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Abstract 

Distributions of sample quantiles of measurable stochastic processes are important for the 
purpose of rational pricing of "look-back" options. In this paper we compute the exact tail 
behavior of the sample quantile distribution for a large class of infinitely divisible stochastic 
processes with heavy tails. 
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1. Introduction 

Let ( ( 2 , J , P )  and (T,Y,m) be probabili ty spaces. For a general measurable real 

valued stochastic process Y = (Y(co, t), t E T) on f2 × T, we define for 0~<p < 1 the 

random variable 

Qt,(Y)=inf{xER: fl{y(,)<.~im(dt)>p}. (I.1) 

Here  IA denotes the indicator function o f  the event A. Qp(Y)  is called the sample 

p-quantile of  Y on T. By definition, Y spends at least 100p% of  its "t ime" at or 

below Qp(Y), and at least 100(1 - p )% of  its "t ime" at or above Qo(Y). QI/2(Y) 
is the median level of  Y over T. These variables were introduced in the realm of  

mathematical finance by Miura (1992). In Akahori  (1995) and Dassios (1995a), the 

law of  Qp(Y) was determined for Y a Brownian motion with drift. Yor (1995) and 

Embrechts et al. (1995) give a more systematic treatment of  the Brownian case. In 
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particular, Dassios' result for Y(t) = #t + aB(t), 0~<t~< 1 with /~ C E, a > 0 and B 

the standard Brownian motion on [0, 1] says that 

Qp(Y) ~ s u p Y ( s ) +  inf Y'(s), (1.2) 
s<~p s<~l--p 

where Y~ is an independent copy of Y. From this result, an explicit expression for the 
law of Qp(Y) follows. Very recently Dassios (1995b) has extended (1.2) to general 
Lrvy processes. Unfortunately, it is still not clear in general how to deduce the dis- 
tribution of the sample quantile. To the best of  our knowledge, no other (non-trivial) 
examples of processes are known for which such an explicit result has been established. 
In the present paper we shall find the asymptotic behavior of  P(Qp(Y) > 2) for a 
large class of  infinitely divisible (i.d.) stochastic processes, some of which can be of 
interest as financial models. Even though the exact distribution of the sample quantiles 
is yet unknown for these processes, our results cover "the extreme oscillations" of  
the sample quantiles, and those are often relevant as measures of risk associated with 
certain path-dependent derivative financial instruments. Notice that even though setting 

p = 1 in (1. l)  does not produce a meaningful object, all the discussion and the re- 
suits of  this paper hold for Q1(Y) interpreted as limp~l Qp(Y)= ess supterY(t). The 
results corresponding to this case are known; see for instance Rosinski and Samorod- 
nitsky (1993) 

The processes under consideration are real valued infinitely divisible stochastic pro- 
cesses given by their integral representation 

X(t) = l f(t,s)M(ds), t E T, (1.3) 
,IS 

where (S,~¢) is a measurable space and M is an i.d. random measure on (S,~¢) with 
Lrvy measure F. That is, F is a a-finite measure on (S × E , d  × M), where M is 
the Borel a-field on E. The random measure M is a stochastic process of  the type 

(M(A),A E d o ) ,  where 

d 0 = { A c d :  2(A):=-fAfRmin(1,x2)F(ds, dx) < ~  ) ,  

such that M is independently scattered (i.e. for any disjoint ~¢0 sets A1 ..... An, M(A1 ), 
.... M(A,) are independent), a-additive (i.e. for any disjoint ~¢0 sets A1,A2 .... such 
that U~=zAi E do we have M(U~IAi ) = E~=IM(Ai) a.s.) and for every A E do, M(A) 
is a real i.d. random variable with 

E e x p ( i O M ( A ) ) : e x p ~ l l ( e i ° x - l - i O t ( x ) ) F ( d s ' d x ) )  ,I. (1.4) 

where t(x) = x/(1 +x2). 
We refer the reader to Rajput and Rosinski (1989) for more details on i.d. random 

measures and on conditions on the kernel f( t ,s)  in (1.3) ensuring that the stochastic 
integral is well defined. One should note at this point that the results of  the paper remain 
valid if the random measure M and, consequently, the stochastic process {X(t), t ¢ T} 
have a Gaussian component, for it introduces probability tails of  a smaller order than 
the heavy tails we are considering. 
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Our main result is Theorem 2.1. As a special case of the latter theorem, we give the 

tail behavior of the sample quantiles in the case of s-stable processes. Two important 

examples are those of s-stable motions and s-stable Ornstein-Uhlenbeck processes. 

