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Abstract

This paper extends results of Mortimer and Williams (1991) about changes of probability measure up
to a random time under the assumptions that all martingales are continuous and that the random time
avoids stopping times. We consider locally absolutely continuous measure changes up to a random time,
changes of probability measure up to and after an honest time, and changes of probability measure up to
a pseudo-stopping time. Moreover, we apply our results to construct a change of probability measure that
is equivalent to the enlargement formula and to build, for a certain class of pseudo-stopping times, a class
of measure changes that preserve the pseudo-stopping time property. Furthermore, we study for a price
process modeled by a continuous semimartingale the stability of the No Free Lunch with Vanishing Risk
(NFLVR) property up to a random time, that avoids stopping times, in the progressively enlarged filtration
and provide sufficient conditions for this stability in terms of the Azéma supermartingale.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Motivated by models from physics and chemistry Mortimer and Williams (1991) study
how to perform a change of measure up to a random time σ on a filtered probability space
(Ω , F , (Ft ), P). More precisely, in their paper titled “Change of measure up to a random time:
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Theory” they derive the semimartingale decomposition of continuous (P, Ft )-martingales up to
time σ in the progressively enlarged filtration

G′
t = Ft ∨ σ


1{σ>s}; s ≤ t


under an equivalent probability measure Q and they give the expression of the (Q, G′

t )-hazard
function of σ . To prove their result they use elementary methods and do not rely on the theory
of enlargement of filtrations. Besides, Mortimer and Williams (1991) claim in their paper that “it
is the examples which make this topic of some interest”, but the only two examples they provide
deal with the well-known path decomposition of the standard Brownian motion.

In this paper we extend their result in several ways and provide interesting classes of exam-
ples working under the standing assumptions that σ avoids stopping times and that all (Ft )-
martingales are continuous. As in Mortimer and Williams (1991) we do no rely on any deep
results from the theory of enlargements of filtrations, but choose a rather direct approach using
only elementary methods to prove our results.

First, we extend their result to locally absolutely continuous changes of measure up to a
random time, which allows us to construct a change of probability measure that is equivalent
to the enlargement formula up to time σ . Second, we study changes of probability measure for
honest times. Honest times are known to be well-suited for a progressive enlargement of filtration
since the seminal work of Barlow (1978) [7], because in this case all (Ft )-semimartingales
remain semimartingales in the enlarged filtration on the whole time horizon. Therefore, if σ

is an honest time, we are able to extend the Girsanov-type theorem from Mortimer and Williams
(1991) after time σ . While the result itself is not very surprising, the way we prove it is interesting
because as in Mortimer and Williams (1991) we do not assume any prior knowledge of the
theory of enlargements of filtrations. Actually, as it turns out there is a nice link to so called
relative martingales, which were studied by Azéma, Meyer, and Yor (1992). Third, we study
changes of measure up to pseudo-stopping times which were introduced by Nikeghbali and Yor
(2005). As finite-valued honest times are ends of optional sets, their definition is independent
of the underlying probability measure. This is however not true for pseudo-stopping times.
An interesting and challenging problem is therefore to analyze the stability of the pseudo-time
property under different probability measures. For a special class of pseudo-stopping times we
are able to provide a class of equivalent probability measures which preserve the pseudo-stopping
time property. Finally, we also generalize the example of the Brownian path decomposition given
in Mortimer and Williams (1991). As opposed to Mortimer and Williams (1991), who provide
a Markovian study of this example, our analysis is based on semimartingale calculus only and
uses the specific structure of the Azéma supermartingale of a class of pseudo-stopping times
associated with honest times.

The last part of the paper deals with the question of no arbitrage up to a random time. Since the
technique of progressively enlarging a filtration with a random time is a standard tool in mathe-
matical finance to model credit risk and insider trading, this question is of particular interest. In
the recent literature it is addressed in a couple of papers under different assumptions on the price
process, the random time, and the precise no arbitrage concept, cf. Fontana, Jeanblanc, and Song
(2013); Acciaio, Fontana, and Kardaras (2016); Aksamit, Choulli, Deng, and Jeanblanc (2014).
To be concrete, we deal with the following question assuming that the stock price process is mod-
eled by a continuous (Ft )-semimartingale: if the market satisfies the condition of “no free lunch
with vanishing risk” (NFLVR) with respect to the filtration (Ft ), under which conditions does the
market then also satisfy NFLVR with respect to the progressively enlarged filtration until time
σ? For example, it is known that honest times allow for arbitrage on the time horizon [0, σ ] in
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the progressively enlarged filtration, cf. Fontana, Jeanblanc, and Song (2013). In this paper we
consider an arbitrary random time σ that avoids (Ft )-stopping times and derive sufficient criteria
for the validity of NFLVR up to time σ , assuming that all (Ft )-martingales are continuous. To do
this we choose two different approaches: in the first one we work directly with the definition of
NFLVR, while in the second one we identify a local martingale deflator in the enlarged filtration
and check under what conditions it is a uniformly integrable martingale, which would imply that
NFVLR is satisfied up to time σ due to the fundamental theorem of asset pricing.

This paper is organized as follows: In the next section after having introduced the general
setup and notation, we recall the result from [20] and give some first corollaries thereof. In Sec-
tion 2.3 we moreover introduce the multiplicative decomposition of the Azéma supermartingale,
which will be used frequently during the paper. Section 3 deals with locally absolutely contin-
uous measure changes. Afterwards we specialize our analysis to the class of honest times in
Section 4 and to the class of pseudo-stopping times in Section 5. Section 6 contains a generaliza-
tion of the example given in [20]. Finally, in Section 7 we consider the question of no arbitrage
up to a random time and provide sufficient criteria for the validity of NFLVR in the progressively
enlarged filtration up to time σ .

2. General theory

2.1. Setup and notation

Throughout the paper we work on a filtered probability space (Ω , F , (Ft )t≥0, P), where
(Ft ) is assumed to satisfy the natural conditions, i.e. (Ft ) is right-continuous and F0 contains
all σ -negligible sets. Here, a subset A ⊂ Ω is called σ -negligible if there exists a sequence
(Bn)n≥0 of subsets of Ω such that A ⊂


n∈N Bn and such that for all n ∈ N, Bn ∈ Fn with

P(Bn) = 0. It was shown in [21] that under the natural conditions any martingale admits a
càdlàg modification and we will always work with this modification in the following. If (X t ) is
a real-valued stochastic process we denote by

X t := sup
s≤t

Xs and X t := inf
s≤t

Xs, t ≥ 0,

its supremum resp. infimum process and by T X
a = inf{t > 0 : X t = a} the first hitting time

of the level a ∈ R. Note that under the natural assumptions T X
a is a stopping time, if X is a

right-continuous adapted process, cf. [21]. Furthermore, M(P, Ft ) denotes the set of (P, Ft )-
martingales and Mloc(P, Ft ) resp. Mu.i.(P, Ft ) the set of local resp. uniformly integrable
(P, Ft )-martingales.

Finally, we denote by σ : Ω → [0, ∞] we denote an F -measurable random time, which
gives rise to the progressively enlarged filtration

Gt :=


s>t


Fs ∨ σ(1{σ>r}; r ≤ s)


.

Throughout the paper we will assume that the following two assumptions are satisfied:
(A) σ avoids any (Ft )-stopping time: P(σ = T ) = 0 for any (Ft )-stopping time T .
(C) All (Ft )-martingales are continuous.
We denote by ZP

t := P(σ > t |Ft ) the Azéma supermartingale of σ . It decomposes
as ZP

t = mP
t − AP

t with mP
t = EP(AP

∞|Ft ) being a uniformly integrable martingale and
(AP

t ) being the (Ft )-dual optional projection of the process (1{σ≤t})t≥0. We note that under
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assumption (C), AP is also the dual predictable projection of (1{σ≤t})t≥0, since in this case
the predictable and optional sigma fields related to (Ft ) coincide. Moreover, note that under
the assumptions (AC) the Azéma supermartingale is continuous and ZP

t = mP
t − AP

t is thus
its Doob–Meyer decomposition. For the definitions and properties of dual optional and dual
predictable projections we refer the reader to chapter VI.2 of [12].

Let ρ be a non-negative F -measurable random variable with expectation one. Then Q := ρ.P
defines a new probability measure which is absolutely continuous to P. We denote by (ρt )

resp. (ρt ) the optional projection of ρ on (Ft ) resp. (Gt ) satisfying for all t ≥ 0,

ρt := EP(ρ|Ft ), ρt := EP(ρ|Gt ),

where (ρt ) is chosen to be càdlàg and (ρt ) is continuous due to (C). Furthermore, we define the
(P, Ft )-supermartingale

ht := EP(ρ1{σ>t}|Ft ), t ≥ 0.

By Bayes’ formula one has

ht = ρt · Q(σ > t |Ft ) =: ρt ZQ
t .

Since σ avoids stopping times, P(σ = ∞) = 0 and σ is finite P-almost surely. Therefore, ZP

and h both converge towards zero almost surely as t → ∞.
If h is strictly positive, we denote by µ the stochastic logarithm of h, i.e. ht = E (µ)t . The

process µ is again a (P, Ft )-supermartingale with Doob–Meyer decomposition µ = µL
− µF ,

where µL
∈ Mloc(P, Ft ) and µF is increasing. Moreover, h, µ, µL , and µF are all continuous.

If h is not strictly positive, then the process µ and hence also µL and µF are only well-defined
on the stochastic interval [0, T h

0 ).

2.2. Girsanov-type theorems

We are now ready to recall the result of [20], Lemma 2.

Theorem 2.1. Assume that h is strictly positive and let U = (Ut )t≥0 be a local (P, Ft )-
martingale. Then the process


1{σ>t}Vt exp(µF

t )


t≥0 is a local (Q, Gt )-martingale, where V :=

U − ⟨U, µ⟩.
Moreover, the process


µF

t∧σ


t≥0 is the (Q, Gt )-dual predictable projection of (1{σ≤t})t≥0.

Proof. The claim is proven in [20] for G′
t = Ft ∨ σ


1{σ>s}; s ≤ t


instead of Gt defined

above. However, since (G′
t )-martingales remain martingales with respect to the right-continuous

augmentation (Gt ) of (G′
t ), the claim follows easily. �

As an immediate consequence of the above result we deduce

Corollary 2.2. Assume that h is strictly positive. If U ∈ Mloc(P, Ft ), then

Vt∧σ = Ut∧σ − ⟨U, µ⟩t∧σ ∈ Mloc(Q, Gt ).

Proof. Taking U ≡ 1 in Theorem 2.1 yields that

Ht := 1{σ>t} exp

µF

t


∈ Mloc(Q, Gt ).

Since V is continuous, [H, V ] ≡ 0. Hence, the product H V is a local (Q, Gt )-martingale if and
only if V is also a local (Q, Gt )-martingale as long as Ht− > 0, i.e. on the interval [0, σ ]. �



D. Kreher / Stochastic Processes and their Applications ( ) – 5

Remark 2.3. If we choose ρ ≡ 1 in the above corollary, we recover the enlargement formula up
to time σ (cf. [11], paragraph XX.76): For any M ∈ Mloc(P, Ft ) we have

Mt∧σ −

 t∧σ

0

d⟨M, ZP
⟩s

ZP
s

= Mt∧σ −

 t∧σ

0

d⟨M, mP
⟩s

ZP
s

∈ Mloc(P, Gt ). (1)

Remark 2.4. In [20] the authors prove their result without applying any results from the theory
of progressive enlargement of filtrations. Of course, Corollary 2.2 can also be proven by applying
first Girsanov’s theorem and afterwards the enlargement formula under Q. For so called honest
times this is done in paragraph XX.81 of [11], where a more general version of the above result
is proven without relying on the assumptions (AC).

