
Ey

[
1G K g

ψ

]
g(0)

, G ∈ F .

Due to the optional stopping theorem, for all bounded stopping times φ we have

E Q[
M f
φ

]
=

Ey
[
M f
φ∧ψK g

φ∧ψ

]
g(0)

= 0.

We conclude from [34, Proposition II.1.4] that (M f
t )t≥0 is a Q-martingale. Consequently, in

view of Example 2, we have

Q(Γ ) = Py(Γ ),

where

Γ ≜
{

Z t1 ∈ F1, . . . , Z tn ∈ Fn
}

for arbitrary 0 ≤ t1 < · · · < tn < ∞ and F1, . . . , Fn ∈ B(Sd ). Suppose that Py(Γ ) > 0 and set

Q̂(G) ≜
Ey

[
1G1Γ

]
Py(Γ )

, G ∈ F .

We have

E Q̂[
K g
ψ

]
=

Ey
[
K g
ψ1Γ

]
Py(Γ )

=
Q(Γ )g(0)

Py(Γ )
= g(0).

Thus, because ψ was arbitrary, we deduce from [34, Proposition II.1.4] and
[11, Proposition 4.3.3] that (Wt )t≥0 is a Q̂-Brownian motion and the uniqueness of the Wiener
measure yields that

Q̂
(
Ws1 ∈ G1, . . . ,Wsk ∈ Gk

)
= Py

(
Ws1 ∈ G1, . . . ,Wsk ∈ Gk

)
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for arbitrary 0 ≤ s1 < · · · < sk < ∞ and G1, . . . ,Gk ∈ B(Rd ). Using the definition of Q̂, we
conclude that

Py
(
Z t1 ∈ F1, . . . , Z tn ∈ Fs,Ws1 ∈ G1, . . . ,Wsk ∈ Gk

)
= Py

(
Z t1 ∈ F1, . . . , Z tn ∈ Fs

)
Py

(
Ws1 ∈ G1, . . . ,Wsk ∈ Gk

)
,

which implies the desired independence. □

Remark 4. An inspection of the proof of Lemma 2 shows the following:

(i) If (Z t )t≥0 is a Feller–Dynkin Markov chain and (Wt )t≥0 is a Brownian motion both with
deterministic initial values and for the same filtration, then the σ -fields σ (Wt , t ∈ R+)
and σ (Z t , t ∈ R+) are independent.

(ii) As explained in Example 3, we find a countable set C⋆
⊆ C such that for all f ∈ C

there exists a sequence ( fn)n∈N ⊂ C⋆ such that

∥ f − fn∥∞ + ∥Q f − Q fn∥∞ → 0

as n → ∞. The set of solutions to the MP (D,L,Σ , y) remains unchanged if we
redefine D to be the countable set{

f, gk
i j , gk

i : 1 ≤ i, j ≤ d, k ∈ N, f ∈ C⋆
}
, (4.11)

where gk
i , gk

i j are functions in C2
c (Rd ) such that gk

i (x) = xi and gk
i j (x) = xi x j for all

x ∈ Rd
: ∥x∥ ≤ k.

We set

Σc ≜
{
ω : R+ → Rd

: t ↦→ ω(t) is continuous
}
,

and

Ki f (x) ≜ ⟨∇ f (x), b(x, i)⟩ +
1
2 trace (∇2 f (x)a(x, i)) (4.12)

for f ∈ C2
b (Rd ) and (x, i) ∈ S. We equip Σc with the local uniform topology. In this

case the Borel σ -field is generated by the coordinate process on Σc, see [38, p. 30]. A map
F : Rd

×Σc → Σc is called universally adapted, if it is adapted to the filtration (
⋂
µ∈P Gµt )t≥0,

where P is the set of all Borel probability measures on Rd and (Gµt )t≥0 is the completion of
the canonical filtration on Rd

×Σc w.r.t. the product measure µ⊗W, where W is the Wiener
measure, see [18, p. 346].

Definition 2. A family (P i
x )x∈Rd of solutions to the MP (C2

b (Rd ),Ki ,Σc) is said to exist
strongly, if a universally adapted Borel map F i

: Rd
× Σc → Σc exists such that on every

filtered probability space with right-continuous complete filtration (Gt )t≥0, which supports a
Brownian motion W = (Wt )t≥0 and an Rd -valued G0-measurable random variable π , the
process F i (π,W ) solves the SDE

dY i
t = b(Y i

t , i)dt + a
1
2 (Y i

t , i)dWt , Y i
0 = π, (4.13)

and every solution (Y i
t )t≥0 to (4.13) satisfies (Y i

t )t≥0 = F i (π,W ) up to a null set. Here, the
state space for the MP is Rd .

Remark 5. We stress that our definition of strong existence includes a version of pathwise
uniqueness and that the function F i in the previous definition is independent of the law of
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π . A generalization of the classical Yamada–Watanabe theorem yields that (P i
x )x∈Rd exists

strongly if and only if the SDE (4.13) satisfies weak existence and pathwise uniqueness for
all degenerated initial values, see [18, Theorem 18.14]. In the classical formulation of the
Yamada–Watanabe theorem as given, for instance, in [19] the function F i depends on the law
of π . This dependence was removed in [17].

4.3.2. Main results
Next, we state the main results for this section. The proofs can be found in the following

subsections.

Condition 3. We have qi i ̸= 0 for all i ∈ Sd .

Condition 4. The family (Py)y∈S is unique and Cb-Feller, and for all (x, i) ∈ S the MP
(C2

b (Rd ),Ki ,Σc, x), where Ki is given as in (4.12), has a unique solution P i
x . Furthermore,

for all i ∈ Sd the family (P i
x )x∈Rd is Cb-Feller and exists strongly.

The following observation is the main result of this section.

Theorem 4. Suppose that Conditions 3 and 4 hold. The following are equivalent:

(i) The family (Py)y∈S is Feller–Dynkin.
(ii) For all i ∈ Sd the family (P i

x )x∈Rd is Feller–Dynkin.

For the strong Feller property a related result is known, see [37, Theorem 3.2]. One
implication in the previous theorem can be generalized as the following proposition shows.

Proposition 6. Suppose that there exists an i ∈ Sd such that for all x ∈ Rd the MP
(C2

b (Rd ),Ki ,Σc, x) has a (unique) solution P i
x and that the family (P i

x )x∈Rd exists strongly
and is Cb-Feller, but not Feller–Dynkin. Then, (Px )x∈S is not Feller–Dynkin.

The next two results provide conditions implying Condition 4.

Proposition 7. Suppose that b and a are continuous and that (Py)y∈S is unique, then (Py)y∈S
is strongly Markov and Cb-Feller.

Proposition 8. Suppose that Condition 3 holds and that for all i ∈ Sd the family (P i
x )x∈Rd

exists strongly, then a unique family (Py)y∈S exists.

An existence result without uniqueness is given in Appendix A. We collect some conse-
quences of the preceding results.

Corollary 2. Suppose that d = 1, that Condition 3 holds and that for all i ∈ Sd the map
x ↦→ b(x, i) is continuous and the map x ↦→ a

1
2 (x, i) is locally Hölder continuous with

exponent larger or equal than 1
2 and that a

1
2 (·, i) ̸= 0. Furthermore, for all i ∈ Sd suppose

that

lim
x→±∞

∫ x

0
exp

(
−2

∫ y

0

b(z, i)
a(z, i)

dz
) ∫ y

0

2 exp
(
2

∫ u
0

b(z,i)
a(z,i) dz

)
a(u, i)

dudy = ∞. (4.14)

Then, the family (Px )x∈S exists uniquely, is strongly Markov and Cb-Feller. Moreover, the
following are equivalent:



Please cite this article as: D. Criens, Lyapunov criteria for the Feller–Dynkin property of martingale problems, Stochastic Processes and their
Applications (2019), https://doi.org/10.1016/j.spa.2019.07.016.

24 D. Criens / Stochastic Processes and their Applications xxx (xxxx) xxx

(i) (Px )x∈S is Feller–Dynkin.
(ii) For all i ∈ Sd one of the conditions (4.15) and (4.16) holds and one of the conditions

(4.17) and (4.18) holds:∫
∞

0
exp

(
−2

∫ y

0

b(z, i)
a(z, i)

dz
)

dy < ∞. (4.15)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫

∞

0
exp

(
−2

∫ y

0

b(z, i)
a(z, i)

dz
)

dy = ∞,∫
∞

0
exp

(
−2

∫ y

0

b(z, i)
a(z, i)

dz
) ∫

∞

y

exp
(
2

∫ u
0

b(z,i)
a(z,i) dz

)
a(u, i)

dudy = ∞.

(4.16)

∫ 0

−∞

exp
(

2
∫ 0

y

b(z, i)
a(z, i)

dz
)

dy < ∞. (4.17)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ 0

−∞

exp
(

2
∫ 0

y

b(z, i)
a(z, i)

dz
)

dy = ∞,

∫ 0

−∞

exp
(

2
∫ 0

y

b(z, i)
a(z, i)

dz
) ∫ y

−∞

exp
(
−2

∫ 0
u

b(z,i)
a(z,i) dz

)
a(u, i)

dudy = ∞.

