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Abstract

We study the asymptotic behaviour of the empirical distribution function derived from a stationary
marked point process when a convex sampling window is expanding without bounds in all directions.
We consider a random field model which assumes that the marks and the points are independent and
admits dependencies between the marks. The main result is the weak convergence of the empirical process
under strong mixing conditions on both independent components of the model. Applying an approximation
principle weak convergence can be also shown for appropriately weighted empirical process defined from
a stationary d-dimensional germ-grain process with dependent grains.
c© 2009 Elsevier B.V. All rights reserved.

MSC: 60G55; 60F05; 62G30

Keywords: Empirical process; Geostatistical marking; Germ-grain process; Marked point process; Random field; Strong
mixing

1. Introduction

Marked point process models are often used when dealing with spatial data which consist
of measurements at irregularly scattered spatial locations (see e.g. [5] or [15]). The locations
form a spatial point process and the associated measurements are the marks which may depend
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on the locations. If the marks are independent identically distributed and independent of the
points, we speak about independently marked (or randomly labelled) point process. This model
consists of two independent random components, a point process and a sequence of i.i.d. marks.
The case when the marks are generated by a random field (i.e. may be dependent) was
introduced in [17]. It is usually referred to as the geostatistical (or external) marking or the
random field model in the literature (see [23] and [15]). This model assumes independence
between the observations and the locations. If the marks and the points may be dependent,
then we speak about the case of non-geostatistical marking. Geostatistical marking was used
to model observed gauge measurements for rainfalls in [18]. Other practical examples, where
a random field model is suitable, involve e.g. precipitation data with raingauge measurements
at the finitely many locations (see [17]) or measures of tree size in sparse forest (see [23]).
Methods to test for geostatistical marking against non-geostatistical marking were proposed in
[9,23].

We observe a single realization of a stationary marked point process with geostatistical
marking in a convex compact window. Our aim is to estimate the distribution of the function
of typical mark and we investigate asymptotic properties of this estimator as a sampling window
grows without bounds in all directions. We consider the empirical distribution function and define
the corresponding empirical process. Non-parametric estimators of the mean and covariance
function of the underlying random field were studied in [17]. In the case of Poisson point
process of the locations it was shown that these estimators are consistent and asymptotically
normal under mild conditions on the random field. Asymptotic consistency and normality of
a non-parametric kernel estimator of the mark variogram is proved in [10] also for the case of
non-geostatistical marking. In order to establish the asymptotic normality the conditions on the
strength of dependence in the random field are given in terms of strong mixing coefficients.

Central limit theorems for stationary marked point processes are well developed in the case
of independently marked point processes; see [12,14] or [20]. Applying the blocking method
from [10] we prove the central limit theorem for the mark sum derived from a stationary marked
point process with geostatistical marking satisfying α-mixing conditions on both points and
marks. This result is used to show the convergence of the finite-dimensional distributions of the
empirical process. Weak convergence of the empirical process is then established by verifying
the tightness.

There are many papers dealing with the empirical processes of mixing random variables.
Weak convergence was first shown in [2] for functions of a stationary sequence of ϕ-mixing
random variables. This result was generalized in [7] and later extended in [24] for a class of
α-mixing sequences. On the other hand, the study of empirical processes in spatial statistics (see
e.g. [1] and [13]) is not so frequent. In this paper we generalize the results from [13] where
independently marked point processes were considered. We establish the weak convergence
of the empirical processes for a class of marked point processes satisfying certain α-mixing
conditions. In addition to the classical empirical distribution function we also treat spatial
Horvitz–Thompson style estimator for germ-grain processes. We can view the germ-grain
process as a marked point process on Rd where the mark space is the space of compact sets.
In this case not all marks are completely observable from a realization in a given window.

The paper is organized as follows. In Section 2 we define an empirical distribution function
and recall strong convergence results for stationary ergodic marked point processes. We
formulate the central limit theorem for stationary marked point process with geostatistical
marking in Section 3. Weak convergence results are proved in Section 4. We conclude with
a brief discussion in Section 5.
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2. Empirical distribution function

Let Φm = {(X i ,Mi )} be a stationary marked point process on the d-dimensional Euclidean
space Rd with some measurable mark space M. Its intensity measure is defined as

Λm(B ×U ) = E
∑

i

1{X i ∈ B,Mi ∈ U }, B ∈ B(Rd),U ∈ B(M),

where 1{·} denotes the indicator function and B is the Borel σ -algebra. The intensity measure
can be factorized into the multiple of Lebesgue measure and a probability distribution Λ0,

Λm(B ×U ) = λ|B|Λ0(U ).

Here, λ is the intensity of the point process Φ = {X i }, |B| stands for the Lebesgue measure of B
and Λ0 is called the mark distribution. By M0 we will denote a random variable with distribution
Λ0, it is called typical mark. For basic notions and results concerning stationary marked point
processes we refer to [6,15].

