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Abstract

Exponential functionals of Brownian motion have been extensively studied in financial and insurance
mathematics due to their broad applications, for example, in the pricing of Asian options. The Black–
Scholes model is appealing because of mathematical tractability, yet empirical evidence shows that
geometric Brownian motion does not adequately capture features of market equity returns. One popular
alternative for modeling equity returns consists in replacing the geometric Brownian motion by an
exponential of a Lévy process. In this paper we use this latter model to study variable annuity guaranteed
benefits and to compute explicitly the distribution of certain exponential functionals.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

The study of exponential functionals of Brownian motion has been popularized in finance
literature by applications to the pricing of Asian options in financial markets. Asian option is
a special type of exotic option contracts whose payoff is contingent upon the average price of
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underlying asset/equity/commodity over the contract period. In the Black–Scholes model, the
evolution of equity value is modeled by a geometric Brownian motion, {St = S0eX t , t ≥ 0}

where X is a Brownian motion with drift and S0 is the initial equity value. The continuously
monitored Asian call option with a fixed strike price pays off the amount by which the arithmetic
average of equity values (from the inception to maturity T ) exceeds the strike price K . In other
words, the payoff is(

1
T

∫ T

0
St dt − K

)+

=

(
S0

T
JT − K

)+

,

where we have denoted (x)+ = max(x, 0) and

Jt :=

∫ t

0
eXs ds, (1)

is the exponential functional of the process X. Since the no-arbitrage price of an Asian option in
the Black–Scholes model is determined by the expected present value of its payoff under a risk-
neutral probability measure, the key to the computation of Asian option price is the distribution
of the exponential functional JT . There has been a vast amount of work in the literature devoted
to the distribution of JT . To name a few, Yor [28] employs the Lamperti transformation relating
the geometric Brownian motion and the exponential functional to a Bessel process. Linetsky [17]
starts with an identity in distribution

Jt
d
= Ut := eX t

∫ t

0
e−Xs ds,

and the fact that the latter is a diffusion process and then applies the eigenfunction expansion
technique to determine the distribution of Ut . Vecer [27] applies the change of measure to
produce a partial differential equation satisfied by the Asian option price. The above list is by
no means comprehensive. More applications of exponential functionals of Brownian motion and
references can be found in Carmona et al. [2] and Matsumoto and Yor [19,20].

In several empirical studies (see Cont [4], Madan and Seneta [18], Carr et al. [3], Kou [12])
it was demonstrated that the geometric Brownian motion does not adequately explain many
stylized facts of empirical equity returns, such as asymmetric leptokurtic log-returns and
volatility smile. One popular solution to this problem is to use Lévy processes to model log-
returns. When working with exponential functionals of Lévy processes, it is easier to study the
distribution of the exponential functional of the form

Iq := Je(q) =

∫ e(q)

0
eXs ds, (2)

where e(q) is an exponential random variable with mean 1/q , independent of the process X . The
first explicit results related to the exponential functional Iq were obtained by Cai and Kou [1]
for hyperexponential Lévy processes. These results were later extended to processes with jumps
of rational transform in [13] and to meromorphic Lévy process in [14]. By now the analytical
theory behind the exponential functionals Iq is rather well understood, see the papers by Patie
and Savov [23,24].

In this paper we are interested in studying the distribution of a more general exponential
functional of the form

Jx,t := xeX t +

∫ t

0
eXs ds, x ≥ 0, (3)
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and of its “exponential maturity” counterpart

Ix,q := Jx,e(q). (4)

Next we will explain the motivation for studying these objects: it comes from certain embedded
options in equity-linked insurance, known as variable annuity guaranteed benefits.