Next we show that Theorem 2.1 also holds if h is not necessarily strictly positive.

Theorem 2.5. If U = (Ut )t≥0 is a local (P, Ft )-martingale, then X t := 1{σ>t}Vt exp(µF
t ) and

Vt∧σ are local (Q, Gt )-martingales, where Vt∧σ = Ut∧σ − ⟨U, µ⟩t∧σ .

Proof. First we show that Q

σ < T h

0


= 1. For this note that T h

0 = T ρ
0 ∧ T ZQ

0 because

ht = ρt ZQ
t . But we have

Q

T ρ

0 < ∞


= EP

ρ1

{T ρ
0 <∞}


= EP


ρ∞1{T ρ

0 <∞}


= EP


0 · 1

{T ρ
0 <∞}


= 0.

Since σ avoids stopping times under P and Q is absolutely continuous to P, Q(σ = T h
0 ) = 0

and σ is also Q-almost surely finite. Hence,

Q

σ ≥ T h

0


= Q


σ > T h

0


= Q


σ > T ZQ

0


= EQ ZQ

T ZQ
0

= 0.

Especially, this means that X is Q-a.s. well-defined since µ is well-defined on the interval
[0, T h

0 ). Second for every n ∈ N we write U n
t := Ut∧T h

1/n
, t ≥ 0. According to Theorem 2.1,

the process Xn
t := X t∧T h

1/n
is a local (Q, Gt )-martingale for every n ∈ N. Therefore, X is a local

(Q, Gt )-martingale on the interval

0, T h

0


=


n∈N


0, T h

1/n


and since


0, T h

0


⊃ [0, σ ] Q-

almost surely, this implies that

X t = 1{σ>t}Vt exp(µF
t ) ∈ Mloc(Q, Gt ).

Finally, (Vt∧σ ) is a local (Q, Gt )-martingale by the same reasoning as in the proof of
Corollary 2.2. �

2.3. Multiplicative decomposition of the Azéma supermartingale

Before we come to further extensions and applications, we introduce in this subsection the
so called Itô–Watanabe decomposition of the Azéma supermartingale, which will be frequently
used in the following sections. Since it is less known than the Doob–Meyer decomposition, we
briefly recall a continuous version of the result from [14], cf. also [5].

Theorem 2.6. Let Z be a continuous non-negative supermartingale with Doob–Meyer
decomposition Z = m − A. Then Z factorizes uniquely as Z = N D, where N is a continuous



6 D. Kreher / Stochastic Processes and their Applications ( ) –

non-negative local martingale starting from N0 = 1 and D is a continuous decreasing process
such that both N and D are constant on the set {Z = 0}. Moreover, N and D are given by

Dt = Z0 exp


−

 t∧T Z
0

0

d As

Zs


, Nt = E

 t∧T Z
0

0

dms

Zs


.

Remark 2.7. If Z = ZP is the Azéma supermartingale of σ , then

ZP
t = 0 ⇔ mP

t − AP
t = EP(AP

∞ − AP
t |Ft ) = 0 ⇔ AP

t = AP
s ∀ s ≥ t,

since AP is an increasing process. Therefore, AP and mP only move on the set {ZP > 0}. Hence,
in this case the processes

DP
t = exp


−

 t

0

d AP
s

ZP
s


, N P

t = E
 t

0

dmP
s

ZP
s



are well-defined and fulfill supp(d DP) ⊂ {ZP > 0} resp. supp(d⟨N P
⟩) ⊂ {ZP > 0}. Moreover

given the decomposition ZP
= N P DP, Itô’s product formula yields

ZP
t = 1 +

 t

0
DP

u d N P
u +

 t

0
N P

u d DP
u , t ≥ 0,

and, since DP is of finite variation, we may replace ZP by N P in the enlargement formula (1):
I.e. for any M ∈ Mloc(P, Ft ), we have

Mt∧σ −

 t∧σ

0

d⟨M, N P
⟩s

N P
s

∈ Mloc(P, Gt ). (2)

Note that if ZP
t > 0 a.s. for all t ≥ 0 one can write ZP

t = N P
t · exp(−ΛP

t ), where
ΛP

t := − ln(DP
t ) is referred to as the intensity process in the credit risk literature. Therefore,

the process DP is of particular interest in credit risk modeling. However, the intensity as well
as the process DP depends on the underlying probability measure. Therefore, one may wonder
whether there exist changes of probability measure under which the intensity process remains
unchanged. The following theorem answers this question.

Theorem 2.8. Assume that ρ > 0 P-a.s. and that (ρt ) is continuous. If ZP
= N P DP and

ZQ
= N Q DQ denote the Itô–Watanabe decompositions of the Azéma supermartingales of σ

under P and Q, then DP
t = DQ

t a.s. for all t ≥ 0.

Remark 2.9. Intuitively, to affect the intensity of σ via a change of probability measure the
(Gt )-Radon–Nikodym density (ρt ) should involve a stochastic integral with respect to the

discontinuous martingale 1{σ≤t} −
 t∧σ

0
d AP

s
ZP

s
. Indeed, the above theorem shows that a change of

measure via a continuous (Gt )-martingale will not change the intensity process. See also Theorem
6.3 in [8].

In order to prove Theorem 2.8, we need to compute the process

ht = EP ρ1{σ>t}|Ft


= EP ρt1{σ>t}|Ft

.
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This requires the knowledge about the behavior of the process (ρt ) before time σ . Hence, the
following representation result for bounded (Gt )-martingales up to time σ is very helpful. It is an
immediate consequence of Théorème 5.12 and Lemme 5.15 of [17], cf. also Theorem 3.1 in [15].

Theorem 2.10. For any bounded ζ ∈ Gσ there exists a local (P, Ft )-martingale M and a
bounded (Ft )-predictable process K such that

EP(ζ |Gt ) = Mt −

 t

0

d⟨M, ZP
⟩s

ZP
s

−

 t

0

Ks

ZP
s

d AP
s on {σ > t}.

Furthermore, if t → EP(ζ |Gt ) is continuous almost surely (i.e. it does not jump at σ ), then
K ≡ 0.

Proof. To prove the theorem one can do exactly the same computations as in the proof of
Theorem 3.1 in [15] without using any martingale representation property. Since we are only
interested in the behavior before time σ , we do not need the (H′) hypothesis. �

Remark 2.11. The assumption (AC) is not needed to obtain a characterization of any bounded
(Gt )-martingale before time σ , cf. [15]. The above formulation is however sufficient for our
purposes.

We are now ready to prove Theorem 2.8.

Proof of Theorem 2.8. For every n ∈ N set τn := inf{t ≥ 0 : ρt = n}. Then there exists for
every n ∈ N an (Ft )-stopping time νn such that τn ∧ σ = νn ∧ σ , cf. Lemma A.1. Theorem 2.10
applied to ρτn∧σ yields the existence of a local (P, Ft )-martingale Mn such that for all t ≥ 0,

ht∧νn = EP ρt∧νn∧σ1{σ>t∧νn}

Ft∧νn


= EP ρt∧τn∧σ1{σ>t∧νn}

Ft∧νn


= EP


Mn

t∧νn
−

 t∧νn

0

d⟨ZP, Mn
⟩s

ZP
s


1{σ>t∧νn}

Ft∧νn



= EP


Mn

t∧νn
−

 t∧νn

0

d⟨N P, Mn
⟩s

N P
s


1{σ>t∧νn}

Ft∧νn



=


Mn

t∧νn
−

 t∧νn

0

d⟨N P, Mn
⟩s

N P
s


ZP

t∧νn
.

Hence for all t ≥ 0,

ρt∧νn N Q
t∧νn

DQ
t∧νn

= ρt∧νn ZQ
t∧νn

= ht∧νn =


Mn

t∧νn
−

 t∧νn

0

d⟨N P, Mn
⟩s

N P
s


N P

t∧νn
DP

t∧νn
.

Since ρ > 0 almost surely, we have {ZP > 0} = {h > 0} = {ZQ > 0}. Moreover, the process
Mn

t∧νn
−

 t∧νn

0

d⟨N P, Mn
⟩s

N P
s


N P

t∧νn
= Mn

0 N P
0 +

 t∧νn

0
N P

s d Mn
s

+

 t∧νn

0


Mn

s −

 s

0

d⟨N P, Mn
⟩u

N P
u


d N P

s
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is a non-negative local (P, Ft )-martingale. Since

ρt∧νn N Q

t∧νn


is also a non-negative local

(P, Ft )-martingale, the uniqueness of the Itô–Watanabe decomposition yields that
Mn

t∧νn
−

 t∧νn

0

d⟨N P, Mn
⟩s

N P
s


N P

t∧νn
= ρt∧νn N Q

t∧νn
and DP

t∧νn
= DQ

t∧νn

almost surely on {ZP > 0} = {ZQ > 0}. Because τn → ∞, we have

sup
n

(νn ∧ σ) = sup
n

(τn ∧ σ) = σ,

which implies that ν := supn νn ≥ σ almost surely. But then ZP
ν = 0 = ZQ

ν a.s. and therefore

ν ≥ T ZP

0 = T ZQ

0 P-a.s. Because DQ and DP are monotone increasing, the claim follows by

sending n → ∞, noting that DP and DQ are constant after time T ZP

0 = T ZQ

0 . �

The following counterexample shows that the assumption that (ρt ) is continuous cannot be
dropped in Theorem 2.8.

Example 2.12. Let N be a non-negative local martingale starting from N0 = 1 and converging to
zero almost surely and set σ = sup{t > 0 : Nt = N t }. By Doob’s maximal equality, cf. Lemma
2.1 in [23],

P


sup
s>t

Ns > a

Ft


=

Nt

a
∀ a > N t ,

which implies that

ZP
t = P


sup
s>t

Ns > N t

Ft


=

Nt

N t
= 1 +

 t

0

d Ns

N s
− log


N t

.

Therefore, supp(d⟨N ⟩) ⊂ {ZP > 0} and supp(d N ) ⊂ {ZP > 0}. Hence, the uniqueness of the
multiplicative decomposition defined in Theorem 2.6 implies that

N P
= N and DP

=
1

N
.

Now we may take ρ = log

N∞


because EP log


N∞


= N0


∞

1
da
a = 1. Then

ht = EP

 log

N∞


1

sup
s>t

Ns>N t


Ft

 = EP

 log


sup
s>t

Ns


1

sup
s>t

Ns>N t


Ft


= Nt


∞

N t

log(x)

x2 dx =
Nt

N t
(1 + log


N t )


and applying Lemma A.1,

ρt = EP(ρ|Gt ) = 1{σ≤t} log

N t

+ 1{σ>t}

EP  log

N∞


1{σ>t}

Ft


ZP
t

= 1{σ≤t} log

N t

+ 1{σ>t}

N t

Nt
· ht

= 1{σ≤t} log

N t

+ 1{σ>t}


1 + log


N t


= log

N t

+ 1{σ>t}.
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Hence, ρ is a purely discontinuous (P, Gt )-martingale and

ρt = log

N t

+

Nt

N t
.