These processes are relevant within finance; the former are alternative models for asset 
(log--) returns, see for instance Mittnik and Rachev (1993), while the latter are the 
corresponding analogs of interest rate models (see, for instance, the Vasicek model in 
Lamberton and Lapeyre, 1991). 

As our results will mainly concentrate on heavy tailed stochastic processes, we have 
summarized below the key properties on the relevant classes of real functions. We 

call a Lebesgue measurable function L from N into (0, cxD) slowly varying (denoted 
L E ,~(0)) whenever 

lim L ( 2 t ) _  1 for every t > 0. 
; . ~  L(~) 

The class of regularly varying functions .~(p)  with index p ~ ~ is defined as 

; ~ ( p ) - -  {h:  ~ ~ ( 0 , ~ ) ,  h(x)=xPL(x), for some L C .°~(0)}. 

The class of all regularly varying functions is denoted by ~ .  For a detailed discussion 
on these and related classes, see Bingham et al. (1987). We will often use the fact 
that ~ C ~ ,  where 

= ~h" ~ -~ (0, ~ ) ,  Lebesgue measurable, lim h(x - y)  _ 1 for all y ~ ~'~. 
t J 

For a distribution function F so that 1 - F C c s  we shall say that F has the lony tail 
property. 

The paper is organized as follows. Section 2 contains our main result (Theorem 
2.1) linking the tail behavior of the sample quantiles of X to that of the quantiles 
of  the underlying Lrvy measure of the process, as expressed through the quantiles of 
the kernel f in the integral representation (1.3). In Section 3 this result is applied 
to some specific examples. Section 4 should be viewed as an appendix, and contains 

some general results on the quantiles of measurable stochastic processes. 

2. TaU behavior of sample quantiles 

We begin with a proposition containing a special case of the main result. This propo- 
sition is a crucial ingredient in the proof of  the latter, and the special case described 
in it is important enough to be displayed on its own. It treats the compound Poisson 
model, which is a one of the basic probabilistic models, In the insurance context for 
example, the process Y can be regarded as describing the claim settlement process 
associated with the j th claim. These so-called incurred but not yet fully settled claims 
are discussed in Kliippelberg and Mikosch (1993a, b). 

We remind the reader that in the sequel (T,Y,m) is a probability space. 
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Proposition 2.1. Let Yj = (Yj(t), t C T), j = 1,2 . . . .  be a sequence ofi.i.d, measur- 
able stochastic processes. Let N be a mean l~ Poisson random variable independent 
o f  Yj, j >~ I and 

N 

X = ~ Yj. (2.1) 
j=l 

Assume that 

esssupmrlYl(t)l < ~ a.s.. 

Let 0 <~ p < 1. Assume that 

(2.2) 

P(Qp(YI)  > 2) E . ~ ( - p )  as 2 --+ 

for some p >>. O, while 

(P(esssupt~r[Y,(t)[ > 2)) 2 
lim = 0. 

~--+~ P(Qp(Y1 ) > 2) 

Then 

lira P(Qp(X)  > 2) 
~ - ~ P ( Q p ( Y I )  > 2) = #" 

(2.3) 

(2.4) 

(2.5) 

Proof. Starting with 

for 2 > 0, we use Lemma 4.1 to conclude that for every n ~> l and M > 0, 

P p 

(2.6) 

> 2) />  P(U]=,{Qp(Yj)> 2 + ( n - 1 ) M ,  esssuPt~r]Yi(t)[ 

~<M for all i ~ j } )  

( ; '  = nP(Qp(Y1 ) > )o 4- (n - 1)M) P(ess suptcr[Yl(t)l ~ M )  

for all 2 > M. Therefore, by (2.6), 

P(QAX) > 2) 
fin n-1 

>~ ~ e-U-n~nP(Qp(Y, ) > 2 + ( n -  1)M)P(esssuptcrlY,(t)]<~M ) . 
n = l  

The regular variation assumption (2.3) implies, in particular, the long tail property of 
Qp(YI ) (see Section 1). Therefore, by Fatou's lemma, 

P(Q.(x) > 2) "" ( )°-' 
lim.~__+~inf P(Qp(]"I) > 2) e-~(n ,=l ~ - 1 ) ~  -P(ess supt~rlYl(t)J <.%M) 

# exp ( - # ( 1  - P(ess supt c T I Y1 (t)l ~< M ) ) ) .  
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Letting M ~ oc we obtain the lower bound 

lira inf P ( Q p ( X )  > 2 )  ~>/t. (2.7) 
; . ~  P(Qp(Y1) > 2.) 