(4.18)

Remark 6. If b ≡ 0, then the conditions in part (ii) of Corollary 2 are satisfied if and only
if for all i ∈ Sd the following hold:∫

∞

0

u
a(u, i)

du =

∫ 0

−∞

−u
a(u, i)

du = ∞. (4.19)

Corollary 3. Assume that Condition 3 holds and that for all i ∈ Sd the maps x ↦→ b(x, i)
and x ↦→ a

1
2 (x, i) are locally Lipschitz continuous and that for all (x, i) ∈ S the MP

(C2
b (Rd ),Ki ,Σc, x) has a solution. Furthermore, suppose that for each i ∈ Sd there is an ri > 0

and two locally Hölder continuous functions bi : [ri ,∞) → R and ai : [ri ,∞) → (0,∞) such
that for all x ∈ Rd

: ∥x∥ ≥ 2ri

⟨x, a(x, i)x⟩ ≤ ai

(
∥x∥

2

2

)
,

trace a(x, i) + 2⟨x, b(x, i)⟩ ≥ bi

(
∥x∥

2

2

)
⟨x, a(x, i)x⟩,

and either

pi (r ) ≜
∫ ri

1
exp

(
−

∫ y

1
bi (z)dz

)
dy, lim

r→∞
pi (r ) < ∞,

or

lim
r→∞

p(r ) = ∞ and
∫

∞

1
p′

i (y)
∫

∞

y

dz
ai (z)p′

i (z)
dy = ∞.

Then, (Px )x∈S is Feller–Dynkin.

Explicit conditions for the assumption that for all (x, i) ∈ S the MP (C2
b (Rd ),Ki ,Σc, x) has

a solution can, e.g., be found in [38, Chapter 10].
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Corollary 4. Assume that there exists an i ∈ Sd such that the maps x ↦→ b(x, i) and x ↦→

a
1
2 (x, i) are locally Lipschitz continuous and that for all x ∈ Rd the MP (C2

b (Rd ),Ki ,Σc, x)
has a solution. Furthermore, suppose there is an r > 0 and two locally Hölder continuous
functions bd : [r,∞) → R and ad : [r,∞) → (0,∞) such that for all x ∈ Rd

: ∥x∥ ≥ 2r

⟨x, a(x, i)x⟩ ≥ ad

(
∥x∥

2

2

)
,

trace a(x, i) + 2⟨x, b(x, i)⟩ ≤ bd

(
∥x∥

2

2

)
⟨x, a(x, i)x⟩,

and

p(t) ≜
∫ t

r+1
exp

(
−

∫ y

r+1
bd (z)dz

)
dy → ∞ as t → ∞,

and ∫
∞

r+1
p′(y)

∫
∞

y

dz
ad (z)p′(z)

dy < ∞.

Then, (Px )x∈S is not Feller–Dynkin.

By [37, Theorem 3.2], the family (Px )x∈S has the strong Feller property if it is Cb-Feller and
for all i ∈ Sd the families (P i

x )x∈Rd have the strong Feller property. Consequently, the strong
Feller property and the Feller–Dynkin property are both inherited from the relative properties of
processes in the fixed environments. We give a short example for a switching diffusion which
has the strong Feller property, but not the Feller–Dynkin property.

Example 5. Let d = 1, Sd = {1, 2}, b ≡ 0 and

a(x, i) ≜

{
1 + x4, i = 1,
1, i = 2,

for (x, i) ∈ S. Due to [19, Problem 5.5.27], (4.14) holds in the case b ≡ 0. Thus, we
conclude from Corollary 2 that (Py)y∈S exists uniquely and is Cb-Feller. Furthermore, due to
[38, Corollary 10.1.4], (P i

x )x∈R has the strong Feller property for i = 1, 2. Of course, the
family (P2

x )x∈R consists of Wiener measures and is well-known to be strongly Feller. Therefore,
[37, Theorem 3.2] implies that (Py)y∈S has the strong Feller property, too. However, for i = 1
the condition (4.19) fails because∫

∞

0

x dx
1 + x4 =

π

4
< ∞.

Therefore, the family (Px )x∈S is not Feller–Dynkin due to Corollary 2, see Remark 6.

4.3.3. Proof of Proposition 6
Since (P i

x )x∈Rd is Cb-Feller, one can show as in the proof of Theorem 1 that if for any
compact set K ⊂ Rd and any t > 0 it holds that

lim sup
∥x∥→∞

P i
x (X t ∈ K ) = 0,

then (P i
x )x∈Rd is Feller–Dynkin. Consequently, since we assume (P i

x )x∈Rd not to be Feller–
Dynkin, there exists a sequence (xk)k∈N ⊂ Rd with ∥xk∥ → ∞ as k → ∞, a compact set
K o

⊂ Rd and a to > 0 such that

lim sup
k→∞

P i
xk

(X to ∈ K o) > 0. (4.20)
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The set G ≜ K o
× {i} ⊂ S is compact. If we show that

lim sup
k→∞

P(xk ,i)(X to ∈ G) > 0, (4.21)

then (Px )x∈S cannot be Feller–Dynkin. To see this, assume for contradiction that (Px )x∈S is
Feller–Dynkin. Due to the locally compact version of Urysohn’s lemma, there exists a function
f ∈ C0(S) such that 0 ≤ f ≤ 1 and f ≡ 1 on G. Consequently, we have

P(xk ,i)(X to ∈ G) = E(xk ,i)
[

f (X to )1{X to ∈ G}
]

≤ E(xk ,i)
[

f (X to )
]

→ 0 as k → ∞,

because (Px )x∈S is Feller–Dynkin. This, however, is a contradiction and we conclude that
(Px )x∈S cannot be Feller–Dynkin. In summary, it suffices to show (4.21).

For a càdlàg Sd -valued process (Z t )t≥0, we set

τ (Z ) ≜ inf
(
t ∈ R+ : Z t ̸= Z0

)
,

which is a stopping time for any right-continuous filtration to which (Z t )t≥0 is adapted, see
[11, Proposition 2.1.5]. In the following let (Yt )t≥0, (Z t )t≥0 and (Wt )t≥0 be as in Lemma 2 for
y = (x, i). On {t ≤ τ (Z )} we have

Yt = x +

∫ t

0
b(Ys, i)ds +

∫ t

0
a

1
2 (Ys, i)dWs,

which is the SDE corresponding to the MP (C2
b (Rd ),Ki ,Σc, x), see [19, Corollary 5.4.8]. We

now need a local version of pathwise uniqueness. The proof of the following lemma is given
after the proof of Proposition 6 is complete.

Lemma 3. Suppose that the SDE

dYt = µ(Yt )dt + σ (Yt )dWt (4.22)

satisfies weak existence and pathwise uniqueness (see [34, Section IX.1]). In other words,
we assume that the martingale problem corresponding to the SDE (4.22) exists strongly, see
Remark 5 and [19, Section 5.4]. Consider a filtered probability space with right-continuous
complete filtration (Gt )t≥0, which supports a Brownian motion (Wt )t≥0 and an Rd -valued
G0-measurable random variable ψ . Take a (Gt )t≥0-stopping time τ and let (Yt )t≥0 be the
solution to (4.22) with initial value ψ . Then, all solutions to

d Ot = µ(Ot )1{t≤τ }dt + σ (Ot )1{t≤τ }dWt , O0 = ψ,

are indistinguishable from (Yt∧τ )t≥0.

Because we assume that P i
x exists strongly, Lemma 3 and the independence of the σ -fields

σ (Wt , t ∈ R+) and σ (Z t , t ∈ R+), see Lemma 2, imply that

P(x,i)
(
X t0 ∈ G

)
≥ P

(
Yto∧τ (Z ) ∈ K o, Z to = i, to < τ (Z )

)
= P

(
F i (x,W )to∧τ (Z ) ∈ K o, to < τ (Z )

)
= P

(
F i (x,W )to ∈ K o)P

(
to < τ (Z )

)
= P i

x

(
X to ∈ K o)P

(
to < τ (Z )

)
,

where F i is as in Definition 2. It is well-known that the random variable τ (Z ) is exponentially
distributed with parameter −qi i , see, e.g., [18, Lemma 10.18]. Therefore, we have

P(x,i)
(
X to ∈ G

)
≥ P i

x

(
X to ∈ K o)eqi i to

.
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We conclude (4.21) from (4.20). This finishes the proof. □

Proof of Lemma 3. Due to localization, we can assume that τ is finite. Let (Bt )t≥0 be defined
by

Bt ≜ Wt+τ − Wτ , t ∈ R+.

Due to [34, Proposition V.1.5] and Lévy’s characterization (see, e.g., [19, Theorem 3.3.16]),
the process (Bt )t≥0 is a (Gt+τ )t≥0-Brownian motion and, due to the strong existence hypothesis,
there exists a solution (Ut )t≥0 to the SDE

dUt = µ(Ut )dt + σ (Ut )d Bt , U0 = Oτ .

Now, we set

Vt ≜

{
Ot , t ≤ τ,

Ut−τ , t > τ.

Because U0 = Oτ , the process (Vt )t≥0 has continuous paths. We claim that (Ut−τ1{t>τ })t≥0 is
progressive. This implies that (Vt )t≥0 is adapted. Note that t ↦→ Ut−τ1{τ<t} is left-continuous
and that s ↦→ Ut−s1{s<t} is right-continuous. Thus, by an approximation argument, it suffices
to show that (ht )t≥0 ≜ (Ut−ρ1{ρ<t})t≥0 is adapted for any stopping time ρ which takes values
in the countable set 2−nN for some n ∈ N and satisfies ρ ≥ τ . Let G ∈ B(Rd ) and set
Nt ≜ 2−nN ∩ [0, t). We have

{ht ∈ G} =

( ⋃
k∈Nt

(
{Ut−k ∈ G} ∩ {ρ = k}

))
∪

(
{0 ∈ G} ∩ {ρ ≥ t}

)
∈ Gt .