Therefore,

ZQ
t =

ht

ρt
=

Nt

N t


1 + log


N t
 1

ρt
=

Nt

N t


1 + log


N t


N t

Nt + N t log

N t
 =

Nt + Nt log

N t


Nt + N t log(N t )
.

And since (Nt/ρt ) ∈ Mloc(Q, Ft ), the Itô–Watanabe decomposition of ZQ takes the form

ZQ
t =

Nt

ρt
·

1 + log(N t )

N t
= N Q

t DQ
t

with

DQ
t =

1 + log(N t )

N t
≠

1

N t
= DP

t for t large enough.

3. Locally absolutely continuous change of measure

In this section we slightly change the general setup introduced in Section 2.1. We will
no longer rely on the existence of a random variable ρ ≥ 0 to define Q, but instead we
will only assume the existence of some non-negative (P, Gt )-martingale (ρt ) with expectation
one. As before (ρt ) is the (Ft )-optional projection of (ρt ). Moreover, we will assume that
F = F∞ :=


t≥0 Ft and that (Ω , F , (Gt )t≥0, P) is the natural augmentation of a probability

space satisfying the Parthasarathy condition (P), which can be found in the Appendix.
For every t ≥ 0 we now define a probability measure Qt on Gt via Qt = ρt .P|Gt . This

family of probability measures is consistent and since we assume our probability space to satisfy
condition (P) as well as the natural (but not the usual!) assumptions, Corollary 4.9 of [21] yields
the existence of a measure Q on F = G∞ such that Q|Gt = Qt for all t ≥ 0. Note that Q is
only locally absolutely continuous with respect to P, which we denote by Q ▹ P. We define the
process h in this case by ht := EP(ρt1{σ>t}|Ft ). If Q ≪ P, this definition coincides with the
one in Section 2.1. µ can now be defined as before.

In this setting the following extended version of Theorem 2.1 holds.

Theorem 3.1. Assume that Q ▹ P. If U = (Ut )t≥0 is a local (P, Ft )-martingale, then
the processes X t := 1{σ>t}Vt exp(µF

t ) and Vt∧σ are both local (Q, Gt )-martingales, where
Vt∧σ := Ut∧σ − ⟨U, µ⟩t∧σ .

Proof. Since Q|Gn ≪ P|Gn the claim holds for every U n
t := Ut∧n according to Theorem 2.5.

Especially, all processes are well-defined on


n∈N[0, n] = R+. But every process which is
locally in Mloc(Q, Gt ) is actually a local martingale on the whole time interval. �

The motivation to study locally absolutely continuous changes of measures comes from the
fact that it may allow us to get rid off the random time σ by pushing it to infinity as the following
example demonstrates.

Example 3.2. Consider

ρt =
1{σ>t}

ZP
t

.
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This does indeed define a (Gt )-martingale: for s ≤ t ,

EP

1{σ>t}

ZP
t

Gs


=
1{σ>s}

ZP
s

· EP

1{σ>t}

ZP
t

Fs


=
1{σ>s}

ZP
s

,

where we used Lemma A.1 to compute the conditional expectation. Under the measure Q defined
as above σ is pushed to infinity since

Q(σ ≤ t) = EP ρt1{σ≤t}


= EP

1{σ>t}

ZP
t

1{σ≤t}


= 0 ∀ t ≥ 0.

This is possible because ρt → 0 P-a.s. and therefore Q is not absolutely continuous to P on
F = G∞. Thus, Q puts only positive weight on those events taking place before σ . Moreover, if
Z is a bounded random variable which is Ft -measurable for some t ≥ 0, then

Q(Z ≤ x) = P(Z ≤ x) ∀ x ∈ R,

because ρt ≡ 1 for all t ≥ 0. Therefore, Ft -events do not “feel” the change of measure.
Especially, any (P, Ft )-martingale is also a (Q, Ft )-martingale and by Theorem 3.1 also a
(Q, Gt )-martingale since ht = ρt = 1 for all t ≥ 0 and σ = ∞ Q-a.s.

Note that in the computation of pre-σ -events this measure change has the same impact as
simply projecting down on (Ft ). Indeed, every Gt -measurable random variable is equal to an
Ft -measurable random variable before time σ , and for every Ft ∈ Ft one has

EP Ft1{σ>t}


= EP

1{σ>t}

ZP
t

· Ft ZP
t


= EQ


Ft ZP

t


= EP


Ft ZP

t


.

3.1. A change of measure which is equivalent to the enlargement formula

As before we denote by ZP
= N P DP the Itô–Watanabe decomposition of the Azéma

supermartingale of σ . Under the assumption that N P is a true martingale, we may set

dQ
dP


Gt

= ρt =
1{σ>t}

DP
t

.

One easily checks that this defines a (Gt )-martingale: for s ≤ t ,

EP

1{σ>t}

DP
t

Gs


=
1{σ>s}

ZP
s

· EP

1{σ>t}

DP
t

Fs


=
1{σ>s}

ZP
s

· EP


N P
t

Fs


=
1{σ>s}

DP
s

.

As in Example 3.2 we have Q(σ < ∞) = 0 and hence any local (Q, Ft )-martingale is also a
local (Q, Gt )-martingale. However, now

ht = ρt = N P
t

is non-trivial and therefore the measure change will affect (P, Ft )-martingales according to the
usual Girsanov theorem: given a local (P, Ft )-martingale U , the process

Vt := Ut −

 t

0

d⟨N P, U ⟩s

N P
s

= Ut −

 t

0

d⟨ZP, U ⟩s

ZP
s

, t ≥ 0,

is a local (Q, Gt )-martingale by Theorem 3.1, since Vt = Vσ∧t Q-almost surely for all
t ≥ 0. Therefore, changing the measure in this way has the same effect as an application
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of the enlargement formula under P before time σ . This can be compared to [28], where the
enlargement formula was derived by passing to the so called Föllmer measure associated with
ZP, and to the local solution method for enlargements of filtrations developed in [26].

Also note that in this setup we have for any Ft -measurable random variable Ft ,

EP Ft1{σ>t}


= EQ


Ft DP
t


.

Since DP is decreasing, one can interpret DP
t as a discount factor in the above formula.

Remark 3.3. In [9] the above measure change is applied to the valuation of defaultable securities
via the reduced-form approach. However, in that paper the default time is directly modeled as a
totally inaccessible stopping time without performing a progressive enlargement of filtration.

The following example provides some intuition how the above measure change pushes σ to
infinity.

Example 3.4. Consider the random time

σ = sup


t ≥ 0 : Nt = sup
s≤t

Ns


= sup


t ≥ 0 :

1
Nt

= inf
s≤t

1
Ns


,

where N is supposed to be a non-negative (P, Ft )-martingale with N0 = 1, converging towards
zero almost surely. In this case N P

= N , cf. Example 2.12. If we take (ρt ) as above, the
reciprocal of N becomes a Q-martingale: for s ≤ t ,

EQ


1
Nt

Fs


=

1
ρs

EP


ρt

Nt

Fs


=

1
Ns

.

However, 1/N does not converge to infinity but to zero under Q because Q is singular to P on
F∞. For all ε > 0 we have by dominated convergence as t → ∞,

Q


1
Nt

> ε


= EP Nt1{1/ε>Nt }


→ 0.

Therefore, σ = ∞ Q-a.s.

Remark 3.5. In the above computations we have assumed that N P is a true martingale. If N P

is only a local (P, Ft )-martingale, analogous computations can be done if one defines Q as the
Föllmer measure associated with (ρt ). In this case the random time σ is “replaced” under Q by
the explosion time of (ρt ), which is equal to the (Ft )-stopping time T DP

0 Q-almost surely.

4. Changes of measure for honest times

In this section we focus on a special class of random times called honest times. The setup will
be the same as described at the beginning of Section 2.

Definition 4.1. A random time σ on (Ω , F , (Ft ), P) is called honest if for any t > 0, σ is equal
to an Ft -measurable random variable on {σ < t}.

Remark 4.2. Note that the definition of an honest time does not depend on the probability
measure. It is shown in Proposition (5,1) of [17] that if σ is honest, then there exists an optional



12 D. Kreher / Stochastic Processes and their Applications ( ) –

set Λ such that σ(ω) = sup{t : (t, ω) ∈ Λ} on {σ < ∞}. Since under assumption (C) the
optional and predictable σ -field are equal, we may assume w.l.o.g. that the set Λ is predictable.
Moreover, P(σ = ∞) = 0 due to (A) and therefore σ is the end of a predictable set in our setup.

4.1. Change of measure after an honest time

So far we were only concerned with changes of measure up to an arbitrary random time σ .
Of course, we cannot expect an analogue of Corollary 2.2 to hold after an arbitrary random time
σ , because in general (Ft )-semimartingales are not necessarily (Gt )-semimartingales after time
σ . However, if σ is an honest time, then it is well-known that the semimartingale property is
preserved when passing from (Ft ) to (Gt ), cf. e.g. Théorème (5,10) in [17]. Hence, in this case
one can expect to have an extension of Corollary 2.2 to the whole time horizon. Our goal in this
subsection is to prove this result by similar means as in [20], i.e. without relying on any results
from the theory of enlargements of filtrations.

For the rest of this section we suppose that σ is an honest time. As before we assume that
there exists a non-negative random variable ρ with expectation one and we set Q = ρ.P. We
define the (P, Ft )-submartingale k via

kt = EP(ρ|Ft ) − ht = EP ρ1{σ≤t}|Ft

.

In the following we will use for fixed u ≥ 0 the notation

Mu(P, Ft )

to denote the class of processes which are (P, Ft )-martingales on the interval [u, ∞). Moreover,
for each t ≥ 0 we choose an Ft -measurable random variable σt which satisfies the requirement
of Definition 4.1, i.e. 1{σ<t}σ = 1{σ<t}σt .

Lemma 4.3. Fix u ≥ 0 and let Y be an (Ft )-adapted process such that (1{σt ≤u}kt Yt )t≥u ∈

Mu
loc(P, Ft ). Then Yt1{σ≤u} ∈ Mu

loc(Q, Gt ).

Proof. Because any (Ft )-localizing sequence will also serve as a (Gt )-localizing sequence, we
only need to prove the martingale case. Recalling that σ is an honest time which avoids stopping
times, we have for any bounded test function Fs ∈ Fs, s ≤ t , and u ≤ s ≤ t ,

EQ(Yt1{σ≤u}Fs) = EQ(Yt1{σ≤t}1{σt ≤u}Fs) = EP(Ytρ1{σ≤t}1{σt ≤u}Fs)

= EP(Yt kt1{σt ≤u}Fs) = EP(Ysks1{σs≤u}Fs)

= EP(Ysρ1{σ≤s}1{σs≤u}Fs) = EQ(Ys1{σ≤u}Fs).

Furthermore, if in addition r ≤ s, then one gets

EQ(Yt1{σ≤u}1{σ≤r}Fs) = EQ(Yt1{σ≤u}1{σ≤s}1{σs≤r}Fs) = EQ(Yt1{σ≤u}1{σs≤r}Fs)

= EQ(Ys1{σ≤u}1{σs≤r}Fs) = EQ(Ys1{σ≤u}1{σ≤s}1{σs≤r}Fs)

= EQ(Ys1{σ≤u}1{σ≤r}Fs).

