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Abstract 

Consider a random walk or LCvy process {S,} and let z(u) = inf {t 20 : S, > u}, P@“( .) = 
P(. / T(U) < co). Assuming that the upwards jumps are heavy-tailed, say subexponential (e.g. 
Pareto, Weibull or lognormal), the asymptotic form of the P ‘“‘-distribution of the process {S,} 
up to time T(U) is described as u + m. Essentially, the results confirm the folklore that level 
crossing occurs as result of one big jump. Particular sharp conclusions are obtained for down- 
wards skip-free processes like the classical compound Poisson insurance risk process where the 
formulation is in terms of total variation convergence. The ideas of the proof involve excursions 
and path decompositions for Markov processes. As a corollary, it follows that for some deter- 
ministic function a(u), the limiting P ‘“‘-distribution of z(u)/u(u) is either Pareto or exponential, 
and corresponding approximations for the finite time ruin probabilities are given. 

Keywords: Conditioned limit theorem; Downwards skip-free process; Excursion; Extreme value 
theory; Insurance risk; Integrated tail; Maximum domain of attraction; Path decomposition; 
Random walk; Regular variation; Ruin probability; Subexponential distribution; Total variation 
convergence 

AM..3 clllssz$Yztion : 60F10, 60KlO 

1. Introduction and statement of results 

Let {S,} be a random walk in discrete time or a L&y process in continuous time. 
Assume throughout that the drift -p = [ES, is negative. Then A4 = maxtao S, is finite, 
and the event {M > U} = {z(u) < m} where z(u) = inf {t > 0 : St > u} is rare 
when u is large, i.e. $(u) = [FD(z(u) < co) is small. Thus, typical problems for large 
deviations theory (e.g. Bucklew, 1990; Dembo and Zeitouni, 1993; or Deuschel and 
Stroock, 1989) are the study 

(i) of the asymptotic form of $(u) as u + 03, and 
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(ii) 
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letting P(U)(.) = P(. 1 z(u) < CQ), of the @“)-distribution of the path 

%,r@)) = {QO<t<r(u) (1.1) 

leading to the occurrence of the rare event. 
Assuming ~(a) = log [Ee rSi to be finite for sufficiently large LX > 0, the solutions to 
these problems are in fact well known: Let y be the positive solution of ~c(y) = 0, 
then as u -+ cc (- means that the quotient of lhs and rhs tends to 1 in the indicated 
sense), 

(i) - log $(u) - yu , and 

(ii) r(u) N U/K’(Y) and SL,,(,)~ N K’(Y)~~(u), 0 < t < 1 , in P(“)-distribution. 
The form of these statements are the typical ones of large deviations theory (being 

applicable to much more general settings like Markov processes and different types 
of rare events), but in fact rather much sharper results can be derived in this specific 
setting: 

(i) I&U) N Ce-YU for some positive constant C (Cramer, 1930; Feller, 1971), 
(ii) the PC”)-distribution of SIO,~(~)J is in an appropriate sense the same as the uncon- 

ditional distribution w.r.t. the Levy process obtained by the exponential change 
of measure corresponding to replacing k-(a) by 

r$(a) = K(E + Y) - K(Y) 

(Asmussen, 1982). 

(1.2) 

The present paper is concerned with the same type of problem in the heavy-tailed 
case where K(U) = cc for all c( > 0. The precise set-up is stated later for the various 
models we consider, but basically ‘heavy-tailed’ means that positive jumps have the 
same tail behaviour as a certain subexponential distribution B. We recall that B is a 
subexponential distribution function (B E 9’) if for positive iid rv’s Yi,. . . , Y, with 
common distribution B 

lP(max(Yi,...,Y,) >x)-ln(Yi+...+Yn >x), x-+03, 

holds for all n E N (Embrechts and Goldie, 1980). This definition immediately classifies 
subexponential distributions as heavy-tailed distributions: for large x the maximum 
dominates the sum. Moreover, it is this characterisation which is fundamental to the 
results of this paper. It is well-known that Pareto-, lognormal - and certain Weibull 
distributions are subexponential; see e.g. Khippelberg (1987) and references therein. 

In this setting, the solution to problem (i) is known (Embrechts and Veraverbeke, 
1982 and references there) and stated in (1.3) (1.9) below: $(u) is asymptotically 
proportional to 30(u) where BO is the integrated tail distribution, 

Be(u) = ; 
I-; 

B(x) dx 
U 

(here B(x) = 1 -B(x) and PB is the mean of B). One of the main contributions of this 
paper is to present a solution to problem (ii) in the heavy-tailed case where a common 
folklore asserts that rare events of the type we consider occur as consequence of one 
big jump. We make here precise for various examples, how big this jump is, what the 
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asymptotic distribution of the time r(u), when it occurs, looks like, and what it means 
that the process evolves in its ‘typical’ way up to time r(u). We work in two different 
though closely related settings. 

1. I. Random walks and L&y processes 

Assume first that {&} = {Xl + . . +X,} IS a discrete time random walk with 
increment distribution F, such that the mean of F is -p < 0 and that F(x) N B(X) as 
x -+ 00 where B is a subexponential distribution on (0, cc). In this setting, the result 
of Embrechts and Veraverbeke (1982) can be written as 

1 O”- 
P(r(u) < c0) - - J F(x)&, u --) KJ 

p u 
(1.3) 

Our main result for the random walk case uses classical extreme value theory. This 
makes it necessary to distinguish between two classes of subexponential distributions, 
corresponding to the maximum domain of attraction of a Frechet distribution Qa, c1 > 
0, and the Gumbel distribution A, respectively. We write MDA(@,) and MDA(A). 
MDA(Q,) consists of df’s with regularly varying tail, i.e. B(x) = x-‘L(x), where 
c( > 0 and L is a slowly varying function. We write B E %(-a) (see Bingham et al., 
1987 for definitions and properties of regularly varying functions). MDA(A) includes 
the Weibull- and lognormal cases. We refer to Section 3 for more details. 