Here, we use that {Ut−k ∈ G} ∈ Gt−k+τ ⊆ Gt−k+ρ and the fact that Gt−k+ρ ∩ {ρ = k} ⊆ Gt .
Therefore, (Ut−τ1{t>τ })t≥0 is progressive. On {t ≤ τ } we have

Vt = ψ +

∫ t

0
µ(Vs)ds +

∫ t

0
σ (Vs)dWs .

Classical rules for time-changed stochastic integrals (see, e.g., [34, Propositions V.1.4, V.1.5])
yield that on {t > τ }

Vt = Oτ +

∫ t−τ

0
µ(Us)ds +

∫ t−τ

0
σ (Us)d Bs (4.23)

= Vτ +

∫ t

τ

µ(Us−τ )ds +

∫ t

τ

σ (Us−τ )dWs (4.24)

= Vτ +

∫ t

τ

µ(Vs)ds +

∫ t

τ

σ (Vs)dWs

= ψ +

∫ t

0
µ(Vs)ds +

∫ t

0
σ (Vs)dWs .

Consequently, (Vt )t≥0 solves the SDE

dVt = µ(Vt )dt + σ (Vt )dWt , V0 = ψ.

By the strong existence hypothesis, we conclude that a.s. Vt = Yt for all t ∈ R+. The definition
of (Vt )t≥0 implies the claim. □
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4.3.4. Proof of Theorem 4
The implication (i) ⇒ (ii) follows from Proposition 6.
We prove the implication (ii) ⇒ (i) using an explicit construction of the family (Py)y∈S .

Take a filtered probability space (Θ,G, (Gt )t≥0, P) satisfying the usual hypothesis of a right-
continuous and complete filtration, which supports a Brownian motion (Wt )t≥0 for the filtration
(Gt )t≥0 and an Sd -valued continuous-time Markov chain (Z t )t≥0 for the filtration (Gt )t≥0 with
Q-matrix Q and Z0 = i . Recalling Remark 4, we note that the σ -fields σ (Wt , t ∈ R+) and
σ (Z t , t ∈ R+) are independent. Define inductively

τ0 ≜ 0, τn ≜ inf
(
t ≥ τn−1 : Z t ̸= Zτn−1

)
, n ≥ 1, (4.25)

and

σ0 ≜ 0, σn ≜ τn − τn−1 = inf
(
t ∈ R+ : Z t+τn−1 ̸= Zτn−1

)
, n ≥ 1.

Because no state of (Z t )t≥0 is absorbing due to Condition 3, we have a.s. τn < ∞ for
all n ∈ N. Furthermore, for all n ∈ N the random time τn is a (Gt )t≥0-stopping time
and the random time σn is a (Gt+τn−1 )t≥0-stopping time, see [19, Proposition 1.1.12] and
[18, Lemma 6.5, Theorem 6.7]. Due to [34, Proposition V.1.5] and Lévy’s characterization, the
process (W n

t )t≥0 = (Wt+τn −Wτn )t≥0 is a (Gt+τn )t≥0-Brownian motion and therefore independent
of Gτn . For all k ∈ Sd let Fk

: Rd
×Σc → Σc be as in Definition 2 and set (Y 0,x

t )t≥0 ≜ F i (x,W ).
By induction, define further

(Y n,x
t )t≥0 ≜

N∑
k=1

Fk(Y n−1,x
σn

,W n)1{Zτn = k}, n ∈ N,

and set

Y x
t ≜ x1{t = 0} +

∞∑
n=0

Y n,x
t−τn 1{τn < t ≤ τn+1}, t ∈ R+.

The process (Y x
t )t≥0 has continuous paths and similar arguments as used in the proof of

Lemma 3 show that (Y x
t )t≥0 is adapted, too. Next, five technical lemmata follow.

Lemma 4. The law of (Y x
t , Z t )t≥0 is given by P(x,i).

Proof. The process (Vt )t≥0 ≜ Fk(Y n−1,x
σn

,W n) has the dynamics

dVt = b(Vt , k)dt + a
1
2 (Vt , k)dW n

t , V0 = Y n−1,x
σn

.

Thus, due to classical rules for time-changed stochastic integrals, for t ∈ [τn, τn+1] on {Zτn = k}

we have

Y n,x
t−τn = Fk(Y n−1,x

σn
,W n)t−τn

= Y n−1,x
σn

+

∫ t−τn

0
b(Vs, k)ds +

∫ t−τn

0
a

1
2 (Vs, k)dW n

s

= Y n−1,x
σn

+

∫ t

τn

b(Y n,x
s−τn , k)ds +

∫ t

τn

a
1
2 (Y n,x

s−τn , k)dWs

= Y n−1,x
σn

+

∫ t

τn

b(Y x
s , k)ds +

∫ t

τn

a
1
2 (Y x

s , k)dWs

= Y n−1,x
σn

+

∫ t

τn

b(Y x
s , Zs)ds +

∫ t

τn

a
1
2 (Y x

s , Zs)dWs .
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Iterating yields that for t ∈ [τn, τn+1]

Y n,x
t−τn = x +

∫ t

0
b(Y x

s , Zs)ds +

∫ t

0
a

1
2 (Y x

s , Zs)dWs .

Therefore, the process (Y x
t )t≥0 satisfies the SDE

dY x
t = b(Y x

t , Z t )dt + a
1
2 (Y x

t , Z t )dWt , Y x
0 = x,

and, consequently, the uniqueness of P(x,i) and Lemma 2 imply that the law of (Y x
t , Z t )t≥0

coincides with P(x,i). □

Lemma 5. For all Borel sets G ⊆ Σc we have a.s.

P
(
(W n

t )t≥0 ∈ G|σ (Gτn , σn+1)
)

= P
(
(W n

t )t≥0 ∈ G
)
.

Proof. Let Wz be the Wiener measure with starting value z ∈ Rd and P⋆
k be the law of a

Markov chain with Q-matrix Q and starting value k ∈ Sd . Due to Remark 4, Proposition 9 in
Appendix B and [11, Proposition 4.1.5, Theorem 4.4.2], the map (z, k) ↦→ Wz ⊗ P⋆

k is Borel
and the process (Wt , Z t )t≥0 is a strong Markov process in the following sense: For all F ∈ F
and all a.s. finite (Gt )t≥0-stopping times θ a.s.

P
(
(Wt+θ , Z t+θ )t≥0 ∈ F |Gθ

)
=

(
WWθ

⊗ P⋆
Zθ

)
(F).

Let F ⊆ Σd be Borel. The strong Markov properties of (Z t )t≥0, (Wt )t≥0 and (Wt , Z t )t≥0 imply
that a.s.

P
(
(Wt+τn )t≥0 ∈ G, (Z t+τn )t≥0 ∈ F |Gτn

)
= WWτn (G) P⋆

Zτn
(F)

= P
(
(Wt+τn )t≥0 ∈ G|Gτn

)
P

(
(Z t+τn )t≥0 ∈ F |Gτn

)
.

This implies that σ (W n
t , t ∈ R+) and σ (σn+1) are independent given Gτn . Thus,

[18, Proposition 5.6] and the independence of σ (W n
t , t ∈ R+) and Gτn yield that a.s.

P
(
(W n

t )t≥0 ∈ G|σ (Gτn , σn+1)
)

= P
(
(W n

t )t≥0 ∈ G|Gτn
)

= P
(
(W n

t )t≥0 ∈ G
)
,

which is the claim. □

Lemma 6. For all n ∈ N0 we have ∥Y n,x
σn+1

∥ → ∞ in probability as ∥x∥ → ∞.

Proof. We use induction. Because the process (Y 0,x
t )t≥0 has law P i

x (by the uniqueness
assumption) and (Y 0,x

t )t≥0 is independent of σ1 = τ1, we can conclude the induction base
from the hypothesis (ii) of Theorem 4. More precisely, we have for all m ∈ N

P(∥Y 0,x
σ1

∥ ≤ m) =

∫
∞

0
P i

x (∥Xs∥ ≤ m)P(σ1 ∈ ds) → 0
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as ∥x∥ → ∞, see the proof of Proposition 6. Suppose now that the claim holds for n ∈ N0.
Using the Lemmata 2 and 5 and [18, Theorem 5.4], we obtain

P(∥Y n+1,x
σn+2

∥ ≤ m)

=

N∑
k=1

P(∥Fk(Y n,x
σn+1

,W n+1)σn+2∥ ≤ m, Zτn+1 = k)

=

N∑
k=1

E
[
P(∥Fk(Y n,x

σn+1
,W n+1)σn+2∥ ≤ m|σ (Gτn+1 , σn+2))1{Zτn+1 = k}

]
=

N∑
k=1

∫
P(∥Fk(Y n,x

σn+1(ω)(ω),W n+1)σn+2(ω)∥ ≤ m)1{Zτn+1(ω)(ω) = k}P(dω)

=

N∑
k=1

∫
Pk

Y n,x
σn+1(ω)(ω)(∥Xσn+2(ω)∥ ≤ m)1{Zτn+1(ω)(ω) = k}P(dω).

(4.26)

Take (xk)k∈N ⊂ Rd such that ∥xk∥ → ∞ as k → ∞. A well-known characterization of
convergence in probability is the following: A sequence (Z k)k∈N converges in probability to a
random variable Z if and only if each subsequence of (Z k)k∈N contains a further subsequence
which converges almost surely to Z , see, e.g., [18, Lemma 3.2]. Consequently, (xk)k∈N contains
a subsequence (xn′

k
)k∈N such thatY

n,xn′
k

σn+1

 → ∞

almost surely as k → ∞. Due to the dominated convergence theorem, we deduce from (4.26)
that Y

n+1,xn′
k

σn+2

 → ∞

in probability as k → ∞. Thus, applying again the subsequence criterion, we can extract
a further subsequence such that the convergence holds almost surely. Finally, applying the
subsequence criterion a third time (but this time the converse direction), we conclude the
claim. □

Lemma 7. For all n ∈ N0, t > 0 we have ∥Y n,x
t−τn ∥ → ∞ on {τn < t} in probability as

∥x∥ → ∞.

