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Abstract

Given an infinite sequence ¢ = (& )r of —1 and +1, we consider the oriented walk defined by
Su(t)= ZZZI €162 ... 6. The set of t’s whose behaviors satisfy S,(¢) ~ bn" is considered (b € R
and 0 < <1 being fixed) and its Hausdorff dimension is calculated. A two-dimensional model
is also studied. A three-dimensional model is described, but the problem remains open. (©) 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction and results
Let t = (&,(¢))n>1 € D := {—1,+1}N. Consider

Su() = er(eat) .. ex(0).
k=1
We would like to study the behavior of S,(¢) as n — oo for different # € D.
We regard S,(¢) as an oriented walk on Z of an individual following the signals of
t: suppose that at time 0, the individual is at the origin of Z and keeps the orientation
to the right. If the signal & (¢) = 1, he forwards one step in the orientation he kept,
i.e., to the right and if the signal & (¢#) = —1, he returns back and then forwards one
step (in the orientation opposite to that he kept, i.e., to the left). We say that the state
of the individual at time 1 is (S, &;) where & =& means the orientation kept by the
individual at time 1 (“—17= left, “+1” = right) and S;(¢) = ¢; means the position of
the individual. Suppose that the state of the individual at time n is (S,,&,). The state
of the next time n + 1 is determined as follows. If the signal ¢,,;(#) =1 (resp. —1),
the individual forwards one step in the orientation &, (resp. in the orientation —¢&,).
Thus we get the recursive relation

Sn+1 = Sn + 8n+lém énJrl = 8n+1§n-
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By induction, we get that
n
Ei=¢e16...6,, Sy :Z £1& ... 8.
k=1

This walk S, is different from the classical random walk & + & + --- + ¢,, where
“random” means that D is equipped with the Lebesgue probability measure (Bernoulli
probability measures, even arbitrary probability measures may also be considered). For
the classical random walk, the steps at different times are independent. But for the
present oriented walk, the step at time n + 1 depend not only on the signal at time
n+1 but also on the orientation kept at the time n. Actually we will consider the present
walk from the deterministic point of view, because no prior probability measure will
be imposed. For convenience, we may also think of ¢ as an individual and (e,(¢)) as
his thoughts at different times.

The space D is a compact metric space and we will take the usual metric on it,
which is defined as d(z,5)=2"" for t=(#) and s=(s;) in D with n=sup{k:# =s;}.
Thus different notions of dimensions are defined on . We will talk about Hausdorff
dimension dimy, packing dimension dimp and upper box dimension dimg (see,
Kahane, 1985; Mattila, 1995 for a general account of dimensions). The closed 27"
ball containing ¢ = (&) will be denoted by I(¢y,...,é&,). It is also called an n-cylinder.

Let b € R. Introduce the set (or population)

1
E, = {t €D : lim —S,,(t)b}.
n—oo n
Theorem 1. If b & [ — 1,1], we have E, =0. If b € [ — 1,1], we have

2
where H(x) = —xlog,x — (1 —x)log,(1 —x).

1+5b
dimHEb = dimpEb =H (L>

The behaviors of S,(¢) described by Ej’s are far from exhaustive. We will illustrate
this by considering two other types of behavior. Let

Ep={teD:S,(t)=0(1) as n — oo}.
ForbeRand 0 <7< 1, let

Ebjr:{te D: lim Sn(t):b}.
n—oo nt

Theorem 2. We have dimy Evg=1. For b € R and % <1t <1, we have dimy Ej; = 1.

Now let us consider an oriented walk on the lattice Z2. We insist that on every
point in the lattice there are four orientations which are, respectively, represented by
1,i,—1 and — i (rightward, upward, leftward and downward). At a given time, an
individual not only has a position and but also keeps an orientation. Let (S,,&,) be
the state of the individual ¢ = (¢,) at time n. We define its state (S,i1,&,41) at
time n+ 1 as

Sput =S, 4D e i
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This means when ¢, =41 (resp. —1), the individual turns an angle nt/2 (resp. —7/2).
By using the relation i° = ¢i for e = —1 or +1, we get the expression

n
Sy = E *erer ... 6.
k=1

Thus we get a formula which is similar to that of the 1-dimensional case. The difference
is that in the 2-dimensional case, S,(f) is a sum of &;...g weighted by complex
numbers i¥. For any complex number z € C, let
Sa(t
FZ:{te D: lim ﬂ:z}.

n— o0 n

Theorem 3. Let A ={Z =x + iy: |x|<1/2,|y|<1)2}. If z & A, we have F, = .
If z=x+1y € A, we have

142 142
dimy F. = dimp F, = | {H( —;x>+H< Zy)]

where H(x) = —xlog,x — (1 —x)log,(1 — x).