Equity-linked insurance products allow policyholders to invest their premiums in equity
market. In other words, the daily returns on the premium investments are directly linked to
a particular equity index, such as S&P 500, or a particular equity fund of the policyholder’s
choosing. Upon selection, the premiums are transferred by the insurer to third-party fund
managers. To illustrate the mathematical structure, we consider a simplified example. Let
{Ft , t ≥ 0} denote the evolution of a policyholder’s investment account and {St , t ≥ 0} denote
that of an equity index. Then the equity-linking mechanism dictates that

Ft = F0
St

S0
e−mt , t ≥ 0, (5)

where m is the rate of account-value-based management and expenses (M&E) fee per time unit.
Among various products, variable annuities are of particular interest as they offer investors a
selection of investments often with added guarantees which protect policyholders from severe
losses on their investments. These added benefits can often be viewed as the insurance industry’s
counterparts of option contracts in financial markets. For example, a guaranteed minimum death
benefit (GMDB) would guarantee that a policyholder’s beneficiary receives the greater of the
then-current account value and a guaranteed minimum amount upon the policyholder’s death.
For example, the guarantee, denoted by {G t , t ≥ 0}, is for the policyholder to recoup at least
his/her initial investment with interest accrued at the risk-free rate, i.e. G t = F0er t , where r
is the yield rate per time unit on the insurer’s assets backing up the GMDB liability. Denote
by Tx the future lifetime of the policyholder, who is currently at age x . It is typically assumed
in practice that the mortality model is independent of equity returns, i.e. Tx is independent of
{St , t ≥ 0}. Therefore, the payoff from the GMDB is given by

(GTx − FTx )+,

which resembles a put option in financial markets. Keep in mind, however, that without any
guaranteed benefits the insurer would simply transfer the premiums to third party fund managers.
Like other guaranteed benefits, the GMDB is technically an add-on provision to the base contract
that provides additional benefits to the policyholder at an additional cost and from which the
insurer assumes additional liability. Hence the GMDB is often referred to as a rider. Nonetheless,
due to nonforfeiture regulations, the GMDB rider is typically offered on all variable annuity
contracts.

While there are many common features of financial derivatives and embedded options in
insurance products, a key difference is that financial derivatives are typically short-dated and
insurance coverages last for decades. Due to the lack of long-dated options in the market, the
risk management of equity-linked insurance is much more sophisticated than the trading of
derivatives and plays a fundamental role to the success of insurance business. In this work, we
consider a simplified model that captures the structure of the risk management problem for a
variable annuity contract with a plain-vanilla GMDB.

Unlike many exchange-traded financial derivatives which require only an up-front fee,
embedded options in equity-linked insurance products are often compensated by a stream of
fee incomes. For example, fund managers typically charge a fixed percentage m per time unit
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per dollar of each policyholder’s account and a portion of the fees, say md , is kicked back to the
insurer to compensate for the GMDB rider. Here we consider the present value of the fee income
collected continuously up until the time of the policyholder’s death,∫ T ∧Tx

0
e−rsmd Fs ds,

where r is the yield rate on insurer’s bonds backing up the GMDB liability. As in most cases fee
incomes exceed the GMDB liability, insurers are interested in the present value of insurer’s net
liability (gross liability less fee income)

L := e−rTx (GTx − FTx )+ −

∫ Tx

0
e−rsmd Fs ds.

A crucial task of risk management modeling is to quantify and assess the likelihood and
severity of positive net liability, which leads to a loss to the insurer. Practitioners typically apply
certain risk measures to empirical distributions of net liabilities developed from Monte Carlo
simulations. The risk measures would then be used to form the basis of risk management decision
making, such as setting up reserves and capitals, to provide a buffer against losses under adverse
economic conditions. The most commonly used risk measures in the North American insurance
industry is the conditional tail expectation,

CTEp(L) = E[L|L > VaRp(L)],

where the Value-at-Risk is determined by

VaRp(L) := inf{y : P[L ≤ y] ≥ p}.

Since the purpose of risk management is to analyze the severity of positive loss rather than
negative loss (profit), we are interested in the risk measures CTEp and VaRp for p > ξ := P(L ≤

0). In order to compute the above-mentioned risk measures, we need to compute for V > VaRξ ,

P(L > V |Tx = t) = P
(

e−r t Ft +

∫ t

0
e−rsmd Fs ds < F0 − V

)
.