Proof. Because σ (W n
t , t ∈ R+) is independent of Gτn , we show as in the proof of Lemma 6

that

P(∥Y n,x
t−τn ∥ ≤ m, τn < t)

=

N∑
k=1

∫
Pk

Y n−1,x
σn (ω) (ω)

(∥X t−τn (ω)∥ ≤ m)1{τn(ω) < t}1{Zτn (ω)(ω) = k}P(dω).

Using Lemma 6 and the argument in its proof, we see that the claim follows. □
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Lemma 8. For all compact sets K ⊂ Rd and all t, ε > 0 there exists a compact set K ∗
⊂ Rd

such that

P(x,i)(X t ∈ K × Sd ) < ε

for all x ̸∈ K ∗.

Proof. Let f ∈ C0(Rd ) be such that 0 ≤ f ≤ 1 and f ≡ 1 on K . As before f exists due to
Urysohn’s lemma for locally compact spaces. We have

E
[

f (Y x
t )

]
=

∞∑
n=0

E
[

f (Y x
t )1{τn < t ≤ τn+1}

]
=

∞∑
n=0

E
[

f (Y n,x
t−τn )1{τn < t ≤ τn+1}

]
→ 0

as ∥x∥ → ∞, which follows from Lemma 7 and the dominated convergence theorem. Thus,
the map x ↦→ E

[
f (Y x

t )
]

is an element of C0(Rd ). Finally, noting that

P(x,i)(X t ∈ K × Sd ) ≤ E
[

f (Y x
t )

]
implies the claim. □

We are in the position to complete the proof. Fix t, ε > 0 and a compact set K ⊂ S. Recall
that π1 : S → Rd and π2 : S → Sd are the usual projections. Because (P⋆

i )i∈Sd is Feller–Dynkin,
there exists a compact set K ∗

⊂ Sd such that

P⋆
i

(
X t ∈ π2(K )

)
< ε

for all i ̸∈ K ∗. By Lemma 8, for each i ∈ K ∗ we find a compact set K ∗

i ⊂ Rd such that

P(x,i)
(
X t ∈ π1(K ) × Sd

)
< ε

for all x ̸∈ K ∗

i . Define K̂ ≜
(⋃

i∈K ∗ K ∗

i

)
× K ∗

⊂ S. Clearly, K̂ is compact. We claim that

P(x,i)
(
X t ∈ K

)
< ε

for all (x, i) ̸∈ K̂ . To see this, note that

K̂ c
=

(( ⋂
i∈K ∗

(K ∗

i )c
)

× K ∗

)
∪

(
Rd

× (K ∗)c
)
.

Now, if (x, i) ∈ Rd
× (K ∗)c we have

P(x,i)
(
X t ∈ K

)
≤ P(x,i)

(
X t ∈ π1(K ) × π2(K )

)
≤ P⋆

i

(
X t ∈ π2(K )

)
< ε.

If (x, i) ∈
(⋂

j∈K ∗ (K ∗

j )c
)
× K ∗ we have x ̸∈ K ∗

i and hence

P(x,i)
(
X t ∈ K

)
≤ P(x,i)

(
X t ∈ π1(K ) × Sd

)
< ε.

This proves the claim, which itself implies that (Px )x∈S is Feller–Dynkin, see the proof of
Theorem 1. □

4.3.5. Proof of Proposition 7
Due to Remark 4, the strong Markov property follows from Proposition 1.
It remains to prove that (Px )x∈S has the Cb-Feller property. It suffices to show that x ↦→ Px

is continuous, i.e. that xn → x implies Pxn → Px weakly as n → ∞. In this case, because
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for all x ∈ S and t ∈ R+ the map ω ↦→ ω(t) is Px -a.s. continuous (see [11, Proposition 3.5.2]
and note that Px (∆X t ̸= 0) = 0), the continuous mapping theorem implies that (Px )x∈S has
the Cb-Feller property. The continuity of x ↦→ Px follows from Theorem 5. □

Theorem 5. For all n ∈ N let bn : S → Rd and an : S → Sd be Borel functions such that for
all m ∈ R+

sup
n∈N

sup
|||y|||≤m

(
∥bn(y)∥ + ∥an(y)∥

)
< ∞, (4.27)

where ||| · ||| denotes the Euclidean norm on Rd+1. Assume that b : S → Rd and a : S → Sd are
continuous functions and that for all m ∈ R+

sup
|||y|||≤m

(
∥b(y) − bn(y)∥ + ∥a(y) − an(y)∥

)
→ 0 (4.28)

as n → ∞. Furthermore, let (Qn)n∈N be a sequence of Q-matrices on Sd such that for all
n ∈ N and i ∈ Sd the MP (Cn, Qn,Σd , i), where

Cn ≜
{

f ∈ C0(Sd ) : Qn f ∈ C0(Sd )
}
,

has a unique solution Pn
i such that (Pn

i )i∈Sd is Feller–Dynkin. Let C⋆
⊆ C be as in Remark 4.

Suppose that for all f ∈ C⋆ there exists a sequence ( fn)n∈N consisting of fn ∈ Cn such that

∥ f − fn∥∞ + ∥Q f − Qn fn∥∞ → 0 (4.29)

as n → ∞. Finally, take (xn)n∈N ⊂ Rd and (in)n∈N ⊂ Sd such that xn → x ∈ Rd and
in → i ∈ Sd as n → ∞. Set L as in (4.3), Ln as in (4.3) with b replaced by bn , a replaced by an

and Q replaced by Qn , and D as in (4.11). If Pn is a solution to the MP (Dn,Ln,Σ , (xn, in)),
where

Dn ≜
{

f, g : f ∈ C2
c (Rd ), g ∈ Cn

}
,

and for all y ∈ S the MP (D,L,Σ , y) has a unique solution Py , then Pn
→ P(x,i) weakly as

n → ∞.

Proof. We adapt the strategy from the proof of [16, Theorem IX.3.39]. Let us start with a
clarification of our terminology: When we say that a sequence of càdlàg processes is tight,
we mean that its laws are tight or, equivalently, relatively compact by Prohorov’s theorem (see
[11, Theorem 3.2.2]). If we speak of an accumulation point of a sequence of processes, we
refer to an accumulation point of the corresponding sequence of laws.

Because of the discrete topology of Sd we can assume that in ≡ i . For all n ∈ N denote by
(Y n

t )t≥0, (Zn
t )t≥0 and (W n

t )t≥0 the processes from Lemma 2 corresponding to Pn . For m ∈ R+

we define

τm ≜ inf
(
t ∈ R+ : |||X t ||| ≥ m or |||X t−||| ≥ m

)
. (4.30)

We note that τm is an (Fo
t )t≥0-stopping time, see [11, Proposition 2.1.5]. For n ∈ N and m ∈ R+

we set

τn,m ≜ τm ◦ (Y n
t , Zn

t )t≥0.

Next, four technical lemmata follow.
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Lemma 9. For all m ∈ R+ the sequence {(Y n
t∧τn,m , Zn

t )t≥0, n ∈ N} is tight.

Proof. The Kato–Trotter theorem [18, Theorem 17.25] implies that {(Zn
t )t≥0, n ∈ N} is tight in

Σd equipped with the Skorokhod topology. For all n ∈ N the process (Y n
t∧τn,m )t≥0 has continuous

paths. Below, we show that {(Y n
t∧τn,m )t≥0, n ∈ N} is tight in Σc equipped with the local uniform

topology. In this case, [11, Problem 4.25] implies that {(Y n
t∧τn,m )t≥0, n ∈ N} is also tight in the

space of càdlàg functions R+ → Rd equipped with the Skorokhod topology, which we denote
by D(R+,Rd ).

We claim that this already implies the tightness of {(Y n
t∧τn,m , Zn

t )t≥0, n ∈ N}. To see this, we
use the characterization of tightness given in [11, Corollary 3.7.4]. Let us recall it as a fact:

Fact 1. Let (E, r ) be a Polish space. A sequence (µn)n∈N of Borel probability measures on
D(R+, E) is tight if and only if the following hold:

(a) For all t ∈ Q+ and ε > 0 there exists a compact set C(t, ε) ⊆ E such that

lim sup
n→∞

µn(X t ̸∈ C(t, ε)) ≤ ε.

(b) For all ε > 0 and t > 0 there exists a δ > 0 such that

lim sup
n→∞

µn(w′(X, δ, t) ≥ ε) ≤ ε,

where

w′(α, θ, t) ≜ inf
{ti }

max
i

sup
u,v∈[ti−1,ti )

r (α(u), α(v)),

with {ti } ranging over all partitions of the form 0 = t0 < t1 < · · · < tn−1 < tn ≤ t with
min1≤i<n(ti − ti−1) ≥ θ and n ≥ 1.

We equip S with the metric r ((x, i), (y, j)) ≜ ∥x − y∥ + 1{i ̸= j}, which generates the
product topology on S. Let us first check that {(Y n

t∧τn,m , Zn
t )t≥0, n ∈ N} satisfies Fact 1(a).