Let V,, where 0 < ad 00, be a rv with a generalised Pareto distribution G,, i.e. 
V, is positive and its tail is given by 

(1 +x/a)-” 
G,(x) = P( v, > x) = 

( 

a < 0, x > o, 
(1.4) 

e --x CC=CO, 

Let 7’, be defined on the same probability space, such that p(V, > x, T,, > y) = 
Gx(x + y) (then T, has marginal distribution G, as well and, when CI = co, V, and r, 
are just independent). 

Define further -Z(U) = Sr(U~_r as the 
the upcrossing of level U, Y(U) = ST(u) as the 
t< 1. 

level of the random walk just before 
level just after, and so(t) = -pt for 06 

Theorem 1.1. Assume that either B E 92(-a - 1) for a E (0,oo) or B E MDA(A) 
and Bo E 9, and let a(u) - J,” B(x)dx/B(u) . Then 

in Pc”)-distribution in [w x [w+ x D[O, 1) x R+. 

Notice that a(u) N J,” F(x)dx/F(u), providing another normalising function in 

(1.5). 
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Note furthermore that by Karamata’s theorem a(u) - u/a when B E %J( --CI - 1). For 
the case B E MDA(A), see Section 3. 

The statement that Sl,,,,,j - -&u) for 0 < t < 1 is an intuitive support that the 
random walk evolves ‘typically’ up to time r(u) because S, - -pl for large t. 

A further substantiation of this fact is the following. 

Theorem 1.2. Let 

F,(x) = ; 2 I(& <x) 
k=l 

be the empirical df: Then under the conditions of Theorem 1 .l 

Here II .I1 denotes the supremum norm. Note that this formulation is similar to the 
ones of Asmussen (1982) for the case of exponentially bounded tails (then the limit 
of F,(,) is not F but the exponentially twisted distribution given by (1.2)). 

Using a discrete skeleton argument, it is straightforward to give parallels of the 
above results for Levy processes (processes with stationary-independent increments in 
continuous time) when the tail of the Levy measure is subexponential. We omit the 
details, but proceed to a special case. 

1.2. Insurance risk processes 

Let now S be the claim surplus process of a classical compound risk process R, 

s, = c U,-et and R,=u- S,, t30, (1.7) 
{WCN: O<T,,<f} 

where the T, are the epochs of a Poisson process with intensity p and the {Un}nE~ 
are iid with common distribution B (the claim size distribution). The positive constant 
c is the premium rate, which w.1.o.g we assume to be equal to 1. Then r(u) is the 
ruin time, 

I&U, T) = 5’(z(u)< T) and $(u) = $(u, 00) = ln’(r(u) < 00) (1.8) 

are the probability of rain before time T and in infinite time, respectively. In earlier 
notation, ~1 = -[ES, = 1 - p where p = PEUi is the expected claim amount per unit 
time; the assumption p > 0 is thus equivalent to the net profit condition p < 1. 
The approximation of Embrechts and Veraverbeke (1982) for the probability of ruin 
in infinite time is 

l)(u) = P(z(u) < co) - &Bow. (1.9) 

The motivation for looking at (1.7) in particular is twofold. First, it has mathematically 
convenient features, in particular the property that S is downwards skip-free. This lies 
behind the classical property of an explicit Wiener-Hopf factorization (Proposition 
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2.1(a) below) which is important for us as well, but has also other consequences. In 
particular, we obtain a limit of S~O,~(~)) in a strong ‘local’ total variation sense rather than 
subject to normalizing as in Theorem 1.1, with a form of the limit that makes only sense 
in the downwards skip-free case (not even for discrete-time random walks). For further 
studies into downwards skip-freeness in related problems, see Bertoin (1993). The 
second motivation for (1.7) is from applications: our analysis leads here to the solution 
of a problem which has long been open, to find the asymptotic @“)-distribution of 
r(u) and thereby approximations for the finite time ruin probability $(u, T) in the 
heavy-tailed case (Corollary 1.6 below). For the case of light tails, the classical result 
in this direction is due to Segerdahl (1955) who obtained a CLT for r(u) (properly 
scaled and normalised). As suggested by Theorem 1.1, we will show that for heavy 
tails there typically exists a deterministic normalising function a(u) such that t(u)/a(u) 
has a weak limit which is either Pareto or exponential. 

In order to state our results, we first introduce (or update) our notation. Let (Z(U), 
Y(U)) be a random vector having the P ‘“)-distribution of (-&(,I_, SrcU,) and write 
(Z, Y) = (Z(O), Y(0)). Furthermore, recall that so(t) = -pt for Odt < 1. We note that 
it is well-known (Proposition 2.1 below) that the marginal distribution of either of Z, Y 
is Bo. 

Defining 

@“J’(.) = P@‘(. / Z(u) = z) = P(. 1 z(u) < cqZ(u) = z), (1.10) 

it is easy to see that the PcU,‘)-distribution of Y(U) - u is B@+‘), the distribution of 
the overshoot of a claim over u + z, 

,@+=)(,) zz 
B(u+z+x)-B(u+z) 

B(u + z) 
= 1 _ B(ufz+x) 

B(u+z) ’ 

(Similar notation is used later for the overshoot distribution corresponding to Bo.) Thus, 
the structure of PC”) is completely described by the marginal 
the P(“,“)-distribution of S~Q(~)), cf. (1.1). Let 11 . 11 denote 
distance and define 

6(z) = sup {t > 0 : s, = -z} 

as the time of the last downcrossing of level -z (which is 
drift is negative and the process downwards skip-free). 