It is clear that this rather unique funding mechanism in equity-linked insurance gives rise to a
generalized form of exponential functional as defined in (3).

While any concern regarding fitting empirical data in the modeling of financial derivatives
may carry over to that of equity-linked insurance, there is the additional question of the validity
of such models for long-term projection. Nonetheless, the insurance industry has in the past two
decades adopted many well-known equity return models from the financial industry, such as
geometric Brownian motion, regime-switching geometric Brownian motion, etc. See American
Academy of Actuaries publications [10,16] and [9] for details on a selection of equity return
models. Computations of risk measures for variable annuity guaranteed benefits based on
exponential functionals of Brownian motion can be found in Feng and Volkmer [7,8]. In this
paper, we are interested in the exponential Lévy processes, primarily for two reasons: (i) such
models have been shown to explain various stylized facts of empirical data and (ii) they often lead
to analytical solutions, not only for pricing problems of exotic options, which are well-studied
in finance literature, but also for risk measures of extreme liabilities in equity-linked insurance
products, thereby providing fast algorithms for computation needed for capital requirement and
other risk management purposes.

This rest of the paper is organized as follows. In Section 2 we study exponential functionals
Ix,q for Lévy processes whose Lévy measure has exponentially decaying tails and we derive
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an integral representation of the Mellin transform of Ix,q . In Section 3 we consider the case of
Kou process, and compute the Mellin transform of Ix,q explicitly in terms of Meijer G-function,
and then identify the density of Ix,q (it is also given explicitly in terms of Meijer G-function
and hypergeometric functions). In Section 4 we apply these results to the problem of computing
various risk measures for the GMDB and compare the efficiency and accuracy of our semi-
analytical approach with the Monte Carlo method.

2. Main results

First we introduce the necessary notation and definitions. We consider a Lévy process X ,
started from zero, and having the Laplace exponent ψ(z) := lnE[exp(zX1)], z ∈ iR. The Lévy–
Khintchine formula tells us that

ψ(z) = σ 2z2/2 + µz +

∫
R

(
ezx

− 1 − zx1{|x |<1}

)
Π (dx), z ∈ iR,

where σ ≥ 0, µ ∈ R and the Lévy measure Π (dx) satisfies
∫
R 1 ∧ x2Π (dx) < ∞. We denote by

e(q) the exponential random variable with mean 1/q , which is independent of X , and we recall
our definition of the exponential functional

Ix,q := xeXe(q) +

∫ e(q)

0
eXs ds, x ≥ 0.

Remark 1. Using time-reversal it is easy to show that Ix,q
d
= Ue(q), where Ut is the generalized

Ornstein–Uhlenbeck process

Ut = xeX t + eX t

∫ t

0
e−Xs ds. (6)

Note that Ut is a strong Markov process started from x with the generator

L(U ) f (x) = L(X )φ(ln(x)) + f ′(x),

where φ(x) := f (ex ) and L(X ) is the Markov generator of the Lévy process X . This results
follows from [15, Proposition 2.3].

We define the Mellin transform of Ix,q

Mx,q (s) = E
[(

Ix,q
)s−1

]
. (7)

Initially Mx,q (s) is well defined on the vertical line Re(s) = 1, later we will extend this function
analytically into a certain vertical strip.

Everywhere in this section we will work under the following condition: the measure Π (dx)
has exponentially decaying tails. In other words∫

R\(−1,1)
eθ |x |Π (dx) < ∞, for some θ > 0. (8)

The above condition implies that the Laplace exponent ψ(z) is analytic in the strip |Re(z)| < θ

and it is convex on the real interval z ∈ (−θ, θ).

Definition 1. For q > 0 we define

Φ+(q) = sup{z > 0 : ψ(z) < q} and Φ−(q) = inf{z < 0 : ψ(z) < q}.

Note that condition (8) implies that for every q > 0 we have Φ+(q) > 0 and Φ−(q) < 0.
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Proposition 1. For all q > 0, x ≥ 0 and s ∈ (0, 1 + Φ+(q)) we have Mx,q (s) < ∞.

