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It is well known how to apply a martingale argument to obtain the Laplace transform of the hitting time 

of zero (say) for certain processes starting at a positive level and being skip-free downwards. These 

processes have stationary and independent increments. In the present paper the method is extended to 

a more general class of processes the increments of which may depend both on time and past history. 

As a result a generalized Laplace transform is obtained which can be used to derive sharp bounds for 

the mean and the variance of the hitting time. The bounds also solve the control problem of how to 
minimize or maximize the expected time to reach zero. 
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1. Introduction 

Consider a process X, = S, - ct + u W, where S is a compound Poisson process with 

Poisson parameter A which is disturbed by an independent standard Wiener process 

W. This is the point of view of Dufresne and Gerber (1991). One can also look on 

X as a diffusion disturbed by jumps. This is the point of view of Ethier and Kurtz 

(1986, Section 4.10). Here u and A may be zero so that the jump term or the diffusion 

term may vanish. Thus x+X can describe (i) the waiting time of an M/G/ 1 queue, 

(ii) the content of a dam, (iii) the level of a storage process, and (iv) -(x+X) the 

surplus of an insurance company: at time t initiated by a level x (resp. -x in case 

(iv)) at time t = 0. Now let 

~:=7,:=inf{t>O,x+X,=O} wherex>O. 

Then 7 may be the busy period and the wet period for an initial value x or the time 

when the surplus reaches the level u + x for an initial surplus u. Let p and cp denote 
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the expectation and the Laplace transform of the jump size, respectively. Then it is 

known that if c - Ap > 0, 

E[r]=X/(C-h~) (1.1) 

E[exp{-$(n)r}] =exp{-ax} (1.2) 

where I,!J(cY):= h[cp(cw) - l]+ccu +$rr’cw’ is invertible and hence exp{-$l’(<)x} is 

the Laplace transform of T; cf. Williams (1979, p. 85), Prabhu (1980, Theorem 5, 

p. 79), Gerber (1990), Kella and Whitt (1991, Lemma 4.2). Now consider the case 

that the parameters c, A, p, (T vary in the course of time. For example, the arrival 

rate (exploration or claim rate) and the service rate (consumption or premium rate) 

may depend on time and queue length (storage or surplus level); cf. Soner (1985), 

Asmussen and Schock Petersen (1988). One can ask whether the formula (1.1) still 

holds approximately if the changes of parameters are only slight. This would be a 

sort of a perturbation result. In this paper a positive answer is given under a 

boundedness condition on the second moments of the increments. Indeed 

(1.3) 

where m and M are the minimal and maximal values of c - hp. These are inequalities 

in the sense of Dubins and Savage (1965) and show that in order to minimize the 

expectation of r one cannot do better than choosing those parameters all the time 

which maximize the value of c-Ap. The inequalities (1.3) are proved by Heath, 

Orey, Pestien and Sudderth (1987) for the case of a controlled diffusion process 

(i.e., A = 0 and hence S, = 0). Here, a proof is given which provides the reduction 

to a martingale problem, unifies the proofs for the upper and lower bound and 

allows for jumps away from the goal zero. Moreover, a generalization of (1.2) is 

obtained which can be used to find bounds also for the variance of 7. In a final 

section we also consider a continuous-time random walk on the integer lattice which 

is skip-free downwards and the embedded Markov chain of the M/G/l queue. 

2. The model 

The underlying process will be a jump-diffusion process X, i.e. 

Xr=I,:u\dW-J,: 
c, ds+ C (X,-X,_)=: Y,+S, (2.1) ,,‘_ (._, 

where W is a standard Wiener process, hence Y is an It6 process and S is a jump 

process with positive jumps S, - S, 2 0. There S is given by a jump rate A, 2 0, i.e., 

A, dr+o(dt) is the probability of a jump in (1, t+dt] given the past, and by the 

jump distribution Q,, i.e., Q, is the distribution of X, -X,_ given there is a jump 

at time t. 
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For the approach of the present paper however, it is more convenient to start 

with the assumption that X is the solution of a martingale problem rather than 

starting with (2.1) directly. Since we are interested in Laplace transforms we can 

restrict 

To the 

attention to the small class of test functions 

f”(X):=e IVY, xE[W, ~130. 

