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Abstract

By applying a Fourier analytic argument, we prove that, for every α ∈ (0, 2), the N -parameter har-
monizable fractional α-stable field (HFαSF) is locally nondeterministic. When 0 < α < 1, this solves an
open problem in Nolan (1989). Also, it allows us to establish the joint continuity of the local times of an
(N , d)-HFαSF for an arbitrary α ∈ (0, 2), and to obtain new results concerning its sample paths.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

For any given α ∈ (0, 2) and H ∈ (0, 1), let X = {X (t), t ∈ RN
} be the real-valued

harmonizable fractional α-stable field (HFαSF or HFSF, for brevity) with Hurst index H , defined
by:

X (t) := κ Re


RN

ei t ·ξ
− 1

|ξ |H+N/α
Mα(dξ), (1.1)
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where, t · ξ denotes the usual inner product of t and ξ , |ξ | the Euclidean norm of ξ , κ is the
positive normalizing constant given by

κ := 2−1/2


RN


1 − cos ξ1

α/2

|ξ |αH+N dξ

−1/α

, (1.2)

and Mα a complex-valued rotationally invariant α-stable random measure with Lebesgue control
measure. We refer to [18, Chapter 6] for a detailed presentation on such random measures as well
as the corresponding stochastic integrals.

For any real-valued α-stable random variable Y , denote by ∥Y∥α its scale parameter. By the
choice of κ in (1.2) we have

∥X (t)∥α = |t |H , ∀ t ∈ RN . (1.3)

By using (1.1), (2.3) and (2.5) in Section 2, one can verify that the stable field X is H -self-
similar and has stationary and isotropic increments. Hence X is an α-stable analogue of fractional
Brownian motion (another one is the linear fractional stable field whose properties are different
from HFSF).

Several authors have studied various sample path properties of HFSF and its local times,
as well as those of stable stochastic fields/processes related to it. We mention the pioneering
work of Nolan [15] who established, for 1 ≤ α < 2, the joint continuity of the local times of a
d-dimensional harmonizable fractional α-stable field (its components are i.i.d. real-valued HFSF,
see (4.1)). Kôno and Shieh [12] and Shieh [19] studied existence and joint continuity of the in-
tersection local times of stable processes including the harmonizable fractional one. Recently,
Xiao [24] studied several classes of anisotropic stable random fields connected with HFSF, and
further extended the results in [15]. The keystone of the aforementioned articles is the concept of
local nondeterminism (LND) of Nolan [15], which is an extension, to the frame of stable fields,
of the local nondeterminism of Berman [4] for Gaussian processes and Pitt [17] for Gaussian
random fields. Roughly speaking, the concept of LND provides a way to characterize the depen-
dence structure of the stable random variables X (s1), . . . , X (sr ), provided s1, . . . , sr

∈ RN are
close enough. See Section 2 for the definition of LND.

When 1 ≤ α < 2, Nolan [15] proved that the HFSF X in (1.1) has the property of local
nondeterminism and pointed [15, p. 406] that his method cannot be extended to the case of
0 < α < 1. One of the main difficulties in this latter case is that the classical Hölder inequality: f g

 ≤


| f |
α
1/α

|g|
α∗

1/α∗ , 1/α + 1/α∗ = 1, fails.
The problem of proving that HFSF X is locally nondeterministic for the case of 0 < α < 1

had remained open. The main objective of the present article is to resolve this problem. Our
method is based on Fourier analytic arguments.

The rest of the paper is organized as follows. In Section 2, we recall the definition of the
local nondeterminism of Nolan [15] and state our main results, Theorems 2.2 and 2.4. Section 3
is devoted to the proof of Theorem 2.2. The new idea is to bound the Lα(RN ) (quasi) norm
related to LND from below by the L2(RN ) norm of another function that is constructed by using
an appropriate Fourier transform (see (3.14) and (3.18) for details). In Section 4, we apply the
property of local nondeterminism to prove the joint continuity of the local times of an (N , d)-
HFSF X⃗ and to study its fractal properties.

We end the introduction with some notation. For any integer p ≥ 1, a point (or vector)
t ∈ Rp is written in terms of its coordinates as (t1, . . . , tp), or as ⟨c⟩, if t1 = · · · = tp = c.
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For any s, t ∈ Rp such that s j < t j ( j = 1, . . . , p), we define the closed interval (or rectangle)
[s, t] =

p
j=1[s j , t j ]. The Lebesgue measure in Rp is often denoted by λp.

2. Property of local nondeterminism

Nolan [15] defined the concept of local nondeterminism for stable random fields in a much
more general setting than that of HFSF. Namely he considers an arbitrary real-valued stable
random field Y = {Y (t), t ∈ RN

} having a stochastic integral representation of the form:

Y (t) = Re


RN
g(t, ξ)Sα(dξ), (2.1)

where Sα is a complex-valued rotationally invariant α-stable random measure on RN with control
measure ∆, and g(t, ·) : RN

→ C (t ∈ RN ) is a family of deterministic complex-valued
measurable functions on RN belonging to the space Lα(RN ,∆), that is:

RN
|g(t, ξ)|α ∆(dξ) < ∞, ∀ t ∈ RN . (2.2)

It follows from [18, Proposition 6.2.1] that, under condition (2.2), the stochastic integral in (2.1)
is well-defined and, moreover, for any integer m ≥ 0 and t0, . . . , tm