Proof. Let us denote ξ = x exp(Xe(q)) and η = I0,q , so that Ix,q = ξ + η. Note that

E[ξw] = q/(q − ψ(w)) < ∞, w ∈ (Φ−(q),Φ+(q))

and E[ηw] < ∞ for all w ∈ (−1,Φ+(q)) (see Rivero [26, Lemma 2]).
When 0 < w < min(Φ+(q), 1) we use Jensen’s inequality and obtain

E[(ξ + η)w] ≤ E[ξw] + E[ηw] < ∞.

If Φ+(q) > 1, then for 1 ≤ w < Φ+(q) we use Minkowski inequality

E[(ξ + η)w]1/w
≤ E[ξw]1/w

+ E[ηw]1/w < ∞.

Finally, when −1 < w < 0 we use the fact that the function x ∈ (0,∞) ↦→ xw is decreasing and
obtain

E[(ξ + η)w] < E[ηw] < ∞.

Thus we have proved that E[(Ix,q )w] = E[(ξ + η)w] < ∞ for all w ∈ (−1,Φ+(q)), which is
equivalent to the statement of Proposition 1. □

The following theorem is our main result in this section.

Theorem 1. For q > 0 and w ∈ (max(−1,Φ−(q)), 0)

Mx,q (1 + w) = q sin(πw)M0,q (1 + w)

×

[
−

1
2i

∫
c+iR

1
z sin(π z)M0,q (−z)

×
x−zdz

sin(π (w + z))

]
, (9)

where c ∈ (0,−w).

Before we prove Theorem 1, we need to establish several auxiliary results.

Lemma 1. For q > 0 the function F(s) = M0,q (s)/Γ (s) is analytic and zero-free in the vertical
strip Φ−(q) < Re(s) < 1 + Φ+(q) and it satisfies

F(s + 1) =
1

q − ψ(s)
F(s), Φ−(q) < Re(s) < Φ+(q). (10)

Proof. The functional equation follows from Maulik and Zwart [21, Lemma 2.1] (see also
Carr et al. [2, Proposition 3.1]). The fact that F(s) is zero-free follows from the generalized
Weierstrass product representation (see Patie and Savov [23, Theorem 2.1]). □

Let us fix q > 0, w ∈ (Φ−(q), 0) and define a new measure Q
dQ
dP

⏐⏐⏐
Ft

= ewX t −tψ(w). (11)

Under the new measure Q, the process X is a Lévy process with the Laplace exponent

ψQ(z) = ψ(z + w) − ψ(w).

Let us define the exponential functional

Ĵt =

∫ t

0
e−Xs ds. (12)
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Lemma 2. For w ∈ (Φ−(q), 0) we denote q̃ := q −ψ(w). Then for 0 < Re(s) < 1+w−Φ−(q)

EQ

[
( Ĵe(q̃))s−1

]
=

M0,q (w)
Γ (w)

×
Γ (s)Γ (1 + w − s)
M0,q (1 + w − s)

. (13)

Proof. Let us denote Yt = −X t : under the measure Q this is a Lévy process with the Laplace
exponent ψY (z) = ψ(w − z) − ψ(w). Let us also denote θ := w − Φ−(q) and the function
in the right-hand side of (13) by f (s). According to Proposition 2 in [13], in order to establish
Lemma 2 we need to check the following three conditions

(i) f (s) is analytic and zero-free in the strip Re(s) ∈ (0, 1 + θ ),
(ii) f (1) = 1 and f (s + 1) = s f (s)/(q̃ − ψY (s)) for all s ∈ (0, θ),

(iii) | f (s)|−1
= o(exp(2π |Im(s)|)) as Im(s) → ∞, Re(s) ∈ (0, 1 + θ ).

Condition (i) follows from Lemma 1. Let us check condition (ii): we use (10) and check that

f (s + 1) =
Γ (s + 1)Γ (w − s)

M0,q (w − s)
=

s
q − ψ(w − s)

Γ (s)Γ (w − s + 1)
M0,q (w − s + 1)

=
s

q̃ − ψY (s)
f (s).