For the upper bound note that by Lemma 4.1 for any n >~ l we have for all 0 < t: < 1 

and 2 > 0 

+ P(o;=, (ess sup, T I 
i#j  

<<,nP(Qp(Y1) > 2(1 - e))  

+P(esssup,crlYi(t)l>~2~/n for at least two different i ' s )  

<~nP(Qp(Y1) > 2 ( 1 - ~ ) )  

P esssup, crlYl(t)l>~2~:/n . 

We now use (2.6) and (2.4) to conclude that there is (for a fixed ~:) a positive 
function c with c(),) ~ 0 as 2 --+ oc such that 

<(( ) P(Qp(X) > 2) ~< ~ e - "  nP Qp(Y1) > 2(1 - ~) (2.8) 

n(n - [ ) )~:/n))  + P(N > +c( 2 ) - - - ~ - - P  ( Qp( Yi ) >~ v~z ). 

I1 follows from (2.3) that there exists a finite positive constant C such that for every 
). > 1 (say) and n ~ < v ~  we have 

Therefore, by (2.8) we have 

<(( ) P(Qv(X) > 2) ~< e - t ' -  nP Qp(YI) > 2(1 - e )  
n=l r/! 

Using once again (2.3) and recalling that the probability tail of  a Poisson random 
variable decays faster than exponentially, we conclude that 

P(Qp(X) > 2) 
lim sup ~</~(1 - ~:)P. (2.9) 

; ~  P(Qp(Y1) > 2) 

Letting e --+ 0 in (2.9) and comparing it with (2.7) completes the proof  of  the propo- 
sition. 
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Remark. (i) A straightforward modification of  the proof shows that the assumption 
(2.3) of Proposition 2.1 may be replaced with a weaker assumption, that the right 
probability tail of  Qp(Y1 ) belongs only to the class of functions of extended regular 
variation. We have chosen the present formulation out of awareness that the latter 
class does not enjoy presently the wide recognition awarded to the class of regularly 
varying functions. See Bingham et al. (1987, p.65), for a discussion of extended regular 
variation. 

(ii) The above-mentioned extension allows for a particular subset of the so-called 
class of subexponential distributions: 

6¢ = { F  d.f. on [O, oz): lim 1 -  F*2(x) } 
x ~  1 - F ( x )  - -2  , 

where F .2 denotes the second convolution of F. In the spirit of  the techniques and 
results of Embrechts et al. (1979) and Rosinski and Samorodnitsky (1993) one could 
suspect that Proposition 2.1 holds when ~ ( - p )  is replaced by 5 P. We do not know 
whether this is in fact true, even though the lower bound (2.7) holds for subexponential 
tails as well, for such distribution functions have the long tail property. 

(iii) A further generalization concerns the Poisson assumption on N. It is clear 
that the same result as in Proposition 2.1 holds whenever the generating function 
of  N, 

OC3 

t~(s) = ~ P(N = n)s" 
n=O 

is analytic in s = 1. The constant /t in the conclusion (2.5) has to be replaced by 
~t(1). 

The following theorem is our main result. 

Theorem 2.1. Let 

X( t )  = I f ( t ,s)M(ds) ,  t E T 
JS 

be a measurable infinitely divisible stochastic process, where M is an infinitely divisible 
random measure with a a-finite Lkvy measure F, and the kernel f :  S x T ~ ~ is 
(jointly) measurable. Assume that 

esssupt~rIX(t)l < ec a.s.. (2.10) 

For y > 0 denote 

× y}, (2.11) 

O<~p < 1. Let further 

H , ( y ) = e { ( s , x ) E S × ~ :  ]x[esssupmr(]f(t,s)] ) > y}.  (2.12) 
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Assume that 

bit,(). ) • .~( -p)  as 2 --+ oc (2.13) 

Jbr some p>O, while 

( )2 
H,(~) 

lim - O. (2.14) 

T~e11 

lim P(Qp(X) > 2) = 1. (2.15) 

Proof.  The first step in the proof is to "discretize" the problem. Let Z~,Z2 . . . .  be a 

sequence of  i.i.d. T-valued random variables with common law m, living on a proba- 

bility space (~1,.~-1,P1) (while the original process X lives on a separate probability 

space ( E L ~ , P ) ) .  Observe that for every co • Q by the strong law of  large numbers 