Let
Foa={t€D:S,(t)=0(1) as n — oo}.

ForzeCand 0 <1 <1, let

F..= {t c: tim O zz}.

n—oo nt

Theorem 4. We have dimy Frg=1. For b € C and 1/2 < © < 1, we have dimy F) . =1.

In Section 2 we will construct a class of probability measures on D, called Riesz
products, which are well known in harmonic analysis [Z]. The theorems will be proved
in Sections 3-5. In the last Section 6, we give some remarks on the related works and
some unsolved questions to be considered.

2. Riesz products

As a preliminary, we introduce and study in this section a class of probability mea-
sures defined on D which will be useful in our proofs of the theorems. Consider
{—1,1} as a (multiplicative) group and D as its infinite product group. The dual group
D of D consists of the constant function 1 and all possible products &, (¢)ey,(¢) ... &n (2)
Vk=1,V1<n; <np <--- <ng). There is a convenient way to represent D. Let wo=1.
Let n>1 be an integer. It has a unique representation n=2"""4...+2%~1 We define

Wu(t) = €5, (£)€n, (1) ... &0, (1)

Then we have D = {Wu}nso. The functions w, are called Walsh functions. A finite
sum of Walsh functions is called a Walsh polynomial, whose order is the largest index
n of Walsh functions w, contained in the sum defining it.



266 A. Fanl Stochastic Processes and their Applications 90 (2000) 263-275

Let ¢ = (¢x)k>1 be a sequence of real numbers such that |¢;|<1. The following
infinite product

due) =[] (1 + car@ea®)...ex(0)) dr

k=1

defines a probability measure, in the sense that its partial products converge in the
weak-* topology to a measure .. The measure p,. is called a Riesz product. Recall
that when ¢, =0 (Vk), we have du.(¢) = dt, the Lebesgue measure on D.

Lemma 1. The above infinite product does define a probability measure p.. Further-
more, for a function [ having its Taylor development

JE=Y S (K<), D[Sl <o
n=1 n=1

we have

[E”Cf(8182...8k): U+CkV
Cov, (f(e162...6), f(e182...8,)) =0, (k#/)
where

U= fun V=" fu
n=1

n=1

Proof. Let P,(¢) be the nth partial product of the infinite product. It is clear that P,
is a Walsh polynomial of order 2" — 1 (at most). It is clear that P, are non-negative.
Note that

Puyy — Py=cp1Prerey... 6041

is a Walsh polynomial, a sum of wy with 2" <k < 2"*!. It follows that [ P,(r)dt=1
and that the Fourier—Walsh coefficient P,(wy) is constant when n is sufficiently large.
Therefore, the measures P,(¢)d¢ converge weakly to a limit u. (see Zymund (1959)
for details in the case of the circle). The above argument also shows that

,llc(f)] ...8k) = Ck-

Ac(ertr---e0) =cker,  (Vhk <)

Using these two equalities, we can obtain the general expressions stated in the lemma.
Note first that

2 2n—1
(e162...0)" =1, (g160...8)" =¢16... .
We have
o0
Ep f(e162.8) =Y fulEu(e162...80)"

n=1

= Z .on + Z f‘znfl[EHLﬁ]Sz &k
n=1 n=1
=U+ V.



A. Fanl Stochastic Processes and their Applications 90 (2000) 263-275 267

Suppose k < /. We have

Z fn.};m[Eﬂc(sl coe) (e gn)"

NE

Eof(er...ex)f(er...e0) =

3

n=

oo o0
= nJ mLtpu\el - - -k k+1.--€7) .
AR GO

n=1 m=1

Remark that
+
(&1 &) ™(ekg1---8)" =1, &py1..-6/, €1...6 OF &...&
according to

(n 4+ m,m) = (even, even), (even, odd), (odd, even), (odd, odd).