∈ RN , the characteristic
function of the joint distribution of Y (t0), . . . , Y (tm) is given by:

E exp


i
m

n=0

bnY (tn)


= exp


−

 m
n=0

bng(tn, ·)

α

Lα(RN ,∆)


, (2.3)

where the real numbers bn (0 ≤ n ≤ m) are arbitrary, and ∥ · ∥Lα(RN ,∆) is the usual (quasi) norm
on Lα(RN ,∆), defined by

∥ f ∥
α
Lα(RN ,∆)

:=


RN

| f (ξ)|α ∆(dξ), ∀ f ∈ Lα(RN ,∆). (2.4)

A straightforward consequence of (2.3) is that the scale parameter of the real-valued symmetric
α-stable random variable

m
n=0 bnY (tn) is given by m

n=0

bnY (tn)

α

α

=

 m
n=0

bng(tn, ·)

α

Lα(RN ,∆)

=


RN

 m
n=0

bng(tn, ξ)

α ∆(dξ). (2.5)

Now let us turn to the definition of local nondeterminism of the field Y . To this end we need to
introduce some additional notations. For any integer m ≥ 1 and t0, t1, . . . , tm

∈ RN , let Mm
:=

M(t1, . . . , tm) be the subspace of Lα(RN ,∆) spanned by the set of functions {g(t1, ·), . . . ,

g(tm, ·)}, and denote by
g(t0, ·)|Mm


α

the Lα(RN ,∆)-distance from g(t0, ·) to Mm . That is,

g(t0, ·)|Mm


α
= inf

g(t0, ·) −

m
n=1

bng(tn, ·)


Lα(RN ,∆)

: ∀ b1, . . . , bm ∈ R

. (2.6)

Since Mm has finite dimension, the infimum in (2.6) is attained. In order to draw analogy with
the Gaussian case, we abuse the notation and, from now on, write that for all t1, . . . , tm

∈ RNY (t0)|Y (t1), . . . , Y (tm)


α
:=

g(t0, ·)|Mm


α
. (2.7)

It can be viewed as the Lα-error of predicting Y (t0), given Y (t1), . . . , Y (tm).
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For any integer r ≥ 2 and points s1, . . . , sr
∈ RN , the notation s1 4 s2 4 · · · 4 sr means

that:

|s j
− s j−1

| ≤ |s j
− si

| for all 1 ≤ i < j ≤ r. (2.8)

Note that the partial order defined by (2.8) is not unique. For any r points in RN (including the
case N = 1), there are at least r different ways to order them using (2.8). For example, one can
pick any point and label it as sr , then label the one which is the closest to sr as sr−1, and so on.

The following definition of local nondeterminism is from Nolan [15].

Definition 2.1. Let Y = {Y (t), t ∈ RN
} be a real-valued α-stable random field with representa-

tion (2.1) and let I ⊂ RN be a closed interval. Then Y is said to be locally nondeterministic on I
if Y (t)


α

> 0 ∀ t ∈ I and
Y (s) − Y (t)


α

> 0 (2.9)

for all s, t ∈ I, s ≠ t with |s − t | sufficiently small, and for every integer r ≥ 2

lim inf

Y (sr )|Y (s1), . . . , Y (sr−1)


α

∥Y (sr ) − Y (sr−1)∥α

> 0, (2.10)

where the lim inf is taken over all the r points s1, . . . , sr
∈ I that satisfy s1 4 s2 4 · · · 4 sr

with |sr
− sr−1

| → 0.

Notice that the HFSF X = {X (t), t ∈ RN
} defined in (1.1) is a special case of (2.1) with

g(t, ξ) = κ(ei t ·ξ
− 1) and ∆(dξ) = |ξ |

−αH−N dξ , where dξ is the Lebesgue measure on
RN . For the sake of simplicity, we let I = [ε, 1]

N , where ε ∈ (0, 1) is an arbitrary constant,
throughout the rest of this article. The following theorem is our main result.

Theorem 2.2. For any α ∈ (0, 2) and H ∈ (0, 1), let X = {X (t), t ∈ RN
} be a harmonizable

fractional α-stable field with values in R defined by (1.1). For any integer m ≥ 1, there
exists a constant c1 = c1(m) > 0, depending on α, H, N , m and I only, such that for all
t0, t1, . . . , tm

∈ I , we haveX (t0)|X (t1), . . . , X (tm)


α
≥ c1 min


|tn

− t0
|
H

: 1 ≤ n ≤ m


. (2.11)

The proof of Theorem 2.2 is based on a Fourier analytic argument and will be given in
Section 3. The key new ingredient is to bound the Lα(RN ) (quasi) norm in (3.14) from below
by the L2(RN ) norm of a suitably constructed function [see (3.18)]. This allows us to overcome
the difficulty in the case of 0 < α < 1 that is caused by the unavailability of the ordinary Hölder
inequality.

We also mention that, in the case where 1 ≤ α < 2, Xiao [24, Theorem 3.2] proved a stronger
conclusion: the constant c1 is independent of m. The method in [24] is different and it is not
applicable when 0 < α < 1.

Remark 2.3. The conclusion of Theorem 2.2 can be extended. A careful inspection of the proof
of Theorem 2.2, shows that it can be extended to any arbitrary stable field Y of the form (2.1)
with g(t, ξ) = ei t ·ξ

−1 and ∆(dξ) = δ(ξ) dξ ; where δ is a nonnegative continuous even function
on RN

\ {0}, satisfying the following two properties.