The kth order factorial moment measure of the unmarked point process Φ is defined by

α(k)(B1 × · · · × Bk) = E
∑

i1,...,ik

6=
1{X i1 ∈ B1, . . . , X ik ∈ Bk},

where the symbol
∑
6= designates the summation over pairwise distinct indices. The well-known

Campbell theorem has the form

E
∑

i1,...,ik

6=
h(X i1 , . . . , X ik ) =

∫
· · ·

∫
h(x1, . . . , xk)α

(k)(dx1, . . . , dxk) (1)

for any measurable integrable function h. The first four factorial cumulant measures γ (k) can be
recursively defined as follows (see [11]): γ (1)(B1) = α

(1)(B1) = λ|B1|,

γ (2)(B1 × B2) = α
(2)(B1 × B2)− λ

2
|B1||B2|,

γ (3)(B1 × B2 × B3) = α(3)(B1 × B2 × B3)− λ|B1|α
(2)(B2 × B3)

− λ|B2|γ
(2)(B1 × B3)− λ|B3|γ

(2)(B1 × B2),

γ (4)(B1 × B2 × B3 × B4) = α
(4)(B1 × B2 × B3 × B4)− λ|B1|α

(3)(B2 × B3 × B4)

− λ|B2|γ
(3)(B1 × B3 × B4)− λ|B3|γ

(3)(B1 × B2 × B4)

− λ|B4|γ
(3)(B1 × B2 × B3)− γ

(2)(B1 × B2)α
(2)(B3 × B4)

− γ (2)(B1 × B3)α
(2)(B2 × B4)− γ

(2)(B1 × B4)α
(2)(B2 × B3).

Since Φ is stationary, γ (k) can be written as

γ (k)(B1 × · · · × Bk) = λ

∫
B1

γ
(k)
red((B2 − x)× · · · × (Bk − x)) dx,

where γ (k)red is called the kth order reduced factorial cumulant measure of Φ. It is a signed measure

on (Rd)k−1. Let |γ (k)red |(B1 × · · · × Bk−1) be the total variation of γ (k)red over B1 × · · · × Bk−1.
We shall denote by Wn a bounded window where a realization of Φm is observed. Let

f :M→ R be some measurable real-valued function and we are interested in the estimation of

F(t) = Λ0({m ∈M : f (m) ≤ t}) = P( f (M0) ≤ t), t ∈ R. (2)
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If λ is known, a natural estimator of (2) is

F̃n(t) =
1

λ|Wn|

∑
X i∈Wn

1{ f (Mi ) ≤ t}. (3)

As a consequence of the Campbell theorem for stationary marked point processes, (3) is an
unbiased estimator of F(t). In practice, λ is usually unknown and must be estimated. Replacing
it in (3) by a common estimator Φ(Wn)/|Wn|, leads to

F̂n(t) =
1

Φ(Wn)

∑
X i∈Wn

1{ f (Mi ) ≤ t}. (4)

Since we are going to study the asymptotic properties of the estimators as the observation
window is increasing, we have to put the assumptions on the growth of the window. Let {Wn} be
a convex averaging sequence (see [6]), i.e. Wn is a convex compact subset of Rd , Wn ⊆ Wn+1
for all n and ρ(Wn) = sup{r ≥ 0 : b(x, r) ⊆ Wn, x ∈ Wn} −→

n→∞
∞, where b(x, r) denotes

a d-dimensional ball of radius r with centre x . By o we denote the origin of Rd . Later we will
use the following auxiliary results,

|Wn ∩ (Wn − x)|

|Wn|
−→
n→∞

1 for any x ∈ Rd , (5)

|Wn \ (Wn 	 b(o, r))| ≤ r Hd−1(∂Wn) for any r > 0 (6)

and

Hd−1(∂Wn)

|Wn|
≤

d

ρ(Wn)
−→
n→∞

0, (7)

(see e.g. [13]). Here, Hd−1(∂Wn) is the (d−1)-dimensional Hausdorff measure of the boundary
of Wn .

If Φm is a stationary ergodic marked point process the conditions put on the sequence {Wn} are
sufficient for the spatial individual ergodic theorem, see [6] or [19]. It implies F̃n(t) −→

n→∞
F(t)

and F̂n(t) −→
n→∞

F(t)P-a.s. for any t ∈ R. The uniform P-a.s. convergence is obtained by applying

a standard technique based on the monotonicity of the empirical distribution functions, see [16],
Proposition 4.24. In other words, Glivenko–Cantelli theorem for stationary ergodic marked point
processes holds,

sup
t∈R
|F̃n(t)− F(t)| −→

n→∞
0 P-a.s., sup

t∈R
|F̂n(t)− F(t)| −→

n→∞
0 P-a.s.

In the rest of the paper we are concerned with the weak convergence of the empirical
distribution functions. We define the empirical processes

Yn(t) =
√

Φ(Wn)
(

F̂n(t)− F(t)
)
, t ∈ R, n ∈ N. (8)

If Φm is an independently marked point process defined by a weakly stationary point process Φ
with γ (2)red of finite total variation, then Lemma 2 in [13] (combining with Slutsky type arguments)
gives that Yn converges weakly in the Skorohod space D(R) to the zero mean Gaussian process
Y with covariance function EY (s)Y (t) = F(s ∧ t)− F(s)F(t).
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In the present paper we consider stationary marked point processes with geostatistical
marking. They can be described by the following random field model. Let {M(x), x ∈ Rd

} be
a stationary random field in Rd , i.e. for each y ∈ Rd , n ∈ N and x1, . . . , xn ∈ Rd the distribution
of (M(x1 + y), . . . ,M(xn + y)) coincides with the distribution of (M(x1), . . . ,M(xn)). Let
Φ = {X i } be a stationary point process on Rd , independent of {M(x), x ∈ Rd

}. Then
Φm = {(X i ,M(X i ))} defines a stationary marked point process, i.e. each point of Φ is
marked by the corresponding value of the random field. Denote µ = E f (M(x)) and R(x) =
cov( f (M(o)), f (M(x))). Asymptotic properties of non-parametric estimators of µ and R(x)
were developed in [17] under the assumption that Φ is a Poisson point process. We will be
interested in the non-parametric estimator (4) of the distribution function F(t) = P( f (M(o)) ≤
t), t ∈ R. We do not assume that Φ is a Poisson point process. Our main result is the weak
convergence of (8). Before we formulate it we state the central limit theorem for an α-mixing
random field observed at the points of a stationary point process which also follows certain strong
mixing conditions.