Fix t ∈ Q+ and ε > 0. Using Fact 1, the tightness of {(Zn
s )s≥0, n ∈ N} in Σd and

{(Y n
s∧τn,m )s≥0, n ∈ N} in D(R+,Rd ) implies that there exists a compact set C1(t, ε) ⊂ Sd and a

compact set C2(t, ε) ⊂ Rd such that

lim sup
n→∞

P(Zn
t ̸∈ C1(t, ε)) ≤

ε
2 ,

lim sup
n→∞

P(Y n
t∧τn,m ̸∈ C2(t, ε)) ≤

ε
2 .

The set K (t, ε) ≜ C2(t, ε) × C1(t, ε) ⊂ S is also compact and we have

lim sup
n→∞

P((Y n
t∧τn,m , Zn

t ) ̸∈ K (t, ε))

≤ lim sup
n→∞

P(Y n
t∧τn,m ̸∈ C2(t, ε)) + lim sup

n→∞

P(Zn
t ̸∈ C1(t, ε))

≤
ε
2 +

ε
2 = ε.

In other words, {(Y n
t∧τn,m , Zn

t )t≥0, n ∈ N} satisfies Fact 1(a). Next, we explain that it also satisfies
Fact 1(b). We claim that the continuous paths of (Y n

t )t≥0 imply that up to a null set

w′((Y n
s∧τn,m , Zn

s )s≥0, θ, t) ≤ 2w′((Y n
s∧τn,m , 0)s≥0, 2θ, t) + w′((0, Zn

s )s≥0, θ, t). (4.31)

To see this, take (α, ω) ∈ Σc × Σd . Let {ti } be a partition of the form 0 = t0 < t1 < · · · <

tn−1 < tn ≤ t with min1≤i≤n(ti − ti−1) ≥ θ . By adding points if necessary, we can assume that
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max1≤i≤n(ti − ti−1) ≤ 2θ . In this case, we have

sup
u,v∈[ti−1,ti )

r ((α(u), 0), (α(v), 0))

≤ sup
{
r ((α(u), 0), (α(v), 0)) : 0 ≤ u, v ≤ t, |u − v| ≤ 2θ

}
.

Due to [13, Lemma 15.3], we have

sup
{
r ((α(u), 0), (α(v), 0)) : 0 ≤ u, v ≤ t, |u − v| ≤ 2θ

}
≤ 2w′((α, 0), 2θ, t).

Therefore, we conclude that

w′((α, ω), θ, t) ≤ 2w′((α, 0), 2θ, t) + w′((0, ω), θ, t),

which implies (4.31). Fix ε > 0 and t > 0 and let δ > 0 be such that

lim sup
n→∞

P
(
w′((Y n

s∧τn,m , 0)s≥0, 2δ, t) ≥
ε
4

)
≤

ε
4 ,

lim sup
n→∞

P
(
w′((0, Zn

s )s≥0, δ, t) ≥
ε
2

)
≤

ε
2 .

This δ exists due to Fact 1(b) and the fact that w′ is increasing in δ. Note that for two
non-negative random variables V and U we have

P(U + V ≥ 2ε) ≤ P(U ≥ ε) + P(V ≥ ε).

Hence, we deduce from (4.31) that

lim sup
n→∞

P(w′((Y n
s∧τn,m , Zn

s )s≥0, δ, t) ≥ ε) ≤
3ε
4 ≤ ε.

We conclude from Fact 1 that {(Y n
t∧τn,m , Zn

t )t≥0, n ∈ N} is tight.
It remains to show that {(Y n

t∧τn,m )t≥0, n ∈ N} is tight in Σc. Let p > 2 and recall the
inequalities(

v + u
)p

≤ 2p(v p
+ u p), v, u ≥ 0,

 ∫ t

0
f (s)ds

 ≤

∫ t

0
∥ f (s)∥ds. (4.32)

Let T ∈ R+ and s < t ≤ T . We write x ⪯ y whenever x ≤ const. y where the constant
only depends on T, p,m and (4.27). We deduce from the triangle inequality, (4.32) and
[19, Remark 3.3.30] (i.e. a multidimensional version of the Burkholder–Davis–Gundy inequal-
ity) that

E
[
∥Y n

t∧τn,m − Y n
s∧τn,m ∥

p ]
= E

[ ∫ t∧τn,m

s∧τn,m
bn(Y n

r , Zn
r )dr +

∫ t∧τn,m

s∧τn,m
a

1
2
n (Y n

r , Zn
r )dW n

r

p]
≤ 2p E

[ ∫ t∧τn,m

s∧τn,m
bn(Y n

r , Zn
r )dr

p]
+ 2p E

[ ∫ t∧τn,m

s∧τn,m
a

1
2
n (Y n

r , Zn
r )dW n

r

p]
⪯ E

[(∫ t∧τn,m

s∧τn,m
∥bn(Y n

r , Zn
r )∥dr

)p]
+ E

[(∫ t∧τn,m

s∧τn,m
∥an(Y n

r , Zn
r )∥dr

) p
2
]

⪯
(
|t − s|p

+ |t − s|
p
2
)

⪯ |t − s|
p
2 .

(4.33)

Furthermore, we have

sup
n∈N

E
[
∥Y n

0 ∥
]

= sup
n∈N

∥xn∥ < ∞,
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because convergent sequences are bounded. Consequently, [19, Problem 2.4.11, Remark 2.4.13]
(i.e. Kolmogorov’s tightness criterion) imply that {(Y n

t∧τn,m )t≥0, n ∈ N} is tight in Σc. This
finishes the proof. □

The following lemma is a version of Lemma 3 for uniqueness in law instead of pathwise
uniqueness.

Lemma 10. Let ρ be an (Fo
t )t≥0-stopping time and suppose that P is a probability measure

on (Ω ,F) such that P(X0 = x) = P(Σ ) = 1 and

M f
t∧ρ = f (X t∧ρ) − f (X0) −

∫ t∧ρ

0
L f (Xs)ds, t ∈ R+, (4.34)

is a P-martingale for all f ∈ D. Then, P = Px on Fo
ρ .

Proof. The claim of this lemma is closely related to the concept of local uniqueness as
introduced in [16] and it can be proven with the strategy from [16, Theorem III.2.40]. To
each G ∈ F we can associate a (not necessarily unique) set G ′

∈ Fo
ρ ⊗ F such that

G ∩ {ρ < ∞} =
{
ω ∈ Ω : ρ(ω) < ∞, (ω, θρ(ω)ω) ∈ G ′

}
,

see [16, Lemma III.2.44]. Now, set

Q(G) ≜ P(G ∩ {ρ = ∞}) +

∫∫
1{ρ(ω)<∞}1G′ (ω,ω∗)Pω(ρ(ω))(dω∗)P(dω).

Due to [16, Lemma III.2.47], Q is a probability measure on (Ω ,F). For G ∈ Fo
0 we can

choose G ′
= G × Ω . Consequently, we have Q(X0 = x) = P(X0 = x) = 1. Set

Σ ∗ ≜
{
ω ∈ Ω : (ω(t ∧ ρ(ω)))t≥0 ∈ Σ

}
⊇ Σ

and note that

Σ ∩ {ρ < ∞} =
{
ω ∈ Ω : ρ(ω) < ∞, (ω, θρ(ω)ω) ∈ Σ ∗

× Σ
}
.

Consequently, we have

Q(Σ ) = P(Σ ∩ {ρ = ∞}) +

∫
1{ρ(ω)<∞}1Σ∗ (ω)Pω(ρ(ω))(Σ )P(dω)

= P(Σ ∩ {ρ = ∞}) + P(Σ ∗
∩ {ρ < ∞}) ≥ P(Σ ) = 1.

Fix a bounded (Fo
t )t≥0-stopping time ψ . For ω, α ∈ Ω and t ∈ R+ we set

z(ω, α)(t) ≜

{
ω(t), t < ρ(ω),
α(t − ρ(ω)), t ≥ ρ(ω),

and

V (ω, α) ≜

{(
ψ ∨ ρ − ρ

)
(z(ω, α)), α(0) = ω(ρ(ω)),

0, otherwise.

Due to [9, Theorem IV.103] the map V is Fo
ρ ⊗ F-measurable and V (ω, ·) is an (Fo

t )t≥0-
stopping time for all ω ∈ Ω . Furthermore, it is evident from the definition that

ψ(ω) ∨ ρ(ω) = ρ(ω) + V (ω, θρ(ω)ω)
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for ω ∈ Ω . We take f ∈ D and note that for ω ∈ {ρ < ψ}

M f
V (ω,θρ(ω)ω)(θρ(ω)ω) = M f

ψ(ω)−ρ(ω)(θρ(ω)ω) = M f
ψ(ω)(ω) − M f

ρ(ω)(ω).

Because (M f
t∧ρ)t≥0 is a P-martingale and ψ is bounded, the optional stopping theorem yields

that

E Q[
M f
ρ∧ψ

]
= E P[

M f
ρ∧ψ

]
= 0.

Therefore, we have

E Q[
M f
ψ

]
= E Q[

M f
ψ − M f

ρ∧ψ

]
= E Q[(

M f
ψ − M f

ρ

)
1{ρ<ψ}

]
= E Q[

M f
V (·,θρ )(θρ)1{ρ<ψ}

]
=

∫
E Pω(ρ(ω))

[
M f

V (ω,·)

]
1{ρ(ω)<ψ(ω)} P(dω) = 0,

again due to the optional stopping theorem (recall that V (ω, ·) is bounded and that (M f
t )t≥0 is

a Py-martingale for all y ∈ S). We conclude from [34, Proposition II.1.4] and the downwards
theorem ([35, Theorem II.51.1]) that (M f

t )t≥0 is a Q-martingale, which implies that Q solves
the MP (D,L,Σ , x). The uniqueness assumption yields that Q = Px . Because also for G ∈ Fo

ρ

we can choose G ′
= G × Ω , we obtain that

Px (G) = Q(G) = P(G).