(i) There exists a constant c > 0, such that, for all ξ ∈ RN
\ {0}, one has, δ(ξ) ≤ c |ξ |

−αH−N .



A. Ayache, Y. Xiao / Stochastic Processes and their Applications 126 (2016) 171–185 175

(ii) There are two constants c′ > 0 and R > 0, such that, the inequality δ(ξ) ≥ c′
|ξ |

−αH−N ,
holds for any ξ ∈ RN with |ξ | ≥ R.

Further extensions can be achieved by applying the methods in Luan and Xiao [13] and the
comparison theorems of Nolan and Sinkala [16].

As a consequence of Theorem 2.2, we show that, for every α ∈ (0, 2), the harmonizable
fractional α-stable field X has the property of local nondeterminism in Definition 2.1. This solves
an open problem in Nolan [15, pages 406–407], and allows us to study, in Section 4, some fine
properties of the sample functions of X .

Theorem 2.4. For any α ∈ (0, 2) and H ∈ (0, 1), the harmonizable fractional α-stable field
X = {X (t), t ∈ RN

} is locally nondeterministic on I . Consequently, for any integer r ≥ 2,
there exists a constant c2 = c2(r) > 0, depending on α, H, N , r and I only, such that for all
s1, . . . , sr

∈ I which are close enough and satisfy s1 4 s2 4 · · · 4 sr (i.e. satisfy (2.8)), the
following inequalityb1 X (s1) +

r
j=2

b j

X (s j ) − X (s j−1)


α

≥ c2

b1 X (s1)


α
+

r
j=2

b j

X (s j ) − X (s j−1)


α


(2.12)

holds for all b j ∈ R ( j = 1, . . . , r).

Proof. Since X has stationary increments, using (1.3), we have ∥X (s) − X (t)∥α = |s − t |H for
all s, t ∈ RN . Thus condition (2.9) is satisfied. For any integer r ≥ 2 and points s1, . . . , sr

∈ I
which satisfy (2.8), Theorem 2.2 (in which one takes m = r − 1 and t0

= sr , t1
=

sr−1, . . . , tr−1
= s1) givesX (sr )|X (s1), . . . , X (sr−1)


α

≥ c1 |sr
− sr−1

|
H .

Hence, for all sequence s1, . . . , sr
∈ I which satisfy (2.8) and |sr

− sr−1
| → 0, we have

lim inf

X (sr )|X (s1), . . . , X (sr−1)


α

∥X (sr ) − X (sr−1)∥α

≥ c1 > 0.

This proves that X is locally nondeterministic on I . This and Theorem 3.2 of Nolan [15] imply
the second conclusion (2.12). �

3. Proof of Theorem 2.2

In order to prove Theorem 2.2, by (2.5)–(2.7), it is sufficient to show that there exists a
constant c1(m) > 0 such that the inequality:X (t0) −

m
n=1

bn X (tn)

α

α
≥ cα

1 (m) min

|tn

− t0
|
αH

: 1 ≤ n ≤ m


(3.1)

holds for all t0, t1, . . . , tm
∈ I = [ε, 1]

N and all real numbers b1, . . . , bm .
As an intermediate step, we first prove (3.1) under an extra condition (3.2). For clarity of

presentation, we replace b1, . . . , bm in (3.1) by a1, . . . , am .
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Proposition 3.1. For any integer m ≥ 1, there is a constant c3 = c3(m) > 0, depending on
α, H, N , m and I only, such that for all t0, t1, . . . , tm

∈ I and all real numbers a1, . . . , am
verifying

max{|an| : 1 ≤ n ≤ m} ≤ 2, (3.2)

one hasX (t0) −

m
n=1

an X (tn)

α

α
≥ c3(m) min


|tn

− t0
|
αH

: 1 ≤ n ≤ m


. (3.3)

For proving Proposition 3.1, we will make use of the following two lemmas.

Lemma 3.2. We denote by h the step function from R to R defined by

h := 4−11[0,1] − 1[−1,0)


. (3.4)

Let (τq)q≥1 be the sequence of the functions defined through the convolution products

τ1 := −(h ∗ h) and τq+1 := τq ∗ τ1, ∀ q ≥ 1. (3.5)

Then, for every q ≥ 1, the following statements hold.

(i) The function τq is function on R with a compact support included in [−2q, 2q].
(ii) Let τq be the Fourier transform of τq , defined, for every v ∈ R, as τq(v) :=

R e−ivxτ(x) dx; then, it satisfies,

τq(0) = 0 and τq(v) = v−2q sin4q
2−1v


, ∀ v ∈ R \ {0}. (3.6)

(iii) One has τq(0) > 0.

The following straightforward consequence of Lemma 3.2 is crucial for establishing
Proposition 3.1.

Lemma 3.3. Let

q0 := ⌊H + N/α + N/2⌋ + 1 (3.7)

and L0 := 2q0 N 1/2, where ⌊x⌋ denotes the largest integer that is at most x. Let G be the
continuous and compactly supported function from RN to R, defined as the following tensor
product:

G(s) :=

N
n=1

τq0(L0sn), ∀s = (s1, . . . , sN ) ∈ RN , (3.8)

where the function τq0 is defined in Lemma 3.2. Then, the following statements hold.