Consequently,
Euf (1 e)f (61 8) =D foufom+ D D fon1SomCk

n=1 m=1 n=1 m=1
(o) o0 _

+ Z Z f2n—lf2m—lckc/
n=1 m=1

+ YD fufomie
n=1 m=1

=|UP+ VU +c,UV + cper| VI~

This, together with the formula £, f(e;...&)=cy, implies that the covariance is zero.
O

Let us give a remark, a direct consequence of the above lemma. Consider the
orthogonal series in L?(u.)

oo

D ou(f(er .. a) = By f(er ... 80)).

k=1

According to the Menchoff theorem [Z], the series converges p. almost everywhere
under the condition 3" oy |? log® n < oc.

3. Proof of Theorem 1

From the fact that |S,(z)|<n (Vn=1 and V¢ € D), we get E, =0 for b & [ — 1,1].
Consider the map 7: D — D, which changes the first coordinate #; of ¢ to —#;. Then
E_,=1E}. Since 7 is an isometry from D onto D, E, and E_; have the same dimension
(Hausdorff dimension, packing dimension or box dimension). So, we have only to prove
the result for 0 <b < 1. Note that E is of full Lebesgue measure. This is a consequence
of the law of large numbers (implied by the remark after Lemma 1).
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Upper bound: Fix 0 < b<1. Take 0 > 0 such that 0 <b — 0 < b. Consider the
following set of n-cylinders:

%, = {1(81,...,8,,)2 > era=nb— 5)}
k=1
and the set covered by these cylinders
G, = U I
It is obvious that

E},CG ﬁ G,.

N=1 n=N

It follows that

dimp Ej < sup dimp ﬂ G, < sup dimg ﬂ G,.
N> n=N N=1 n=N

However 4, is a cover of ()2, G, by n-cylinders, when n>=N. By considering (&)
as independent variables with respect to the Lebesgue probability measure P on D, we
get that for any a > 0

C d 5 [E Enzlﬂl...SA
ar (Z &1 ... &k >n(b_ 5)) Sa(iTo)
an

where E denotes the expectation with respect to P. Note that by first integrating with
respect to &, we get

[EaZZ:, el %(a + a_l)[EaZZZZSZ'"Sk,
Then by induction, we get

Fq2ier o1 — (%(a +a Yy
Thus we have

Card (5;1 <211[10g2(a+a71)—(b—6)]0g2 al _ 2nh(a)
where

h(a) =log,(a+a~') — (b — 8)log, a.

It is easy to see that
. _ [1+(b—-96)\ 1+b—-0
mmh(a)h( 1—(b—5)> H( > )

H(x)= —xlog,x — (1 —x)log,(1 —x).

where
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It follows that

dimp ﬂ G, < lim sup lrgd(g <H(l+b5>.

N n—00 2" 2

Letting 6 — 0, we get dimp £, <H(12).

Lower bound: 1t suffices to consider 0 < b < 1, because we have proved dimp E;=0.
Consider the Riesz product u, with ¢y =b (Vk>1). As a consequence of Lemma 1
and the Kronecker lemma, we get that

.S
lim

n— o0 n

=b up-ae.

This implies dimy E, >dim u, where dim p, denotes the dimension of the measure
Up which is defined as the infimum of the Hausdorff dimensions of Borel sets with full
up-measure (Fan (1994)). It is known that (Fan (1994))

im i — i 2EUA00)

A g2 Up-a.e.

We check that there are constants 0 < 4 < B < oo such that

n

4 + B
o H(l+b81...sk)<,ub(1n(x))<? [T +0e...a)
k=1

k=1

for any x = (¢,)y>1 € D and any n>1 (see Fan (1997b)) for details). It follows that
1 n
di =1— lim — 1 1+ be ... -a.e.
im g nggon; ogy(1 +bey...e) y-ae

Using once more the consequence of Lemma 1 applied to a,, =1/n and f(x)=log,(1+
bx), we get

1 n
dimy,=1— lim — Z E,, log, (1 + bey ... &).
k=1

n—oo N

Remark that log(1 4 bx) = bx — (b?>/2)x> + (b*/3)x> + ---. By Lemma 1, we have

o b2n e b2n—1
Ey log(l + bey ...ep)=—> - +5) -

n=1 n=

2n 2n—1 2n
( Zb b >+(b—1)zb

blog(1+b)—b_

log(1 — )

*b1og(1 —b)

1456 1
= er log(1 +b) +

1+b 14b 1-b
- ]
;7 8T, T

Finally we get dim yu, = H((1 + b)/2). [

—b
+ log2.