£ 
l i m  i : l  _ = / l{x(t)<~x}m(dt)  tl ~ cX3 11 Jr 

for Pl-almost every col E f21, which implies that 

{ ZiLl l (X(Ti)~X)  } 
Qo(X) = inf x E ~: lim > p (2.16) 

gt ~ CX3 r/ 

Pl-a.s., and so by Fubini's theorem there is an event f211 C f21 with Pl(f211 ) = 1, such 
that for every co~ • ~c211 (2.16) holds P-a.s. We regard, therefore, (2.16) as an identity 

that holds on a set of  co • f2 o f  probability 1 (and this set may further depend on the 

particular sequence ra,r2 . . . .  we choose). 

We denote the functional in the right hand side of  (2.16) by 0p(X) .  Of  course, 

Qv(X)  depends on col through the sequence Zl, T2 . . . . .  but this dependence will be for 

now kept implicit. An argument identical to the one above shows that there is an event 

~'~12 C ~"~1 with PI(~'-~I2 ) = 1, such that for every col • ~ t2  

Ht,(y) : F { ( s , x ) •  S × N: Qp(xf(.,s)) > y} .  (2.17) 

Indeed, we only have to replace (~ , ,~- ,P)  with (S x N , ,~  x .~ ,F)  and to recall that 

Fubini's theorem holds for a-finite measures, to conclude that 

Qt,(xf(.,s)) : Qo(xf(.,s)) 

F-a.e., and so the two functions above have the same distribution under F,  which is 

exactly (2.17). Similarly, since 

sup(I,f(r , ,  s)l) = ess suptcr (]f(t,s)]) 
n>~l 
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Pl-a.s., we conclude in the same way that there is an event ~'~13 C ~1 with PI((213) ---- 1, 
such that for every ~o~ E ~2~3 

H.(y)=F{(s ,x)ESxN:  ]xlsup([f(T~,s)] ) > y }  (2.18) 
n>~l 

P-a.s. We fix once and for all an ¢ol E ~2~1 N f212 N (213. Observe that (2 .16)-(2 .18)  

reduce effectively the problem to a stochastic process indexed by the countable set 
{zl, z2 . . . .  } . For notational simplicity we will identify rn with n for all n ~> 1. That is, 

we consider a stochastic process 

X(n) = f f(n,s)M(ds), n>~ 1, 
,IS 

and the functionals Qp, H o and H.  are now given by (2 .16)-(2 .18)  correspondingly, 

with rn replaced by n for all n ~> l. 

In the second step o f  the proof we decompose the process (X(n), n/> 1 ) as follows. 

Let M1 and M2 be two independent infinitely divisible random measures with L6vy 

measures FI and F2 given by 

F,(A)= F(AA {(s,x) E S × ~: IxIsupif(n's)i 1)) 

and 

F2(A)=F(AA{(s ,x)CSx~:  ]xisup]f(n's)l<~l)) 

A C d × ~ .  Observe that F1 is a finite measure. See e.g. Araujo and Gine (1980) or 

Linde (1986). Define for i = 1,2 

Xi(n) = ~sf(n,s)Mi(ds ), n>~l. 

The stochastic processes XI = (Xl(n), n>>-1) and X2 = (X2(n), n>>-1) are independent, 
and 

X =d X~ + Xz. (2.19) 

Since the sample quantiles o f  measurable processes depend only on their finite dimen- 

sional distributions (see Lemma 4.2), we may regard (2.19) as an a.s. equality, and 
then it follows from Lemma 4.1 that 

Qp( Xj ) - sup IXz(n)l ~< Qv( X ) <~ Qp( Xl ) + sup IX2( n )[. (2.20) 
n~>l n~>l 

Now X1 is an infinitely divisible sequence with L6vy measure (regarded as a cylin- 
drical measure on ~o~) given by 

Vl = F1 o V - l ,  

where 

V" S x ~  °~ 
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is given by 

V ( s , x )  = x f ( . , s ) ,  

see Rajput and Rosinski (1989). Observe that Vl is a finite measure. We denote the total 
mass of  vl by Itl. Let Y1, I12 . . . .  be i.i.d. ~°~-valued random variables with common 

law ( l /Hi)v l ,  and let N be an independent of  it Poisson random variable with mean 

it l. '1"hen Xt* defined by 

N 
Xl*(n ) =  ~ Yj(n), n>~l (2.21) 

j=l 

is equal in distribution to Xl, and so 

Qp(Xi)  d= Qp(X~). (2.22) 