3. Central limit theorem

We will impose some weak dependence conditions on both the marks and the point process.
A useful measure of dependence between two arbitrary σ -algebras F1 and F2 defined on the
same probability space is the strong mixing (α-mixing) coefficient

α(F1,F2) = sup{|P(A ∩ B)− P(A)P(B)| : A ∈ F1, B ∈ F2}

which was introduced in [22]. Another possible quantification of dependence is provided by the
absolute regularity coefficient (also known as β-mixing), which was introduced in [25],

β(F1,F2) = sup
1
2

I∑
i=1

J∑
j=1

|P(Ai ∩ B j )− P(Ai )P(B j )|,

where the supremum is taken over all pairs of finite partitions {A1, . . . , AI } and {B1, . . . , BJ }

of Ω such that Ai ∈ F1 for each i and B j ∈ F2 for each j . More details about various mixing
coefficients can be found in the monograph [8].

The following correlation inequality (9) plays an essential role in the proofs of limit theorems
for mixing processes. Let X and Y be random variables that are measurable with respect to σ -
algebras F1 and F2, respectively. Let 1 ≤ p, q, r ≤ ∞ be such that 1/p + 1/q + 1/r = 1 and
‖X‖p <∞, ‖Y‖q <∞. Then

|cov(X, Y )| ≤ 4α(F1,F2)
1/r
‖X‖p‖Y‖q , (9)

(see [4] or [8]). The inequality (9) was proved in [7] with constant 10. Moreover, due to the
inequality 2α(F1,F2) ≤ β(F1,F2), the correlation inequality (9) also holds with α replaced by
β.

Let Φ be a stationary point process on Rd and {Z(x), x ∈ Rd
} be a stationary random field.

For each A ∈ Bd write F Z (A) for the σ -algebra generated by {Z(x), x ∈ A} and F Φ(A) for the
σ -algebra generated by Φ ∩ A. We define for s > 0 and a > 0,

αZ
a (s) = sup{α(F Z (A),F Z (B)) : B = A + x, |A| = |B| ≤ a, d(A, B) ≥ s},

and

αΦ
a (s) = sup{α(F Φ(A),F Φ(B)) : B = A + x, |A| = |B| ≤ a, d(A, B) ≥ s},
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where d(A, B) = inf{‖x − y‖∞ : x ∈ A, y ∈ B} and the supremum is taken over all compact
and convex sets A and over all x ∈ Rd . For a = 0 let αZ

0 (s) = sup{α(F Z (A),F Z (B)) : |A| =
|B| = 0, d(A, B) ≥ s} and αΦ

0 (s) = sup{α(F Φ(A),F Φ(B)) : |A| = |B| = 0, d(A, B) ≥ s}.

Theorem 1. Let Φm = {(X i ,M(X i ))} be a stationary marked point process with geostatistical
marking. Consider a measurable function f : M → R and put Z(x) = f (M(x)). Assume the
following mixing conditions on Z and Φ:

sup
a≥0

αZ
a (s)

a ∨ 1
= O(s−d−ε) for some ε > 0, (10)

sup
a≥0

αΦ
a (s)

a ∨ 1
= O(s−d−ε) for some ε > 0. (11)

Further, assume that the second order reduced factorial cumulant measure γ (2)red of the unmarked

point process Φ = {X i } satisfies |γ (2)red |(R
d) < ∞ (i.e. it is of bounded total variation). Let

h : R → R be a bounded measurable function such that Eh(Z(o)) = 0. Assume that {Wn} is
a convex averaging sequence which fulfills |Wn| = O(ρ(Wn)

d). Finally, assume the following
mild moment condition

sup
n∈N

E|Sn|
q
≤ Cq <∞ for some q > 2, (12)

where Sn =
1

√
|Wn |

∑
X i∈Wn

h(Z(X i )). Then the integral∫
Rd

Eh(Z(o))h(Z(x)) dx

converges absolutely and

Sn H⇒
n→∞

N (0, σ 2
h ),

where σ 2
h = λEh(Z(o))2 + λ

∫
Eh(Z(o))h(Z(x)) γ (2)red(dx)+ λ2

∫
Eh(Z(o))h(Z(x)) dx.

Proof. From (9) we get∫
Rd
|Eh(Z(o))h(Z(x))| dx ≤ 4‖h(Z(o))‖2∞

∫
Rd
αZ

0 (‖x‖∞) dx

= 8d2d−1
‖h(Z(o))‖2∞

∫
∞

0
sd−1αZ

0 (s) ds <∞.

In the rest of the proof we follow [10]. We divide Wn into kn non-overlapping subcubes
W i

l(n) ⊆ Wn , i = 1, . . . , kn , of side length l(n) = ρ(Wn)
α for some 2d

2d+ε < α < 1. Let

m(n) = ρ(Wn)
α
− ρ(Wn)

η for some 2d
2d+ε < η < α. Further, let W i

m(n), i = 1, . . . , kn be the

subcubes of side length m(n), with the same centre as W i
l(n). Thus, d(W i

m(n),W j
m(n)) ≥ ρ(Wn)

η

for i 6= j . Define

Tn =
1
√

kn

kn∑
i=1

Tni , T ′n =
1
√

kn

kn∑
i=1

T ′ni ,
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where

Tni =
1√
|W i

m(n)|

∑
X j∈W i

m(n)

h(Z(X j ))

and T ′ni , i = 1, . . . , kn , have the same marginal distribution as Tni but are independent.