This finishes the proof. □

Lemma 11. For all m ∈ N, all accumulation points of {(Y n
t∧τn,m , Zn

t )t≥0, n ∈ N} coincide with
P(x,i) on Fo

τm−1
.

Proof. We recall some continuity properties of functions on Ω . For ω ∈ Ω , define

J (ω) ≜
{
t > 0 : ω(t) ̸= ω(t−)

}
,

V (ω) ≜
{
k > 0 : τk(ω) < τk+(ω)

}
,

V ′(ω) ≜
{
u > 0 : ω(τu(ω)) ̸= ω(τu(ω)−) and |||ω(τu(ω)−)||| = u

}
,

which are countable sets, see [16, Lemma VI.2.10]. The map ω ↦→ ω(t) is continuous at
ω whenever t ̸∈ J (ω), see [11, Proposition 3.5.2], and the map ω ↦→ τm(ω) is continuous
at ω whenever m ̸∈ V (ω), see [11, Problem 13, p. 151] and [16, Proposition VI.2.11].
Furthermore, the map ω ↦→ ω(· ∧ τm(ω)) is continuous at ω whenever m ̸∈ V (ω) ∪ V ′(ω), see
[11, Problem 13, p. 151] and [16, Proposition VI.2.12].

Fix f ∈ D and let Qm be an accumulation point of {(Y n
t∧τn,m , Zn

t )t≥0, n ∈ N}. Without loss
of generality we assume that the law of (Y n

t∧τn,m , Zn
t )t≥0 converges weakly to Qm as n → ∞.

The set

F ≜
{
t > 0 : Qm(t ∈ V ∪ V ′) > 0

}
is countable, see the proof of [16, Proposition IX.1.17]. Thus, we find a tm ∈ [m − 1,m] such
that tm ̸∈ F . Set

U ≜
{
t ∈ R+ : Qm(

t ∈ J (X ·∧τtm )
)

= 0
}
.



Please cite this article as: D. Criens, Lyapunov criteria for the Feller–Dynkin property of martingale problems, Stochastic Processes and their
Applications (2019), https://doi.org/10.1016/j.spa.2019.07.016.

D. Criens / Stochastic Processes and their Applications xxx (xxxx) xxx 37

By [11, Lemma 3.7.7], the complement of U in R+ is countable. Thus, U is dense in R+.
Next, we explain that for all z ∈ R+ the map

ω ↦→ It∧τz (ω)(ω) ≜
∫ t∧τz (ω)

0
L f (ω(s))ds

is continuous at all continuity points of ω ↦→ τz(ω). Let (ωn)n∈N ⊂ Ω and ω ∈ Ω be such that
ωn → ω and τz(ωn) → τz(ω) as n → ∞. We deduce from [11, Proposition 3.5.2], the fact
that J (ω) is countable, the dominated convergence theorem and the continuity of x ↦→ L f (x),
which is due to the hypothesis that b and a are continuous, that⏐⏐It∧τz (ω)(ω) − It∧τz (ω)(ωn)

⏐⏐ → 0

as n → ∞. We obtain⏐⏐It∧τz (ω)(ω) − It∧τz (ωn )(ωn)
⏐⏐

≤
⏐⏐It∧τz (ω)(ω) − It∧τz (ω)(ωn)

⏐⏐ +
⏐⏐It∧τz (ω)(ωn) − It∧τz (ωn )(ωn)

⏐⏐
≤

⏐⏐It∧τz (ω)(ω) − It∧τz (ω)(ωn)
⏐⏐ +

L f


∞

⏐⏐t ∧ τz(ω) − t ∧ τz(ωn)
⏐⏐ → 0

as n → ∞, where we use that τz(ωn) → τz(ω) as n → ∞. It follows that for each t ∈ U there
exists a Qm-null set Nt such that the map

ω ↦→ M f
t∧τtm (ω)(ω) = f (ω(t ∧ τtm (ω))) − f (ω(0)) −

∫ t∧τtm (ω)

0
L f (ω(s))ds (4.35)

is continuous at all ω ̸∈ Nt . For a moment we fix t ∈ U . Suppose that f ∈ D is independent
of the Rd -coordinate (i.e. f ∈ C⋆) and let ( fn)n∈N be a sequence of functions fn ∈ Cn such
that (4.29) holds. Define (M f,n

t )t≥0 as in (4.34) with f replaced by fn and L replaced by Ln .
Furthermore, fix ω ̸∈ Nt and let (ωn)n∈N ⊂ Ω be a sequence such that ωn → ω as n → ∞.
Then, for any bounded continuous function v : Ω → R we have⏐⏐M f

t∧τtm (ω)(ω)v(ω) − M f,n
t∧τtm (ωn )(ωn)v(ωn)

⏐⏐
≤

⏐⏐M f
t∧τtm (ω)(ω)v(ω) − M f

t∧τtm (ωn )(ωn)v(ωn)
⏐⏐

+ ∥v∥∞

⏐⏐M f
t∧τtm (ωn )(ωn) − M f,n

t∧τtm (ωn )(ωn)
⏐⏐ → 0

(4.36)

as n → ∞, where the first term converges to zero because of the continuity of (4.35) at ω and
the second term converges to zero because⏐⏐M f

t∧τtm (ωn )(ωn) − M f,n
t∧τtm (ωn )(ωn)

⏐⏐ ≤ 2∥ f − fn∥∞ + t∥Q f − Qn fn∥∞ → 0

as n → ∞ by (4.29). Similarly, (4.36) holds if f ∈ D depends only on the Rd -coordinate
provided (M f,n

t )t≥0 is defined as in (4.34) with L replaced by Ln . In this case, the second term
in (4.36) converges to zero because⏐⏐M f

t∧τtm (ωn )(ωn) − M f,n
t∧τtm (ωn )(ωn)

⏐⏐
≤ const. t sup

|||y|||≤m

(
∥b(y) − bn(y)∥ + ∥a(y) − an(y)∥

)
→ 0

as n → ∞, due to (4.28). We conclude from [18, Theorem 3.27] that for all f ∈ D and t ∈ U

E Pn,m
[

M f,n
t∧τtm v

]
→ E Qm

[
M f

t∧τtm v
]

(4.37)

as n → ∞, where Pn,m denotes the law of (Y n
t∧τn,m , Zn

t )t≥0.



Please cite this article as: D. Criens, Lyapunov criteria for the Feller–Dynkin property of martingale problems, Stochastic Processes and their
Applications (2019), https://doi.org/10.1016/j.spa.2019.07.016.

38 D. Criens / Stochastic Processes and their Applications xxx (xxxx) xxx

Fix s < t . Because U is dense in R+, we find a sequence (zn)n∈N ⊂ U such that zn ↘ t as
n → ∞ and a sequence (un)n∈N ⊂ U such that un ↘ s as n → ∞. W.l.o.g. we can assume
that un ≤ zn for all n ∈ N. Let v : Ω → R be continuous, bounded and Fs-measurable. Using
the dominated convergence theorem, the right-continuity of (X t )t≥0 and (4.37), we obtain

E Qm [
M f

t∧τtm v
]

= lim
k→∞

E Qm [
M f

zk∧τtm
v
]

= lim
k→∞

lim
n→∞

E Pn,m [
M f,n

zk∧τtm
v
]
. (4.38)

The process (M f,n
q∧τtm

)q≥0 is a Pn,m-martingale. To see this, note that

τtm ◦ (Y n
s∧τn,m , Zn

s )s≥0 = τn,tm ,

see [16, Lemma III.2.43], and recall that martingales are stable under stopping. Consequently,
using again (4.37) and the dominated convergence theorem, we conclude from (4.38) that

E Qm [
M f

t∧τtm v
]

= lim
k→∞

lim
n→∞

E Pn,m [
M f,n

uk∧τtm
v
]

= E Qm [
M f

s∧τtm v
]
.

Recall that s < t and v were arbitrary.
We claim that this already implies that (M f

q∧τtm
)q≥0 is a Qm-martingale. Take g ∈ Cb(S)

and let (mk)k∈N ⊂ (0,∞) be such that mk ↘ 0 as k → ∞. We set

gk(q) ≜
1

mk

∫ q+mk

q
g(Xr )dr, k ∈ N, q ∈ R+,

and note that gk(q) : Ω → R is continuous, bounded and Fo
q+mk

-measurable and that gk(q) →

g(Xq ) as k → ∞. Thus, using an approximation argument, we can deduce from the fact
that E Qm [

M f
t∧τtm v

]
= E Qm [

M f
s∧τtm v

]
holds for all s < t and all continuous, bounded and

Fs-measurable v that

E Qm
[

M f
t∧τtm

l∏
i=1

gi (Xqi )
]

= E Qm
[

M f
s∧τtm

l∏
i=1

gi (Xqi )
]
,

for all s < t , l ∈ N, g1, . . . , gl ∈ Cb(S) and q1, . . . , ql ∈ [0, s]. Using a monotone class
argument and the downwards theorem shows that (M f

t∧τtm )t≥0 is a Qm-martingale.
Because ω ↦→ ω(0) is continuous, we have Qm(X0 = (x, i)) = 1 due to the continuous

mapping theorem. Due to [11, Problem 4.25] the set Σ = Σc × Σd is a closed set in the
product Skorokhod topology on Ω = D(R+,Rd )×Σd , and [11, Proposition 3.5.3] implies that
Σ is closed in Ω , too. Thus, by the Portmanteau theorem, we have Qm(Σ ) = 1. It follows from
Lemma 10 that Qm coincides with P(x,i) on Fo

τtm
and thus also on Fo

τm−1
, because tm ≥ m − 1

implies τtm ≥ τm−1. This completes the proof. □

Lemma 12. The sequence {(Y n
t , Zn

t )t≥0, n ∈ N} is tight.