The monotone class theorem allows us to conclude that Yt1{σ≤u} is a Q-martingale with
respect to


Ft ∨ σ(1{σ≤r}; r ≤ t)


t≥u . Because martingales with respect to some filtration

remain martingales with respect to its right-continuous augmentation, we thus conclude that
Yt1{σ≤u} ∈ Mu(Q, Gt ). �
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Remark 4.4. Note that if (Yt )t≥u is a martingale with respect to Q and (Gt )t≥u on the set
{σ ≤ u}, then it is also a martingale on any Gu-measurable subset of {σ ≤ u}. Thus, for example

Yt1{ui ≤σ<u j }


t≥u

∈ Mu(Gt , Q)

for every 0 ≤ ui < u j ≤ u.

Lemma 4.5. Let (Yt ) be a real-valued continuous (Gt )-adapted process such that the process
(1{σ≤u}(Yt∨u − Yu))t≥0 ∈ Mloc(Q, Gt ) for all u > 0. Then (Yt∨σ − Yσ )t≥0 ∈ Mloc(Q, Gt ).

Proof. Let us first assume that Y is bounded. Then by Remark 4.4 for all u > v ≥ 0,
1{v≤σ<u}(Yt∨u − Yu)


t≥0 ∈ M(Q, Gt ).

We approximate σ with the decreasing sequence of (Gt )-stopping times

sn :=

n2n
k=1

k

2n 1{(k−1)2−n≤σ<k2−n} + ∞1{σ≥n},

taking only finitely many values. Then for s ≤ t and Gs ∈ Gs , because Y is assumed to be
bounded and continuous,

EQ (Yt∨σ − Yσ )1Gs


= lim

n→∞
EQ (Yt∨sn − Ysn )1Gs


= lim

n→∞
EQ


n2n
k=1

1{sn=k2−n}(Yt∨(k2−n) − Yk2−n )1Gs



= lim
n→∞

n2n
k=1

EQ

1{(k−1)2−n≤σ<k2−n}(Yt∨(k2−n) − Yk2−n )  
∈M(Q,Gt )

1Gs


= lim

n→∞

n2n
k=1

EQ 1{(k−1)2−n≤σ<k2−n}(Ys∨(k2−n) − Yk2−n )1Gs


= lim

n→∞
EQ


n2n
k=1

1{sn=k2−n}(Ys∨(k2−n) − Yk2−n )1Gs


= lim

n→∞
EQ (Ys∨sn − Ysn )1Gs


= EQ (Ys∨σ − Yσ )1Gs


,

which proves that Yt∨σ − Yσ ∈ M(Q, Gt ). Now the general case follows by localizing Y . �

Theorem 4.6. Let σ be an honest time and suppose that (Ut )t≥0 is local (P, Ft )-martingale.
Then the process

Vt := Ut −

 σ∧t

0

d⟨U, h⟩s

hs
−

 σ∨t

σ

d⟨U, k⟩s

ks

is a local (Q, Gt )-martingale.

Proof. From Theorem 2.5 we already know that (Vt∧σ )t≥0 is a local (Q, Gt )-martingale.
Therefore, it remains to show that Vt∨σ − Vσ ∈ Mloc(Q, Gt ). According to Lemma 4.5 this
holds if for all u > 0,

1{σ≤u}(Vt∨u − Vu) = 1{σ≤u}V
u
t ∈ Mloc(Q, Gt ) ⇔ 1{σ≤u}V

u
t ∈ Mu

loc(Q, Gt ),
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where we have defined for each s ∈ R+ the (Ft )-adapted process

V s
t := Ut∨s − Us −

 t∨s

s

d⟨k, U ⟩u

ku
.

Therefore, an application of Lemma 4.3 will yield the result, if we can show that for all u ≥ 0,

(1{σt ≤u}kt V
u
t )t≥u ∈ Mu

loc(P, Ft ).

First note that for all t ≥ u,

mu
t := 1{σt ≤u}kt = EP(ρ1{σ≤t,σt ≤u}|Ft ) = EP(ρ1{σ≤u∧t}|Ft ) = EP(ρ1{σ≤u}|Ft )

and hence for every fixed u > 0, mu
∈ Mu(P, Ft ). We apply integration by parts for t ≥ u to

get

d(1{σt ≤u}kt V
u
t ) = d(mu

t V u
t ) = V u

t dmu
t + mu

t dV u
t + d⟨mu, V u

⟩t

= V u
t dmu

t + 1{σt ≤u}


kt


dUt −

d⟨k, U ⟩t

kt


+ d⟨k, U ⟩t


= V u

t dmu
t + mu

t dUt ,

which is an element of Mu
loc(P, Ft ) for every u > 0 as required. �

Remark 4.7. In fact a more general version of Theorem 4.6 is known to hold even without
assuming (AC). This can be proven by applying first Girsanov’s theorem and second the
enlargement formula for honest times as it is done in paragraph 81 in [11]. Note however, that
our proof does not make use of the enlargement formula. It only uses Definition 4.1 of an honest
time. Therefore as a byproduct by setting ρ ≡ 1 we do actually recover the enlargement formula
after σ for honest times.

4.2. Relative martingales

Given an honest time σ the process k introduced in the previous subsection is actually a
so called “relative martingale”. Relative martingales were introduced in [6] and are defined as
follows.

Definition 4.8. Let σ be an honest time and (Yt ) an (Ft )-adapted right-continuous process such
that Y∞ := limt→∞ Yt exists P-almost surely and in L1(P). Then (Yt ) is called a relative
martingale associated with σ , if Yt = EP(Y∞1{σ≤t}|Ft ) for all t ≥ 0.

Hence, for an honest time σ the process kt = EP(ρ1{σ≤t}|Ft ) is a relative martingale with
final value k∞ = EP(ρ|F∞). Therefore, the class of relative martingales associated with σ will
provide us with nice non-trivial examples to illustrate Theorem 4.6. The following result from [6]
is very helpful in finding relative martingales.

Lemma 4.9. Let (Yt ) be a continuous non-negative submartingale of class (D) with Doob–
Meyer decomposition Y = M+F, where M ∈ Mloc(P, Ft ) and F is an increasing (Ft )-adapted
process. Assume that M0 = F0 = 0, P(Y∞ = 0) = 0 and that the measure (d Ft ) is carried by
the set {t : Yt = 0}. Then (Yt ) is a relative martingale associated with σ = sup{t ≥ 0 : Yt = 0}.

Using Lemma 4.9 we can now give an example for an application of Theorem 4.6.
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Example 4.10. Let B be a standard (P, Ft )-Brownian motion with L denoting its local time at
level zero. Set σ = sup{σ ≤ 1 : Bt = 0}. The submartingale

|Bt∧1| =

 t∧1

0
sgn(Bu)d Bu + L t∧1

fulfills the assumptions of Lemma 4.9 and is hence a relative martingale associated with σ .
Setting ρ = |B1| we have for t ≤ 1,

kt = |Bt | =

 t

0
sgn(Bu)d Bu + L t

ρt = EP(ρ|Ft ) = EP(|B1| |Ft ) =


∞

−∞

|x + Bt |
√

2π(1 − t)
exp


−

x2

2(1 − t)


dx

= |Bt | ·


2Φ


|Bt |

√
1 − t


− 1


+


2(1 − t)

π
· exp


−

|Bt |
2

2(1 − t)


ht = ρt − kt = 2|Bt | ·


Φ


|Bt |
√

1 − t


− 1


+


2(1 − t)

π
· exp


−

|Bt |
2

2(1 − t)


dht = 2


Φ


|Bt |
√

1 − t


− 1


sgn(Bt )d Bt + finite variation part.

Thus according to Theorem 4.6 the process

Wt := Bt −

 t∧σ

0

sgn(Bs)

Φ


|Bs |√
1−s


− 1


ds

|Bs | ·


Φ


|Bs |√
1−s


− 1


+


1−s
2π

· exp

−

|Bs |2

2(1−s)

 +

 t∧1

t∧σ

ds

Bs

is a (Q, Gt )-Brownian motion.

4.3. An example related to the specific structure of the Azéma supermartingale of an honest time

It follows from a result of Azéma (cf. the Théorème on page 300 in [4]) that for an honest time
σ the dual predictable projection AP of the process


1{σ≤t}


t≥0 satisfies under the assumptions

(AC),

supp


d AP


⊂


ZP

= 1


.

This property was used in [23] to derive the general structure of the Azéma supermartingale
associated with an honest time under (AC), cf. Theorem 4.1 in [23]:

Lemma 4.11. For an honest time σ there exists a non-negative local (P, Ft )-martingale (Nt )t≥0
with N0 = 1 and Nt → 0 P-a.s. such that

ZP
t = P(σ > t |Ft ) =

Nt

N t
.

Therefore, by the same reasoning as in Example 2.12, the Itô–Watanabe decomposition of ZP

is given by

ZP
t = N P

t DP
t with N P

t = Nt and DP
t =

1

N t
=

1

N
P
t

, t ≥ 0.
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Lemma 4.12. Let σ be an honest time and denote by ZP
t = N P

t /N
P
t the multiplicative

decomposition of ZP
t = P(σ > t |Ft ) given in Lemma 4.11. Then AP

σ = AP
∞ and for all t, x ≥ 0,

P


AP
σ ∈ dx

Ft


= N P

t e−x dx on the set {x > AP
t }.

Proof. From Lemma 2.1 in [23] we know that for x > 0,

P


sup
s≥t

N P
s > x

Ft


=


N P

t

x


∧ 1.

Moreover, it follows from Lemma 4.11 and Itô’s product formula that AP
t = log


N

P
t


, which

implies that

EP


AP
σ


= EP


∞

0
AP

u d AP
u


=

1
2

· EP


AP
∞

2
=

1
2

· EP


log


N
P
∞

2

=
1
2


∞

0
P


log


N
P
∞

2
> x


dx =

1
2


∞

0
e−

√
x dx = 1 = EP


AP

∞


.

Hence, since A is non-decreasing, we must have AP
σ = AP

∞ a.s. Therefore,

P


AP
σ > x

Ft


= P


AP

∞ > x
Ft


= P


N

P
∞ > ex

Ft


= 1

{N
P
t >ex }

+ 1
{N

P
t ≤ex }

N P
t e−x . �

Lemma 4.12 allows us to provide an example of an interesting class of measure changes,
which – even though they may have different effects on a given (Ft )-local martingale U in the
filtration (Ft )- yield the same (Gt )-semimartingale decomposition of U up to time σ :

Example 4.13. Suppose that σ is an honest time and let f : R+ → R+ be any measurable
function such that


∞

0 f (x)e−x dx = 1. Then by Lemma 4.12,

ht = EP


f


AP
σ


1{σ>t}

Ft


= EP


∞

t
f


AP
u


d AP

u

Ft



= EP

 AP
∞

AP
t

f (x)dx

Ft



= EP

 AP
σ

AP
t

f (x)dx

Ft


= N P

t


∞

AP
t

 y

AP
t

f (x)dx e−ydy

= N P
t


∞

AP
t


∞

x
e−ydy f (x)dx

= N P
t


∞

AP
t

f (x)e−x dx,

dht =


∞

AP
t

f (x)e−x dx d N P
t − N P

t f


AP
t


e−AP

t d AP
t ,
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dµt =
dht

ht
=

d N P
t

N P
t

−
f


AP
t


e−AP

t d AP
t

∞

AP
t

f (x)e−x dx
=

d ZP
t

ZP
t

+ d log


∞

AP
t

f (x)e−x dx


,

kt = EP


f


AP
σ


1{σ≤t}

Ft


= EP


f


AP
t


1{σ≤t}

Ft


= f


AP

t

 
1 − ZP

t


,

dkt = − f


AP
t


d ZP

t +


1 − ZP

t


d


f


AP
t


= − f


AP

t


d ZP

t .