We now verify that the process X~ defined by (2.21) satisfies the assumptions of  

Proposition 2,1. First of  all, (2.10) implies that sup,>~l IX,] < o~ a.s., and so 

sup I f (n ,s )q  < oc 
n~>l 

for Fi-almost all s C S (one should say Fl-almost all (s,x)  E S x ~ to be precise, 

but we use the shorter statement). See Rosinski (1986). Therefore, condition (2.2) of  
Proposition 2.1 holds. Furthermore, by construction, for every )~ > 1, 

P(Q~, (Y , )  > 2)=~F,1 ( ( s , x ) ~ S  x ~: Qp(x f ( . , s ) )  > 2) 

1 = --H,,() O. 

Therefore, condition (2.3) of Proposition 2.1 follows from (2.13). Similarly, for every 
) ~ > I ,  

n ~ l  #1 

and so condition (2.4) of  Proposition 2.1 follows from (2.14). 

Therefore, we are in a position to apply (the "density version" of) Proposition 2.1, 
which gives us 

lira P(Qp(X1)  > 2) = 1. (2.23 
; . ~  Hp(;O 

Now we recall that the L6vy measure v2 = F2 o V i of  X2 is supported by a set in 
pc~: which is bounded in the L ~ norm. Therefore, for every a > 0 there is a c > 0 
such that 

( ) " P sup ]X2(n)] > 2 ~<ce -~" (2.24) 
n~>l 

for all 2 > 0 (deAcosta, 1980; Braverman and Samorodnitsky, 1995). Now the con- 
clusion of  the theorem is an immediate consequence of  (2.20), (2.23), (2.24) and the 
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well known properties of  distributions with subexponential (and, in particular, regularly 
varying) tails. See e.g. Embrechts et al. (1979). [] 

Note that the first two remarks made at the end of  the proof  of  Proposition 2.1 apply 
fully here as well. In particular, the lower bound for the tail probabilites holds in the 
subexponential case as well. 

An important particular case of  Theorem 2.1 is described in the following corollary. 
It applies to the processes with stationary independent increments - L~vy processes. In 
this case the time space is taken to be T = [0, 1], and the measure m is the Lebesgue 
measure on it. We remind the reader that the integral representation (1.3) takes now a 
particularly simple form. Here S = [0, 1] as well, 

and 

f ( t , s ) = l ( t  > s ) ,  t, sE[O, 1], 

F(ds, dx) = ?(ds)#(dx),  

where ? is the Lebesgue measure on [0, 1], and # is a one-dimensional L6vy measure. 

Corol lary 2.1. Let {X(t),  t E [0, 1]} be a Ldvy process with the Lkvy measure kt, 
such that 

#((2, oc))  E ~ ( - p )  (2.25) 

for some p >>, O. Then for every 0 <. p < 1 

lim P(Qp(X)  > 2) 
~.-~ o~ #((2, oe))  = p" (2.26) 

Proof. In the present case, for every 0 ~< p < 1, 

Qp(xf(.,  s)) = x l (p  >~ s) 

for x > 0 and 

Qp(xf( . , s ) )  = 0 

for x < 0, 0 < s < 1. Therefore, for any y > 0 

Hp(y) = p#((y, oc)), 

0~<p < 1, and it is easy to see that 

H. ( y )  = #((y,  oc)).  

This verifies immediately the assumptions (2.13) and (2.4) of  Theorem 2.1, and (2.26) 
follows immediately from (2.15). [] 

Remark .  It is well known that under assumptions weaker than those of  Corollary 2.1 
one has 

P(esssupt~[0,uX(t ) > 2) P(suPt~[o, q X( t )  > 2) 
lim = lim = 1, 
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see e.g. Marcus (1987) and Rosinski and Samorodnitsky (1993). We conclude that for 

any 0~p~< 1 

lira P(Qp(X) > 2) 
~o~ P(esssuptc[o,1]x(t ) > 2) 

Similarly, 

lira P(Qp(X) < 2) 
~.~,~ P(essinft~[o,llX(t) < 2) 

Compare this to Dassios (1995b). 