To check condition (iii) we use the well-known asymptotic result

|Γ (a + ib)| =
√

2π exp(−π |b|/2 + (a − 1/2) ln(|b|) + O(1)), b → ∞,

which holds uniformly in a on compact subsets of R, and check that⏐⏐1/ f (s)
⏐⏐ =

⏐⏐⏐ M0,q (1 + w − s)
Γ (s)Γ (1 + w − s)

⏐⏐⏐ ≤ M0,q (1 + w − Re(s)) × O(e3π |Im(s)|/2).

Thus all three conditions are satisfied and we have proved (13). □

Proof of Theorem 1. We recall that Ix,q has the same distribution as Ue(q) = eXe(q) (x + Ĵe(q)),
where Ĵt is defined by (12). Assume that q > 0 and w ∈ (max(−1,Φ−(q)), 0), so that q −ψ(w)
> 0. According to Proposition 1, Mx,q (1 + w) < ∞ and we can write

Mx,q (1 + w) = E
[
ewXe(q) (x + Ĵe(q))w

]
=

∫
∞

0
qe−qtE

[
ewX t (x + Ĵt )w

]
dt. (14)

Next, define the measure Q as in (11) and denote q̃ = q − ψ(w). From (14) we find

Mx,q (1 + w) =

∫
∞

0
qe−qtE

[
ewX t (x + Ĵt )w

]
dt (15)

=

∫
∞

0
qe−(q−ψ(w))tEQ

[
(x + Ĵt )w

]
dt =

q
q̃
EQ

[
(x + Ĵe(q̃))w

]
.

Next, we take z ∈ (0,−w), use (15) and compute∫
∞

0
x z−1Mx,q (1 + w)dx =

q
q̃

∫
∞

0
x z−1EQ

[
(x + Ĵe(q̃))w

]
dx

=
q
q̃
EQ

[∫
∞

0
x z−1(x + Ĵe(q̃))wdx

]
=

q
q̃
EQ

[(
Ĵe(q̃)

)z+w
∫

∞

0
yz−1(y + 1)wdy

]
=

q
q̃
EQ

[(
Ĵe(q̃)

)z+w
]

×
Γ (z)Γ (−w − z)

Γ (−w)
. (16)
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=
q
q̃
M0,q (w)
Γ (w)

×
Γ (1 + z + w)Γ (−z)

M0,q (−z)
×

Γ (z)Γ (−w − z)
Γ (−w)

,

where we used Fubini’s theorem in the second step, change of variables x = Je(q̃) y in the third
step, the well-known beta-function integral in the fourth step and Lemma 2 in the fifth step.

Finally, from (10) we find that
1
q̃
M0,q (w)
Γ (w)

=
1

q − ψ(w)
M0,q (w)
Γ (w)

=
M0,q (1 + w)
Γ (1 + w)

.

We also use the reflection formula for the gamma function and rewrite (16) in the form∫
∞

0
x z−1Mx,q (1 + w)dx = −

πq sin(πw)M0,q (1 + w)
z sin(π z)M0,q (−z) sin(π (w + z))

. (17)

Take an arbitrary c ∈ (0,−w). According to Theorems 2.7 and 3.3 in [24], we have an upper
bound |1/M0,q (−z)| = O(exp((π + ϵ)|z|)) (for any ϵ > 0) as z → ∞ along the vertical line
c + iR. Thus, for any ϵ > 0, the function in the right-hand side of (17) satisfies the bound

πq sin(πw)M0,q (1 + w)
z sin(π z)M0,q (−z) sin(π (w + z))

= O
(
e−(π−ϵ)|z|)

as z → ∞ along the vertical line c + iR. Therefore, we can apply the inverse Mellin transform
and obtain formula (9). □

Remark 2. We would like to mention the following result, which can be considered an extension
of Theorem 1. For q > 0 and Re(w) ∈ (0, 1] it is true that

Mx,q (w) = M0,q (w) + q sin(πw)M0,q (w)