Theorem 1.3. Assume that Bo E 9’. Then as u -+ co: 
(a) IlP(‘)(Z(u) E .) - Br)ll + 0; 

$00 
(b) g(u,Z(u)) + 0, where 

distribution of Z(U) and 
the total variation (t.v.) 

finite w.r.t. P since the 

(In (b), one can formally view S~O,~(~)) as defined in (1.1) as a random element of the 
space D* of D[O, co) functions with finite lifelength, see e.g. Williams (1979, 111.14).) 
A weaker result of the same form as Theorem 1.1 is 



108 S. Asmussen, C. KliippelbergIStochastic Processes and their Applications 64 (1996) 103-125 

Corollary 1.4. The conclusion of Theorem 1.1 holds under the same conditions as 
there, provided one replaces V,Jp by V,/( 1 - p). 

Denote by W(u) = Z(u) + Y(U) the size of the claim causing ruin and let $(u, T) 
and Ii/(u) be the ruin events as defined in (1.8). 

Corollary 1.5. (a) If B E 2(-a - 1) for do E (0, w), then 

lim lP(‘)(T >x) =(l+a(l-x-‘))F”. 
U-03 

(b) rfB E MDA(A) and Bo E Y, then 

lim PC”) 
( 

W(u) - u > x 

) 
= (1 +x)e-” 

u-x a(u) 

with a(u) N &,(u)/B(u). 

Corollary 1.6. (a) If?? E g(-c( - 1) for a E (0, oo), then 

II/(u> UT) 
,‘k3 $(u) 

~ = 1 - (1-t (1 - p)T)_“. 

(b) If B E MDA(A) and Bo E Y, then 

$(K a(u)T) 
IEEC $(u) 

= 1 _ e-_(l-_p)T 

with a(u) - &(u)/B(u). 

The rest of the paper contains the proofs of the above results as well as 
certain corollaries. We start by the proofs for the insurance risk model in Sections 
2 and 3, with the conditioned limit theorems for the path being given in Section 2 
and the ruin probability approximations in Section 3, which also studies problems such 
as the asymptotic distributions of the claim leading to ruin and the largest claim be- 
fore then. The discussion in Section 3 is based upon studies of the asymptotic form 
of Br) by Balkema and de Haan (1974) see also Geluk and de Haan (1987); an 
important feature is the classification of Bo according to extreme value theory. Sec- 
tion 4 then contains the proofs for the discrete time random walk case which ba- 
sically are just simplifications of arguments from Sections 2 and 3; this is not sur- 
prising since the results are somewhat weaker from a mathematical point of view, 
being given in terms of weak convergence of a suitable normalized version of the 
process. 

We conclude this section by mentioning some further relevant literature. In con- 
nection with (1.9) see also Khippelberg (1988) and Asmussen et al. (1994). Large 
deviations for the insurance risk model have been studied by Asmussen ( 1984), As- 
mussen and Nielsen (1995), Barndorff-Nielsen and Schmidli (1995), Djehiche (1993) 
Martin-LGf (1983, 1986) and Slud and Hoesman (1989); all these authors assume 
light tails. Asmussen and Teugels (1997) study the tail of the @‘)-distribution of z(u) 
for a fixed u, considering the case of regular variation only. Kliippelberg & Mikosch 
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(1996) prove large deviation results for the total claim amount process, where the 
claim size distribution has regularly varying tail. As for conditioned limit theorems in 
a heavy-tailed setting, some important references are Durrett (1980) and Anantharam 
(1988) who look at problems of a different type such as describing S10,~l given S, > 
t(c - ,u), assuming regular variation. A general reference in the context is Asmussen 
(1996). 

2. Total variation limits for the insurance risk process 

We start the proofs of our results by some exact (non-asymptotic) facts. In order 
to state the first, it will be convenient to let the arrival process have doubly infinite 
time such that we can represent it by the marked point process A = (Tk, Uk)k=s,*i,k2,... 
where 

... < T_, < To < O<T, < T2 < ... 

and (U,,)nEz are iid with common distribution B. We let At denote the arrival process 
prior to t, i.e. 

Al = ( TKU-R, Q(t)-&,O ,,,.,. > 

where K(t) = sup {k : Tk <t}. 
Recall that Y = S,(O), Z = -ST(o)_. Then W = Y +Z is the size of the claim leading 

to ruin with initial reserve 0. 

Proposition 2.1. Subject to the probability measure P(O) = P(.lz(O) < oo), it holds 
that: 

(a) The marginal distributions of Y,Z are both Bo. 
(b) The distribution of W is the distribution with density x/p w.r.t. B. Further, 

the pair (Y, Z) is distributed as (UW, (1 - U) W) where U is uniform on (0,l) und 
independent of W. 

(c) The conditional distribution of A r(o) given (Y, Z) is the same as the unconditional 
P-distribution of Ao. 

Proof. The statement concerning Y in (a) is classical (Cramer, 1930 or Feller, 1971, 
X1.4), whereas the one concerning Z in (a) and part (b) were proved by Dufresne and 
Gerber (1988). Part (c) follows from Theorem 2 of Asmussen and Schmidt (1995) by 
considering the marked point process (Tk, Uk, A, ) and noting that the Palm distribution 
of A, is just the unconditional P-distribution of Ao. 0 

Note that analytically, the content of (b) is that 

P(Z>z, Y2U) = ; 
Jx 

B(y) dy; (2.1) 
u+z 

this is the way in which the result is stated in Dufresne and Gerber (1988). A prob- 
abilistic interpretation is from renewal theory: in a stationary renewal process with 
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interarrival distribution B, we can think of Z as the backwards recurrence time and of 
Y as the forward recurrence time at 0 (see e.g. Feller, 1971, X1.4). In particular, Z 
has marginal distribution Bo and 

UyY > y / z = z) = B(z + y)/B(z). 