First we show that Rn = Sn − Tn is asymptotically negligible. Denoting W ∗n =
⋃kn

i=1 W i
m(n)

we have

Rn =
1

√
|Wn|

∑
X i∈Wn

h(Z(X i ))−
1√
|W ∗n |

∑
X i∈W ∗n

h(Z(X i ))

=
1

√
|Wn|

∑
X i∈Wn\W ∗n

h(Z(X i ))−

√
|Wn| −

√
|W ∗n |√

|Wn||W ∗n |

∑
X i∈W ∗n

h(Z(X i )) = R(1)n + R(2)n .

Since ERn = ER(1)n = ER(2)n = 0, we get from the Campbell theorem (1)

varR(1)n =
λ

|Wn |

(
Eh(Z(o))2|Wn \W ∗n | +

∫
Wn\W ∗n

∫
(Wn\W ∗n )−x

Eh(Z(o))h(Z(y)) γ (2)red(dy) dx

)

+
λ2

|Wn |

∫
Wn\W ∗n

|(Wn \W ∗n ) ∩ ((Wn \W ∗n )− x)|Eh(Z(o))h(Z(x)) dx

≤

(
λ(1+ |γ (2)red |(R

d))Eh(Z(o))2 + λ2
∫
Eh(Z(o))h(Z(x)) dx

)
|Wn \W ∗n |

|Wn |

and

var R(2)n =
λ|Wn \W ∗n |

|Wn||W ∗n |

(
Eh(Z(o))2|W ∗n | +

∫
W ∗n

∫
W ∗n−x

Eh(Z(o))h(Z(y)) γ (2)red(dy) dx

)

+
λ2
|Wn \W ∗n |

|Wn||W ∗n |

∫
W ∗n

|W ∗n ∩ (W
∗
n − x)|Eh(Z(o))h(Z(x)) dx

≤

(
λ(1+ |γ (2)red |(R

d))Eh(Z(o))2 + λ2
∫

Eh(Z(o))h(Z(x)) dx

)
|Wn \W ∗n |

|Wn|
.

It follows from (6) and (7) that |Wn \ W ∗n |/|Wn| goes to 0 and consequently Rn converges in L2

to 0. Thus, using a standard approximation Slutsky type principle (see [2]), it suffices to prove
Tn H⇒

n→∞
N (0, σ 2

h ).

Let φn(t) and φ′n(t) be the characteristic functions of Tn and T ′n , respectively. We show that
φn(t)− φ′n(t) −→n→∞

0 for any t ∈ R. Fix t ∈ R and define Ui = exp{itTni/
√

kn}. Then

φn(t) = E
kn∏

i=1

Ui , φ′n(t) =
kn∏

i=1

EUi

and

|φn(t)− φ
′
n(t)| ≤

kn−1∑
j=1

∣∣∣∣∣E
j+1∏
i=1

Ui − E
j∏

i=1

Ui EU j+1

∣∣∣∣∣ = kn−1∑
j=1

∣∣∣∣∣cov

(
j∏

i=1

Ui ,U j+1

)∣∣∣∣∣ . (13)
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Conditioning on Φ we get

cov

(
j∏

i=1

Ui ,U j+1

)
= E

[
cov

(
j∏

i=1

Ui ,U j+1 | Φ

)]
+ cov

(
E

[
j∏

i=1

Ui | Φ

]
,E[U j+1 | Φ]

)
.

Since |Ui | ≤ 1 and |W j+1
m(n)| ≤ |

⋃ j
i=1 W i

m(n)| = jm(n)d , we have from (9) and (10)

cov

(
j∏

i=1

Ui ,U j+1

)
≤ C j (ρ(Wn)

α
− ρ(Wn)

η)dρ(Wn)
−η(d+ε).

Combining with (13) and kn = O(ρ(Wn)
d(1−α)) we get

|φn(t)− φ
′
n(t)| ≤ O(ρ(Wn)

2d−αd−η(d+ε)).

The proof is completed by observing that T ′n H⇒n→∞
N (0, σ 2

h ) due to the Lyapunov central limit

theorem. The form of the asymptotic variance σ 2
h follows from (1) and (5). �

Remark 1. The proof reveals that the condition on boundedness of h can be weakened to
E|h(Z(o))|2+δ <∞ for some δ > 0 if we moreover assume∫

∞

0
sd−1αZ

0 (s)
δ/(2+δ) ds <∞.

Another possibility how to prove Theorem 1 is based on the central limit theorem for
stationary α-mixing random fields (see [3]). This would lead to slightly different mixing
conditions.

4. Weak convergence of empirical process

Now we are ready to prove our main results.

4.1. Marked point process

Theorem 2. Let Φm = {(X i ,M(X i ))} be a stationary marked point process with geostatistical
marking. Consider a measurable function f : M → R and put Z(x) = f (M(x)). Assume that
(10) holds and∫

∞

0
s2d−2αZ

0 (s)
1/2−τ ds <∞

for some 0 < τ < 1/2. Further, assume that the unmarked point process Φ = {X i } satisfies
(11) and that first four reduced factorial cumulant measures of Φ are of bounded total variation,
i.e. |γ (2)red |(R

d) < ∞, |γ (3)red |(R
d
× Rd) < ∞, |γ (4)red |(R

d
× Rd

× Rd) < ∞. Let {Wn} be
a convex averaging sequence such that |Wn| = O(ρ(Wn)

d). Then the empirical process defined
by (8) converges weakly in D(R) (as n → ∞) to the Gaussian process Y with zero mean and
covariance function