×

[
−

1
2i

∫
c+iR

x zdz
z sin(π z) sin(π (w − z))M0,q (z)

]
, (18)

where 0 < c < Re(w). This result can be derived from Theorem 1 by shifting the contour of
integration in (9) to the left, taking into account the residue at z = 0 and changing the variable
of integration z ↦→ −z. What is interesting about formula (18) is that it holds for arbitrary Lévy
process X , in other words, the assumption (8) is not required here. This generalization can be
established by approximating an arbitrary Lévy process X by a sequence of processes X (n) with
bounded jumps and using the analytical properties of the Mellin transforms M(n)

0,q (w) that were
obtained recently by Patie and Savov in [24]. However, the rigorous proof of this general result
would require a lot of technical details and would take us in a different direction than the goal of
the current paper, thus we will leave this work for the future.

3. Case study: Kou process

In this section we demonstrate how Theorem 1 can be used to compute explicitly the density of
the exponential functional Ix,q for Kou jump–diffusion process. The latter is defined as follows:

X t = µt + σWt +

Nt∑
j=1

ξi , (19)

where σ > 0, µ ∈ R, Nt is a Poisson process with intensity λ and ξi are i.i.d. random variables
having the probability density function

pξ (x) = pρe−ρx 1{x>0} + (1 − p)ρ̂eρ̂x 1{x<0},
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for some p ∈ (0, 1) and ρ, ρ̂ > 0. The Laplace exponent is easily seen to be equal to

ψ(z) = µz +
σ 2

2
z2

+ λp
z

ρ − z
− λ(1 − p)

z
ρ̂ + z

.

For q > 0 the rational functionψ(z) = q has four zeros {−ζ̂2,−ζ̂1, ζ1, ζ2} and two poles {−ρ̂, ρ}

which satisfy the interlacing property

− ζ̂2 < −ρ̂ < −ζ̂1 < 0 < ζ1 < ρ < ζ2.

The Mellin transform M0,q (s) was computed in Cai and Kou [1] (see also [13]) and is given by

M0,q (s) = A1−sΓ (s)
G(s)
G(1)

, (20)

where A = σ 2/2 and

G(s) := Γ
[1 + ζ1 − s, 1 + ζ2 − s, ρ̂ + s

1 + ρ − s, ζ̂1 + s, ζ̂2 + s

]
.

In the above formula (and everywhere else in this paper) we use the notation

Γ
[a1, . . . , ap

b1, . . . , bq

]
:=

∏p
i=1 Γ (ai )∏q
j=1 Γ (b j )

. (21)

Our first main result in this section is an explicit expression for the Mellin transform Mx,q (s).

Proposition 2. For 0 ∨ (1 − ζ̂1) < Re(s) < 1

Mx,q (s) = q A−sΓ
[ 1 + ζ1 − s, 1 + ζ2 − s, ρ̂ + s
1 − s, 1 + ρ − s, ζ̂1 + s, ζ̂2 + s

]
× G3,3

4,5

( 1 − s, 1,−ρ, ρ̂
1 − s, ζ̂1, ζ̂2,−ζ1,−ζ2

⏐⏐⏐ 1
Ax

)
, (22)

where G is the Meijer G-function defined in (A.5) of the Appendix.

Proof. Formula (20) and Theorem 1 tells us that for −(1 ∧ ζ̂1) < w < −c < 0 we have

Mx,q (1 + w) = q sin(πw)A−wΓ
[1 + w, ζ1 − w, ζ2 − w, ρ̂ + 1 + w

ρ − w, ζ̂1 + 1 + w, ζ̂2 + 1 + w

]
×

−1
2i

∫
c+iR

Γ
[ 1 + ρ + z, ζ̂1 − z, ζ̂2 − z
−z, 1 + ζ1 + z, 1 + ζ2 + z, ρ̂ − z

]
×

A−1−z x−zdz
z sin(π z) sin(π (w + z))

.