From (2.1) we obtain 

(2.2) 

Note that since stationary renewal processes are time-reversible, we can interchange 
Y and Z in this description. 

Proposition 2.1 provides the following ‘simulation algorithm’ for a single ladder 
segment Sl~,~(s)) with distribution P co). first generate (Y,Z) as in (b), and next run the . 
risk process backwards in time starting from -Z; by (c), the time the risk process hits 
0 has then the same distribution as the ruin time r(0). In particular, letting 

o(z) = inf {t > 0 : Rt = z 1 Ro = 0} = inf {t > 0 : St = -z}, 

we obtain the following representation for the distribution of r(O): 

J’ 

00 
@O)(r(O) E .) = P(o(z) E .)lP(Z E dz) = 

SW 
p(o(z) E .)Bo(dt). (2.3) 

0 0 

An alternative approach to Proposition 2.1(c) is via excursion theory for Markov 
processes. We thereby view {St} as a Markov process, allowing any given initial 
value x. Consider an open subset 0 of R! and let 

O+ = {x E R : (x - 6,x) C 0 for some 6 > 0} , 

a-={XER:(x,x+6)cO forsome6>0} 

(note that 0 C a,, 0 Co_ since 0 is open). We define 

an excursion of length [ = 5~ in 0 of {S,}, conditioned to start in x E 0, and end in 
y E o-, as the random element of D* with distribution 

where [ = inf {t > 0 : S, E O’}. The following result is a special case of Proposition 
2.14 of Fitzsimmons (1987) (see also Kaspi, 1985); to obtain it from that reference, 
note that the claim surplus process {St} and the risk process {R,} are in classical duality 
w.r.t. Lebesgue measure (in the case of Lebesgue reference measure and processes with 
independent increments, this means just sign reversion). Without risk of ambiguity, use 
the same letter [ = CR for the excursions of R in 0. 
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Fig. 1 

Proposition 2.2. For x E O+, y E a-, 

Note that the backwards description in Proposition 2.1(c) can alternatively be viewed 
as the case 0 = (-co, 0), x = 0, y = z of Proposition 2.2. Further special cases occur 
in the proof of the following lemma. Define lIJcb)(.) = P(. 1 z(0) = 00) (see Bertoin, 
1993 for a thorough discussion of Pcb)). 

Lemma 2.3. P(“~Z)(S~o,r~o~~ E .) = P(b)(S~o,~~z~~ E .). 

Proof. We use the path decomposition in Fig. 1. 

If we read the path backwards from (z(O), -2) to (0, 0), this is just {R,} started from -z 
and stopped when hitting 0. This path starts with a number of excursions (separated by 
O’S on the Figure) in 0 = (-cqz)U(z,O) with x = y = -z; the number is a geometric 
rv with parameter PR, the probability that an excursion of R in 0 = (-cqz) U (z, co) 

with x = y = -z does not hit 0. The segment from (q(z), -z) to (0,O) is an excursion 
in 0 = (-z,O) starting at y = -z and ending in x = 0. 

Similarly, read the P@-path of S forwards from (0,O) to (6(z), -z). This starts with 
an excursion of S in 0 = (-z, 0)) starting at x = 0 and ending in y = -z, followed 
by a geometric number of excursions in 0 = (-co,z) U (z,O) with x = y = -z; the 
number is a geometric rv with parameter ps, the probability that an excursion of S in 
0 = ((-00,~) U (z, 00) with x = y = -z does not hit 0. 

The lemma now follows by combining these two descriptions with Proposition 
2.2. One needs also that PR = ps, which follows by noting that the probability that 
either of R, S will return to -z, if started there, is p and using Proposition 2.2 once 
more. 0 

We now turn to the asymptotics in the limit u 4 00. We shall use repeatedly the 
following lemma (where A denotes the symmetric difference of two sets). Though we 
have no direct reference for parts (a) and (b), we consider these to be well known 
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(the proofs are straightforward). Part (c) follows from Scheffe’s theorem (Billingsley, 
1968, p. 224). 

Lemma 2.4. (a) If A(u), i(u) are events such that P(A(u)d(u)) = o(P’(k(u))), 
then 

(b) Zf P,, QU are probability measures such that llPu - Qull -+ 0 and if K(o, F) 
is a Markov kernel (conditional probability), then 

IV 
K(w, .)Pu(do) - 

s 
K(w, .)Qu(dw) + 0, 

/I 

(c) Zf M(u), M are discrete rv’s such that P(M(u) = n) + P(M = n) for all n, 
then 

IIP(M(u) E .) - P(M E .)I1 --t 0. 

We also use the standard consequence 

lim 7i’,“‘(x) = lim 
Bo(x + u) 

u-00 &(u) = l’ 
VXE R, (2.4) U-CC 

of Bo E Y. In the following, let Yt, Yz,. . be i.i.d. with distribution BO and let @ 
denote product measure. 

Lemma2.5. Let n bejxedandA(u) = {YI+...+Y,_,6u, Y,+...+Y, >u}. 
Then 

II ( p (Yl,..., Y,_,,Y, - u) E . 1 A(u)) - Bf(“-‘) @Br’II i 0. 

Proof. Letting k(u) = {Yn > u}, the condition of Lemma 2.4(a) follows easily from 
the definition of subexponential distributions, which implies that 

P({Yt f...+ Y, > u}A{max(Yt,...,Y,) > u}) =0(&(u)). 

Now just note that 

r,l,r,-u)E+(u)) =BF(“-‘)@Bt). 0 

Define the ladder epochs by r+(O) = 0, 

r+ =r+(l)=r(O)=inf{t > O:S, > 0}, 

r+(k + 1) = inf {t > r+(k) : St > &+(kj}, 

and let N(u) = inf {n : Sr+(n) > IL}. Then r(u) = r+(N(u)). 