Applying Theorem 4.6 we see that given a continuous local (P, Ft )-martingale U the
process

Vt∧σ := Ut∧σ −

 t∧σ

0

d⟨ZP, U ⟩s

ZP
s

+

 σ∨t

σ

d⟨ZP, U ⟩s

1 − ZP
s

, t ≥ 0,

is a local (Q, Gt )-martingale for all measures Q defined as above and associated with a function
f satisfying


∞

0 f (x)e−x dx = 1. We thus note that the semimartingale decomposition of U in
the filtration (Gt ) does not depend on f . However, note that the (Ft )-Radon–Nikodym density
of Q with respect to P does depend on f :

ρt = ht + EP


f


AP
σ


1{σ≤t}

Ft


= N P

t


∞

AP
t

f (x)e−x dx + f


AP
t

 
1 − ZP

t


.

5. Changes of measure up to pseudo-stopping times

In this section we focus on a special class of random times called pseudo-stopping times,
which were introduced in [22].

Definition 5.1. A positive random variable σ : (Ω , F ) → (R+, B(R+)) is called a (P, Ft )-
pseudo-stopping time if EP Mσ = EP M0 for every uniformly integrable (P, Ft )-martingale
M .

In [22] it is shown that pseudo-stopping times can be characterized in many different
ways:

Theorem 5.2. The following are equivalent:

(1) σ is a (P, Ft )-pseudo stopping time.
(2) AP

∞ ≡ 1 almost surely.
(3) AP

σ ∼ U [0, 1].
(4) For any local (P, Ft )-martingale M = (Mt )t≥0, the process (Mt∧σ )t≥0 is a local (P, Gt )-

martingale.
(5) ZP

= 1 − AP is a decreasing (Ft )-predictable process.

Proof. The equivalence between (1), (2), (4) and (5) is shown in Theorem 1 of [22], while
the implication (1)⇒(3) is a direct consequence of Proposition 2 of [22]. Finally, the relation
(2) ⇔ (3) follows from the general relation between the Laplace transforms of AP

σ and AP
∞:

Indeed, since (AP
t ) is the dual predictable projection of (1{σ≤t}), we have

λ · EP


e−λAP
σ


= λ · EP


∞

0
e−λAP

u d AP
u


= 1 − EP


e−λAP

∞


, λ > 0. �
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5.1. First results

We immediately derive the following lemma.

Lemma 5.3. Let σ be a (P, Ft )-pseudo-stopping time and suppose that ρ = Mσ , where M is a
strictly positive uniformly integrable (P, Ft )-martingale starting from M0 = 1. Then

Vt∧σ = Ut∧σ −

 t∧σ

0

d⟨M, U ⟩s

Ms

is a local (Q, Gt )-martingale.

Proof. By the pseudo-stopping time property, EP Mσ = EP M0 = 1. Thus, ρ is well-defined.
Moreover due to part (4) of Theorem 5.2, given any local (Ft )-martingale U the process (Ut∧σ )

is a local (Gt )-martingale. Especially, (Mt∧σ ) is a local (Gt )-martingale closed by Mσ and hence
a uniformly integrable (Gt )-martingale. Therefore the usual Girsanov applied in the enlarged
filtration implies that

Vt∧σ = Ut∧σ −

 t∧σ

0

d⟨M, U ⟩s

Ms

is a local (Q, Gt )-martingale. �

Remark 5.4. Alternatively, Lemma 5.3 can also be proven by applying Corollary 2.2 with

ht = EP Mσ1{σ>t}|Ft


= EP Mσ∧t1{σ>t}|Ft


= Mt · P(σ > t |Ft ) = Mt (1 − AP
t ).

Note that we cannot choose ρ = M∞ instead of ρ = Mσ in Lemma 5.3 because in general
EP(M∞|Gσ ) ≠ Mσ unless σ is a stopping time. Also, generally ρt ≠ Mt , i.e. M is not the
Radon–Nikodym density of Q with respect to P in the filtration (Ft ).

The next example generalizes Example 2 in [20] and provides us with a class of non-trivial
measure changes up to a pseudo-stopping time σ which do not affect (Ft )-martingales.

Example 5.5. Let σ be a (P, Ft )-pseudo-stopping time and let f : R+ → R+ be any measurable
function satisfying

 1
0 f (x)dx = 1. We choose ρ = f


AP

σ


. Then

ht = EP


f


AP
σ


1{σ>t}|Ft


= EP


∞

t
f


AP
u


d AP

u

Ft


=

 1

AP
t

f (x)dx,

dht = − f


AP
t


d AP

t ,

dµt =
dht

ht
=

− f


AP
t


d AP

t 1
AP

t
f (y)dy

= −dµF
t .

By Corollary 2.2, for every continuous local (P, Ft )-martingale U the process (Ut∧σ )t≥0 is a
local (Q, Gt )-martingale because ⟨U, µ⟩t∧σ = −⟨U, µF

⟩t∧σ = 0 for all t ≥ 0. Note that this
particular choice of ρ does not have any effect on continuous (Ft )-martingales until time σ :
(Ut∧σ ) is a local (Q, Gt )-martingale for any choice of f satisfying

 1
0 f (x)dx = 1.

As opposed to honest times, the definition of a P-pseudo-stopping time depends on the
underlying probability measure. The following example shows that the pseudo-stopping time
property may indeed get lost under an equivalent change of probability measure.
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Example 5.6. Let σ be an F∞-measurable (P, Ft )-pseudo-stopping time and define the random
variable ρ = 2ZP

σ ∈ F∞. Since ZP
σ ∼ U [0, 1] by Theorem 5.2, the measure Q = ρ.P is

well-defined and equivalent to P. We have

ρt = 2EP


ZP
σ

Gt


= 21{σ≤t}ZP

σ + 21{σ>t}
EP ZP

σ1{σ>t}|Ft


ZP
t

= 21{σ≤t}ZP
σ + 21{σ>t}

EP ∞

t


1 − AP

u


d AP

u

Ft


ZP
t

= 21{σ≤t}ZP
σ + 1{σ>t}


1 − AP

t

2
ZP

t

= ZP
t∧σ + 1{σ≤t}ZP

σ ,

which jumps at time σ . Moreover,

ht = EP ρt1{σ>t}|Ft


= ZP
t · EP 1{σ>t}|Ft


=


ZP

t

2
.

Since ρ = EP(ρ|F∞) = ρ∞ ≠ 1 almost surely, the continuous uniformly integrable martingale
(ρt ) is not identical to one. Therefore, having in mind that ZP is of finite variation,

ZQ
t =

ht

ρt
=


ZP

t

2
ρt

cannot be of finite variation, which implies that σ is not a Q-pseudo-stopping time.

However, the pseudo-stopping time property of σ is in many cases very desirable, since local
martingales remain local martingales in the progressively enlarged filtration until time σ and
therefore semimartingale decompositions do not change. Hence, it is an interesting mathematical
question whether there exist equivalent changes of probability measures which preserve the
pseudo-stopping time property.

The following example of such a measure change is taken from the credit risk literature and
is known as the so called Cox construction.

Example 5.7. Assume that there exists a random variable U which is independent of F∞ such
that P(U > t) = exp(−t) for all t ≥ 0. Let (Λt ) be an (Ft )-adapted continuous increasing
process with Λ∞ = ∞ a.s. and define

σ := inf{t ≥ 0 : Λt ≥ U }.

Then σ is a P-pseudo-stopping time because

ZP
t = P(σ > t |Ft ) = P(Λt < U |Ft ) = exp(−Λt ).

Let ρ ∈ F∞ be a strictly positive random variable with EPρ = 1, defining the equivalent measure
Q := ρ.P. Then

ZQ
t =

ht

ρt
=

EP(EP(ρ1{σ>t}|F∞)|Ft )

ρt
=

EP(ρ · P(Λt < U |F∞)|Ft )

ρt

=
EP(ρ exp(−Λt )|Ft )

ρt
= exp(−Λt ).

Hence, σ is a P- and Q-pseudo-stopping time. Moreover, ZQ
= ZP almost surely. In fact, one

can show that in this case the filtration (Ft ) is immersed in the larger filtration (Gt ). In a financial
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setting, if we assume that the stock price is an (Ft )-adapted process, then any equivalent local
martingale measure (cf. Definition 7.4 below) can indeed be identified with some ρ ∈ F∞ and
will hence remain an equivalent martingale measure in the enlarged filtration if σ is constructed
as above.

Characterizing for an arbitrary P-pseudo stopping time the class of measures changes that
preserve the pseudo-stopping time is a quite challenging and unsolved problem, which is beyond
the scope of this paper. However, in the next subsection we will approach this problem for a
certain subclass of pseudo-stopping times and construct a non-trivial class of measure changes
that have the desired property.

5.2. A special class of pseudo-stopping times

In section 3.2 of [22] the authors provide a systematic construction of pseudo-stopping times
under the assumptions (AC):

Lemma 5.8. Let L be an honest time with associated Azéma supermartingale Z L under P. Then

σ := sup


t < L : Z L
t = Z L

L


= sup


t < L : Z L

t = Z L
t


is a P-pseudo-stopping time and its Azéma supermartingale is given by

Zσ
t := P(σ > t |Ft ) = Z L

t , t ≥ 0.

In this chapter we will only consider pseudo-stopping times which are constructed via
Lemma 5.8. The advantage of this is that we have more specific knowledge about the structure
of the associated Azéma supermartingale. Let us look at an example.

Example 5.9. We suppose that the filtered probability space (Ω , F , (Ft ), P) satisfies the
Parthasarathy condition (P), cf. Appendix A.2, and that there exists a (P, Ft )-Brownian motion
B on it. Let us define for all a ∈ R and s ≥ 0 the stopping time

τ a
s := inf{t > s : Bt = a}

as well as the random times

L := sup{t < τ 1
0 : Bt = 0}, σ := sup{t < L : Bt = Bt } = sup{t < L : BL = Bt }.

Then

ZP,L
t := P(L > t |Ft ) = 1 − B+

t∧τ 1
0
,

cf. VI.7.12 in [25], which implies that σ is a (P, Ft )-pseudo-stopping time, cf. Lemma 5.8.
Indeed, this is the original example of a pseudo-stopping time provided by D. Williams, cf. [27].
Let b : R → R be a bounded function and set

ρt = E
 t

0
b(Bs)d Bs


.