Using the reflection formula for the Gamma function we rewrite the above equation in the form

Mx,q (1 + w) = q A−1−wΓ
[ ζ1 − w, ζ2 − w, ρ̂ + 1 + w

−w, ρ − w, ζ̂1 + 1 + w, ζ̂2 + 1 + w

]
×

1
2π i

∫
c+iR

Γ
[1 + w + z, z, 1 + ρ + z, −w − z, ζ̂1 − z, ζ̂2 − z

ρ̂ − z, 1 + ζ1 + z, 1 + ζ2 + z

]
× (Ax)−zdz.
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Applying formula (A.5) we conclude that for all −(1 ∧ ζ̂1) < w < 0

Mx,q (1 + w) = q A−1−wΓ
[ ζ1 − w, ζ2 − w, ρ̂ + 1 + w

−w, ρ − w, ζ̂1 + 1 + w, ζ̂2 + 1 + w

]
(23)

× G3,3
5,4

(1 + w, 1 − ζ̂1, 1 − ζ̂2, 1 + ζ1, 1 + ζ2
1 + w, 0, 1 + ρ, 1 − ρ̂

⏐⏐⏐Ax
)
.

Note that both conditions (A.3) and (A.4) are satisfied, since in our case we have

a = max(1 + w, 1 − ζ̂1, 1 − ζ̂2) = max(1 + w, 1 − ζ̂1) ∈ (0, 1),

b = min(0, 1 + w, 1 + ρ) = 0

and c ∈ (−b, 1 − a). The desired result (22) is obtained from (23) by changing the variable
w = s − 1 and applying formula (A.9). □

For the rest of this section we will work under the following

Assumption 1. ζ2 − ζ1 ̸∈ N and ζ̂2 − ζ̂1 ̸∈ N.

Definition 2. We define the function fx,q (y) as follows: for y > x

fx,q (y) :=

{qxζ1 + ζ1Mx,q (ζ1)
ψ ′(ζ1)

y−1−ζ1

× 3 F3

( 1 + ζ1, 1 + ζ1 − ρ, 1 + ζ1 + ρ̂

1 + ζ1 − ζ2, 1 + ζ1 + ζ̂1, 1 + ζ1 + ζ̂2

⏐⏐⏐ −
1

Ay

)}
(24)

+

{
the same expression with ζ1 and ζ2 interchanged

}
,

and for 0 < y < x

fx,q (y) :=

{
q(Ax)−ζ̂1

sin(π (ρ̂ − ζ̂1))

sin(π (ζ̂2 − ζ̂1))
3Φ3

(
ζ̂1, 1 + ζ̂1 + ρ, 1 + ζ̂1 − ρ̂

1 + ζ̂1 − ζ̂2, 1 + ζ̂1 + ζ1, 1 + ζ̂1 + ζ2

⏐⏐⏐ 1
Ax

)
(25)

× G3,1
3,4

( 1 − ρ̂, 1, 1 + ρ

1 + ζ1, 1 + ζ2, 1 − ζ̂1, 1 − ζ̂2

⏐⏐⏐ 1
Ay

)}
+

{
the same expression with ζ̂1 and ζ̂2 interchanged

}
.

In the above formula Φ denotes the regularized hypergeometric function, as defined in (A.7) of
the Appendix.

Theorem 2. The probability density function of Ix,q is fx,q (y).

Proof. Applying formula (A.10), we check that for any ϵ > 0 small enough

fx,q (y) = O(yρ̂−ϵ), as y → 0, (26)

fx,q (y) = O(y−1−ζ1 ), as y → +∞, (27)

so the function ys−1 fx,q (y) is integrable for 0 ∨ (1 − ζ̂1) < Re(s) < 1. For s in this strip we
define

I1(s) :=

∫ x

0
fx,q (y)ys−1dy, I2(s) =

∫
∞

x
fx,q (y)ys−1dy,
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and now our goal is to check that I1(s) + I2(s) = Mx,q (s) (where the right-hand side is given by
(22)).