S. Asmussen, C. KltippelbergIStochastic Processes and their Applications 64 (1996) 103-125 113 

Lemma 2.6. P(“)(N(u) = n) + (1 - p)p”-’ kfn E N . 

Proof. From the proof of Lemma 2.5, 

P(A(u)) = P(&))(l +0(l)) =B&)(l+o(l)). 

Hence, 

P(N(u) = n) = P(z+(n) < 00) P(A(u)) = p”&(u)( 1 + o( 1)). 

Dividing by G(U) and using (1.9), the result follows. 0 

Note that the situation in Lemma 2.6 is in contrast to the light-tailed case, where 
it is easy to see (Asmussen, 1982) that N(u) is of the order of magnitude U/K’(Y) 
w.r.t. [is(“). 

Lemma 2.7. For any distribution G in (O,co), IlBr’ * G - Br’ll + 0. 

Proof. Let 

B(x+u) bb”‘(x) = sum B(y) dy 

be the density of Bt), Odx < cc (br’(x) = 0, x < 0). Then for A C(O,m), 

Br)(A) - Bf) * G(A)1 = IL” G(do)J’ (b;‘(x) - br’(x - a)) dxi 
A 

d .c G(da) s, lbf’(x) - bt)(x - a)/ dx 

= ~-G(do){~Ob~‘(x)dx 

+ /a (6:)(x - a) - b!‘(x)) dx} 
a 

=2s O” (u) 4, (a)G(da)> 
0 

where we used the monotonicity of br) m the third step. The result now follows since 
the rhs does not depend on A and converges to 0 as u + cc by (2.4) and dominated 
convergence. 0 

Proof of Theorem 1.3. We use the path decomposition in Fig. 2. 
Define the nth ladder segment as 

-wn = {Sr+(n--l)+l - S~+(~-l)}o~l~r+(n)-r+(~-,)~ 
identify Y,, with S,,,,, - &++t) and write -Z,, = Sr+(n)_ - Sr+cn_r). Then 

Z(U) = ZN@) - Y, - . - YN@)_l. 
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Fig. 2 

Recall the definition of A(u) in Lemma 2.5. Then {N(u) = n} = {r+(n) < co}nA(u). 
By Lemma 2.5 and Eq. (2.2), 

IP((Y ,,..., Yn_,,Zn)E. p(u)) - Bf(“-‘)XBg + 0. 

Hence, 

li!+ - Y, - . ‘. - Y,_, E . 1 A(u)) - P (z(U) - Y, - . . . - Y,_, E .) I( + 0. 

From this it follows that 

[(@“)(2(U) E .) - P (z(u) - Y, - . ‘. - Y?+_I E .) 11 + 0, (2.5) 

where N, Z(“), YI , Y 2,. are independent rv’s such that N is geometric with parameter p, 
ZtU) has distribution Bt) and the Yi have distribution &. To see this, appeal to Lemma 
2.4(b), with P, = lmU)(N(u) E .), QU = P(N E .) and K the conditional distribution 
given N(u); the assumption 11 P, - Qull 4 0 is satisfied because of Lemmas 2.6 and 
2.4(c). 

Part (a) of the theorem now follows from (2.5) combined with Lemma 2.7. The 
proof of (b) is almost the same. For z > 0, we have the following obvious description 

of $0,&z)). 
(i) The process starts with N ladder segments where P(N = n) = (1 - p)p”, n = 

0,1,2,. . . (Lemma 2.6). 
(ii) Given N = n, the n ladder segments are iid each distributed as L, i.e. their joint 

distribution is [FD(O)(L E .)@n. 
(iii) Given N = IZ, Yr = yr , . . . , Y, = y,, the segment of S from (r+(n),yr+...+y,) 

to (6(z),z) has distribution lp’cb) (S,O,~;(~+~“,+...+~,,)) E .). 

For P(‘+%%o,~(~)) E .), the description is: 
(i) The process starts with N(u) ladder segments where [19(N(u) = n+l) + (1 -p)p”, 

n = 0, 1,. . (Lemma 2.6). 
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(ii) Given N(u) = n + 1, the distribution of Yi, . . , Y,) converges in t.v. to Bf 
(Lemma 2.6). Therefore, the distribution of the first n ladder segments converges in 
t.v. to P(‘)(L E .)@’ (Lemma 2.4(b)). 

(iii) Given N(u) = IZ + 1, Yi = yi,. . . , Y, = y,, the segment of S from (r+(n),yi + 
. + yn) to (r(u),z) has distribution lmb) (S [o,~~~+~,+-.+~,,H) (Lemma 2.3). 

Putting these two descriptions together and using Lemma 2.4 as in the proof of part 
(a) shows that g(u,z) ---f 0. Hence g(u,Z(u))Z(Z(u) > 0) + 0 and it only remains to 

show that @“(Z(u) > 0) ---f 1. But by (2.4), Z(‘) 2 00, and hence also Z(U) “z ICC 
by part (a) of the theorem. 0 

3. Ruin probability approximations 

We start with the result of Theorem 1.3(a) that for U,X > 0 

[FD@)(Z@) <x) = Br)(x) = P”)(Y - u<xlY > u), 

where Y has df Ba. Now Bo E Y implies that Z(“) + cc in distribution, cf. (2.4). This 
is a rather weak statement, but more information can be obtained if we allow for a 
scale function a(u), i.e. if we consider Z(‘)/u(u). This, besides giving more insight in 
the asymptotic behaviour of Z(‘), also provides a link to extreme value theory. Here 
Br’ is called the excess distribution referring to the fact that it is the df of the excess 
of the rv Y over a threshold U. 