(i) The support of G is included in the interval

−N−1/2, N−1/2

N and G(0) > 0.
(ii) The Fourier transform of G, denoted by G, takes its values in [0, 1]. Moreover, there exists

a finite positive constant c′

4, only depending on N, H, and α, such that

G(η) ≤ c′

4 min

|η|

2q0 , |η|
−2q0


, ∀ η ∈ RN . (3.9)
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Proof of Lemma 3.2. Let us first show that part (i) holds. We proceed by induction. By using
(3.4) and the definition of τ1, we can verify that for all x ∈ R,

τ1(x) = 16−1
2

k=0

(−1)k+1


2
k


max


0, 1 − |x − 1 + k|


,

where
2

k


’s are the usual binomial coefficients. Therefore τ1 is a continuous function on R,

supported by [−2, 2]. Next we assume that for some q ≥ 1, τq is a continuous function on R and
supp(τq) ⊆ [−2q, 2q]. Then, it follows from the second equality in (3.5) that

τq+1(x) = (τq ∗ τ1)(x) =


R

τq(y)τ1(x − y) dx, ∀ x ∈ R. (3.10)

By the Dominated Convergence Theorem, we see that τq+1 is a continuous function on R.
Moreover the information on the supports of τ1 and τq implies supp(τq+1) ⊆ [−2(q + 1), 2(q +

1)].
To prove part (ii), we observe that (3.5) can be expressed in the Fourier domain as

τ1(v) = −
h(v)

2 and τq+1(v) = τq(v)τ1(v), ∀ v ∈ R and q ≥ 1. (3.11)

It follows from (3.4) that, for all v ∈ R \ {0},

h(v) :=


R

e−ivx h(x) dx = −
i

2

 1

0
sin(vx) dx = −iv−1 sin22−1v


. (3.12)

Combining (3.11) and (3.12) we get (3.6); notice that the equality τq(0) = 0 follows from the
continuity of the functionτq . Finally, part (iii) follows directly from the Fourier inversion formula
and (3.6). �

Now, we are ready to go into the heart of the proof of Proposition 3.1.

Proof of Proposition 3.1. For any arbitrary m + 1 vectors s0, s1, . . . , sm
∈ RN , we set s :=

(s0, s1, . . . , sm) ∈ R(m+1)N . For all (s, a, ξ) ∈ R(m+1)N
× Rm

× RN , define

F(s, a, ξ) := e−is0
·ξ


eis0

·ξ
− 1 −

m
n=1

an

eisn

·ξ
− 1


= 1 −

m
n=1

anei(sn
−s0)·ξ

−


1 −

m
n=1

an


e−is0

·ξ , (3.13)

where a1, . . . , am are the coordinates of the vector a ∈ Rm . Then we derive from (1.1), (2.5),
and (3.13) that, for any t ∈ I m+1 and a ∈ Rm , the left-hand side of (3.3) can be written asX (t0) −

m
n=1

an X (tn)

α

α
= κα


RN

F(t, a, ξ)
|ξ |

−H−N/α
α

dξ. (3.14)

For proving (3.3), there is no loss of generality to assume min

|tn

− t0
| : 1 ≤ n ≤ m


> 0.

Otherwise the inequality holds automatically. Let Υt,ε be the positive number defined by

Υ−1
t,ε = ε min


|tn

− t0
| : 1 ≤ n ≤ m


. (3.15)
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Making the change of variable η = Υ−1
t,ε ξ in (3.14), we see that it is enough to show that there

exists a constant c4 > 0, depending on α, H , N , m and ε only, such that the inequality
RN

F(Υt,εt, a, η)
|η|

−H−N/α
α

dη ≥ c4 (3.16)

holds for all a ∈ K := [−2, 2]
m .

Let G be the function defined in Lemma 3.3. Since its Fourier transform G takes values in
[0, 1], we have

RN

F(Υt,εt, a, η)
|η|

−H−N/α
α

dη ≥


RN

F(Υt,εt, a, η)
|η|

−H−N/α

G(η)
α

dη.

(3.17)

Next, we set

c5 := sup
F(s, a, η)

|η|
−H−N/α

G(η) : (s, a, η) ∈ R(m+1)N
× K × RN


,

with the convention that |0|
−H−N/α

G(0) := 0. It follows from (3.13) and Lemma 3.3 that the
constant c5 depends on α, H , N , m and ε only, and satisfies 0 < c5 < +∞. Thus,

0 ≤ c−1
5

F(s, a, η)
|η|

−H−N/α

G(η) ≤ 1

for all (s, a, η) ∈ R(m+1)N
× K × RN which, in turn, entails that

RN

F(Υt,εt, a, η)
|η|

−H−N/α

G(η)

α

dη

≥ cα−2
5


RN

F(Υt,εt, a, η)
|η|

−H−N/α

G(η)

2

dη. (3.18)

By using the Cauchy–Schwarz inequality, we get that

c6


RN

F(Υt,εt, a, η)
|η|

−H−N/α

G(η)

2

dη ≥


RN

F(Υt,εt, a, η)G(η) dη

2

, (3.19)

where c6 is the positive and finite constant (thanks to Lemma 3.3) defined by

c6 :=


RN


|η|

H+N/α

G(η)

2

dη.