By Novikov’s criterion (ρt )t≥0 is a positive (P, Ft )-martingale which defines – due to condition
(P) – a measure Q on F∞ such that

dQ
dP


Ft

= ρt , ∀ t ≥ 0.
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Note that in general Q is only locally equivalent to P, i.e. it may be singular to P on F∞. By
Girsanov’s theorem the process

Wt := Bt −

 t

0
b(Bs)ds

is a Q-Brownian motion and B is an Itô-diffusion. We denote its Q-scale function by s(·). Using
the Markov property of B we compute the Q-Azéma supermartingale of L as

Z L ,Q
t := Q(L > t |Ft ) = 1

{τ 1
0 >t}Q


τ 1

t > τ 0
t |Ft


=

s(1) − s


Bt∧τ 1
0


s(1) − s(0)

∧ 1. (3)

Since s is a strictly increasing function,

σ = sup{t < L : BL = Bt } = sup

t < L : s


BL


= s(Bt )


= sup


t < L : Z L ,Q
L = Z L ,Q

t


.

According to Lemma 5.8, σ is thus also a Q-pseudo-stopping time.

In the above example the measure change is chosen such that the Azéma supermartingale of
the honest time L under Q is a monotone transformation of the Azéma supermartingale of L
under P, cf. Eq. (3). This ensures that they both attain their infimum at the same time. Hence, the
P-pseudo stopping time associated with L via Lemma 5.8 is identical to the Q-pseudo stopping
time associated with L via Lemma 5.8. However, the construction is tailor-made for this specific
example dealing with homogeneous diffusions and cannot easily be generalized.

The following theorem provides a class of measure changes which preserve the pseudo-
stopping time property of a P-pseudo-stopping time constructed via Lemma 5.8. The idea is
again that under the new measure Q the Azéma supermartingale of the underlying honest time L
should be a monotone transformation of the Azéma supermartingale of L under the measure P.

Theorem 5.10. Let L be an honest time with Azéma supermartingale ZP,L
t := P(L > t |Ft ) and

define the P-pseudo-stopping time

σ := sup


t < L : ZP,L
t = ZP,L

L


.

Moreover, let g : [0, 1] → R be a Lebesgue-integrable function which satisfies 1

0
exp

 1

z
g(y)dy


dz = 1.

We may write ZP,L
t = N P

t /N
P
t for some non-negative local P-martingale N P with N P

0 = 1,
converging to zero almost surely. If the process

ρt := E
 t

0
g


N P

s

N
P
s


d N P

s

2N
P
s



is a uniformly integrable (P, Ft )-martingale, then σ is also a Q-pseudo-stopping time with
respect to the measure Q := ρ∞.P.
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Proof. We set Q = ρ∞.P and define

Mt := h


N P

t

N
P
t


· N

P
t , t ≥ 0,

where h : [0, 1] → R+ is the function

h(x) =

 x

0
exp

 1

z
g(y)dy


dz.

Note that h satisfies

g(x)h′(x) + h′′(x) = 0, h(1) = h′(1) = 1, h(0) = 0.

This implies that M is a local (Q, Ft )-martingale. Indeed, by Girsanov’s theorem

Nt := N P
t −

 t

0
g


N P

s

N
P
s


d

N P

s

2N
P
s

is a local (Q, Ft )-martingale and

d Mt = h


N P

t

N
P
t


d N

P
t + N

P
t h′


N P

t

N
P
t


d N P

t

N
P
t

−
d N

P
t

N
P
t


+

1
2

h′′


N P

t

N
P
t


d

N P

t

N
P
t

= [h(1) − h′(1)]d N
P
t + h′


N P

t

N
P
t


dNt = h′


N P

t

N
P
t


dNt ,

because supp


d N
P


⊂


N P

= N
P


. Furthermore, h is strictly increasing with h(1) = 1.

Therefore, N
P

= M and

L = sup


t > 0 : N P
t = N

P
t


= sup


t > 0 : Mt = M t


.

Since Mt → 0 almost surely,

ZQ,L
t := Q(L > t |Ft ) =

Mt

M t
= h


N P

t

N
P
t


N

P
t

M t
= h


N P

t

N
P
t


= h


ZP,L

t


.

But then

σ = sup


t < L : ZP,L
t = ZP,L

L


= sup


t < L : ZQ,L

t = ZQ,L
L


and σ is a Q-pseudo stopping time by Lemma 5.8. �

We now give an example of a function g which fulfills the integrability condition required in
Theorem 5.10.

Example 5.11. Consider g(x) = x − c, where c > 0 is chosen such that 1

0
exp


1 − z2

2
− c(1 − z)


dz = 1.
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Using product integration, t

0

N P
s

N
P
s

2 d N P
s =


N P

t

N
P
t

2

− 1 −

 t

0
N P

s

 d N P
s

N
P
s

2 −
2N P

s
N

P
s

3 d N
P
s


−

 t

0

d

N P

s
N

P
s

2 ≤ −

 t

0

N P
s

N
P
s

2 d N P
s + 2

 t

0

d N
P
s

N
P
s

⇔

 t

0

N P
s

N
P
s

2 d N P
s ≤ log


N

P
t


,

X t :=

 t

0

d N P
s

N
P
s

=
N P

t

N
P
t

− 1 +

 t

0

N P
s d N

P
s

N
P
s

2

=
N P

t

N
P
t

− 1 + log


N
P
t


≥ −1,

Yt :=

 t

0
g


N P

s

N
P
s


d N P

s

N
P
s

=

 t

0

N P
s d N P

s
N

P
s

2

− c
 t

0

d N P
s

N
P
s

≤ c + log


N
P
t


≤ c + log


N

P
∞


.

First note that X = (X t ) is a uniformly integrable martingale bounded from below, since

EP X∞ = 0 − 1 + EP log


N
P
∞


= 0 − 1 + 1 = 0,

where we have used the fact that log


N
P
∞


∼ Exp(1), cf. Lemma 4.12. Moreover,

sup
t≥0

EP X2
t ≤ EP


1 + log


N

P
∞

2
=


∞

0
(1 + x)2e−x dx = 5.

Therefore X is square-integrable and

EP
⟨Y ⟩∞ = EP


∞

0
g2


N P

t

N
P
t


d⟨X⟩t ≤ (1 + c)2

· EP
⟨X⟩∞ < ∞.

By the Burkholder–Davis–Gundy inequality thus EP supt≥0 |Yt | < ∞ and the dominated
convergence theorem yields the martingality of Y = (Yt ). Moreover for all t ≥ 0,

EP exp


Yt

2


≤ ec/2

· EP exp

 log


N
P
∞


2

 = ec/2
· EP


N

P
∞ = ec/2

·

 1

0

dx
√

x
= 2ec/2.

Hence, by Jensen’s inequality (exp(Yt/2))t≥0 is a uniformly integrable submartingale and
Kazamaki’s criterion implies the uniform integrability of (ρt ).
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6. Generalization of Example 1 from [20]

In this section we come back to [20], which was the starting point of this paper. The goal
is to generalize Example 1 of [20], which is related to the path decomposition of the Brownian
motion. Since in that example σ is an honest time, we are able to extend the measure change
beyond time σ using Theorem 4.6. Moreover, in [20] the authors do a Markovian study of their
example. However, as it turns out their example is related to the construction in Lemma 5.8,
which allows us to look at it from a different angle and to extend it to general honest times. The
construction is as follows:

Let σ be an honest time. In this subsection its Azéma supermartingale with respect to P will
be denoted by Zσ

t = P(σ > t |Ft ) with Doob–Meyer decomposition Zσ
t = mσ

t − Aσ
t . Then by

Lemma 5.8,

π = sup

t < σ : Zσ

t = Zσ
σ


is a P-pseudo-stopping time and Zπ

t := P(π > t |Ft ) = infu≤t Zσ
u = Zσ

t =: 1− Aπ
t for all t ≥ 0.

From Theorem 5.2 we know that Aπ
π is uniformly distributed and we may define ρ := f


Aπ

π


for some f ∈ C 1

[0, 1], f > 0, with
 1

0 f (x)dx = 1. Then EPρ = 1 and we have

ht = E

ρ1{σ>t}|Ft


= E


f (Aπ

π )1{σ>t}|Ft


= E


f (Aπ
π )1{σ>t≥π}|Ft


+ E


f (Aπ

π )1{π>t}|Ft

.

The second term on the RHS has already been computed in Example 5.5 as

E


f (Aπ
π )1{π>t}|Ft


=

 1

Aπ
t

f (x)dx .

Concerning the first term we have

P(σ > t ≥ π | Ft ) = P(σ > t |Ft ) − P(π > t |Ft ) = Zσ
t − Zπ

t

and

E


f (Aπ
π )1{σ>t≥π}|Ft


= E


f (1 − Zσ

π )1{σ>t≥π}|Ft


= E


f (1 − Zσ
t )1{σ>t≥π}|Ft


= f (1 − Zσ

t ) · (Zσ
t − Zπ

t ) = f (Aπ
t ) · (Zσ

t − Zπ
t ).

Hence,

ht =

 1

Aπ
t

f (x)dx + f (Aπ
t )(Zσ

t − Zπ
t )

dht = − f (Aπ
t )d Aπ

t + f ′(Aπ
t )(Zσ

t − Zπ
t )d Aπ

t + f (Aπ
t )(d Zσ

t − d Zπ
t ).

Since 1 − Aπ
t = Zπ

t = Zσ
t , we have supp(d Aπ

t ) ⊂ {Zπ
t = Zσ

t }, which implies that

dht = f (Aπ
t )(d Zσ

t − d Zπ
t − d Aπ

t ) = f (Aπ
t )d Zσ

t .

Therefore,

dµt =
dht

ht
=

f (Aπ
t )d Zσ

t 1
Aπ

t
f (x)dx + f (Aπ

t )(Zσ
t − Zπ

t )
, dµF

t =
f (Aπ

t )d Aσ
t 1

Aπ
t

f (x)dx + f (Aπ
t )Aπ

t

,

where we used that supp(d Aσ
t ) ⊂ {Zσ

t = 1}, cf. Lemma 4.12.
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Since σ is honest, there exists for all t > 0 an Ft -measurable random variable σt such
that σ = σt on {σ < t}. In fact we may choose σt = sup{u ≤ t : Zσ

u = 1} because
σ = sup{u ≥ 0 : Zσ

u = 1} according to Lemme (5,2) of [17]. Since

Aπ
π = 1 − Zπ

π = 1 − Zσ
π = 1 − Zσ

σ = 1 − Zπ
σ = Aπ

σ ,

this implies that

kt = EP  f


Aπ
π


1{σ≤t}|Ft


= EP  f


Aπ

σ


1{σ≤t}|Ft


= f


Aπ

σt


(1 − Zσ

t )

dkt = − f


Aπ
σt


d Zσ

t + 1{σt =t}(1 − Zσ
t )d f (Aπ

t ) = − f


Aπ
σt


d Zσ

t .

Therefore, on {σ ≤ t} we have kt = f (Aπ
σ )(1 − Zσ

t ). We may now apply Theorem 4.6 to
conclude that for any local (P, Ft )-martingale U the process

Vt = Ut −

 t∧σ

0

f (Aπ
s )d⟨mσ , U ⟩s 1

Aπ
s

f (x)dx + f (Aπ
s )(Zσ

s − Zπ
s )

+

 σ∨t

σ

d⟨mσ , U ⟩s

1 − Zσ
s

is a local (Q, Gt )-martingale. The result is not surprising, of course, since ρ = Aπ
π = Aπ

σ ∈ Gσ .
Therefore the measure change has no effect after σ and we do indeed recover the usual term
from the enlargement formula under P on the interval [σ ∧ t, t], which can for example be found
in [17], Théorème (5,10).

Let us briefly recall Example 1 from [20] to see how it fits in the above framework.