We recall some facts from extreme value theory; see e.g. de Haan (1970), Resnick 
(1987) or in particular in the insurance context, Embrechts et al. (1997). For iid rv’s 
X,X,, . . . ,X, with df F we say F E MDA(H) (F belongs to the maximum domain of 
attraction of H) if there exist norming constants c(n) > 0 and d(n) E R such that 

(c(n))-’ (max(Xi, . ,A$) - d(n)) 3 H, n--tco. 

H is called extreme value distribution. 
In the present paper, only the case where F has infinite right endpoint, i.e. F(x) < 1 

for all x E [w is of interest. Then either 

exp{-x-“}, x 3 0, 
H(x) = (P&x) = 

0, x < 0, 

for some 01 > 0, or 

H(x) = A(x) = exp { -eCx} , x E R. 

Proposition 3.1. (Balkema and de Haan, 1974; Geluk and de Haan 1987). Assume 
that F has injinite right endpoint. Then F E MDA(H) if and only if there exists 
some measurable function a : R + R+ such that 

lim lp(s >x/X> u) =77,(x). 
u--‘m 

(3.1) 
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Here c( -C 00 corresponds to H = Qp, and CI = 03 to H = A. The function a can be 
chosen as a(u) N J,” F(y)dy/F(u). El 

Recall that G, is the distribution of the generalised Pareto rv V, which has been 
defined in (1.4). 

The exponential tail (01 = co) can be considered as the limiting case for m -+ oo. 
Notice that for a E (0,co) G, is just a reparametrisation of the Pareto distribution. 

Now we assume that the claim size distribution B is heavy-tailed in the sense that 
Bo is subexponential. In order to apply Proposition 3.1 we need that Bo E MDA(H). 
Since Bo has decreasing density &ID, this is equivalent to B E MDA(H) for extreme 
value distributions H, E. 

More precisely, B E MDA(@%+l) ,a > 0, is equivalent to BO E MDA(QE), i.e. 
& E &J-U). This is ensured by the monotone density theorem (Bingham et al., 1987, 
Theorem 1.7.2). Moreover, for B E MDA(QX+i),~ > 0, Karamata’s theorem gives 

a(u) ,-- i, u+cxI. 

B E MDA(A) is equivalent to Bo E MDA(A); moreover, Proposition 3.1 applies to 
B and Bo with the same normalising function a (see e.g. Resnick, 1987, Proposition 
1.17). Furthermore, Bo has the representation 

Bo(u)=exp{-[&dt}, u > 0 

with a(u) = ,u&(u)/z(u). 
For B E MDA(A) and Bo E 9, Goldie and Resnick (1988) have shown that a(u) -+ 

m as u 4 00. They furthermore derive conditions on the function a such that Bo E Y . 
The following applies to the claim size distributions we have in mind. 

Proposition 3.2. ((Goldie and Resnick, 1988)). Let B be a distribution function with 
a(u) = pJ&(u)/B(u) + cc ,a’(~) + 0 as u + 00 and a is eventually non-decreasing. 
Furthermore, assume that for some t > 1 

holds. Then B E MDA(A) and Bo E Y . 

We show that Z(“)/a(u) converges in P @)-distribution to a generalised Pareto dis- 
tribution. Obviously, the function a(u) is unique only up to asymptotic equivalence. 
Hence, any function a(u) N p&,(u)/@u) may be chosen as normalising function. 

Theorem 3.3. (a) If 3 E W( --c( - 1) for CI E (0, CCI) , then 

z(u) 
X--tV, 

U 

in PC“) -distribution. 
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(b) If B E MDA(A) and B,, E Y, then 

in @“)-distribution, where a(u) - ,u&(u)/B(u) + CO. 

Proof. (a) Assume that 

B(u) = U-a--IL(U), u > 0 (a E (0, co), L slowly varying). 

Then by Karamata’s theorem 

G(u) N J/L(U)) u+co. 

Furthermore, Bs E 9’ and a(u) - u/a as u + co. Regular variation implies 

(b) B E MDA(A) implies Bo E MDA(A) with the same normalising function a. 
Hence, by Proposition 3.1 

PC”) (g > x) =By(u(u)x)= ~o(%&- 

=P($$f s-xiY>u) +e-“. 0 

Example 3.4. The Pareto model 

B(x)= (1-t ;)-X-’ ) x > 0, (0 > o,cx > 0). 

Then 

B’)(x) = $ (1 + ;)-% ) x > 0 

This implies 

l&(x + u) B!)(x) = - Be(u) =(1+&J, X>O? 

-_(u) i.e. B, 1s again a Pareto distribution with index c( and the parameter 0 has been 
transformed into 0tu. Hence immediately, we see that by scaling with a(u) = (~+u)/c( 

~ou)(u(u)x) = 3;) (Qtx) = (1+Z)-%, x> 0, 

which is of the form (1.4) for all U. This means that 

@Z(U) 3 

-=v, vu>o. 
Qtu 
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Example 3.5. The Weibull model 

B(x) = exp {-x”} , x > 0 (@E(O,l)). 

Then by Proposition 3.2, B E MDA(A) and Bo E 9’. By partial integration, 

Bo(4 N J-x’-’ exp{ -x”} , x+00, 
PBM 

and hence 

Bow 1 ,-_a 
a(u) = pg- - -24 ) u--too. 

B(u) c( 

Then we obtain 

LXZ(“) --) y 
&r O3 

in Pc”)-distribution. 

Example 3.6. The lognonnal model 

x>o (a > 0,b > 0), 

where N denotes the standard normal distribution. It is well-known that the lognotmal 
distribution is in MDA(A) (see e.g. Resnick, 1987) and also that Bo E Y (see e.g. 
Kliippelberg, 1987). B is absolutely continuous with density B’ which can be expressed 
in terms of the standard normal density IZ. Using 1’Hospital and Mill’s ratio, 

B(u) a(u) N - = 
N((lnu - b)/u)au a*u N--- 

B’(u) n ((ln u - b)/a) lnu-b’ 

Hence, 

In 2.4 Z(‘) ~ 

a2u 
v 

03 

in PC”)-distribution. 

