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Abstract

Given an in�nite sequence t= (�k)k of −1 and +1, we consider the oriented walk de�ned by
Sn(t) =

∑n
k=1 �1�2 : : : �k . The set of t’s whose behaviors satisfy Sn(t) ∼ bn� is considered (b ∈ R

and 0¡�61 being �xed) and its Hausdor� dimension is calculated. A two-dimensional model
is also studied. A three-dimensional model is described, but the problem remains open. c© 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction and results

Let t = (�n(t))n¿1 ∈ D := {−1;+1}N. Consider

Sn(t) =
n∑
k=1

�1(t)�2(t) : : : �k(t):

We would like to study the behavior of Sn(t) as n→ ∞ for di�erent t ∈ D.
We regard Sn(t) as an oriented walk on Z of an individual following the signals of

t: suppose that at time 0, the individual is at the origin of Z and keeps the orientation
to the right. If the signal �1(t) = 1, he forwards one step in the orientation he kept,
i.e., to the right and if the signal �1(t) = −1, he returns back and then forwards one
step (in the orientation opposite to that he kept, i.e., to the left). We say that the state
of the individual at time 1 is (S1; �1) where �1 = �1 means the orientation kept by the
individual at time 1 (“−1”= left, “+1” = right) and S1(t) = �1 means the position of
the individual. Suppose that the state of the individual at time n is (Sn; �n). The state
of the next time n + 1 is determined as follows. If the signal �n+1(t) = 1 (resp. −1),
the individual forwards one step in the orientation �n (resp. in the orientation −�n).
Thus we get the recursive relation

Sn+1 = Sn + �n+1�n; �n+1 = �n+1�n:
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By induction, we get that

�n = �1�2 : : : �n; Sn =
n∑
k=1

�1�2 : : : �k :

This walk Sn is di�erent from the classical random walk �1 + �2 + · · · + �n, where
“random” means that D is equipped with the Lebesgue probability measure (Bernoulli
probability measures, even arbitrary probability measures may also be considered). For
the classical random walk, the steps at di�erent times are independent. But for the
present oriented walk, the step at time n + 1 depend not only on the signal at time
n+1 but also on the orientation kept at the time n. Actually we will consider the present
walk from the deterministic point of view, because no prior probability measure will
be imposed. For convenience, we may also think of t as an individual and (�n(t)) as
his thoughts at di�erent times.
The space D is a compact metric space and we will take the usual metric on it,

which is de�ned as d(t; s)=2−n for t=(tk) and s=(sk) in D with n=sup{k : tk = sk}.
Thus di�erent notions of dimensions are de�ned on D. We will talk about Hausdor�
dimension dimH , packing dimension dimP and upper box dimension dimB (see,
Kahane, 1985; Mattila, 1995 for a general account of dimensions). The closed 2−n

ball containing t = (�k) will be denoted by I(�1; : : : ; �n). It is also called an n-cylinder.
Let b ∈ R. Introduce the set (or population)

Eb =
{
t ∈ D : lim

n→∞
1
n
Sn(t) = b

}
:

Theorem 1. If b 6∈ [− 1; 1]; we have Eb = ∅. If b ∈ [− 1; 1]; we have

dimH Eb = dimP Eb = H
(
1 + b
2

)
where H (x) =−x log2 x − (1− x) log2(1− x).

The behaviors of Sn(t) described by Eb’s are far from exhaustive. We will illustrate
this by considering two other types of behavior. Let

Ebd = {t ∈ D : Sn(t) = O(1) as n→ ∞} :
For b ∈ R and 0¡�¡ 1, let

Eb;� =
{
t ∈ D : lim

n→∞
Sn(t)
n�

= b
}
:

Theorem 2. We have dimH Ebd =1. For b ∈ R and 1
2¡�¡ 1; we have dimH Eb;�=1.