It6 process there belongs the generator 

D(c,cr),f‘(x):=-~~f’(x)+lcr’,f“‘(x) forcE&!, 030, 

where.f’..f“’ denote the derivatives of,f: to the jump process there belongs the generato 

WA, Q).f(x):= A f(x+4’)Q(dJ’) -.f(-~1 I 
Hence we obtain for our test functions 

D(C. cJ),f‘“(S) = [Ccu-t $r’cuz],fCY(s) . 

0(/r, Q).f”(s) =i[y&a) - 1 ].f”(x) , 

where ‘p. is the Laplace transform of Q, and finally for the generator of the 

jump-diffusion process 

U”‘“(x):= {NA,, Q,)+D(c,, cr,)If”(x) =e “‘+,(a) 

where 

$,(cu):=A,[cp,(cu)-l]+c,a+$cr~~~~ withcp,:=qo,. 

Further set 

F,(a):= (CI,(Q) ds. 

Assumption. Let there be given a probability space (0, 9, P) endowed with a 

right-continuous filtration 5 = { 9,, t SO}, a progressively measurable real process 

{c,}, two progressively measurable non-negative real processes {a,} and {A,} such that 

P ‘(/?,,+Ic,I+af)ds<a =I forO<t<co 1 
as well as a progressively measurable process {Q,} with values in the space of 

probability measures on [0, CO). We assume that X = {X,} is an adapted process 

with right-continuous trajectories which are skip-free downwards and with initial 

condition X,, = 0 such that for all a 2 0, 

.f”(X,)- ‘L,f”(X,)ds=exp{-crX,}- 
I 

exp{-cuX,}$,(a) ds, ts0, 
0 I’ I, 

is a local martingale with respect to IF. Here {(c,, u,, A,, Q,),) t 3 0} are called the 

local characteristics of X. 
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3. Some martingales 

Lemma 3.1. For all (Y b 0, My := exp{-cYX, - q,(o)} is a local martingale. 

The lemma is known at least for special cases. For an It6 process cf. Karlin and 

Taylor (1881, p. 166), Rogers and Williams (1987, p. 77). 

Proof. Using our Assumption, this is a direct consequence of Etheir and Kurtz 

(1986, Corollary 3.3, p. 66). There the assumption inf,. , exp{-ax,} > 0 is made. It 

is satisfied if X has only finitely many jumps in compact intervals, a harmless 

condition with respect to applications. However, in our special case we even don’t 

need that assumption because dividing exp{-aX,}$Cl,(cr) by exp{-crX,} causes no 

troubles. 0 

Now fix some x > 0 which will be our initial point and define 

r:=r,:=inf{tZ-O;x+X,<O} 

which is a stopping time with respect to [F because of the right-continuity of IF (cf. 

Ethier and Kurtz, 1986, p. 54). Since X is skip-free downwards we know that 

x+X,=0 on{r<00}. (3.1) 

Lemma 3.2. Let Q be a probability measure on [0, ~0) with Laplace transform cp, jirst 

and second moments p and y’ and 

R(cr):=/~:d~eP’{,~dsQ[(s,~)]. 

Then 

cp(a)=1-/_MZ+cu2R(a) 

where for s > 0, 

0 < [e-“‘ -1+scu]Q[(s,~0)]~a~R(cu)%r*R(O)=~y~~y~. 0 

The lemma is well known and elementary. Now define t_~, as the first moment of 

0,. 

Proposition 3.3. For all cx > 0: 

(a) MC’,‘:= {My,,, t 2 0) is a supermartingale; 

(b) if c, -Alp, 2 0 for all t < T, then M”,’ is a martingale. 

Proof. By Lemma 3.1 and the optional sampling theorem, M”” is again a local 

martingale (cf. Ethier and Kurtz, 1986, p. 64). Since M”,’ is non-negative, part (a) 

follows from Lemma 3.1 and Fatou’s lemma (cf. Rogers and Williams, 1987, 14.3, 

p. 22). If c, - h,~, 2 0, then, by Lemma 3.2, I,!I, 2 0. Now, part (b) follows from 
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In this section a generalization of (1.2) will be proved upon considering the general- 

ized Laplace transform 

E [exp{ [,: +,(a) dsj] = E[exp{-‘J’T(a.)Il. 

Theorem 4.1. For all CY > 0: 

(a) E[exp{-q7(a)}; ~<00]Se-“‘; 

(b) if either 

(i) inf,, .{c, - h,~,} > 0, or 

(ii) c, - A,P, 2 0 for all t < T and inf,. T{A,Q,[(~, a)]+laf} > 0 for some s > 0, 

then E[exp{-!J’7(cu)}]=e~‘r’. 