On the other hand, in view of (3.13) and the Fourier inversion formula, we have,

1
(2π)N


RN

F(Υt,εt, a, η)G(η) dη

= G(0) −

N
n=1

anG

Υt,ε(t

n
− t0)


−


1 −

m
n=1

an


G


−Υt,εt0. (3.20)

Observe that (3.15) implies thatΥt,ε(t
n

− t0)
 ≥ ε−1 > 1, ∀ n = 1, . . . , m and

Υt,εt0
 > 1. (3.21)
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Thus, in view of (3.21) and Part (i) of Lemma 3.3, Eq. (3.20) reduces to

1
(2π)N


RN

F(Υt,εt, a, η)G(η) dη = G(0). (3.22)

By taking c4 = cα−2
5 c−1

6 (2π)2N
G(0)

2, we see that (3.16) follows from (3.17)–(3.19) and
(3.22). �

Finally we can finish the proof of Theorem 2.2.

Proof of (3.1). In view of Proposition 3.1, we may and will assume that

max{|bn| : 1 ≤ n ≤ m} > 2. (3.23)

In order to show that (3.1) holds for all {bn} which satisfy (3.23), we will argue by induction.
First we suppose m = 1, then using the inequality |b1| > 2 (see (3.23)) and Proposition 3.1, in
the case where m = 1 and t0 and t1 are interchanged, one getsX (t0) − b1 X (t1)

α

α
= |b1|

α
X (t1) −

1
b1

X (t0)

α

α
> c3(1)|t0

− t1
|
αH .

Hence, for m = 1, (3.1) is valid with cα
1 (1) = c3(1). Next we suppose that (3.1) holds when m is

replaced by m − 1 and the corresponding constant c1(m − 1). In order to prove (3.1), we let c7
be the constant defined as

c7 := 2−1 cα
1 (m − 1) (3.24)

and let n0 be an element of {1, . . . , m} such that

|bn0 | = max{|bn| : 1 ≤ n ≤ m}. (3.25)

In the sequel, we will distinguish the following two cases:

|bn0 |
α min

0≤n≤m, n≠n0
|tn

− tn0 |
αH

≥ c7 min
1≤n≤m

|tn
− t0

|
αH (3.26)

or

|bn0 |
α min

0≤n≤m, n≠n0
|tn

− tn0 |
αH < c7 min

1≤n≤m
|tn

− t0
|
αH . (3.27)

First, we assume that (3.26) holds. Let a0 = b−1
n0

and an = −bnb−1
n0

for all n ∈ {1, . . . , m} \ {n0}.
In view of (3.23) and (3.25), one has

|an| ≤ 1 for every n ∈ {0, . . . , m} \ {n0}; (3.28)

also observe thatX (t0) −

m
n=1

bn X (tn)

α

α
= |bn0 |

α
X (tn0) −

m
n=0,n≠n0

an X (tn)

α

α
. (3.29)

Thanks to (3.28) we can apply Proposition 3.1 to
X (tn0) −

m
n=0,n≠n0

an X (tn)

α

α
(notice that

in this case t0 and tn0 are interchanged) to obtainX (tn0) −

m
n=0,n≠n0

an X (tn)

α

α
≥ c3(m) min


|tn

− tn0 |
αH

: 0 ≤ n ≤ m and n ≠ n0

.

(3.30)
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Putting together (3.29), (3.30) and (3.26), one getsX (t0) −

m
n=1

bn X (tn)

α

α
≥ c7c3(m) min


|tn

− t0
|
αH

: 1 ≤ n ≤ m

. (3.31)

Next we consider the case when (3.27) holds. Let n1 ∈ {0, . . . , m} \ {n0} be such that

|tn1 − tn0 |
αH

= min

|tn

− tn0 |
αH

: 0 ≤ n ≤ m and n ≠ n0

. (3.32)

From now on we restrict to α ∈ (0, 1], the case where α ∈ (1, 2) can be treated in the same way,
but one has to replace ∥ · ∥

α
α by ∥ · ∥α in order to be able to use the triangle inequality. Using the

latter inequality, the fact that {X (t), t ∈ RN
} has stationary increments, and X (0) = 0, one getsX (t0) −

m
n=1

bn X (tn)

α

α

=

X (t0) −

m
n=1,n≠n0,n1

bn X (tn) − (bn1 + bn0)X (tn1) − bn0


X (tn0) − X (tn1)

α

α

≥

X (t0) −

m
n=1,n≠n0,n1

bn X (tn) − (bn1 + bn0)X (tn1)

α

α
−

bn0


X (tn0) − X (tn1)

α

α

≥

X (t0) −

m
n=1,n≠n0,n1

bn X (tn) − (bn1 + bn0)X (tn1)

α

α
− |bn0 |

α
X (tn0 − tn1)

α

α
,

(3.33)

with the convention that
m

n=1,n≠n0,n1
bn X (tn) = 0 when m = 2. Next notice that the induction

hypothesis entailsX (t0) −

m
n=1,n≠n0,n1

bn X (tn) − (bn1 + bn0)X (tn1)

α

α

≥ cα
1 (m − 1) min


|t0

− tn
|
αH

: 1 ≤ n ≤ m and n ≠ n0


≥ cα
1 (m − 1) min


|t0

− tn
|
αH

: 1 ≤ n ≤ m

. (3.34)