Proof. We use again Fact 1. As in the proof of the previous lemma, let Pn,m be the law of
(Y n

t∧τn,m , Zn
t )t≥0 and Pn be the law of (Y n

t , Zn
t )t≥0. We fix t ∈ R+. Due to [11, Problem 13,

p. 151] and [13, Lemma 15.20], the set {τm−1 ≤ t} is closed. Moreover, {τm−1 ≤ t} ∈ Fo
τm−1

,
because τm−1 is an (Fo

t )t≥0-stopping time. We deduce from the Portmanteau theorem and
Lemma 11 that

lim sup
n→∞

Pn,m(τm−1 ≤ t) ≤ P(x,i)(τm−1 ≤ t). (4.39)

Fix ε > 0. Since P(x,i)(τm−1 ≤ t) ↘ 0 as m → ∞, we find an mo
∈ N≥2 such that

P(x,i)(τmo−1 ≤ t) ≤
ε
2 . (4.40)
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Because (Pn,mo
−1)n∈N is tight due to Lemma 9, we deduce from Fact 1 that there exists a

compact set C(t, ε) ⊆ S such that

lim sup
n→∞

Pn,mo
−1(X t ̸∈ C(t, ε)) ≤

ε
2 . (4.41)

In view of [16, Lemma III.2.43] we obtain

Pn(X t ̸∈ C(t, ε)) = Pn(X t ̸∈ C(t, ε), τmo−1 > t) + Pn(X t ̸∈ C(t, ε), τmo−1 ≤ t)

≤ Pn,mo
−1(X t ̸∈ C(t, ε)) + Pn,mo

(τmo−1 ≤ t).

From this, (4.39), (4.40) and (4.41), we deduce that

lim sup
n→∞

Pn(X t ̸∈ C(t, ε)) ≤ ε.

This proves that the sequence (Pn)n∈N satisfies (a) in Fact 1.
Next, we show that (Pn)n∈N satisfies (b) in Fact 1. Let ε, t and mo be as before. Because

(Pn,mo
−1)n∈N is tight due to Lemma 9 there exists a δ > 0 such that

lim sup
n→∞

Pn,mo
−1(w′((Xs)s≥0, δ, t) ≥ ε) ≤

ε
2 . (4.42)

Thus, similar as above, using (4.39), (4.40) and (4.42), we obtain

lim sup
n→∞

Pn(w′((Xs)s≥0, δ, t) ≥ ε)

≤ lim sup
n→∞

Pn,mo
−1(w′((Xs)s≥0, δ, t) ≥ ε) + lim sup

n→∞

Pn,mo
(τmo−1 ≤ t)

≤ ε.

In other words, (Pn)n∈N satisfies also (b) in Fact 1 and the proof is complete. □

We are in the position to complete the proof of Theorem 5. To wit, in view of [4, Corollary
to Theorem 5.1], because {(Y n

t , Zn
t )t≥0, n ∈ N} is tight by the previous lemma, for Pn

→ P(x,i)
weakly as n → ∞, it remains to show that any accumulation point Q of {(Y n

t , Zn
t )t≥0, n ∈ N}

coincides with P(x,i). It follows as in the proof of Lemma 11 that the process (M f
t )t≥0 is a

Q-martingale for all f ∈ D. Since ω ↦→ ω(0) is continuous, we also have Q(X0 = (x, i)) = 1
and, because Σ is closed in Ω , the Portmanteau theorem yields that Q(Σ ) = 1. It follows that
Q solves the MP (D,L,Σ , (x, i)). Due to the uniqueness assumption, Q = P(x,i) and the proof
is complete. □

4.3.6. Proof of Proposition 8
The existence is shown in the proof of Theorem 4. The uniqueness follows from a Yamada–

Watanabe argument, which we only sketch. Fix y = (x, i) ∈ S and suppose that Py and Q y

solve the MP (L, D,Σ , y). Using similar arguments as in the proof of [15, Theorem 8.3], we
obtain the following: We find a filtered probability space satisfying the usual hypothesis on
which we can realize Py as the law of the process (Yt , Z t )t≥0, where (Z t )t≥0 is a Markov chain
with Q-matrix Q and Z0 = i and

dYt = b(Yt , Z t )dt + a
1
2 (Yt , Z t )dWt , Y0 = x,

where (Wt )t≥0 is a Brownian motion. On the same probability space, we can realize Q y as the
law of (Vt , Z t )t≥0, where

dVt = b(Vt , Z t )dt + a
1
2 (Vt , Z t )dWt , V0 = x .
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We stress that the driving system (Z t ,Wt )t≥0 coincides for (Yt )t≥0 and (Vt )t≥0. Now, we claim
that Yt = Vt for all t ∈ R+ up to a null set. This immediately implies Q y = Py . We prove this
claim by induction. Let (τn)n∈N be the stopping times as defined in (4.25). We stress that a.s.
τn ↗ ∞ as n → ∞. On {t ≤ τ1} we have

Yt = x +

∫ t

0
b(Ys, i)ds +

∫ t

0
a

1
2 (Ys, i)dWs,

Vt = x +

∫ t

0
b(Vs, i)ds +

∫ t

0
a

1
2 (Vs, i)dWs .

The strong existence hypothesis and Lemma 3 imply that Yt = Vt for all t ≤ τ1 up to a null
set. Suppose that n ∈ N is such that Yt = Vt for all t ≤ τn up to a null set. Using classical
rules for time-changed stochastic integrals, we obtain that on {t ≤ τn+1 − τn} ∩ {Zτn = k}

Yt+τn = Yτn +

∫ t+τn

τn

b(Ys, k)ds +

∫ t+τn

τn

a
1
2 (Ys, k)dWs

= Yτn +

∫ t

0
b(Ys+τn , k)ds +

∫ t

0
a

1
2 (Ys+τn , k)dW n

s

and

Vt+τn = Vτn +

∫ t

0
b(Vs+τn , k)ds +

∫ t

0
a

1
2 (Vs+τn , k)dW n

s ,

where

W n
t ≜ Wt+τn − Wτn , t ∈ R+.

We conclude again from the strong existence hypothesis and Lemma 3 that Yt+τn = Vt+τn for
all t ≤ τn+1 − τn up to a null set. Consequently, Yt = Vt for all t ≤ τn+1 up to a null set and
our claim follows. □

4.3.7. Proof of Corollary 2
Due to [19, Theorems 5.5.15, 5.5.29] and [38, Corollary 11.1.5], for all i ∈ Sd the

family (P i
x )x∈Rd exists uniquely and is Cb-Feller. Using the local Hölder condition on the

diffusion coefficient, [34, Lemma IX.3.3, Proposition IX.3.2] and [18, Theorem 18.14] imply
that (P i

x )x∈Rd exists strongly. Consequently, (Px )x∈S exists uniquely due to Proposition 8. Now,
(Px )x∈S is strongly Markov and Cb-Feller due to Proposition 7 and the equivalence of (i) and
(ii) follows from Theorem 4, Remark 1 and [32, Theorem 8.4.1]. □

4.3.8. Proof of Corollary 3
Due to [19, Theorem 5.2.5], [18, Theorem 18.14] and [38, Corollary 11.1.5], for all i ∈ Sd

the family (P i
x )x∈Rd exists strongly and is Cb-Feller. Consequently, (Px )x∈S exists uniquely

due to Proposition 8. As in the proof of Proposition 4, we deduce from Theorem 1 that
(P i

x )x∈Rd is Feller–Dynkin for all i ∈ Sd . Now, (Px )x∈S is strongly Markov and Cb-Feller
due to Proposition 7 and Feller–Dynkin due to Theorem 4. □

4.3.9. Proof of Corollary 4
Due to [19, Theorem 5.2.5], [18, Theorem 18.14] and [38, Corollary 11.1.5], the family

(P i
x )x∈Rd exists strongly and is Cb-Feller. Moreover, as in the proof of Proposition 5, we

deduce from Theorem 2 that (P i
x )x∈Rd is not Feller–Dynkin. Finally, the claim follows from

Proposition 6. □



Please cite this article as: D. Criens, Lyapunov criteria for the Feller–Dynkin property of martingale problems, Stochastic Processes and their
Applications (2019), https://doi.org/10.1016/j.spa.2019.07.016.

D. Criens / Stochastic Processes and their Applications xxx (xxxx) xxx 41

Declaration of competing interest

No author associated with this paper has disclosed any potential or pertinent conflicts which
may be perceived to have impending conflict with this work. For full disclosure statements refer
to https://doi.org/10.1016/j.spa.2019.07.016.

Appendix A. An existence theorem for switching diffusions

In this appendix we give an existence theorem for switching diffusions with state-
independent switching. We pose ourselves in the setting of Section 4.3.

Theorem 6. Let b : S → Rd and a : S → Sd be continuous functions such that for all m ∈ R+

sup
∥x∥≤m

sup
i∈Sd

(
∥b(x, i)∥ + ∥a(x, i)∥

)
< ∞. (A.1)

Let Ki be given as in (4.12). Suppose that there exist two constants c, λ > 0, a function
v : R+ → (0,∞) and a twice continuously differentiable function V : Rd

→ (0,∞) such that
V (x) ≥ v(∥x∥) for all x ∈ Rd

: ∥x∥ ≥ λ, lim supn→∞ v(n) = ∞ and

Ki V (x) ≤ cV (x),

for all (x, i) ∈ S. Then, for any Borel probability measure η on S there exists a solution to the
MP (D,L,Σ , η).