1
1
0g—
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4. Proof of Theorem 3

Notice first that i* = 1,i,—1,0r — i according to £k =0,1,2 or 3 (mod4). Given two
real numbers o, §, define a real sequence (a;) as follows

ay =o,—f,—a or f,

according to £ =0,1,2 or 3 (mod4).
Then we can write

(Sn(l‘), o+ 1ﬁ> = Zakslsz e
k=1

where (-,-) denotes the inner product of two complex numbers regarded as two points
in the euclidean space R.

In particular, if «=1 and =0, the last sum is just the real part of S,(¢). It follows
that the real part of S, is bounded by (n/2) + 1. It is the same for the imaginary part
of S,(¢). So, we have F, =) for z ¢ A. Now we are going to prove the dimension
formula.

Upper bound: For any real numbers o and f§, we have F, C %, p where

Sa(), i
3’%/;—{t€|D: lim {Su(1), 2 + i)

n— 00 n

=ox + ﬁy} .
It follows that

dimp F, < in}~ dimp Z, p.
o,

In order to estimate dimp %, g, we follow the same proof as in the case of 1-dimension.
We shall use the expression given above for (S,(¢),a + iff). Without loss of general-
ity, we assume that 0 < ox + fy. Take 6 > 0 such that 0 < ax + fiy — . Consider
the following set of n-cylinders:

%, = {1(81,...,8,,): Zaksl g =n(ox + fy — 5)}.
k=1

We have

. . Card %,
dimp E, p < hrrlrisgp log2"

It may be calculated that
[Eezzzl“k“'"”k ~ (%(ex + 67“))"/2(%(6/3 + efﬁ))n/Z.
Then

Card ¢, = 2"P <Z aée ... e =n(ox + Py — 5)>
k=1

< on/log 2[1/2 log(e* +e~*)+1/2 log(eﬂ+e_ﬁ)f(o<x+ﬁy7(3)]'

Thus we get

h(ew, )

dimp 7, 5 < )
e Fap log2
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where

(e, B) = 1 log(e” + ™) + Llog(ef + e F) — (ox + By — 6).
Note that

oh  le*—e™® oh lef—eF

Jo 2e*+e x, @ BT -
It follows that the minimal point (o, f) of the function % is defined by

/142
ea: + x, eﬁ: 1+2y
1 —2x 1-2y

Let Ay, be the minimal value of the function 4. We have

hmin 1 o \/1+2x+\/1—2x o \/1—|—2x+\/1—2x
log2  2log2 | B\V1i—2x "V i1t2x Vit "Virar
I+ 2x 1+2y
—xlog—= — y1
TR o T V%1

() ()

Lower bound: In order to get the lower bound we consider the Riesz product u (we
denote it by u instead of p.) defined in Section 2 with

X

¢t =a,b,cord

according to k£ = 0,1,2 or 3(mod4), where a,b,c and d are four real numbers of
absolute value smaller than 1, which will be determined later. By the remark after
Lemma 1 and the Kronecker lemma, we get that

lim Sn(t):a—c+id—b

n——oo N 4 4

L-a.e.
Assume first that
a—c=4x, d—b=4y.

Then w(F.) = 1. So dimy F,>dim p. However, it may be calculated that dimu =
¢(a,b,c,d) where

consar=L () en (52) (15 (152)]

Thus we get

dimy F, > sup ¢(a,b,c,d).
a—c=4x,d—b=4y

In order to apply the Lagrange multiplier method, we introduce

D(a,b,c,d,o, )= ¢(a,b,c,d) — o(a —c —4x) — f(d — b —4y).
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We have
@fllo l—a
da 8 g1+a
@*110 l_choc
dc 8 g1+c '

If 0&/0a = 0®/dc =0, we have (1 —a)/(1 +a)=(1+c)/(1 — ¢). This, together with
a —c=4x, allows us to get a =2x,c = —2x. Similarly, we get d =2y,b=—2y. So, if
a,b,c,d are chosen in this way, we get

1 142 1+2
dimy F, > ¢p(2x, -2y, —2x,+2y) = > {H( J; x) +H< +2 yﬂ

(here we used the fact that H(x) = H(l —x)). O

5. Proofs of Theorems 2 and 4

Proof of Theorem 2. Fix an integer m>1. For j>1, let

2m(j—1)+2m

()= > Xu

k=2m(j—1)+1
with
Xik = eam(j—1)+1(t) ... ex—1(t)er(t).