Proof. From Proposition 3.3(a) and Fatou’s lemma one obtains part (a) according 

to 

E[exp{-qy,(cu)}; 5-<Q3] 

5 E[lim inf,,, exp{-o(x+X,..)- SVln7(~)}] 

< tim infe-“‘E[M:“‘] 4 ee”“E[MR,‘] = e-“‘. 

From Proposition 3.3(b) and the dominated convergence theorem combined with 

(3.2) one obtains 1 =lim,,, E[M;‘.‘] = E[lim, MyA,]. Under the conditions (i) or 

(ii) one has F7(cy)=~ on {~=a} and thus by (3.1), lim,MyAr=exp{ax-!J”,(cr)}. 

Now part (b) follows. 0 

Define yf as the second moment of Q, and 

IM=infj(c,-~,~~,)(o).O~t<s(w),w~~~. M =sup{(c, -Arp,)(W), . . .I, 

k=inf{(A,yf+a;?)(w),Os t<T(w),mEfl}, K =sup{(A,yf+c~f)(w), . . .}. 

Corollary 4.2. (a) If M < ~0 and K < CO, then E [ T] 2 xl M +. 

(b) Zf m>O, then E[T]CX/WI. 

(c) Ifm>O,M<w,K<co, thenE[(i(c,-A,p.,)ds]=x. 

Proof. In view of Lemma 3.2 we have 

$,(CY)(W)sMMcu++Kcu’ fOrC?>O, ost<T(~~), wEti. (4.1) 

For a proof of (a) choose E such that M + E > 0. From Theorem 4.1(a) we conclude 

that 

Upon dividing by LY and taking the limit as LY + 0 we obtain the assertion of (a). 
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Under the assumption of (b), now Theorem 4.1(b) applies and we obtain 

3 lim infl ,F[ 1 - ep”‘T”] > E lim infl { 1 - em”‘T’r 

cy a 

hence x 2 mE [T] which proves (b). 

In order to prove (c) we want to apply the dominated convergence theorem rather 

than Fatou’s lemma in the preceding argument. This can be done since now, by (4.1), 

(1 -exp{-p’,(u)})/a G ~‘,(Q)/cY 5 T(M+$K), 

0~ cy G 1 and r is integrable by part (b). Further, since again by (4.1) +,(~)/a G 

M +iK, we conclude that 

I 
7 hm, FT(a)/a = p’:(O) = I//:(O)ds= ‘(c,-h,/_q)ds. 

I 
(4.2) 

0 0 

Now x = E[exp{-q’,(O)}*‘:(O)] = E[*‘:(O)] which proves part (c). 0 

Remark 4.3. In Corollary 4.2(a) one cannot dispense with the assumption K <OS. 

Heath, Orey, Prestien and Sudderth (1987) constructed a diffusion process for any 

F>O where even M=O but E[T]<F and of course K =a. 

Corollary 4.4. Suppose that m > 0, ,2/c ‘~3, Kc CXJ. Then: 

(a) Var 
[I 

T(c,-h\~,)d.+E T(h,y:+rr:)ds ; 0 [1 0 1 
(b) kM-‘x-(m ’ - Mm’)x2 s Var[ r] I=, Kmm3x + (m -’ - Mm’)x2. 

Proof. We will use the relation e ’ -l+z=~~~n(z) whereO~n(z)<l forzzoand 

n(z)+1 as z+O. Then, by use of Theorem 4.1(b) and Corollary 4.2(c), 

+ E[{~V;(~)/~}~~(~.~(CY))I 

=cY -‘E[exp{-pT(cu)}- 1+ q’r(cu)] 

=cY -‘[em”‘-l+ax]+E [I ‘~~‘{(jr,(U)--(C,--h,/*,)}dS . 0 1 
Now, by Lemma 3.2, cum’{$,(a)-a(c, -~,~,)}~$(h,y~+cu~) and we conclude from 

the monotone convergence theorem that 
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[ 
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5.2. Piecewise-deterministic processes (rr, - 0) 