Proof. Due to Proposition 9 in Appendix B, it suffices to show the claim for degenerated
initial laws, i.e. we assume that η({y}) = 1 for some y ∈ S.

Step 1. We first show the claim under the assumptions that b and a are continuous and
bounded, i.e. ∥b(x, i)∥ + ∥a(x, i)∥ ≤ c∗ for all (x, i) ∈ S. Our initial step is a standard
mollification argument. Let φ be the standard mollifier, i.e.

φ(x) ≜

{
θ exp

{
−(1 − ∥x∥

2)−1
}
, if ∥x∥ < 1,

0, otherwise,

where θ > 0 is a constant such that
∫
φ(x)dx = 1. Let σ be a root of a. For (x, i) ∈ S we set

bn(x, i) ≜ nd
∫

b(y, i)φ(n(x − y))dy,

σn(x, i) ≜ nd
∫
σ (y, i)φ(n(x − y))dy.

It is well-known that x ↦→ bn(x, i) and x ↦→ σn(x, i) are smooth for all i ∈ Sd and that
bn → b and σnσ

∗
n → a as n → ∞ uniformly on compact subsets of S. Furthermore, using

that
∫
φ(x)dx = 1, we obtain

∥bn(x, i)∥ ≤ nd
∫

∥b(y, i)∥φ(n(x − y))dy =

∫
∥b(x − n−1z, i)∥φ(z)dz ≤ c∗

and, in the same manner, ∥σn(x, i)∥ ≤ c∗ for all (x, i) ∈ S. Because smooth functions are
locally Lipschitz continuous, we deduce from [36, Theorem 18.16], [18, Theorem 18.14] and
Proposition 8 that for each n ∈ N there exists a solution Pn to the MP (D,Ln,Σ , y), where Ln
is defined as in (4.3) with b replaced by bn and a replaced by an . If we show that the sequence
(Pn)n∈N is tight and that any accumulation point of it solves the MP (D,L,Σ , y) the claim
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of the theorem follows. That any accumulation point of (Pn)n∈N solves the MP (D,L,Σ , y)
can be shown as in the proof of Theorem 5 and that (Pn)n∈N is tight follows as in the proof
of Lemma 9. Thus, the claim holds under the assumptions that b and a are continuous and
bounded.

Step 2. We now tackle the general case. Let ψn
: Rd

→ [0, 1] be a sequence of cutoff
functions, i.e. non-negative smooth functions with compact support such that ψn(x) = 1 for
x ∈ Rd

: ∥x∥ ≤ n. We set

bn(x, i) ≜ ψn(x)b(x, i), an(x, i) ≜ ψn(x)a(x, i), (x, i) ∈ S.

The functions bn and an are continuous and bounded. Therefore, due to our first step, for each
n ∈ N there exist a solution Pn to the MP (D,Ln,Σ , y). We write (X t )t≥0 = (X1

t , X2
t )t≥0 and

set

τm ≜ inf
(
t ∈ R+ : ∥X1

t ∥ ≥ m or ∥X1
t−∥ ≥ m

)
, m ∈ R+.

Furthermore, we denote Pn,m ≜ Pn
◦ (X1

t∧τm , X2
t )−1

t≥0. It follows as in the proof of Lemma 9
that the sequence (Pn,m)n∈N is tight for every m ∈ R+. We note that for all m ∈ R+

sup
|||x |||≤m

(
∥b(x) − bn(x)∥ + ∥a(x) − an(x)∥

)
≤ 2 sup

|||x |||≤m

(
∥b(x)∥ + ∥a(x)∥

)
sup

∥z∥≤m
|1 − ψn(z)| → 0

as n → ∞. Thus, recalling the proof of Lemma 12 and Step 1 reveal that the existence of a
solution to the MP (D,L,Σ , y) follows once we prove that for each T > 0 and ε > 0 we find
an m ∈ R+ such that

lim sup
n→∞

Pn(τm ≤ T ) ≤ ε. (A.2)

Define Ki,n as Ki with b and a replaced by bn and an . We have

Ki,n V (x) = ψn(x)Ki V (x) ≤ cψn(x)V (x) ≤ cV (x)

for all (x, i) ∈ S and n ∈ N. By Lemma 1 the process

Ut ≜ e−c(t∧τm )V (X1
t∧τm ) +

∫ t∧τm

0
e−cs(cV (X1

s ) − KX2
s ,n V (X1

s )
)
ds, t ∈ R+,

is a local Pn-martingale. Furthermore, because Ut ≥ e−c(t∧τm )V (X1
t∧τm ) ≥ 0 for all t ∈ R+, the

process (Ut )t≥0 is a non-negative Pn-supermartingale. We deduce that for all m ≥ λ ∨ ∥x∥

Pn(τm ≤ T )e−cT v(m) = En
[
1{τm≤T }e−cT v

(X1
τm

)]
≤ En

[
1{τm≤T }e−c(T ∧τm )V

(
X1

T ∧τm

)]
≤ En

[
e−c(T ∧τm )V

(
X1

T ∧τm

)]
≤ En

[
UT

]
≤ V (x),

where y = (x, i). The assumption lim supm→∞ v(m) = ∞ yields that we find an m ≥ λ such
that (A.2) holds. This completes the proof. □

Remark 7.
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(i) On one hand, the previous existence result does not require any uniqueness or strong
existence assumption for the SDEs for the fixed environments. On the other hand, it
does not provide a uniqueness statement.

(ii) Using V (x) = 1 + ∥x∥
2 yields that the growth condition

2⟨x, b(x, k)⟩ + trace a(x, k) ≤ c
(
1 + ∥x∥

2), for all (x, k) ∈ S,

implies the existence of a solution to the MP (D,L,Σ , η) whenever the coefficients b
and a are continuous and satisfy (A.1).

Appendix B. The role of initial laws

For the setting of Example 1 it is known that the existence of (unique) solutions for all
degenerated initial laws implies the existence of (unique) solutions for all initial laws, see
[17, Propositions 1 and 2]. The following proposition shows that these observations also hold
in our setting. The proof is close to the diffusion case and we only sketch it.

Proposition 9. Suppose that D is countable, that D ⊆ Cb(S) and that L(D) ⊆ Bloc(S).
Furthermore, let η be a Borel probability measure on S. If for all y ∈ S the MP (D,L,Σ , y)
has a solution Py , then also the MP (D,L,Σ , η) has a solution. Moreover, if the family (Py)y∈S
is unique, then y ↦→ Py(A) is Borel for all A ∈ F and

∫
Pyη(dy) is the unique solution to the

MP (D,L,Σ , η).

Sketch of Proof. We assume that the MP (D,L,Σ , y) has a solution for all y ∈ S. Let η be a
Borel probability measure on S and let P denote the set of all solutions to the MP (D,L,Σ , y)
for all y ∈ S. We consider P as a subspace of the Polish space P of probability measures
on (Ω ,F) equipped with the topology of convergence in distribution. Let (Kn)n∈N ⊂ S be a
sequence of compact sets such that Kn ⊂ int(Kn+1) and

⋃
n∈N Kn = S. For all n ∈ N define

τn ≜ inf(t ∈ R+ : X t ̸∈ int(Kn) or X t− ̸∈ int(Kn)) and for f ∈ D denote the process (2.2)
by (M f

t )t≥0. Because we assume that L(D) ⊆ Bloc(S), a probability measure P solves the MP
(D,L,Σ , η) if and only if P(Σ ) = 1, P ◦ X−1

0 = η and for all f ∈ D and n ∈ N the stopped
process (M f

t∧τn )t≥0 is a P-martingale for the filtration (Fo
t )t≥0. Because D is assumed to be

countable, the argument outlined in [38, Exercise 6.7.4] shows that P is a Borel subset of P.
Thus, P is a Borel space in the sense of [18, p. 456]. Let Φ : P → S be such that Φ(P)
is the starting point associated to P ∈ P . We note that Φ is continuous and that its graph
G ≜

{
(P,Φ(P)) : P ∈ P

}
is a Borel subset of P× S. We have

⋃
P∈P

{
s ∈ S : s = Φ(P)

}
= S,

by the assumption that there exist solutions for all degenerated initial laws. Using the section
theorem [18, Theorem A.1.8] we see that there exists a Borel map x ↦→ Px and a η-null set
N ∈ B(S) such that (Px , x) ∈ G for all x ̸∈ N . By the definition of G, for all x ̸∈ N the
probability measure Px solves the MP (D,L,Σ , x). It follows that the probability measure∫

Pxη(dx) solves the MP (D,L,Σ , η).
Assume now that Px is the unique solution to the MP (D,L,Σ , x) for all x ∈ S. Using

Kuratovski’s theorem as outlined in [38, Exercise 6.7.4] shows that x ↦→ Px is Borel. Let P
be a solution to the MP (D,L,Σ , η). Arguing as in the proof of [19, Lemma 5.4.19] shows
that there exists a null set N ∈ Fo

0 such that P(·|Fo
0 )(ω) solves the MP (D,L,Σ , X0(ω)) for

all ω ̸∈ N . By the uniqueness assumption, this yields that P-a.s. PX0 = P(·|Fo
0 ). Using this

observation together with the tower rule shows that P =
∫

Pxη(dx). □

It is often the case that the input data of a martingale problem can be reduced such that the
prerequisites of Proposition 9 are met, see Proposition 3 and Example 3.
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