(We have cut Z,fil €1& ...& into blocks of 2m terms. ¢; is just the jth block, but
without the common factor €& ... &y j—1y). Then for J =1, we have

J
Soms (1) =Y &1(1)ea(t) ... eam( ;1)) ().

=1
Let

Em={teD:g;(t)=0, Vj=1}
It is clear that for any m>1, we have

EnC{t € D:|S,(1)|<2m, Vn=1} C Eng.
It follows that

dimy Epq = sup dimy &,
Now let us estimate dimy &,,. Let

D =A{(eam(j—1)+15- - €2m(j—1)42m * Xy + -+ + Xy, = 0}

Z={(&1,--»6m): &1+ -+ + &m =0}.

We claim that Card ¥; = Card 2 (Vj>1). In fact, the calculation in the proof of
Theorem 1 shows that the random variables X + --- + Xj5, and & + -+ + &
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(relative to the Lebesgue probability measure) have the same distribution because they
have the same moment generating function (1/2(a + a~'))*". So,
Card 2, =2""P(X;1 + - + X;2n =0)
=2"P(g; + -+ &y =0)=Card 2 = Cy.

This implies that &,, is a homogeneous Cantor set and then its dimension equals

m

. _— Con logm
dlmﬁém—loglogzzm—l+0( p >

Thus we have dimy Epq = 1.

In order to prove dimy Ej =1, consider the Riesz product p, with ¢,=b(k*—(k—1)")
(it may be assumed that k is sufficiently large so that |cx| < | because t < 1). By the
remark after Lemma 1, the following series

> 5 @) ()~ bE G- 1)) (> 1)
k

converges fi.-almost everywhere. By using the Kronecker lemma, we get that p.(Ep )=
1. On the other hand, since t < 1, we have ¢; — 0 then dim y. =1 (it may be proved
as in the proof of Theorem 1). Finally we get dimy Ep . >dimpu. =1. [

Proof of Theorem 4. It suffices to follow the proof of Theorem 2. [J

6. Remarks

1. Let us first give a remark concerning the 1-dimensional case. From the arguments
given in the introduction, we can see that when D is equipped with the Lebesgue
probability measure, S, is not Markovian. However, if we write

Sy (1 g
Xn_(é,,)’ An_(o Sn)’

we have

Xy =A4,4,-1 ... 41X0,

()

It is to be noted that the matrices 4, are independent and X, is Markovian.
2. The following general question remains unsolved. Given an angle 0 < o < 2m.
What is the behavior of

where

Sn — 66111 + e(£1+82)<xi S e(b‘] +82+...+8n)0d?

The case we have studied above corresponds to « = m/2. For an arbitrary angle o, in
general, S, may not stay on a lattice.
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3. A 3-dimensional generalization is the following

n

Su(t) =" R+ Hy

k=1

where v=(1,0,0)' and R is the rotation defined by the orthogonal matrix

0 0 -1
R=[10 0
01 0

The walk stays on the lattice Z3. But all the same questions as in the 1-dimensional
case remain unanswered. The simplest 3-dimensional model would be defined in the
same way by replacing R by the following matrix:

0 01
R=|100
010
However, we have no results about it either. Nevertheless, the present method does
work for S,(1)=>";_, &1(¢)...&(¢)vx where {v;} is a fixed sequence of vectors.

4. Let us mention some previous studies in similar situations. For the classical walk
& + -+ ¢&,, the result corresponding to Theorem 1 is a well known theorem due to
Bescicovitch (1934) and Eggleston (1949) and the result corresponding to Theorem 2
is due to Wu (1998). Trigonometric sums are studied by Fan (1997a). Oriented walks
on graphs guided substitutive sequences are considered by Wen and Wen (1992), and
Dekking and Wen (1996).

5. By using the method in Wu (1998), we can relax the restriction 1/2 <t <1 to
O0<t<l.

6. Some of the properties of the Riesz products constructed in Section 2 may be
deduced from Fan (1993). We wonder if there is a necessary and sufficient condition
for the series at the end of Section 2 to converge almost everywhere with respect to
the Riesz product.
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