Let A (1, x) be a measurable function from [0, ~0) x R into [0, CO); let q be a transition 

probability from [0, ~0) x R into R such that q( .I t, x) is concentrated on [x, ~0) and 

let h(t, x) be a continuous function on [0, m) x R satisfying the global Lipschitz 

condition of the theorem of Picard-LindelGf. Suppose that X is a piecewise- 

deterministic Markov process living on IT% with local characteristics (b, A, q) in the 

sense of Davis (1984), i.e., X has jumps determined by (A, q) and in between the 

jumps the trajectories behave according to the differential equation (d/dr)[( t) = 

h( t, c(t)). It is allowed that the local characteristics contain explicit time variation, 

since time may be incorporated in the state. As a consequence we know (Davis, 

1984, Theorem 5.5) 

.f(X,) -.f(X,) - J’i b(s, X,).f’(X,)+A(s, X,1 C.f(?~)-.f(X,)Iq(d??ls, X,1 
0 J 

is a local martingale for all f’ in the domain 2 of the extended generator. It is easy 

to see that the functions ,f” defined in Section 2 are members of :. (In order to 

prove the local integrability condition one can take {T,, A a,,} as localizing sequence 

where 7,, is defined as in Sections 1 and 3 and LT,, is the nth jump time.) Hence our 

assumption of Section 2 is satisfied if we take V, = 0 and 

--c, = b( f, X,), A, = A(4 X,), Q,[dy]=q(x+dl/t,X,) wherex=X,. 

Non-Markovian piecewise-deterministic processes are apparently not considered as 

yet in the literature. For the case h = 0 one has just a pure jump process. 

5.3. Superposition of processes 

The most important case where jump-diffusion processes arise stems from a superpo- 

sition of a jump process or piecewise-deterministic process with an independent 

diffusion process. Such a superposition can be carried through for two independent 

general jump-diffusion processes, however. It is based on the following product rule 

for independent martingales which seems to be well known (cf. Ethier and Kurtz, 

1986, Section 4.10, p. 253): 

Lemma 5.1. Suppose that Z,, -j:, Y,, ds, t 3 0, are right conrinuous (local) martingales 

wzith respect to the filtrations IF, ,for i= I, 2 such that .F,,, i= 1, 2, arc independent,for all 

t 30. Then, with respect to IF, v F, := (.F,, v .Fzo t>Oi, 

Z,,Zz,- ‘[Y,,Z,,+Z,,Y,,lds, 120, 
J 

is a (local) martingale. 0 
0 

Now let there be given two independent jump-diffusion processes X, and X, 

satisfying the assumption of Section 2. The quantities referring to X, are marked 

by an index i. Choose 

Z,, := exp{-OX,,} and Y,, := exp{-ax,,}@,,(a) 



M. Schd / On hitting times 139 

then one obtains 

z,,z,,=exp{-cu(X,,+X,,)} 

and 

Y,,Z,,+Z,,Y,,=~~~{-~(X,,+X,,)}[~,,((Y)+~~,(~)I 

where 

Now set Q,:=(A,,+A,,)~‘[A,,Q,,+A,,Q,,] on {(A,,+Az,)>O} and Q,:=&, else- 

where where 6,, is the dirac measure on 0, then we obtain from Lemma 5.1: 

Proposition 5.2. If X, and X, are two independent jump-d@sion processes sati.$~Gq 

the assumption of Section 2 then X, + Xz is again such a process with local characteristics 

c, := c,, + CL,, 2. u, .= a;, + a;, ) A,:=A,,+A?, and Q, as above. 0 

In the special case where cz, = 0, o-~, = 0, A,, = 0, i.e., X, is an It8 process and X2 

is a jump process, it follows for X, +X, that c,, U, depend only on the past %,, of 

X, and A2,, Q2, depend only on the past .Fzr of X,. The case where all local 

characteristics of X,+X, depend on the whole past s,, v .F?, of X,+X2 is also 

interesting. Such Markov processes were constructed by Ethier and Kurtz (1986, 

proof of 4.10.2) and Stroock (1975, Theorem 2.1). 