Recall from (1.3) that
X (tn0 − tn1)

α

α
= |tn0 − tn1 |

αH . Putting together (3.33), (3.34), (3.32),
(3.24) and (3.27) yieldsX (t0) −

m
n=1

bn X (tn)

α

α
≥ c7 min


|t0

− tn
|
αH

: 1 ≤ n ≤ m

. (3.35)

Finally, setting cα
1 (m) = min


c3(m), c7c3(m), c7


, in view of (3.31) and (3.35), it follows that

(3.1) holds. �

4. Joint continuity of the local times

In this section we consider an Rd -valued harmonizable fractional α-stable field X⃗ =

{X⃗(t), t ∈ RN
} defined by

X⃗(t) =

X1(t), . . . , Xd(t)


, t ∈ RN , (4.1)
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where X1, . . . , Xd are independent copies of a real-valued HFαSF X defined in (1.1). The i.i.d.
assumption on the coordinate processes X1, . . . , Xd can be relaxed. For example, the results
in this section can be extended to the case where X1, . . . , Xd are assumed to be independent,
but may have different stability and self-similarity indices (α j , H j ) for j = 1, . . . , d . However,
removing the independence assumption on X1, . . . , Xd would require more work. In particular,
one needs to develop an appropriate notion of local nondeterminism for vector-valued stable
random fields.

We apply the property of the local nondeterminism to establish the joint continuity and Hölder
conditions for the local times of HFSF X⃗ , and to prove a uniform Hausdorff dimension result for
the inverse image of X⃗ .

For any fixed closed interval (or rectangle) T ⊂ RN , the occupation measure of X⃗ on T ,
denoted by µT , is the Borel measure on Rd defined by µT (•) = λN


t ∈ T : X⃗(t) ∈ •


. If µT is

almost surely absolutely continuous with respect to the Lebesgue measure λd , then X⃗ is said to
have local times on T , and its local time L(·, T ) is defined as the Radon–Nikodým derivative of
µT with respect to λd , i.e.,

L(x, T ) =
dµT

dλd
(x), ∀x ∈ Rd .

In the above, x is the space variable, and T is the time variable. Sometimes, we write L(x, t) in
place of L(x, [0, t]).

Express the interval T as T =
N

i=1[ai , ai + hi ] where ai ∈ R and hi ∈ R+, for all i =

1, . . . , N . Then X⃗ is said to have a jointly continuous local time on T if we can choose a version
of the local time, still denoted by L


x,

N
i=1[ai , ai + ti ]


, such that it is a continuous function

of (x, t1, . . . , tN ) ∈ Rd
×

N
i=1[0, hi ]. We refer to Geman and Horowitz [9] and Dozzi [7] for

further information on local times of multivariate random fields.
It is shown in Adler [1] that, when a local time is jointly continuous, L(x, •) can be extended

to be a finite Borel measure supported on the level set X⃗−1
T (x) = {t ∈ T : X⃗(t) = x}. This

makes local times useful in studying the fractal properties of level sets and inverse images of the
random field X⃗ . See Berman [3], Ehm [8], Monrad and Pitt [14], and Xiao [21,22] for previous
results.

By using a Fourier analytic argument (cf. [9, Theorem 21.9]), it is easy to prove the following
existence result. Note that the condition is exactly the same as for fractional Brownian motion.

Proposition 4.1. Let X⃗ = {X⃗(t), t ∈ RN
} be the Rd -valued harmonizable fractional α-stable

field defined above, and let P be the probability measure on the underlying probability space.
Then X⃗ has a local time L(x, T ) ∈ L2(P × λd) if and only if N > Hd.

The main purpose of this section is to establish the joint continuity of local times of X⃗ . The
following theorem extends the results of Pitt [17] for fractional Brownian motion (i.e., α = 2)
and Nolan [15] for 1 ≤ α < 2.

Theorem 4.2. Let X⃗ = {X⃗(t), t ∈ RN
} be the Rd -valued harmonizable fractional α-stable field

defined in (4.1). If N > Hd, then for any closed interval T ⊂ RN , X⃗ has a jointly continuous
local time on T .

Proof. Similar to [4,17,9,15], the proof of Theorem 4.2 is based on a multiparameter version of
Kolmogorov continuity theorem (cf. [10]) and the following two estimates:



182 A. Ayache, Y. Xiao / Stochastic Processes and their Applications 126 (2016) 171–185

(i) For all integers n ≥ 1, there exists a finite constant c8, which depends on n, such that for all
hypercubes B = [a, a + ⟨r⟩] ⊆ T with side-length r ∈ (0, 1) and all x ∈ Rd ,

E

L(x, B)n

≤ c8 rn(N−Hd). (4.2)

(ii) For all even integers n ≥ 2 and γ ∈ (0, 1 ∧
1
2 ( N

Hd − 1)), there exists a finite constant
c9, which depends on n and γ , such that for all hypercubes B = [a, a + ⟨r⟩] ⊆ T with
side-length r ∈ (0, 1) and all x, y ∈ Rd with |x − y| ≤ 1,

E


L(x, B) − L(y, B)
n


≤ c9 |x − y|

nγ rn(N−H(d+γ )). (4.3)

For proving (i) and (ii), let us recall the following identities from Geman and Horowitz [9] (see
also [17]): For all x, y ∈ Rd , B ⊆ T and all integers n ≥ 1,