Example 6.1. For a standard Brownian motion B one defines the random times

σ = sup{t < T B
1 : Bt = 0}, π = sup{t < σ : Bt = Bt },

i.e. σ is the time of the last zero of B before it first hits one, and π is the last time at which
B reaches its supremum before σ . From Example 5.9 we know that σ is an honest time with
Zσ

t = P(σ > t |Ft ) = 1−B+

t∧T B
1

and that π is a pseudo-stopping time constructed via Lemma 5.8

with Zπ
t = 1 − Bt∧T B

1
. In this case Aπ

π = Bσ and the above calculations combined with Lévy’s
theorem show that the process

Wt := Bt +

 t∧σ

0

1{Bt >0} f (Bt )dt 1
Bt

f (y)dy + f (Bt )(Bt − B+
t )

−

 t∧T B
1

σ

dt

Bt

is a (Q, Gt )-Brownian motion on the interval

0, T B

1


. Especially, if we choose ρ ≡ 1 we recover

the well-known path decomposition result of the standard Brownian motion due to Williams.

7. No arbitrage up to a random time

In this section we fix a filtered probability space

Ω , F , (Ft )t≥0, P


satisfying assumption

(C), on which we model a financial market consisting of a riskfree bond and a risky stock (St ),
which is assumed to be a continuous (Ft )-semimartingale. For simplicity, we assume that the
interest rate is equal to zero and that F = F∞ :=


t≥0 Ft .

For the reader’s convenience we first repeat some notions commonly used in finance: An a-
admissible trading strategy is any (Ft )-predictable process (θt ) which is (St )-integrable such that
the value process

V (x, θ)t := x +

 t

0
θsd Ss
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satisfies V (0, θ)t ≥ −a P-almost surely for all t ≥ 0 and the limit limt→∞ V (0, θ)t exists a.s.
A process (θt ) is called an admissible trading strategy if it is an a-admissible trading strategy for
some a ∈ R+. The notion of admissibility allows us to define two different no arbitrage concepts.

Definition 7.1. In the market model (St , Ft , P) there is

• an Arbitrage of the First Kind if and only if there exists a non-negative F -measurable random
variable ξ with P(ξ > 0) > 0 such that for all a > 0 there exists an a-admissible trading
strategy θ such that V (a, θ)∞ ≥ ξ almost surely. If there is no arbitrage of the first kind, we
say that the market satisfies the NA1 (No Arbitrage of the First Kind) condition.

• a Free Lunch with Vanishing Risk (FLVR) if and only if there exists an ε > 0 and
a sequence (θn) of (Ft )-admissible strategies together with an increasing sequence (δn)

of positive numbers converging to one such that P(V (0, θn)∞ > −1 + δn) = 1 and
P(V (0, θn)∞ > ε) ≥ ε. Otherwise we say that the market satisfies the NFLVR (No Free
Lunch with Vanishing Risk) condition.

Throughout this section we will suppose that the market model (St , Ft , P) satisfies
NFLVR. A natural question is now, if the market is still arbitrage free after adding new
information by enlarging the filtration progressively with a random time σ . We will again suppose
that σ avoids (Ft )-stopping times, i.e. assumption (A) is satisfied.

It was shown in [19] that NA1 fails, if S is not a semimartingale. Moreover, according to
Theorem 7.2 in [10] there exists a free lunch with vanishing risk using only simple trading
strategies, if S is not a semimartingale. Since in general under a progressive enlargement of
filtration S only remains a semimartingale until time σ , we will in the following restrict ourselves
to the question whether the market (St∧σ , Gt∧σ , P) is arbitrage-free. In the case where σ is an
honest time this question has been discussed in detail by [13]. Note also that the question of
the existence of an equivalent local martingale measure on the whole time horizon [0, ∞) has
previously been addressed in [8], where its connection to the so called (H)-hypothesis has been
pointed out.

7.1. NFLVR on [0, σ ∧ T ]

The following theorem gives a necessary criterion to have NFLVR on the time horizon
[0, T ∧σ ], where T is an (Ft )-stopping time. In the case of σ being an honest time the following
statement can be found in [13] together with a long technical proof. However, we will give an
apparently new proof of the statement, valid for all random times that avoid stopping times,
which appeals to purely intuitive reasoning. For this we work directly with the above definition
of NFLVR.

Theorem 7.2. Let T be an (Ft )-stopping time. If P


T ZP

0 ≤ T


= 0, then NFLVR also holds in

the enlarged financial market on the time horizon [0, σ ∧ T ].

The idea of the proof is that even at time T we cannot be sure that σ has already occurred

because P


T ZP

0 ≤ T


= 0.

Proof. First note that

P


T ZP

0 ≤ T


= 0 ⇔ ZP
T > 0 P-a.s.



D. Kreher / Stochastic Processes and their Applications ( ) – 27

We proceed by contradiction: Assume that there is a FLVR in the enlarged market on the time
horizon [0, σ ∧ T ]. Then there exists a sequence of (Gt )-admissible trading strategies (θn)n∈N
and an increasing deterministic sequence (δn) converging towards 1 such that for some ε > 0
and all n ∈ N,

P

V (0, θn)σ∧T > −1 + δn


= 1, P


V (0, θn)σ∧T > ε


≥ ε.

Using Lemma A.1 of the Appendix we can find for every n ∈ N an (Ft )-predictable process (yn
t )

such that θn and yn agree almost surely up to time σ , i.e.

θn
t 1{t≤σ } = yn

t 1{t≤σ } ∀ t ≥ 0.

First, we will show that each yn is S-integrable up to time T . For this let us denote by
S = S0 + M + B the (Ft )-semimartingale decomposition of S, where M ∈ Mloc(Ft ) and
B is of finite variation. By the enlargement formula (1) there exists a local (Gt )-martingale M
such that

Mt∧σ = Mt +

 t∧σ

0

d⟨M, mP
⟩u

ZP
u

, t ≥ 0.

Hence, the (Gt )-semimartingale decomposition of S up to time σ is given by

St∧σ = S0 + Mt + Bt∧σ with Bt := Bt +

 t∧σ

0

d⟨M, mP
⟩u

ZP
u

.

Because S, M , and M are continuous and hence also B and B are continuous, the quadratic
variation processes of S, M , and M are almost surely equal and do not depend on the filtration.
Since θn is admissible, it is S-integrable on [0, σ ∧ T ] and we have

 σ∧T
0 (θn

u )2d⟨S⟩u < ∞ as

well as
 σ∧T

0 |θn
u | |dBu | < ∞ almost surely. Moreover by the Kunita–Watanabe inequality, σ∧T

0
|θn

u |
|d⟨M, mP

⟩u |

ZP
u

≤

 σ∧T

0
(θn

u )2d⟨S⟩u

1/2  σ∧T

0

d⟨mP
⟩u

ZP
u

1/2

< ∞ a.s.,

because mP is a uniformly integrable martingale and T ZP

0 > σ almost surely, cf. Lemme (4,3)

of [17]. Hence, also
 σ∧T

0 |θn
u | |d Bu | < ∞ almost surely. Now observe that

0 = P
 σ∧T

0
|θn

u | |d Bu | = ∞


= P

 σ∧T

0
|yn

u | |d Bu | = ∞


≥ P


σ > T ;

 T

0
|yn

u | |d Bu | = ∞


= EP


ZP

T1 T
0 |yn

u | |d Bu |=∞


and similarly

0 = P
 σ∧T

0


θn

u

2 d⟨S⟩u = ∞


= P

 σ∧T

0


yn

u

2 d⟨S⟩u = ∞


≥ P


σ > T ;

 T

0


yn

u

2 d⟨S⟩u = ∞


= EP


ZP

T1 T
0 (yn

u )2d⟨S⟩u=∞

 .

Since ZP
T > 0 a.s. we conclude that

 T
0 |yn

u | |d Bu | < ∞ and
 T

0 (yn
u )2d⟨S⟩u < ∞ almost surely,

i.e. yn is S-integrable up to time T .
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Furthermore, since θn is admissible there exists an ∈ R+ such that for all t ≥ 0,

P(V (0, θn)σ∧t∧T > −an) = 1.

We will prove that also

P(V (0, yn)t∧T > −an) = 1 ∀ t ≥ 0.

Assume that this was not the case, i.e. there exists t ≥ 0 with

P(V (0, yn)t∧T ≤ −an) > 0.

Since ZP
T > 0 almost surely, this would imply that

0 < EP

1{V (0,yn)t∧T ≤−an}ZP

T


= P(V (0, yn)T ∧t ≤ −an; σ > T )

= P(V (0, θn)σ∧t∧T ≤ −an; σ > T )

≤ P(V (0, θn)σ∧t∧T ≤ −an) = 0,

a contradiction. Thus, each yn is an admissible strategy for the (St , Ft , P) market. Moreover, by
the same reasoning as above one can show that

P(V (0, yn)T > −1 + δn) = 1.

For every n ∈ N we define the (Ft )-trading strategy

ϑn
t := yn

t 1{0≤t≤T n
ε },

where

T n
ε := inf{t ≥ 0 : V (0, yn)t = ε}.

Clearly, ϑn is admissible as well and

P(V (0, ϑn)T > −1 + δn) ≥ P(V (0, yn)T > −1 + δn) = 1.

Moreover,

P


V (0, ϑn)T >
ε

2


≥ P


T n

ε ≤ T


= P

∃ u ≤ T : V (0, yn)u ≥ ε


≥ P


∃ u ≤ σ ∧ T : V (0, yn)u ≥ ε


= P


∃ u ≤ σ ∧ T : V (0, θn)u ≥ ε


≥ P


V (0, θn)σ∧T ≥ ε


> ε.

Choosing ε := ε/2, this would give a FLVR with respect to (Ft ), which is impossible by
assumption. �

Remark 7.3. In fact it is sufficient to require in the statement of Theorem 7.2 that Q


T ZQ

0 ≤ T


for some measure Q ∼ P. This follows directly from the statement of the theorem, but can also
be seen as follows: since ρ :=

dQ
dP > 0, we have

{ZP > 0} = {h > 0} = {ZQ > 0} ⇒ T ZP

0 = T ZQ

0 a.s.
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7.2. Local martingale deflators and equivalent local martingale measures on [0, σ ∧ T ]

Instead of working directly with the definition of NFLVR, one can also make use of the
fundamental theorem of asset pricing, cf. Theorem 7.5, and look for the existence of the dual
variables defined below. This approach will be used in what follows.

Definition 7.4. In the market model (St , Ft , P) we call

• a strictly positive local (Ft )-martingale (L t ) with L0 = 1 and L∞ > 0 a.s. a local martingale
deflator, if the process (L t St ) is a local (Ft )-martingale.

• P := L∞.P an equivalent local martingale measure (ELMM), if there exists a local martingale
deflator (L t ) which is a uniformly integrable martingale closed by L∞.

The proof of the following very important theorem can be found in [10,18], noting that the
proof in [18] carries over to the infinite time horizon case.

Theorem 7.5. In the financial market model (St , Ft , P)

• the NA1 condition is equivalent to the existence of a local martingale deflator.
• the NFLVR condition is equivalent to the existence of an ELMM.