EY (s)Y (t) = F(s ∧ t)− F(s)F(t)+
∫

Egs(o)gt (x) γ
(2)
red(dx)+ λ

∫
Egs(o)gt (x) dx,

where gt (x) = 1{Z(x) ≤ t} − F(t).
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Proof. Since Φ(Wn)
λ|Wn |

−→
n→∞

1 in probability (see [13]), the weak limit (if it exists) of Yn coincides

with that of

Ỹn(t) =

√
Φ(Wn)

λ|Wn|
Yn(t) =

1
√
λ|Wn|

∑
X i∈Wn

gt (X i ), t ∈ R. (14)

For any c1, . . . , cp ∈ R and t1, . . . , tp ∈ R denote h(Z(x)) =
∑p

k=1 ck(1{Z(x) ≤
tk} − F(tk)). It will be seen later that (12) is satisfied with q = 4. Applying Theorem 1 we
get

1
√
λ|Wn|

∑
X i∈Wn

h(Z(X i )) =

p∑
k=1

ck Ỹn(tk) H⇒
n→∞

N (0, σ 2
t1,...,tp

),

where

σ 2
t1,...,tp

= Eh(Z(o))2 +
∫

Eh(Z(o))h(Z(x)) γ (2)red(dx)+ λ
∫

Eh(Z(o))h(Z(x)) dx

=

p∑
k=1

p∑
l=1

ckcl

[
F(tk ∧ tl)− F(tk)F(tl)+

∫
Egtk (o)gtl (x) γ

(2)
red(dx)

+ λ

∫
Egtk (o)gtl (x) dx

]
.

Hence, (Ỹn(t1), . . . , Ỹn(tp)) H⇒
n→∞

Np(0,Σt1,...,tp ), where Σt1,...,tp (k, l) = F(tk ∧ tl) −

F(tk)F(tl) +
∫

Egtk (o)gtl (x) γ
(2)
red(dx) + λ

∫
Egtk (o)gtl (x) dx . We have shown the convergence

of finite-dimensional distributions and now it remains to prove the tightness of Ỹn , n ∈ N. We
will show tightness by bounding the mixed fourth moments of the increments.

For u < v < w we have to verify

E(Ỹn(v)− Ỹn(u))
2(Ỹn(w)− Ỹn(v))

2
≤ C(F(v)− F(u))β(F(w)− F(v))β

with β > 1/2, see [2], p. 128. We shall use the short notation F(u, v] for F(v) − F(u) and
gu,v(x) for 1{Z(x) ∈ (u, v]} − F(u, v].

We obtain

E(Ỹn(v)− Ỹn(u))
2(Ỹn(w)− Ỹn(v))

2

=
1

λ2|Wn|
2 E

∑
X i ,X j ,Xk ,Xl∈Wn

gu,v(X i )gu,v(X j )gv,w(Xk)gv,w(Xl)

and rewrite the sum on the right-hand side by means of the following lemma.

Lemma 3. For any measurable functions f and g we have∑
i, j,k,l

f (xi ) f (x j )g(xk)g(xl) =
∑

i, j,k,l

6=
f (xi ) f (x j )g(xk)g(xl)+

∑
i, j,k

6=
f (xi )

2g(x j )g(xk)

+ 4
∑
i, j,k

6=
f (xi ) f (x j )g(xi )g(xk)+

∑
i, j,k

6=
f (xi ) f (x j )g(xk)

2

+ 2
∑
i, j

6=
f (xi ) f (x j )g(xi )g(x j )+ 2

∑
i, j

6=
f (xi )

2g(xi )g(x j )
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+ 2
∑
i, j

6=
f (xi ) f (x j )g(x j )

2
+

∑
i, j

6=
f (xi )

2g(x j )
2
+

∑
i

f (xi )
2g(xi )

2.

Using Lemma 3, (1) and independence between the marks and the points we get

E(Ỹn(v)− Ỹn(u))
2(Ỹn(w)− Ỹn(v))

2
=

∫
Wn

∫
Wn

∫
Wn

∫
Wn

V1 α
(4)(dx1, dx2, dx3, dx4)

+

∫
Wn

∫
Wn

∫
Wn

(V2 + 4V3 + V4) α
(3)(dx1, dx2, dx3)

+

∫
Wn

∫
Wn

(2V5 + 2V6 + 2V7 + V8) α
(2)(dx1, dx2)+ λ

∫
Wn

V9 dx1,

where the terms V1, . . . , V9 are

V1 = Egu,v(x1)gu,v(x2)gv,w(x3)gv,w(x4),

V2 = Egu,v(x1)
2gv,w(x2)gv,w(x3)

= Egu,v(x1)gv,w(x2)gv,w(x3)(1− 2F(u, v])
+Egv,w(x2)gv,w(x3)F(u, v](1− F(u, v]),

V3 = Egu,v(x1)gu,v(x2)gv,w(x1)gv,w(x3)

= −Egu,v(x1)gu,v(x2)gv,w(x3)F(v,w] − Egv,w(x1)gu,v(x2)gv,w(x3)F(u, v]
−Egu,v(x2)gv,w(x3)F(u, v]F(v,w],

V4 = Egu,v(x1)gu,v(x2)gv,w(x3)
2

= Egu,v(x1)gu,v(x2)gv,w(x3)(1− 2F(v,w])
+Egu,v(x1)gu,v(x2)F(v,w](1− F(v,w]),

V5 = Egu,v(x1)gu,v(x2)gv,w(x1)gv,w(x2)

= Egu,v(x1)gu,v(x2)F(v,w]
2
+ 2Egu,v(x1)gv,w(x2)F(u, v]F(v,w]

+Egv,w(x1)gv,w(x2)F(u, v]
2
+ F(u, v]2 F(v,w]2,

V6 = Egu,v(x1)
2gv,w(x1)gv,w(x2)