E


L(x, B)n


= (2π)−nd


Bn


Rnd

exp


−i
n

j=1

u j
· x


E exp


i

n
j=1

u j
· X⃗(t j )


du dt

(4.4)

and for all even integers n ≥ 2,

E


L(x, B) − L(y, B)
n


= (2π)−nd


Bn


Rnd

n
j=1


e−iu j

·x
− e−iu j

·y


× E exp


i
n

j=1

u j
· X⃗(t j )


du dt, (4.5)

where u = (u1, . . . , un), t = (t1, . . . , tn), and each u j
∈ Rd , t j

∈ B ⊆ (0, ∞)N . In the
coordinate notation we then write u j

= (u j
1, . . . , u j

d).
In order to apply the property of local nondeterminism in Theorem 2.4 to bound the integrals

in (4.4) and (4.5), we observe that for any constant c > 0 and t0
∈ (0, ∞)N ,

E exp


i
n

j=1

u j
· X⃗(t j )


= E exp


i

n
j=1

cH u j
· (X⃗((t j

+ t0)/c) − X⃗(t0/c))


thanks to the stationarity of increments and self-similarity of X⃗ . It can be seen that, given any
compact interval T ⊂ RN , we can choose a positive constant c > 0 and t0

∈ (0, ∞)N such that
t0/c ∈ I = [ε, 1]

N and (t + t0)/c ∈ I for each t ∈ T . The change of variables

v j
= cH u j , s j

=
t j

+ t0

c
, j = 1, . . . , n

only induces a constant factor to the right-hand sides of (4.4) and (4.5). Moreover, the extra term
X⃗(t0/c) does not cause any inconvenience for our estimation if we write s0

= t0/c and
n

j=1

v j
· (X⃗(s j ) − X⃗(s0)) =

n
j=1

w j
· (X⃗(s j ) − X⃗(s j−1)),

where w j
=

n
k= j vk . Hence, without loss of generality, we may and will assume T = [ε, 1]

N .
With the above reduction, the rest of the proof of (i) and (ii) is essentially the same as in

[17,15] (see also [24]), where the fact that the coordinate processes of X⃗ are independent copies
of X and Theorem 2.4 play important roles. We will not reproduce the details here. �
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The following theorem provides the uniform Hölder condition for the local time L(x, •).

Theorem 4.3. Let X⃗ = {X⃗(t), t ∈ RN
} be the Rd -valued harmonizable fractional α-stable field

defined in (4.1). If N > Hd, then for any compact interval T ⊂ RN and any η > 0, there is a
constant c10 such that with probability 1,

sup
a∈T

sup
x∈Rd

L(x, [a, a + ⟨r⟩]) ≤ c10 r N−Hd−η (4.6)

for r > 0 sufficiently small.

Proof. The proof is standard; it is based on the moment estimates (4.2) and (4.3) and a chaining
argument as in Ehm [8] (see also [21]). We omit the details. �

Observe that (4.6) remains valid when [a, a + ⟨r⟩] is replaced by

UT (a, r) := {s ∈ T : |s − a| ≤ r}.

It is known that the Hölder condition for the local times of X⃗ is closely related to the irregularity
of the sample paths of X⃗ (cf. [3,8,21]). As a corollary of Theorem 4.3 we have the following
result for real-valued HFSF X .

Corollary 4.4. Let X = {X (t), t ∈ RN
} be a real-valued harmonizable fractional α-stable field

with Hurst index H ∈ (0, 1) (see (1.1)). For any compact interval T ⊆ RN and any η > 0, there
is a finite constant c11 > 0 such that

lim inf
r→0

inf
t∈T

sup
s∈UT (t,r)

|X (s) − X (t)|

r H+η
≥ c11 a.s. (4.7)

In particular, the sample function (or sample path) t → X (t, ω) is almost surely nowhere
differentiable in RN .

Proof. In view of the definition of local time of X , we have, for all t ∈ T and r > 0,

λN (UT (t, r)) =


X (UT (t,r))

L(x, UT (t, r)) dx

≤ max
x∈R

L(x, UT (t, r)) · sup
s′,s′′∈UT (t,r)

|X (s′) − X (s′′)|.

Then applying Theorem 4.3 with d = 1, we see that (4.7) follows from (4.6), in which [a, a+⟨r⟩]

is replaced by UT (a, r). �

Remark 4.5. Compared with the exact uniform modulus of continuity and laws of the iterated
logarithm for the local times of fractional Brownian motion in [2,6,21], (4.6) is not sharp. It is
an open problem to establish the results in [2,6,21] for HFSF X⃗ . Similarly, (4.7) is not sharp
either. Both Chung-type law of the iterated logarithm and its uniform analogue have not been
established for HFSF. We believe that, besides the strong local nondeterminism in [24], other
significantly new tools will be needed for solving these problems.

We end this section with some fractal properties of X⃗ . The Hausdorff dimensions of the image
and graph of stable random fields have been studied in Xiao [20]. Applying the uniform modulus
of continuity of HFSF in [11,5,23] and Theorem 3.1 in Xiao [20], we have that for any Borel set
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E ⊂ RN ,

dimH X⃗(E) = min


d,
1
H

dimH E


, a.s.

and for GrX⃗(E) = {(t, X⃗(t)) : t ∈ E},

dimHGrX⃗(E) = min


dimH E + (1 − H)d,
1
H

dimH E


, a.s.