In the following we will approach the question of NA1 / NFLVR up to a random time by
looking for local martingale deflators / ELMMs in the enlarged filtration. Throughout we will
denote by Q = ρ.P an ELMM for the (St , Ft , P) market which exists due to Theorem 7.5
because the market is assumed to satisfy NFLVR. As before we denote by ρt := EP(ρ|Ft ), t ≥

0, its Radon–Nikodym derivative with respect to (Ft ). Moreover, we denote by ZP
= N P DP

the Itô–Watanabe decomposition of ZP, cf. Remark 2.7.
The following lemma was proven in [13] in the case of honest times with Q = P, where it was

remarked that it also holds in greater generality. For completeness we provide a proof as well.

Lemma 7.6. The process (ρt∧σ /N P
t∧σ )t≥0 is a local martingale deflator for (St∧σ ) in the

filtration (Gt ), i.e. N A1 holds with respect to (Gt ) on the time horizon [0, σ ].

Proof. First note that the process (ρt∧σ /N P
t∧σ ) is well-defined, since T ZP

0 > σ a.s. If X ∈

Mloc(P, Ft ), then by the enlargement formula (2) the processes

X t := X t∧σ −

 t∧σ

0

d⟨X, N P
⟩s

N P
s

and

N P
t := N P

t∧σ −

 t∧σ

0

d⟨N P
⟩s

N P
s

are local (P, Gt )-martingales. With Itô’s formula we therefore have on [0, σ ],

d


X

N P


=

d X

N P
−

X

(N P)2
d N P

+
X

(N P)3
d⟨N P

⟩ −
d⟨X, N P

⟩

(N P)2

=
X

N P


dX
X

+
d⟨X, N P

⟩

X N P
−

dN P

N P
−

d⟨N P
⟩

(N P)2
+

d⟨N P
⟩

(N P)2
−

d⟨X, N P
⟩

X N P



=
X

N P


dX
X

−
dN P

N P


.
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Hence, (X t∧σ /N P
t∧σ ) ∈ Mloc(P, Gt ). Especially, taking X = (ρt ) yields that (ρt∧σ /N P

t∧σ ) ∈

Mloc(P, Gt ). Since N P is a non-negative local (P, Ft )-martingale, it does not explode.
Therefore, P(N P

σ = ∞) = 0 and ρσ

NP
σ

> 0 a.s. Moreover, we may choose X = (ρt St ), which

is local (P, Ft )-martingale because (ρt ) is a local martingale deflator in the (St , Ft , P) market.
This yields that

St∧σ ρt∧σ

N P
t∧σ


∈ Mloc(P, Gt )

and therefore (ρt∧σ /N P
t∧σ ) is a local martingale deflator in the enlarged filtration on [0, σ ]. �

Remark 7.7. The validity of NA1 in a progressively enlarged filtration has recently been proven
to hold in much greater generality without assuming (AC), cf. [1–3].

In [13] it is shown that for honest times the condition P


T ZP

0 ≤ T


= 0, which we derived

in Theorem 7.2, is not only sufficient but also necessary to have NFLVR on [0, T ∧ σ ] in a

complete market. However, the condition P


T ZP

0 ≤ T


= 0 is not in general necessary, even in

a complete market, as the following example shows.

Example 7.8. Let σ be a P-pseudo-stopping time bounded by one. Then 1 − ZP
1 = AP

1 = 1

and therefore P


T ZP

0 ≤ 1


= 1. However, since σ is a P-pseudo-stopping time, EPρσ = 1 and

N P
≡ 1. Therefore, (ρt∧σ ) is a local martingale deflator with EPρσ = 1 due to Lemma 7.6 and

thus a uniformly integrable martingale, which defines an ELMM in the (St∧σ , Gt∧σ , P) market
model. Hence, NFLVR holds in the enlarged market on the interval [0, σ ] = [0, σ ∧ 1].

Next we prove a sufficient and necessary criterion such that (ρt∧σ /N P
t∧σ ) is a uniformly

integrable martingale on the time interval [0, σ ∧ T ], where T is an (Ft )-stopping time. As

it turns out this criterion will be less restrictive than the condition P


T ZP

0 ≤ T


= 0 derived in

Theorem 7.2.

Theorem 7.9. Let T be an (Ft )-stopping time. Then,
ρt∧σ∧T

N P
t∧σ∧T


∈ Mu.i.(P, Gt ) ⇔ EP


DP

∞1{T NP
0 ≤T }


= 0.

Proof. The local (Gt )-martingale (ρt∧σ∧T /N P
t∧σ∧T )t≥0 is a uniformly integrable martingale if

and only if EP(ρσ∧T /N P
σ∧T ) = 1. Since σ < T ZP

0 = T NP

0 ∧ T DP

0 almost surely,

EP


ρσ∧T

N P
σ∧T


= EP


1

T ZP
0 >σ

 ρσ∧T

N P
σ∧T


= EP

 T ZP
0

0

ρu∧T

N P
u∧T

d AP
u


= EP

 T ZP
0 ∧T

0

ρu

N P
u

d AP
u + 1

T ZP
0 >T

 ρT

N P
T


AP

T ZP
0

− AP
T


= EP

−

 T ZP
0 ∧T

0
ρud DP

u + 1
T ZP

0 >T
 ρT

N P
T


mP

T ZP
0

− AP
T


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= EQ


1 − DP

T ZP
0 ∧T

+ 1
T ZP

0 >T
 ZP

T

N P
T



= EQ


1 − DP
T ZP

0 ∧T
+ 1

T ZP
0 >T

DP
T


= 1 − EQ


DP

T ZP
0

1
T ZP

0 ≤T


= 1 − EQ


DP
T ZP

0

1
T NP

0 ≤T
 = 1 − EQ


DP

∞1T NP
0 ≤T

 ,

where in the last equality we used that supp(d DP) ⊂ {ZP > 0}, cf. Remark 2.7. Finally note
that

EQ


DP
∞1{T NP

0 ≤T }


= 0 ⇔ EP


DP

∞1{T NP
0 ≤T }


= 0. �

Remark 7.10. For an honest time σ the multiplicative decomposition of ZP is given by

ZP
t = N P

t /N
P
t , where N P is a non-negative local martingale converging to zero almost surely,

cf. Lemma 4.11. And since a non-negative local martingale does not explode almost surely,

DP
∞ =

1

N
P
∞

> 0 a.s.

Therefore, the process

ρt∧σ∧T /N P

t∧σ∧T


is a uniformly integrable martingale if and only if

P


T NP

0 ≤ T


= P


T ZP

0 ≤ T


= 0. Especially, if T NP

0 = ∞ almost surely, (ρσ∧t/N P
σ∧t )t≥0

is actually a true martingale and not a strict local martingale, cf. also Remark 3.6 in [13].
Note however that Theorem 7.9 implies that


ρt∧σ /N P

t∧σ


is never a uniformly integrable

martingale.

We can now derive the result of Theorem 7.2 as a corollary of Theorem 7.9.

Corollary 7.11. Let T be an (Ft )-stopping time. If P


T ZP

0 ≤ T


= 0, then NFLVR holds in

the enlarged market on the time interval [0, T ∧ σ ].

Proof. If P


T ZP

0 ≤ T


= 0, then

P


T ≥ T NP

0


= P


T ≥ T NP

0 ≥ T ZP

0


= 0.

Hence, the claim follows from Theorem 7.9, Lemma 7.6, and Theorem 7.5. �

Moreover, taking T = ∞ in Theorem 7.9 we get the following corollary.

Corollary 7.12. If DP
∞ = 0 almost surely, then NFLVR holds on the interval [0, σ ] with respect

to the filtration (Gt ).

Of course, every pseudo-stopping time fulfills DP
∞ = 1 − AP

∞ = 1 − 1 = 0. The following
example, known as Émery’s example, shows that there are also other random times which fulfill
the assumption of Corollary 7.12 and thus allow for an equivalent local martingale measure up
to time σ .



32 D. Kreher / Stochastic Processes and their Applications ( ) –

Example 7.13. Let W be a (P, Ft )-Brownian motion and set σ = sup{t ≤ 1 : 2Wt = W1}. The
corresponding Azéma supermartingale is

ZP
t =


2
π


∞

|Wt |√
1−t

x2e−x2/2dx = mP
t −


2
π

 t

0

|Wu |

(1 − u)3/2 exp


−
W 2

u

2(1 − u)


du

with mP
≢ 1, cf. Section 5.6.5 in [16]. For every n ∈ N define the set

Bn =


|Wu | >


2
n

∀ u ∈


1 −

1
n
, 1


and note that

1 = P(W1 ≠ 0) = lim
n→∞

P(Bn).

On the set Bn we have for all u ∈


1 −

1
n , 1


,

|Wu |
√

1 − u
>

√
2

and hence

1
2


∞

|Wu |
√

1−u

x2e−x2/2dx ≤


∞

|Wu |
√

1−u

(x2
− 1)e−x2/2dx =

|Wu |
√

1 − u
exp


−

W 2
u

2(1 − u)


.

Thus, the following estimate holds on Bn : 1

0

d AP
t

ZP
t

≥

 1

1−
1
n

d AP
t

ZP
t

=

 1

1−
1
n

d AP
t

2
π


∞
|Wt |√

1−t
x2e−x2/2dx

≥
1
2

 1

1−
1
n

d AP
t

2
π

|Wt |√
1−t

exp

−

W 2
t

2(1−t)

 =
1
2

 1

1−
1
n

dt

1 − t
= ∞.

Therefore, on each Bn we have

DP
∞ = DP

1 = exp


−

 1

0

d AP
t

ZP
t


= 0,

and by monotone convergence

EP


DP
∞


= lim

n→∞
EP


DP

∞1Bn


= 0 ⇔ DP

∞ = 0 P-a.s.

Appendix

A.1. A useful lemma

The following well-known lemma can for example be found in paragraph XX.75 of [11].



D. Kreher / Stochastic Processes and their Applications ( ) – 33

Lemma A.1. (1) If G is a (Gt )-predictable process, then there exists an (Ft )-predictable
process F such that

G t1{t≤σ } = Ft1{t≤σ }, t ≥ 0.

(2) If ξ is a P-integrable variable, then

EP(ξ1{σ>t}|Gt ) = 1{σ>t}
EP(ξ1{σ>t}|Ft )

ZP
t

.

(3) If T is a (Gt )-stopping time, then there exists an (Ft )-stopping time S such that

T ∧ σ = S ∧ σ.

A.2. Condition (P)

The following condition goes back to Parthasarathy, cf. [24], and was labeled condition (P)

in [21].

Definition A.2. Let (Ω , F , (Ft )t≥0) be a filtered measurable space, such that F is the σ - algebra
generated by (Ft )t≥0: F =


t≥0 Ft . We shall say that the property (P) holds if and only if

(Ft )t≥0 enjoys the following conditions:

• For all t ≥ 0, Ft is generated by a countable number of sets.
• For all t ≥ 0, there exists a Polish space Ωt , and a surjective map πt from Ω to Ωt , such

that Ft is the σ -algebra of the inverse images by πt of Borel sets in Ωt , and such that for all
B ∈ Ft , ω ∈ Ω , πt (ω) ∈ πt (B) implies ω ∈ B.

• If (ωn)n≥0 is a sequence of elements of Ω such that for all N ≥ 0,

N
n≥0

An(ωn) ≠ ∅,

where An(ωn) is the intersection of the sets in Fn containing ωn , then
∞

n≥0

An(ωn) ≠ ∅.
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