Proof of Corollary 1.4. Consider the joint distribution of 

( 

Z(“) Y(u) - u 
-2 
a(u) > a(u) . 

First assume that B E ~%-a - 1) for c1 > 0. Then by (1.10) and (2.5) we obtain 
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=wl+5)(I+o(l)) 
B(u(l+ ;)) 

~ (1 + !$y- 
(1 + ;)-“-1 

Then we obtain for the joint distribution 

p,“) cL(Y(u)- u) > t ctz@) > u t cx3 (1 + y)-“-’ 

( 
> 

u - ).I U ~ ( 1 + t)-“+’ dG&) 

= (l+!$-i 

= G,(o+t). 

Now assume that B E MDA(A) and Bo E Y . Then by Proposition 3.1, 

@“) Y(u) - u > t Z(“) ( a(u) 1 > -zzfj = 

a(u) 
P(“s”a(u)) (Y(u) - u > tu(u)) 

B(u + (v + t>a(u)> = 
B (u + vu(u)> 

-I -+e . 

This implies 

p(u) Y(u) - 24 > t z(u) > u ( a(u) ’ a(u) 1 ---$ e-(r+F). 

To get the four-variate joint limit, just invoke the law of large numbers in the form 
St/t 4 1 - p uniformly on bounded intervals, which in particular implies 6(z)/z -+ 
(1 -p)-‘. 0 

Using Corollary 1.4, the proof of Corollary 1.6 on finite time ruin probability is 
immediate. 

Proof of Corollary 1.5. Immediately by Corollary 1.4 we obtain for all CY E (0,001, 

W(u) - u 

a(u) 
- V, + T, 

in PC”)-distribution. V, and T, are absolutely continuous with joint density 

ifa=c0. 
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From this we obtain the density of V, + I’, as 

-1-2 
ifcz<co, 

ifcc=cc. 

(b) follows immediately by integration as (a) does by setting a(u) = u/a. Cl 

We now investigate the asymptotic distribution of the largest claim before the one 
leading to ruin in order to substantiate that it actually is smaller. Assume that B E 
MDA(H). Denote 

M(u) = max Uj, 
I QiGv(r(u)) 

where N(r(u)) = sup{n E N : T, < Z(U)}. Furthermore, let the functions c(t) and 
d(t) for t > 0 be the usual interpolations of the sequences (c(n)) and (d(n)). Then 
the following result holds. 

Theorem 3.7. (a) IfB E 92(-a - 1) for ct E (O,oo), then 

lim P(‘)(u-‘~~M(u) <x) 
u-03 

sm 1 --a-l 
= exp - P 

0 (a - l)(l - JoI= I( ) l+ % 
dz, x20. 

(b) rf B E MDA(A) and Bo E Y, then 

lim [Fp(‘) 
( 

M(n) - d(a(u)) 
c(a(u)) bx > ( 

= 
“--too 

l+&ePX)-‘, xER. 

Proof. By Corollary 1.4 we have for CI E (0, co], 

NT(~)) ---= 
a(u) 

N(r(u)) r(u) P v ------+- 1 
r(n) a(u) 1-P 

in @“)-distribution, where p is the intensity of the claim arrival process. We consider 

M, = max{UI,...,U,}, 

where (U,,) are the claim sizes with df B. The normalising function u(u) can in the case 
of (a) be chosen as u/(a - l), in the case of (b) it can be chosen to be the same as for 
Bo This implies in the case of (a) with u(u) = u/(a - 1) and y = ((a- l)(l -p))-‘p, 

lim Pu(u -““M(u) < x) U-M 

= lim Jr ( P 
“‘cc o 

M(u)<u”~x 2 = z dG,(z) 
1 > 

max U.<&~, 50 =z 
I <i<iV(r(u)) ” I > a(u) 

G(z) 

P (Mu,,, d u”“x) dG,(z), 
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where [y] denotes the integer part of y. Set n = [yzu], then the rhs is equal to 

= J O” ax-, (x(yz)-I’“) dGa(z) 
0 

ZZ lrn exp { -yzx-“} (1 + ;)-‘-I dz 

In the case of (b) we obtain with y = (1 - p)-lb as above 

lim @“,((M(u) - d(a(u)))/c(a(u))<x) 
U--t(xI 

= lim IX u-m o $ (M~r;zn(u),dc(a(u))x+d(a(u))) dGm(z) 
~(MzGc(d(~z)b+d W(YZ>)) dG&) 

= lim Jm ( p I?'&, -d(n) <C@:o++ dWW))-d(fi) &Qz) n-cx () c(n) c(n) 0) > 
Now c(t) is a slowly varying function, hence c (n/(yz)) /c(n) + 1 as n 4 cc . Further- 
more, by Proposition 3.1, 

B E A ~ l im  JYu ’ u + Mu)) = e-x 

P(U > u) 
)  XfR. 

n--tCC 

- 
Since B(d(t)) N t-’ and c(t) N d(a(t)), Bingham et al. (1987, Theorem 3.10.4) (see 
also Geluk and de Haan, 1987) yields 

d ; - 0) 0 
c(n) 

---f - In yz . 