By applying Theorem 4.3 and Frostman’s theorem (cf. [10]), one can show that for any Borel set
F ⊂ Rd ,

dimH X⃗−1(F) = N − Hd + HdimH F with positive probability. (4.8)

In the following, we prove a uniform version of (4.8) for X⃗ ; namely, under a general condition
on F , (4.8) holds except on a null probability event which does not depend on F . This extends a
result of Monrad and Pitt [14] for fractional Brownian motion.

Theorem 4.6. Let X⃗ = {X⃗(t), t ∈ RN
} be the Rd -valued harmonizable fractional α-stable field

defined in (4.1). If N > Hd, then with probability 1,

dimH X⃗−1(F) = N − Hd + HdimH F (4.9)

for all Borel sets F ⊂ O :=


a,b∈QN
+ :a<b{x ∈ Rd

: L(x, [a, b]) > 0}.

Proof. For any compact interval T ⊂ RN , it follows from Theorem 4.2 that the local time of X⃗
on T , L(x, T ), is continuous and bounded in x . Moreover, by [5,23], X⃗(t) satisfies a.s. a uniform
Hölder condition of any order < H on T . Hence, by the proof of Lemma 3.1 in Monrad and
Pitt [14], we have

P{dimH

X⃗−1(F) ∩ T


≤ N − Hd + HdimH F for all Borel sets F ⊂ Rd

} = 1.

Since T is arbitrary, this proves the uniform upper bound in (4.9).
In order to prove that, for any Borel set F ⊂ O,

dimH X⃗−1(F) ≥ N − Hd + HdimH F, (4.10)

we assume dimH F > 0 (the case dimH F = 0 is trivial, we take an x ∈ F , (4.10) follows from
Theorem 4.3 and Frostman’s theorem). For any γ ∈ (0, dimH F), by Frostman’s lemma, there
is a probability measure σ on (a compact subset of) F such that σ(UF (x, r)) ≤ c12 rγ for all
x ∈ Rd , where c12 > 0 is a constant. As in [14], we define a random measure µ on RN by

µ(B) =


Rd

L(x, B) σ (dx), ∀ Borel set B ⊂ RN .

Since F ⊂ O, we can verify that µ is a positive random measure and is carried by X−1(F). (Here

we use the facts that σ is supported on a compact subset of F and L(x, B) = 0 if x ∉ X⃗(B).)
Now, let η > 0 be an arbitrarily small constant. For any a ∈ RN , we take B = [a, a + ⟨r⟩].

Since L(x, B) = 0 when x ∉ X⃗(B), and diam

X⃗(B)


= O(r H−η), we apply Theorem 4.3 to

obtain

µ([a, a + ⟨r⟩]) ≤ c10 r N−Hd−η


X⃗(B)

σ(dx) ≤ c13 r N−Hd+Hγ−(1+γ )η
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for r small enough. This, together with Frostman’s theorem, implies that dimH X−1(F) ≥

N − Hd + Hγ − (1 + γ )η; thus one gets (4.10), which completes the proof. �
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vol. 63, Birkhäuser, Basel, 2011, pp. 279–310.

http://refhub.elsevier.com/S0304-4149(15)00195-7/sbref1
http://refhub.elsevier.com/S0304-4149(15)00195-7/sbref2
http://refhub.elsevier.com/S0304-4149(15)00195-7/sbref3
http://refhub.elsevier.com/S0304-4149(15)00195-7/sbref4
http://refhub.elsevier.com/S0304-4149(15)00195-7/sbref5
http://refhub.elsevier.com/S0304-4149(15)00195-7/sbref6
http://refhub.elsevier.com/S0304-4149(15)00195-7/sbref7
http://refhub.elsevier.com/S0304-4149(15)00195-7/sbref8
http://refhub.elsevier.com/S0304-4149(15)00195-7/sbref9
http://refhub.elsevier.com/S0304-4149(15)00195-7/sbref10
http://refhub.elsevier.com/S0304-4149(15)00195-7/sbref11
http://refhub.elsevier.com/S0304-4149(15)00195-7/sbref12
http://refhub.elsevier.com/S0304-4149(15)00195-7/sbref13
http://refhub.elsevier.com/S0304-4149(15)00195-7/sbref14
http://refhub.elsevier.com/S0304-4149(15)00195-7/sbref15
http://refhub.elsevier.com/S0304-4149(15)00195-7/sbref16
http://refhub.elsevier.com/S0304-4149(15)00195-7/sbref17
http://refhub.elsevier.com/S0304-4149(15)00195-7/sbref18
http://refhub.elsevier.com/S0304-4149(15)00195-7/sbref19
http://refhub.elsevier.com/S0304-4149(15)00195-7/sbref20
http://refhub.elsevier.com/S0304-4149(15)00195-7/sbref21
http://refhub.elsevier.com/S0304-4149(15)00195-7/sbref22
http://refhub.elsevier.com/S0304-4149(15)00195-7/sbref23
http://refhub.elsevier.com/S0304-4149(15)00195-7/sbref24

	Harmonizable fractional stable fields: Local nondeterminism and joint continuity of the local times
	Introduction
	Property of local nondeterminism
	Proof of Theorem 2.2
	Joint continuity of the local times
	Acknowledgements
	References