Now let us consider an oriented walk on the lattice Z2. We insist that on every
point in the lattice there are four orientations which are, respectively, represented by
1; i;−1 and − i (rightward, upward, leftward and downward). At a given time, an
individual not only has a position and but also keeps an orientation. Let (Sn; �n) be
the state of the individual t = (tn) at time n. We de�ne its state (Sn+1; �n+1) at
time n+ 1 as

Sn+1 = Sn + e�n+1(�=2)i�n; �n+1 = e�n+1(�=2)i�n:
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This means when �n+1=+1 (resp. −1), the individual turns an angle �=2 (resp. −�=2).
By using the relation i� = �i for �=−1 or +1, we get the expression

Sn =
n∑
k=1

ik�1�2 : : : �k :

Thus we get a formula which is similar to that of the 1-dimensional case. The di�erence
is that in the 2-dimensional case, Sn(t) is a sum of �1 : : : �k weighted by complex
numbers ik . For any complex number z ∈ C, let

Fz =
{
t ∈ D : lim

n→∞
Sn(t)
n

= z
}
:

Theorem 3. Let � = {Z = x + iy: |x|61=2; |y|61=2}. If z 6∈ �; we have Fz = ∅.
If z = x + iy ∈ �; we have

dimH Fz = dimP Fz = 1
2

[
H
(
1 + 2x
2

)
+ H

(
1 + 2y
2

)]
where H (x) =−x log2 x − (1− x) log2(1− x).

Let

Fbd = {t ∈ D : Sn(t) = O(1) as n→ ∞}:
For z ∈ C and 0¡�¡ 1, let

Fz;� =
{
t ∈ D: lim

n→∞
Sn(t)
n�

= z
}
:

Theorem 4. We have dimH Fbd=1. For b ∈ C and 1=2¡�¡ 1; we have dimH Fb;�=1.

In Section 2 we will construct a class of probability measures on D, called Riesz
products, which are well known in harmonic analysis [Z]. The theorems will be proved
in Sections 3–5. In the last Section 6, we give some remarks on the related works and
some unsolved questions to be considered.

2. Riesz products

As a preliminary, we introduce and study in this section a class of probability mea-
sures de�ned on D which will be useful in our proofs of the theorems. Consider
{−1; 1} as a (multiplicative) group and D as its in�nite product group. The dual group
D̂ of D consists of the constant function 1 and all possible products �n1 (t)�n2 (t) : : : �nk (t)
(∀k¿1;∀16n1¡n2¡ · · ·¡nk). There is a convenient way to represent D̂. Let w0=1.
Let n¿1 be an integer. It has a unique representation n=2n1−1+ · · ·+2nk−1. We de�ne

wn(t) = �n1 (t)�n2 (t) : : : �nk (t):

Then we have D̂ = {wn}n¿0. The functions wn are called Walsh functions. A �nite
sum of Walsh functions is called a Walsh polynomial, whose order is the largest index
n of Walsh functions wn contained in the sum de�ning it.
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Let c = (ck)k¿1 be a sequence of real numbers such that |ck |61. The following
in�nite product

d�c(t) =
∞∏
k=1

(1 + ck�1(t)�2(t) : : : �k(t)) dt

de�nes a probability measure, in the sense that its partial products converge in the
weak-∗ topology to a measure �c. The measure �c is called a Riesz product. Recall
that when ck = 0 (∀k), we have d�c(t) = dt, the Lebesgue measure on D.

Lemma 1. The above in�nite product does de�ne a probability measure �c. Further-
more; for a function f having its Taylor development

f(x) =
∞∑
n=1

fnxn (|x|61);
∞∑
n=1

|fn|¡∞

we have

E�cf(�1�2 : : : �k) = U + ckV

Cov�c(f(�1�2 : : : �k); f(�1�2 : : : �‘)) = 0; (k 6= ‘)
where

U =
∞∑
n=1

f2n; V =
∞∑
n=1

f2n−1:

Proof. Let Pn(t) be the nth partial product of the in�nite product. It is clear that Pn
is a Walsh polynomial of order 2n − 1 (at most). It is clear that Pn are non-negative.
Note that

Pn+1 − Pn = cn+1Pn�1�2 : : : �n+1
is a Walsh polynomial, a sum of wk with 2n6k ¡ 2n+1. It follows that

∫
Pn(t) dt = 1

and that the Fourier–Walsh coe�cient P̂n(wk) is constant when n is su�ciently large.
Therefore, the measures Pn(t) dt converge weakly to a limit �c (see Zymund (1959)
for details in the case of the circle). The above argument also shows that