By continuity the rhs of the limit above is equal to 

lim J 11’03 o 
CQ P((Mn - d(n))/c(n)<x - lnyz)e-‘dz 

ZZ SW exp{-e-“yz}e-zdz= (1 +ye-‘)-I , xE R. 0 
0 

Remark 3.8. The analogue of Theorem 3.7 for the light-tailed case does not seem to 
be stated in the literature but follows easily along the lines of Asmussen (1982): M(u) 
has the same asymptotic properties w.r.t. PC’) as rnaxiGlkul Ui w.r.t. the exponentially 
changed measure (1.2) for k = l/~‘(y) (cf. Introduction). 
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4. Proofs for the random walk case 

When unambiguous, all notation introduced for the risk process will be used also 
for the random walk (say r+, Z = -Sr+_i, r(u), Z(U) = -Sr(u)_~ etc.). 

We let G+, G- denote the strict ascending (defective), resp. weak descending 
(proper), ladder height distribution and -v_ the mean of G-. It is well known (As- 
mussen, 1987, p. 169) that 

P(T+ < co) = llG+ll = 1 - & = 1-t 5. 

A main difficulty when considering random walks which are not skip-free in one di- 
rection is the fact that the Wiener-Hopf factorization is not explicit, i.e. G,, G-, etc., 
cannot in general be found in closed form. However, many properties remain valid 
asymptotically; e.g. compare Proposition 2.1 (a): 

Lemma 4.1. For large y it holds that 

P(Y>y) N ;Ir I 
cx 

F(x) d-G 
?: 

P(Z2-y) N ; I 
M 

F(x) dx. 
?, 

Here the statement on Y is well known (Veraverbeke, 1977) and the key in the proof 
of (1.3). The statement on Z follows along the lines of the proof of Proposition 4.2 
below (Lemma 4.1 is not used in the following but stated because of its independent 
interest). 

Proposition 4.2. P(‘)(Z>za(u) 1 Y > u) --f G,(z). 

Proof. The fundamental tool is the representation 

.I 

0 

G+(A)= F(A -x)&dx), A C(O,m), 
-cc 

of G, where 

(4.1) 

T+ - I 

FBI = E c I(& E B) 
n=O 

is the pre-r, occupation measure which in turn can be identified with the renewal 
measure U_ = c,” G? (see Feller, 197 1, Ch. XII; Asmussen, 1987, Ch. VII, 1989). 
In the following, we assume w.1.o.g. that B(x) = F(x)/F(O), x > 0. Defining 

c(u, h) = SUP WY - 4~1) = SUP u-([Y - kyl), 
v4-m(u) y-m(u) 

it follows from (4.1) by conditioning upon &+_ 1 that 

I 

-za(u) 
p(Y > U, Z > za(u), z+ < CO) = qz4 - x)R(dx) 

-c-2 
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J 
-m(u) 

= F(O) B(u - x)R(dx) 
-cc 

< c(u, hh)F(“)h F B(u + zu(u) + nh) _ 
n=O 

c(u, h)F(O) O” 
h {I B(x)dx + E(u, h) , 

u+za(u) 1 

where I~(u,h)l<hB(u+zu(u)). Since c(u,h) + h/v- by Blackwell’s renewal theorem, 
it follows by invoking the standard estimate B(x) = 0(&(x)) (see Section 3) that 

lim sup 
P(Y > U, z > za(u), r+ < co) < F(O) J;o;;,J%x)~ 

Do(n) 
- - lim sup 

u-EC v- u--rm Be(u) 

F(O)Ks = ___ lim sup 
Bo(u + za(u)) 

v- u-03 Bow 

_ ~(WK4z) 
VP . 

Combining this with a similar lower bound gives 

Lq Y > u, z > zu(u), r+ < cc) 

Be(u) 

~ F(O)/&(Z) 
v- . 

Taking z = 0 and dividing, the result follows. 0 

Proof of Theorem 1.1. Given Proposition 4.2, the proof is basically just an easier 
version of the proof of Theorem 1.3. As there, we get 

(1 @“‘(Z(U) E .) - P (z(u) - Y, - . . - YN__I E .) 11 + 0, 

where N, ZcU), Yr , Yz,. . , are independent IV’S such that N is geometric with parameter 
11 G+ 11, Z(‘) has the conditional distribution of Z given Y > u and the 6 have distribu- 
tion G+/JIG+II. F rom this and Proposition 4.2, it follows immediately that Z(u)/u(u) ---f 
V, in @“)-distribution. For the following, we also note that 

r+(N(u) - 1) = O(l), (4.2) 

sup &+(lv(u)-I) = O(1). 
O$f<l 

(4.3) 

We next need to invoke the discrete time analogue of Proposition 2.2. The dual 
process is the sign-reversed random walk {-&}, and -S&I + ,U combined with 
Z(U) + cc in Pc”)-distribution therefore yields 

z’“’ 
r+(N(u)) - r+(N(u) - 1) N $> (4.4) 

&(r+(N(u))-I) - &+(N(u)--I) 
q(N(u)) - z+(N(u) - 1) - -@’ (4.5) 
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where 2;‘) = S~+(N(u)-~)-ST+(~(u))_~ y 00, hence Z(u)/Zf”’ “II 1 by (4.2). Combining 
(4.2) and (4.4) then yields r(u)/Z(u) = r+(N(u))/Z(u) + l/p. That (Y(U) - u)/a(u) 
+ T, follows by conditioning upon Z(U) as in Section 3, and finally 

follows by combining (4.3) and (4.5). 0 

Proof of Theorem 1.2. Define G(Z) = inf {n : 4, >z}. Then by (4.2), 

1 
r+(N(u))- 1 

~TdX) N c IGGdx) 
T cN(fl” - ~+W(u) - 1) n=r+(N(n)_,)+, 

where the last equality is in Pc”)-distribution. Here a(Z,‘“‘) -+ 00 (because Z[U) 4 cc 

and cr(z)/z + l/p) and hence F,,,,(x) ““’ -+ F(x) because F,(x) 2 F(x). It is standard 
that the truth of this for each x implies uniformity in x. ??
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