5.4. Continuous-time random walks on the integer lattice 

The techniques of Sections 3,4 also apply to processes with values in the set Z of 

integers; though the results don’t apply directly. Such processes are naturally pure 

jump processes and are skip-free downwards if A’, - X,- + 1 has values in the set 

&:= (0) u PV of non-negative integers. In that case it is usual to work with generating 

functions rather than with Laplace transforms. Now consider a Markovian jump 

process given by (A, 4) as in Section 5.2, but now y( j t, x) is concentrated on 

{x - 1, x, x + 1,. .}. Or more generally, consider a (not necessarily Markovian) jump 

process X with state space Z and right-continuous trajectories on (0, 9, P) endowed 

with a right-continuous filtration F with local characteristics {A,, Q,, t 2 0) where 

{A,} is an adapted non-negative process and {Q,} is an adapted process with values 

in the space of probability measures on N,,. Let p,(p), 0~ p c 1, be the generating 

function of Q,, p, its mean and yf the corresponding second momentum around 

one, i.e., y:=f(y-l)‘Q,(dy). Then p ‘p,(p) is the conditional expectation of 
pxr s, given the past 9, and that there is a jump at time t. Assume now that for 

all Ospsl, 
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is a local martingale. We want to give now the results without proof and will only 

consider equalities and omit the inequalities for the hitting time 

7 := 7, := inf{ t 2 0, x + X, = 0} for some fixed x~ N. 

Theorem 5.3. If either 

(i) inf, .h,(l -p,)>O, or 

(ii) A,(l-~,)~O~orallt~~anr( inf, TA,Q,[{1,2 ,... }]>O; 

then E[exp{-l,‘j A,[p-‘(p\(p) - I] ds}] = p‘. 0 

Corollary 5.4. !f.fiw some E>O. A,( I -,LL,)>E andA,;lf <c’, Odt<s, then 

T 
E h,(l-p,) ds =x and Var 

0 I 
A.(,-.,)d,]=E[I,:“,~id\] 0 

5.5. Discrete-time random walks on the integer lattice: the M/G/l queue 

Let us consider the embedded queue length process X,,, n EN,,, where X,, denotes 

the queue size for an M/G/l queue immediately after the nth departure of a 

customer. At time 0, the queue length is x t N and the service of a customer begins. 

Let T denote the number of customers served during a busy period initiated by x 

customers. Then 7 may be viewed as the total number of customers served during 

x independent (complete) busy periods. Up to the discrete time T, the queue length 

process coincides with a discrete-time random walk on Z or F$,, 

X,,=[X,,_,-l]‘-tN,,, rIEf+J, 

where N,, is the number of arrivals during the nth service time. Let Q denote the 

distribution of IV,,. Now we want to allow that Q depends on time and past. Such 

a situation may arise when the queue is controlled by a past dependent control via 

the arrival rate or the service rate. Given transition probabilities Q,, from KJi;I” into 

N,,, we construct a probability measure P, by Ionescu Tulcea’s theorem such that 

P,[X,,= x] = 1, 

P,[X,,, I =[X-ll’+vlX,,. . ,&I= Q,~[~J~IX,,. . , X,1. 

Let cp,,(p, w), 0s /3 c 1, w E 0, denote the generating function of Q,,[. I...](w), 

p,,, yf, its mean and variance. Note the slightly different definition of y:, in Sections 

4 and 5.4. Now set 

Then it is easily shown that E,[Mt +, 1 X,,, . . , X,,] = Mf;: on {X,, > 0). Hence M!“:= 

MfA7 defines a martingale where 

7 := inf{ n 3 0, X,, = 0). 
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Based on Mpi, Kennedy (1976) succeeded in constructing a martingale beyond time 

T. As Section 5.4 we will give the results without proof and only for the equalities. 

Theorem 5.5. [f either 

(i) inf,,. r l-p,,>O, or 

(ii) 1 -p,> 3 0 for all n < 7 and inf,,. i Q,?[{ 1,2, . . .}I > 0; 

then Ex[rICc: p/(p,(p)]=/3’,O~P”- 1. 0 

Corollary 5.6. If for some E > 0: 1 -p,, z F and y; G E ’ ,for all n < r, then 

E[;&W] =x and V~r[:,:(l-~..)]=F[~~,y:] 0 

Let us only give the following relation for the proof of the variance formula, which 

follows from Taylor’s theorem. For O~F,,:=(P,,(P)/P-~,O~~<~E~,,,E= 

(F,,, . . , F,_,) one has 

where 

n (lfc,,) ‘-I+ c c,,=; c G&,,%,,,~,(e)+~ c &?!Z,,,(&), 
o- ,I’ 7 o- II T 0. ,,,.,1. ?- ,I- ,1. T 

0s rl,,,,,,(f)s 1 = lim TI,,,.,,(F) 
l -0 

For the classical M/G/ 1 queue, Prahu (1980, Theorem 12, p. 58) and in a different 

form Cohen (1969, p. 2.5-252) give the generating function of 7 and its mean. 
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