= p. (2.27) 

= 1 - p. (2.28) 

3. Applications to stable processes 

An important class of heavy tailed stochastic processes is that of ~-stable processes, 
0 < c¢ < 2. In that case the random measure M in (1.3) is ~-stable. That is, its L6vy 
measure F is given in the form 

F(A × B) 

1 - fi(s) f ~ 0 2  .~)c~x-(l+~)dxl ?,(ds), (3.1) 

where 7 is a a-finite measure on ( S , d ) ,  called the control measure, and fl: S ~ [ -1 ,  1] 
is a measurable function, called the skewness intensity of M. See Samorodnitsky and 
Taqqu (1994) and Janicki and Weron (1994) for comprehensive reference on stable 
processes and measures. A straightforward computation shows that in this case 

H p ( y ) = K p y  -~, y > O, 

where 

2 

Similarly, 

H,(y )  = K. y -~, y > O, 

where 

K, = ~-1 f s  ess suptcTlf(t,s)l~?,(ds). (3.3) 

Therefore, conditions (2.13) and (2.14) of Theorem 2.1 hold automatically for bounded 
~-stable processes. We immediately obtain the following corollary. 

Corollary 3.1. Let X be a measurable or-stable process given in the form 

X( t )  = [ ' f ( t , s )M(ds) ,  t E T, 
Js 
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where M is an e-stable random measure with control measure 7 and skewness intensity 
fl, and f : S × T ~ ~ is measurable. I f  

ess suPtcTlX(t)l < oc a.s. 

then for every 0 ~ p < 1 

lim 2~P(Qp(X) > 2 ) =  Kp, (3.4) 
2---* oc 

where Kp is given by (3.2). 

Remark .  In the context o f  e-stable random measures it is somewhat more common to 
use the normalized control measure, ~7, such that for every A C ~¢ 

I EeiM(A)I = e-Y(A), 

see e.g. Samorodnitsky and Taqqu (1994, Chapter 3). The two measures, 7 and ,y, differ 
by a constant factor, and Kp in (3.4) can be expressed in terms of  ~7 as 

1 +  ~ ( s ) ( Q o ( f ( . , s ) ) +  ) + (Oo( - f ( . , s ) )+)  ;7(as), K o = C~ 2 

where 

C~ = x -~ sinx 

We provide two examples. 

Example  3.1 (e-stable motion). Let (X(t), O<~t<_ 1) be an e-stable motion. Here, as 
in the context o f  Corollary 2.1, S = [0,1] equipped with the Borel a-field, the 
skewness intensity fl(.) is identically equal to fi E [ -1 ,1 ] ,  and the control mea- 
sure 7 is just the Lebesgue measure on [0, 1]. The parameter space is once again 
T = [0, 1] with the Borel a-field, and m is the Lebesgue measure on it. As before 

we have 

f ( t , s ) = l ( t  > s ) ,  t, sc[O,  1], 

and so 

Qp(f( . ,s))  = l(p>~s),  

and 

Qp(- f ( . , s ) )  = O, 

0 < s < 1. It follows that 

p(1 + /~)  
Kp-- 2a ' 

so that 

lim 2~P(Qp(X) > 2) -- p(1 + fl) 
2--.¢¢ 2e 

(3.5) 
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Example 3.2 (co-stable Ornstein Uhlenbeck process). This process is commonly de- 

scribed in the form 

/, 
X ( t ) =  e -o(t ")M(ds), O~<t~<l, 

O 0  

where M is an ~-stable random measure on S = ( - o c ,  1], with the Lebesgue control 

measure ? and a constant skewness intensity ~. p is a positive parameter. 

Since 

f ( t , s )  = e i~(t-')l(t > s), 0~<t~<l 

for s C ( - o c ,  1], it is straightforward to compute that for every 0 ~ p  < l, 

{ e - ' (~-p-~)  i fs~<0,  

Q,(f(,s)) = e - " ' - ' )  i f 0  <s p, 1361 
\ / 

0 if p < s ~< 1, 

while 

Q p ( - f ( . , s ) )  ~ 0  

for all s C ( - o c ,  1]. Therefore, by Corollary 3.1, 

lim 2~P(Q,(X) > 2) = ( (P  + 1/(:q~))(1 + fi))e_~,(l  ,) (3.7) 

4. Appendix: Quantiles of measurable processes 

In this section we collect the results on measurable functions, processes and their 

quantiles that underly the discussion in the previous sections. We will state some of  
the results in two versions: one, concerned with measurable functions and stochastic 

processes with parameter belonging to an arbitrary probability space (T,~T,m) (the 

"measure version"), and the other dealing with deterministic and random sequences of  

the type (Xn, n >~ 1 ), in which case the quantiles are defined by 

Q , ( X )  inf x E N: limsup Zi=ll(~~<x) = > p  
n ~  n 

(the "density version"). In the latter case ess sup and ess inf  should be understood as 
the usual sup and inf correspondingly. The first lemma is elementary. 