= Egv,w(x1)gv,w(x2)F(u, v]
2
− Egu,v(x1)gv,w(x2)(1− 2F(u, v]),

V7 = Egu,v(x1)gu,v(x2)gv,w(x2)
2

= Egu,v(x1)gu,v(x2)F(v,w]
2
− Egu,v(x1)gv,w(x2)F(u, v](1− 2F(v,w]),

V8 = Egu,v(x1)
2gv,w(x2)

2
= F(u, v]F(v,w](1− F(u, v])(1− F(v,w])

+ (1− 2F(u, v])(1− 2F(v,w])Egu,v(x1)gv,w(x2),

V9 = Egu,v(x1)
2gv,w(x1)

2
= F(u, v]F(v,w](F(u, v] + F(v,w] − 3F(u, v]F(v,w]).

The integral of the first term is∫∫∫∫
Egu,v(x1)gu,v(x2)gv,w(x3)gv,w(x4) α

(4)(dx1, dx2, dx3, dx4)

= λ4
∫∫∫∫

Egu,v(x1)gu,v(x2)gv,w(x3)gv,w(x4) dx1 dx2 dx3 dx4

+ λ2
∫∫∫∫

Egu,v(x1)gu,v(x1 + x2)gv,w(x3)gv,w(x3 + x4) dx1 γ
(2)
red(dx2) dx3 γ

(2)
red(dx4)

+ 2λ2
∫∫∫∫

Egu,v(x1)gu,v(x2)gv,w(x1 + x3)gv,w(x2 + x4) dx1 dx2 γ
(2)
red(dx3) γ

(2)
red(dx4)
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+ λ3
∫∫∫∫

Egu,v(x1)gu,v(x2)gv,w(x3)gv,w(x3 + x4) dx1 dx2 dx3 γ
(2)
red(dx4)

+ 4λ3
∫∫∫∫

Egu,v(x1)gu,v(x2)gv,w(x3)gv,w(x1 + x4) dx1 dx2 dx3 γ
(2)
red(dx4)

+ λ3
∫∫∫∫

Egu,v(x1 + x2)gu,v(x2)gv,w(x3)gv,w(x4) dx1 γ
(2)
red(dx2) dx3 dx4

+ 2λ2
∫∫∫∫

Egu,v(x1)gu,v(x2)gv,w(x2 + x3)gv,w(x2 + x4) dx1 dx2 γ
(3)
red(dx3, dx4)

+ 2λ2
∫∫∫∫

Egu,v(x1 + x4)gu,v(x2 + x4)gv,w(x3)gv,w(x4) γ
(3)
red(dx1, dx2) dx3 dx4

+ λ

∫∫∫∫
Egu,v(x1)gu,v(x1 + x2)gv,w(x1 + x3)gv,w(x1 + x4) dx1 γ

(4)
red(dx2, dx3, dx4).

We describe in detail the treatment of the first term. For each quadruple (x1, x2, x3, x4) let
a = maxi=1,2,3,4 min j 6=i ‖xi − x j‖∞. Denote by I the index at which this maximum is attained
and let J be the index of the nearest point of x I . Thus, ‖x I − xJ‖∞ = min j 6=I ‖x I − x j‖ = a.
The other two points (denoted as xK and xL ) then have to satisfy ‖xK − xL‖∞ ≤ 2a.
Choose the notation such that ‖xJ − xK ‖∞ ≤ ‖xJ − xL‖∞. If ‖xJ − xK ‖∞ ≥ a define
b = d({x I , xJ }, {xK , xL}). Observe that b ≥ a. We put 1/r = 1/2 − ε and 1/p = 1/4 + ε/2.
Then using (9) with p = q we obtain

|Egu,v(o)gv,w(x)| ≤ 4αZ
0 (‖x‖∞)

1/r
‖gu,v(o)‖p‖gv,w(o)‖p,

|Egu,v(x1)gu,v(x2)gv,w(x3)gv,w(x4)| ≤ 4αZ
0 (a)

1/r
‖gu,v(o)‖p‖gv,w(o)‖p

and if ‖xJ − xK ‖∞ ≥ a,

|Egu,v(x1)gu,v(x2)gv,w(x3)gv,w(x4)|

≤ 16αZ
0 (‖x I − xJ‖∞)

1/rαZ
0 (‖xK − xL‖∞)

1/r
‖gu,v(o)‖

2
p‖gv,w(o)‖

2
p

+ 4αZ
0 (b)

1/r
‖gu,v(o)‖p‖gv,w(o)‖p.

Furthermore,

‖gu,v(x)‖p ≤ C0(F(v)− F(u))1/p.

Hence,∫
Wn

∫
Wn

∫
Wn

∫
Wn

Egu,v(x1)gu,v(x2)gv,w(x3)gv,w(x4) dx1 dx2 dx3 dx4

≤ 24 · 16‖gu,v(o)‖
2
p‖gv,w(o)‖

2
p

∫
Wn

∫
Wn

∫
Wn

∫
Wn

αZ
0 (‖x I − xJ‖∞)

1/rαZ
0 (‖xK − xL‖∞)

1/r

× 1{‖xJ − xK ‖∞ ≥ ‖x I − xJ‖∞} dx I dxJ dxK dxL

+ 24 · 4‖gu,v(o)‖p‖gv,w(o)‖p

∫
Wn

∫
Wn

∫
Wn

∫
Wn

αZ
0 (b)