�̂c(�1 : : : �k) = ck :

�̂c(�k+1 : : : �‘) = ckc‘; (∀k ¡‘):

Using these two equalities, we can obtain the general expressions stated in the lemma.
Note �rst that

(�1�2 : : : �k)2n = 1; (�1�2 : : : �k)2n−1 = �1�2 : : : �k :

We have

E�cf(�1�2 : : : �k) =
∞∑
n=1

fnE�c(�1�2 : : : �k)n

=
∞∑
n=1

f2n +
∞∑
n=1

f2n−1E�c �1�2 : : : �k

=U + ckV:
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Suppose k ¡‘. We have

E�cf(�1 : : : �k) �f(�1 : : : �‘) =
∞∑
n=1

∞∑
m=1

fn �fmE�c(�1 : : : �k)n(�1 : : : �‘)m

=
∞∑
n=1

∞∑
m=1

fn �fmE�c(�1 : : : �k)n+m(�k+1 : : : �‘)m:

Remark that

(�1 : : : �k)n+m(�k+1 : : : �‘)m = 1; �k+1 : : : �‘; �1 : : : �k or �1 : : : �‘

according to

(n+ m;m) = (even; even); (even; odd); (odd; even); (odd; odd):

Consequently,

E�cf(�1 : : : �k)f(�1 : : : �‘) =
∞∑
n=1

∞∑
m=1

f2n �f2m +
∞∑
n=1

∞∑
m=1

f2n−1 �f2mck

+
∞∑
n=1

∞∑
m=1

f2n−1 �f2m−1ckc‘

+
∞∑
n=1

∞∑
m=1

f2n �f2m−1c‘

= |U |2 + ckV �U + c‘U �V + ckc‘|V |2:
This, together with the formula E�cf(�1 : : : �k)= ck , implies that the covariance is zero.

Let us give a remark, a direct consequence of the above lemma. Consider the
orthogonal series in L2(�c)

∞∑
k=1

�k(f(�1 : : : �k)− E�cf(�1 : : : �k)):

According to the Mencho� theorem [Z], the series converges �c almost everywhere
under the condition

∑∞
k=1 |�k |2 log2 n¡∞.

3. Proof of Theorem 1

From the fact that |Sn(t)|6n (∀n¿1 and ∀t ∈ D), we get Eb = ∅ for b 6∈ [− 1; 1].
Consider the map � :D → D, which changes the �rst coordinate t1 of t to −t1. Then
E−b=�Eb. Since � is an isometry from D onto D, Eb and E−b have the same dimension
(Hausdor� dimension, packing dimension or box dimension). So, we have only to prove
the result for 06b61. Note that E0 is of full Lebesgue measure. This is a consequence
of the law of large numbers (implied by the remark after Lemma 1).
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Upper bound: Fix 0¡b61. Take �¿ 0 such that 0¡b − �¡b. Consider the
following set of n-cylinders:

Cn =

{
I(�1; : : : ; �n):

n∑
k=1

�1 : : : �k¿n(b− �)
}

and the set covered by these cylinders

Gn =
⋃
I∈Cn

I:

It is obvious that

Eb⊂
∞⋃
N=1

∞⋂
n=N

Gn:

It follows that

dimP Eb6 sup
N¿1

dimP
∞⋂
n=N

Gn6 sup
N¿1

dimB
∞⋂
n=N

Gn:

However Cn is a cover of
⋂∞
n=N Gn by n-cylinders, when n¿N . By considering (�k)

as independent variables with respect to the Lebesgue probability measure P on D, we
get that for any a¿ 0

CardCn
2n

= P

(
n∑
k=1

�1 : : : �k¿n(b− �)
)
6
Ea
∑n
k=1�1 :::�k

an(b−�)

where E denotes the expectation with respect to P. Note that by �rst integrating with
respect to �1, we get

Ea
∑n
k=1 �1 :::�k = 1

2(a+ a
−1)Ea

∑n
k=2�2 :::�k :

Then by induction, we get

Ea
∑n
k=1 �1 :::�k = (12 (a+ a

−1))n:

Thus we have

CardCn62n[log2(a+a
−1)−(b−�) log2 a] = 2nh(a)

where

h(a) = log2(a+ a
−1)− (b− �) log2 a:

It is easy to see that

min h(a) = h

(√
1 + (b− �)
1− (b− �)

)
= H

(
1 + b− �

2

)

where

H (x) =−x log2 x − (1− x) log2(1− x):
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It follows that

dimB
∞⋂
n=N

Gn6 lim sup
n→∞

CardCn
log 2n

6H
(
1 + b− �

2

)
:

Letting �→ 0, we get dimP Eb6H ( 1+b2 ).
Lower bound: It su�ces to consider 0¡b¡ 1, because we have proved dimP E1=0.

Consider the Riesz product �b with ck = b (∀k¿1). As a consequence of Lemma 1
and the Kronecker lemma, we get that

lim
n→∞

Sn(t)
n

= b �b-a:e:

This implies dimH Eb¿dim �b where dim �b denotes the dimension of the measure
�b which is de�ned as the in�mum of the Hausdor� dimensions of Borel sets with full
�b-measure (Fan (1994)). It is known that (Fan (1994))

dim �b = lim
n→∞

log �b(In(x))
log 2−n

�b-a:e:

We check that there are constants 0¡A¡B¡∞ such that

A
2n

n∏
k=1

(1 + b�1 : : : �k)6�b(In(x))6
B
2n

n∏
k=1

(1 + b�1 : : : �k)

for any x = (�n)n¿1 ∈ D and any n¿1 (see Fan (1997b)) for details). It follows that

dim �b = 1− lim
n→∞

1
n

n∑
k=1

log2(1 + b�1 : : : �k) �b-a:e:

Using once more the consequence of Lemma 1 applied to �n=1=n and f(x)=log2(1+
bx), we get

dim �b = 1− lim
n→∞

1
n

n∑
k=1

E�b log2(1 + b�1 : : : �k):

Remark that log(1 + bx) = bx − (b2=2)x2 + (b3=3)x3 + · · · : By Lemma 1, we have

E�b log(1 + b�1 : : : �k) =−
∞∑
n=1

b2n

2n
+ b

∞∑
n=1

b2n−1

2n− 1

= b

(
−

∞∑
n=1

b2n

2n
+

∞∑
n=1

b2n−1

2n− 1

)
+ (b− 1)

∞∑
n=1

b2n

2n

= b log(1 + b)− b− 1
2

log(1− b2)

=
1 + b
2

log(1 + b) +
1− b
2

log(1− b)

=
1 + b
2

log
1 + b
2

+
1− b
2

log
1− b
2

+ log 2:

Finally we get dim �b = H ((1 + b)=2).
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4. Proof of Theorem 3

Notice �rst that ik = 1; i;−1; or − i according to k = 0; 1; 2 or 3 (mod 4). Given two
real numbers �; �, de�ne a real sequence (ak) as follows

ak = �;−�;−� or �;
according to k = 0; 1; 2 or 3 (mod 4).
Then we can write

〈Sn(t); �+ i�〉=
n∑
k=1

ak�1�2 : : : �k ;

where 〈· ; ·〉 denotes the inner product of two complex numbers regarded as two points
in the euclidean space R2.
In particular, if �=1 and �=0, the last sum is just the real part of Sn(t). It follows

that the real part of Sn is bounded by (n=2) + 1. It is the same for the imaginary part
of Sn(t). So, we have Fz = ∅ for z 6∈ �. Now we are going to prove the dimension
formula.
Upper bound: For any real numbers � and �, we have Fz ⊂F�;� where

F�;� =
{
t ∈ D : lim

n→∞
〈Sn(t); �+ i�〉

n
= �x + �y

}
:

It follows that

dimP Fz6 inf
�;�
dimPF�;�:

In order to estimate dimPF�;�, we follow the same proof as in the case of 1-dimension.
We shall use the expression given above for 〈Sn(t); � + i�〉. Without loss of general-
ity, we assume that 0¡�x + �y. Take �¿ 0 such that 0¡�x + �y − �. Consider
the following set of n-cylinders:

Cn =

{
I(�1; : : : ; �n):

n∑
k=1

ak�1 : : : �k¿n(�x + �y − �)
}
:

We have

dimP E�;�6 lim sup
n→∞

CardCn
log 2n

:

It may be calculated that

Ee
∑n
k=1ak �1 :::�k ≈ ( 12 (e� + e−�))n=2( 12 (e� + e−�))n=2:

Then

CardCn = 2nP

(
n∑
k=1

ak�1 : : : �k¿n(�x + �y − �)
)

6 2n=log 2[1=2 log(e
�+e−�)+1=2 log(e�+e−�)−(�x+�y−�)]:

Thus we get

dimPF�;�6
h(�; �)
log 2

;



A. Fan / Stochastic Processes and their Applications 90 (2000) 263–275 271

where

h(�; �) = 1
2 log(e

� + e−�) + 1
2 log(e

� + e−�)− (�x + �y − �):
Note that

@h
@�
=
1
2
e� − e−�
e� + e−�

− x; @h
@�
=
1
2
e� − e−�
e� + e−�

− x:

It follows that the minimal point (�; �) of the function h is de�ned by

e� =

√
1 + 2x
1− 2x ; e� =

√
1 + 2y
1− 2y

Let hmin be the minimal value of the function h. We have

hmin
log 2

=
1

2 log 2

[
log

(√
1 + 2x
1− 2x +

√
1− 2x
1 + 2x

)
+ log

(√
1 + 2x
1− 2x +

√
1− 2x
1 + 2x

)

−x log1 + 2x
1− 2x − y log

1 + 2y
1− 2y + �

]

=
1
2

(
H
(
1 + 2x
2

)
+ H

(
1 + 2y
2

))
+ �:

Lower bound: In order to get the lower bound we consider the Riesz product � (we
denote it by � instead of �c) de�ned in Section 2 with

ck = a; b; c or d

according to k = 0; 1; 2 or 3 (mod 4), where a; b; c and d are four real numbers of
absolute value smaller than 1, which will be determined later. By the remark after
Lemma 1 and the Kronecker lemma, we get that

lim
n→→∞

Sn(t)
n

=
a− c
4

+ i
d− b
4

�-a:e:

Assume �rst that

a− c = 4x; d− b= 4y:
Then �(Fz) = 1. So dimH Fz¿dim �. However, it may be calculated that dim � =
�(a; b; c; d) where

�(a; b; c; d) =
1
4

[
H
(
1 + a
2

)
+ H

(
1 + b
2

)
+ H

(
1 + c
2

)
+ H

(
1 + d
2

)]
:

Thus we get

dimH Fz¿ sup
a−c=4x;d−b=4y

�(a; b; c; d):

In order to apply the Lagrange multiplier method, we introduce

�(a; b; c; d; �; �) = �(a; b; c; d)− �(a− c − 4x)− �(d− b− 4y):
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We have
@�
@a
=
1
8
log
1− a
1 + a

− �:

@�
@c
=
1
8
log
1− c
1 + c

+ �:

If @�=@a= @�=@c = 0, we have (1− a)=(1 + a) = (1 + c)=(1− c). This, together with
a− c=4x, allows us to get a=2x; c=−2x. Similarly, we get d=2y; b=−2y. So, if
a; b; c; d are chosen in this way, we get

dimH Fz¿�(2x;−2y;−2x;+2y) = 12
[
H
(
1 + 2x
2

)
+ H

(
1 + 2y
2

)]
:

(here we used the fact that H (x) = H (1− x)).

5. Proofs of Theorems 2 and 4

Proof of Theorem 2. Fix an integer m¿1. For j¿1, let

�j(t) =
2m( j−1)+2m∑
k=2m( j−1)+1

Xj;k

with

Xj;k = �2m( j−1)+1(t) : : : �k−1(t)�k(t):

(We have cut
∑∞

k=1 �1�2 : : : �k into blocks of 2m terms. �j is just the jth block, but
without the common factor �1�2 : : : �2m( j−1)). Then for J¿1, we have

S2mJ (t) =
J∑
j=1

�1(t)�2(t) : : : �2m( j−1)(t)�j(t):

Let

Em = {t ∈ D : �j(t) = 0; ∀j¿1}:
It is clear that for any m¿1, we have

Em⊂{t ∈ D : |Sn(t)|62m; ∀n¿1}⊂Ebd :
It follows that

dimH Ebd¿ sup
m
dimH Em:

Now let us estimate dimH Em. Let

Dj = {(�2m( j−1)+1; : : : ; �2m( j−1)+2m : Xj;1 + · · ·+ Xj;2m = 0}:

D= {(�1; : : : ; �2m): �1 + · · ·+ �2m = 0}:
We claim that CardDj = CardD (∀j¿1). In fact, the calculation in the proof of
Theorem 1 shows that the random variables Xj;1 + · · · + Xj;2m and �1 + · · · + �2m
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(relative to the Lebesgue probability measure) have the same distribution because they
have the same moment generating function (1=2(a+ a−1))2m. So,

CardDj = 22mP(Xj;1 + · · ·+ Xj;2m = 0)
= 22mP(�1 + · · ·+ �2m = 0) = Card D= Cm2m:

This implies that Em is a homogeneous Cantor set and then its dimension equals

dimH Em = log
Cm2m
log 22m

= 1 + O
(
logm
m

)
:

Thus we have dimH Ebd = 1.
In order to prove dimH Eb;�=1, consider the Riesz product �c with ck=b(k�−(k−1)�)

(it may be assumed that k is su�ciently large so that |ck |¡ 1 because �¡ 1). By the
remark after Lemma 1, the following series∑

k

1
k�
(�1(t)�2(t) : : : �k(t)− b(k� − (k − 1)�)) (�¿ 1

2 )

converges �c-almost everywhere. By using the Kronecker lemma, we get that �c(Eb;�)=
1. On the other hand, since �¡ 1, we have ck → 0 then dim �c=1 (it may be proved
as in the proof of Theorem 1). Finally we get dimH Eb;�¿dim �c = 1.

Proof of Theorem 4. It su�ces to follow the proof of Theorem 2.

6. Remarks

1. Let us �rst give a remark concerning the 1-dimensional case. From the arguments
given in the introduction, we can see that when D is equipped with the Lebesgue
probability measure, Sn is not Markovian. However, if we write

Xn =
(
Sn
�n

)
; An =

(
1 �n
0 �n

)
;

we have

Xn = AnAn−1 : : : A1X0;

where

X0 =
(
0
1

)
:

It is to be noted that the matrices An are independent and Xn is Markovian.
2. The following general question remains unsolved. Given an angle 0¡�¡ 2�.

What is the behavior of

Sn = e�1�i + e(�1+�2)�i + · · ·+ e(�1+�2+:::+�n)�i?
The case we have studied above corresponds to � = �=2. For an arbitrary angle �, in
general, Sn may not stay on a lattice.
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3. A 3-dimensional generalization is the following

Sn(t) =
n∑
k=1

R�1+···+�k v

where v= (1; 0; 0)t and R is the rotation de�ned by the orthogonal matrix

R=


 0 0 −1
1 0 0
0 1 0


 :

The walk stays on the lattice Z3. But all the same questions as in the 1-dimensional
case remain unanswered. The simplest 3-dimensional model would be de�ned in the
same way by replacing R by the following matrix:

R′ =


 0 0 1
1 0 0
0 1 0


 :

However, we have no results about it either. Nevertheless, the present method does
work for Sn(t) =

∑n
k=1 �1(t) : : : �k(t)vk where {vk} is a �xed sequence of vectors.

4. Let us mention some previous studies in similar situations. For the classical walk
�1 + · · ·+ �n, the result corresponding to Theorem 1 is a well known theorem due to
Bescicovitch (1934) and Eggleston (1949) and the result corresponding to Theorem 2
is due to Wu (1998). Trigonometric sums are studied by Fan (1997a). Oriented walks
on graphs guided substitutive sequences are considered by Wen and Wen (1992), and
Dekking and Wen (1996).
5. By using the method in Wu (1998), we can relax the restriction 1=2¡�¡ 1 to

0¡�¡ 1.
6. Some of the properties of the Riesz products constructed in Section 2 may be

deduced from Fan (1993). We wonder if there is a necessary and su�cient condition
for the series at the end of Section 2 to converge almost everywhere with respect to
the Riesz product.
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