Lemma 4.1. Let f , g :  T --, ~ be two measurable functions. Then for ever), O<~p < 1~ 

Q , ( f )  + ess inf,evg(t)~< Qp(f  + g)<~ Qp(f)  + ess sup,erg(t ) (4.1) 

("measure version"). Moreover, i f  T = ~, then the corresponding "density version" 
of (4.1) holds. 
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The next lemma shows that sample quantiles of  measurable stochastic processes 
are well defined random variables, whose distributions are determined by the finite 
dimensional distributions of  the process. 

Lemma 4.2. Let X = (X(t), t E T) be a measurable stochastic process that lives on 
a probability space ( ~ , ~ , P ) .  Then Qp(X) is o~-measurable for every O<~p < 1. 

Moreover, i f  Y = (Y(t), t E T) is another measurable process such that X ~ Y, then 
Qp(X) d Qp(y). 

Proof. The first statement of  the lemma is obvious. For the second one, we may 

assume, without loss of  generality, that X and Y live on the same probability space. 
The argument leading to (2.16) shows that there is a a sequence (Zl,Z2 . . . .  ) of  points 
in T such that (2.16) holds a.s. and also 

Qp(Y) inf/x~ E ~: lim = > p  . 
n - - + o o  n 

Since 

(X(~.I),X(~.2 ) . . . .  ) d (Y(v , ) ,Y(~2)  . . . .  ) ,  

the statement of  the lemma follows. [] 

In this paper we treat sample quantiles of  particular infinitely divisible processes. 
The following proposition gives necessary and sufficient conditions on the integral rep- 
resentation of  the process, for the latter to have a measurable version. This proposition 
makes the description of the problem in Theorem 2.1 meaningful. It also generalizes 
the corresponding results for 0t-stable processes known since Rosinski and Woyczyn- 

ski (1986) and Samorodnitsky and Taqqu (1994). For this proposition we assume that 
T is a separable metric space, and 9-- is the Borel a-field on it. Note that this assump- 
tion is used only in the proof of  the necessity part. 

Proposition 4.1. Let T be a separable metric space, and J- the Borel a-field on it. 
Let 

f s f ( t , s )M(ds ) ,  t E T, X( t )  

where M is an i.d. random measure on ( S , d )  with a-finite L(vy measure F. Then 
(X(t), t E T) has a measurable version i f  and only i f  there exists a measurable 
function g: T × S ~ ~ such that for every t E T, 

F{ ( s , x )  E S × ~: x ~ O, f ( t , s )  ~ g(t,s)} --- 0. (4.2) 

Proof. Sufficiency. We start with the case of  finite L~vy measure F. Observe that 
finiteness of  F implies that the integral 

/,/= IL x 
W(t) = f ( t , s ) ~ F ( d s ,  ds) = g(t,S) l ~ x z F ( d s ,  ds) 
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is well defined for all t E T (see Rajput and Rosinski, (1989)), and then by Fubini 's 

theorem the function W: T --~ ~ is measurable. Let /~ be the total mass o f  F, and 

(Uj,Zj),j>~ 1 be a sequence of  i.i.d, random vectors in S x ~ with common law t~-~F. 
Finally, let N be a Poisson random variable with mean # independent of  the i.i.d. 

sequence (Uj,Zi) ,  j>~ I. Then (X( t ) ,  t ~ T) d (Y( t ) ,  t ~ T), where 

N 

r( t )  = Z u~g(t,z~) - w ( t ) ,  t c r .  ( 4 . 3 )  
/ I 

Now, the right-hand side of  (4.3) is, obviously, a measurable stochastic process, and 

as such supplies a measurable version of  (X( t ) ,  t C T). 
In the general case of  a ~-finite F, let S x R = U?ClAj, where Ai's a r e  pairwise ] =  

disjoint, and F(Aj )  < cc for all j~>l .  Let Fj =- FIAj, j>~I, and let (Mj, j ~ > I )  be 

independent infinitely divisible random measures , with M i having finite L6vy measure 
Fj. The stochastic processes 