1/r 1{‖xJ − xK ‖∞ ≥ ‖x I − xJ‖∞}

× 1{‖x I − xJ‖∞ ≤ b}1{‖xK − xL‖∞ ≤ 2b} dx I dxJ dxK dxL

+ 24 · 4‖gu,v(o)‖p‖gv,w(o)‖p

∫
Wn

∫
Wn

∫
Wn

∫
Wn

αZ
0 (a)

1/r 1{‖xJ − xK ‖∞ < a}

× 1{‖xK − xL‖∞ ≤ 2a} dx I dxJ dxK dxL

≤ 24 · 16‖gu,v(o)‖
2
p‖gv,w(o)‖

2
p

∫
Wn

∫
Wn

∫ ∫
αZ

0 (‖x1‖∞)
1/rαZ

0 (‖x2‖∞)
1/r dx1 dx2 dx3 dx4
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+ 24 · 4‖gu,v(o)‖p‖gv,w(o)‖p

∫
Wn

∫ ∫ ∫
αZ

0 (b)
1/r 1{‖x1‖∞ = b}

× 1{‖x2‖∞ ≤ b}1{‖x3‖∞ ≤ 2b} dx1 dx2 dx3 dx4

+ 24 · 4‖gu,v(o)‖p‖gv,w(o)‖p

∫
Wn

∫ ∫ ∫
αZ

0 (a)
1/r 1{‖x1‖∞ = a}

× 1{‖x2‖∞ ≤ a}1{‖x3‖∞ ≤ 2a} dx1 dx2 dx3 dx4.

We can find real constants C1, C2, C∗1 and C∗2 such that∫
Wn

∫
Wn

∫
Wn

∫
Wn

Egu,v(x1)gu,v(x2)gv,w(x3)gv,w(x4) dx1 dx2 dx3 dx4

≤ C1‖gu,v(o)‖
2
p‖gv,w(o)‖

2
p|Wn|

2
(∫

sd−1αZ
0 (s)

1/r ds

)2

+C2‖gu,v(o)‖p‖gv,w(o)‖p|Wn|

∫
b2d−2αZ

0 (b)
1/r db

≤ C∗1 |Wn|
2(F(v)− F(u))2/p(F(w)− F(v))2/p

+C∗2 |Wn|(F(v)− F(u))1/p(F(w)− F(v))1/p.

Similar calculations together with the assumption of bounded total variation of reduced factorial
cumulant measures give the bound for∫

Wn

∫
Wn

∫
Wn

∫
Wn

Egu,v(x1)gu,v(x2)gv,w(x3)gv,w(x4) α
(4)(dx1, dx2, dx3, dx4).

Similarly as above we get∫
Wn

∫
Wn

∫
Wn

Egu,v(x1)gv,w(x2)gv,w(x3) dx1 dx2 dx3

≤ 6 · 4‖gu,v(o)‖p‖gv,w(o)‖p|Wn|

∫
sd−1αZ

0 (s)
1/r ds

≤ C3|Wn|(F(v)− F(u))1/p(F(w)− F(v))1/p

and ∫
Wn

∫
Wn

Egu,v(x1)gu,v(x2) dx1 dx2 ≤ 4‖gu,v(o)‖
2
p|Wn|

∫
sd−1αZ

0 (s)
1/r ds

≤ C4|Wn|(F(w)− F(v))2/p.

These two relations can help in bounding the integrals of remaining 8 terms V2, . . . , V9 obtained
from Lemma 3.

Summarizing, for 2/p = 1/2 + ε > 1/2, the following inequality holds for any u < v < w

and n ∈ N,

E(Ỹn(v)− Ỹn(u))
2(Ỹn(w)− Ỹn(v))

2

≤
1

λ2|Wn|
2 C

(
|Wn|

2(F(v)− F(u))2/p(F(w)− F(v))2/p

+ |Wn|(F(v)− F(u))1/p(F(w)− F(v))1/p
)

and this completes the verification of tightness.
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The only step missing is to prove the moment inequality (12) for q = 4. Using Lemma 3 with
f = g = gt and similar arguments as above we can show

sup
n∈N

E|Ỹn(t)|
4
≤ Ct <∞

for any t ∈ R. �

Remark 2. Theorem 2 remains true if we replace conditions on α-mixing coefficients by
analogous conditions on β-mixing coefficients which are slightly stronger but they are often
easier to handle; see e.g. [11].

In [17] different estimation problem is considered if Φ is a stationary Poisson point process.
For this case the assumptions on the unmarked point process can be relaxed.

Corollary 4. Let Φm = {(X i ,M(X i ))} be a stationary marked point process with geostatistical
marking such that the unmarked point process Φ = {X i } is a stationary Poisson point process.
Consider a measurable function f : M→ R and put Z(x) = f (M(x)). Assume that (10) holds
and ∫

∞

0
s2d−2αZ

0 (s)
1/2−τ ds <∞

for some 0 < τ < 1/2. Let {Wn} be a convex averaging sequence satisfying |Wn| = O(ρ(Wn)
d).

Then the empirical process defined by (8) converges weakly in D(R) (as n→∞) to the Gaussian
process Y with zero mean and covariance function

EY (s)Y (t) = F(s ∧ t)− F(s)F(t)+ λ
∫

Egs(o)gt (x) dx,

where gt (x) = 1{Z(x) ≤ t} − F(t).

In Theorem 2 the underlying point process has to have first four reduced factorial cumulant
measures with finite total variation. This is satisfied for any Brillinger mixing point process.
Furthermore, we have put some strong mixing conditions on Φ. A Poisson point process is the
simplest example which fulfills both assumptions. A non-trivial example of feasible unmarked
point processes is provided by a Poisson cluster point process with bounded clusters and finite
moments of the number of points per cluster.

We have also imposed strong mixing conditions on the random field which marks the points.
The dependence must decrease at a polynomial rate sufficiently fast. In particular, any m-
dependent random field (i.e. observations separated by a distance larger than m are independent)
satisfies these conditions. As an example of random field with non-finite range of dependence we
mention stationary Gaussian random field such that its correlation decays exponentially, see [8].

4.2. Germ-grain process

In the definition of the empirical distribution function (4) it is important that we have
knowledge about the marks from the observation of Φm in Wn . But this does not have to be
always true. For example, in stochastic geometry when we observe a germ-grain process (mark
space M is the space of compact sets) through a bounded window some of the grains may
not be completely observable because of edge effects. Taking into account only completely
observable grains leads to the spatial bias in the estimator (4). This sampling procedure is
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called minus sampling and an appropriate estimator of F(t) is then a weighted estimator of
Horvitz–Thompson type.

To be more specific, let Φm = {(X i ,Ξi )} be a stationary germ-grain process which consists
of two independent components: a stationary point process Φ = {X i } on Rd with intensity λ and
a sequence of random compact sets {Ξi }with the reference point at the origin o. We are interested
in the distribution of f (Ξ0) for some function f describing parameters of grains and typical grain
Ξ0. The Horvitz–Thompson type estimator of the distribution function F(t) = P( f (Ξ0) ≤ t) is
given by

F̂ H T
n (t) =

1

λ̂n

∑
i

1{X i + Ξi ⊆ Wn}

|Wn 	 Ξ̌i |
1{ f (Ξi ) ≤ t}, t ∈ R,

where

λ̂n =
∑

i

1{X i + Ξi ⊆ Wn}

|Wn 	 Ξ̌i |

and Wn 	 Ξ̌i = {x ∈ Rd
: x + Ξi ⊆ Wn} is the window Wn eroded by the grain Ξi . If Φm

is a stationary ergodic germ-grain process then Glivenko–Cantelli theorem for F̂ H T
n was shown

in [13] under the additional assumption on the size of the grains and the windows {Wn},

E‖Ξ0‖
q <∞ for some q ≥ d and

Hd−1(∂Wn)

|Wn|
1−1/q ≤ c0 <∞. (15)

We define the empirical process

Y H T
n (t) =

√
Φ(Wn)

(
F̂ H T

n (t)− F(t)
)
, t ∈ R. (16)

In [13] weak convergence of Y H T
n was proved under the assumption that {Ξi } is a sequence of

independent identically distributed grains (i.e. Φm is an independently marked point process).
With the help of Theorem 2 we can establish weak convergence for the case of geostatistical
marking.

Theorem 5. Let {Ξ (x), x ∈ Rd
} be a stationary random field with values in the space of compact

sets on Rd with the reference point at the origin o. Let Φ = {X i } be a stationary point process
on Rd , independent of {Ξ (x), x ∈ Rd

}. Consider a germ-grain process Φm = {(X i ,Ξi (X i ))}

and a measurable function f . Assume that Z(x) = f (Ξ (x)) satisfies (10) and∫
∞

0
s2d−2αZ

0 (s)
1/2−τ ds <∞

for some 0 < τ < 1/2. Further, assume that (11) holds and that first four reduced factorial
cumulant measures of the unmarked point process Φ = {X i } are of bounded total variation,
i.e. |γ (2)red |(R

d) < ∞, |γ (3)red |(R
d
× Rd) < ∞, |γ (4)red |(R

d
× Rd

× Rd) < ∞. Let {Wn} be
a convex averaging sequence such that |Wn| = O(ρ(Wn)

d). Assume that the condition (15) is
fulfilled. Then the empirical process defined by (16) converges weakly in D(R) (as n → ∞) to
the Gaussian process Y with zero mean and covariance function

EY (s)Y (t) = F(s ∧ t)− F(s)F(t)+
∫

Egs(o)gt (x) γ
(2)
red(dx)+ λ

∫
Egs(o)gt (x) dx,

where gt (x) = 1{Z(x) ≤ t} − F(t).
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Proof. From Theorem 2 we have weak convergence of (14). Lemma 1 in [13] states that
λ̂n −→

n→∞
λ in probability. Hence, applying Slutsky type arguments, the weak limit (if it exists)

of Y H T
n (t), t ∈ R, coincides with that of

Ỹ H T
n (t) =

λ̂n
√
|Wn|

√
λΦ(Wn)

Y H T
n (t), t ∈ R.

The proof will be completed if we verify

sup
u∈[s,t]

|Ỹn(u)− Ỹ H T
n (u)| −→

n→∞
0

in probability for any s < t . In order to do this we can follow the proof of Theorem 2 in [13] and
consider the difference process ∆n(t) =

√
λ(Ỹn(t) − Ỹ H T

n (t)). Then all the arguments remain
unchanged except of bounding the mixed fourth moment which can be accomplished in the same
manner as in the proof of Theorem 2. �

5. Concluding remarks

We have considered marked point processes with geostatistical marking. The independence
between marks and points can be formally tested; see [9] or [23]. Our model allows correlated
marks. In order to obtain asymptotic results we have imposed strong mixing conditions. In
practice, these conditions can be difficult to verify. However, they are satisfied for any process
with finite dependence range. We have shown weak convergence of the corresponding empirical
processes. The covariance function of the limiting Gaussian process reflects the dependence
structure of the model. It restricts the applicability of the results. Kolmogorov–Smirnov test
which is used for testing the goodness of fit in the independent marking case (see [13] or [21]) is
not plausible.

For the ease of presentation, all the results were formulated for the estimation of one-
dimensional distribution function. The case of multivariate distribution function can be treated in
the same way as it is carried out in [13].
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