Xi(t  ) = l f ( t , s )Mj (ds ) ,  t E T, 
d,7 

j~> 1, are well defined by Theorem 2.7 of  Rajput and Rosinski (1989), independent, 
and moreover, 

X(t ) ,  t E T d (t), t E V , 

with the sum converging a.s. for every t C T. We have already proved that each 

(Xj(t),  t E T) has a measurable version. Since the pointwise limit o f  measurable func- 

tions is measurable, we have constructed our measurable version of  (X( t ) ,  t E T). This 

proves the sufficiency part o f  the proposition. 
Necessity. Suppose that X = (X(t),  t E T) has a measurable version. Letting Xi 

be an independent copy of  X, we conclude that the process Y -- X -  X1 has a 

measurable version as well. The latter process has the same integral representation as 

X does, except that its L6vy measure F is now symmetric in the sense that 

F(A x ( - B ) )  =/~(A x B) 

for all A C ,~  and B ~ ~ .  Indeed, for all such A and B 

~'(A x B) = F(A x ( - B ) )  + F(A x B). 

In particular, F satisfies (4.2) if and only if F does. We may assume, therefore, that 
the Ldvy measure F of  M is symmetric to start with. 

We can represent the symmetric L8vy measure F in the form 

/,[/0 1 F(A × B) = 2 1B(x)rl(s, dx) 7(ds), (4.4) 

A ,~_ , 4  and B ~ ~ (see Rajput and Rosinski, 1989). Here ? is a control measure 
of  M, and it can be chosen to be a probability measure. The family of  measures 
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(~/(s, .), s E S) is a measurable family of  one dimensional L6vy measures concentrated 
on (0, oc). Following Rosinski (1990) we define for u > 0 and s E S 

R(u,s) = inf{x > 0: q(s,(x, oc))<~u}. 

Then a version of  X is Z ,  where 

Z(t) = ~ enR(Fn, z , ) f ( t ,  zn), t E T, (4.5) 
n=l  

where (el, i>~ 1) is a sequence of  i.i.d. Rademacher random variables: P(ei = 1) -- 
P(ei = - 1 )  = ½, (Fi, i>>-l) is a sequence of  arrival times of  a unit rate Poisson 
process on (0, oc), and (ri, i~>1) is a sequence of  i.i.d. S-valued random variables 
with common law 7. All three sequences are independent. 

In particular, Z has a measurable version. Therefore, so does 2 ,  where 

2(0 = -ClR(Fl,zl) f( t , 'Cl)  + ~ e,R(Fn, z , ) f ( t ,  zn), t E T. 
n~2 

Now, since ( T , Y )  is a separable metric space equipped with its Borel a-field, it 
follows from Hoffmann-Jorgensen (1973) that measurable versions Z1 and Z1 of  Z 

and Z can be chosen in such a way that ( Z , Z )  a__ ( Z l , Z l ) .  Therefore, the process 
(½(Z(t) - 2 ( 0 ) ,  t ~ T) has a measurable version as well. Obviously, 

l ( z ( t )  - -Z(t))  = e~R(Fl,rl) f( t ,  rl), t E T. 

Assume, for convenience, that the sequence (el, i>~ I)  lives on a probability space 

(Dl,  ~1 ,P1  ), the sequence (F i ,  i ~>1) lives on a probability space (02, ~2 ,P2 ) ,  and the 
sequence (zi, i/> 1 ) lives on the probability space (S, ~¢, 7). It follows from Hoffmann- 
Jorgensen (1973) that there is a jointly measurable process (U(t ;  col,oJ2,s), t E T,~oi E 
f2i, i : 1,2, s ~ S), such that for every t E T, 

el(~01 )R(Fl(e)2),rl(s))f(t,  rl(s)) = U(t,o)l,co2,s) (4.6) 

P1 x P2 × 7-a.s. In particular, for any t E T and 7-almost every s ~ S, (4.6) holds 
P1 x P2-a.s. Define 

= (e (e (r , , : )  > o))-' 
× £2 . . . . . . . . . .  el ( ~ o ~  (-~-~, ~-~ (s)) , t m ~ l  tcoz), r~ ts)) > 0)Pl(d~Ol )P2(dco2), 

t C T, s E S. Then by Fubini 's theorem, 9 is a jointly measurable function of  its 
variables, and for every t E T, 

7{s E S: f ( t , s )  7~9( t , s )}=O.  (4.7) 

Now (4.2) follows from (4.7) and (4.4). This completes the proof. [~ 
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