First we use formula (A.14) and obtain

I1(s) =

{
q A−ζ̂1 x s−ζ̂1

sin(π (ρ̂ − ζ̂1))

sin(π (ζ̂2 − ζ̂1))
3Φ3

(
ζ̂1, 1 + ζ̂1 + ρ, 1 + ζ̂1 − ρ̂

1 + ζ̂1 − ζ̂2, 1 + ζ̂1 + ζ1, 1 + ζ̂1 + ζ2

⏐⏐⏐ 1
Ax

)
× G4,1

4,5

( 1 − ρ̂, 1, 1 + ρ, s + 1
s, 1 + ζ1, 1 + ζ2, 1 − ζ̂1, 1 − ζ̂2

⏐⏐⏐ 1
Ax

)}
+

{
the same expression with ζ̂1 and ζ̂2 interchanged

}
.

Similarly, using formula (A.15) we find

I2(s) =

{qxζ1 + ζ1Mx,q (ζ1)
ψ ′(ζ1)

x s−1−ζ1

1 + ζ1 − s

× 4 F4

( 1 + ζ1 − s, 1 + ζ1, 1 + ζ1 − ρ, 1 + ζ1 + ρ̂

2 + ζ1 − s, 1 + ζ1 − ζ2, 1 + ζ1 + ζ̂1, 1 + ζ1 + ζ̂2

⏐⏐⏐ −
1

Ax

)}
+

{
the same expression with ζ1 and ζ2 interchanged

}
.

Let us outline the plan for proving the identity

I1(s) + I2(s) − Mx,q (s) = 0, for all s in the strip 0 ∨ (1 − ζ̂1) < Re(s) < 1. (28)

First we use formula (A.11) and express all Meijer G-functions appearing in (28) in terms
of hypergeometric functions. This would give us an expression involving products of two
hypergeometric functions. After simplifying this expression we would obtain the following
identity

5∑
i=1

(ai − ρ)(ai + ρ̂)∏
1≤ j≤5

j ̸=i
(ai − a j )

× 4 F4

(1 + ai − ρ, 1 + ai + ρ̂, 1 + ai , 1 + ai − s
1 + ai − a1, . . . , ∗, . . . , 1 + ai − a5

⏐⏐⏐ −
1

Ax

)
(29)

× 4 F4

(1 + ρ − ai , 1 − ρ̂ − ai ,−ai , s − ai

1 + a1 − ai , . . . , ∗, . . . , 1 + a5 − ai

⏐⏐⏐ 1
Ax

)
= 0,

x ∈ R \ {0},

where [a1, a2, a3, a4, a5] = [ζ1, ζ2,−ζ̂1,−ζ̂2, s − 1] and the asterisk means that the term 1 + ai

− ai is omitted. The identity (29) is known to be true: it is a special case of Theorem 1 in Feng
et al. [6].

The above steps of the proof, while conceptually simple, require very long computations.
Therefore, we omit here all these details and we present them in Appendix B in [arXiv:1610.00
577]. □

Remark 3. The algebraic manipulations needed in the last step of the proof of Theorem 2 (where
we establish identity (28)) are rather tedious, as can be seen in Appendix B in [arXiv:1610.0057
7]. At the same time, it is easy to confirm the validity of this identity by a numerical experiment:
one simply needs to compute Meijer G-functions via (A.11) and the hypergeometric functions
via series expansion (A.6), and check that (28) holds true with arbitrary choices of parameters.

In the next result we compute the distribution function of Ix,q .
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Corollary 1. For y ≥ x

P(Ix,q > y) =

{qxζ1 + ζ1Mx,q (ζ1)
ζ1ψ ′(ζ1)

y−ζ1

× 3 F3

( 1 + ζ1 − ρ, 1 + ζ1 + ρ̂, ζ1

1 + ζ1 − ζ2, 1 + ζ1 + ζ̂1, 1 + ζ1 + ζ̂2

⏐⏐⏐ −
1

Ay

)}
(30)

+

{
the same expression with ζ1 and ζ2 interchanged

}
and for 0 < y < x

P(Ix,q < y) =

{ q
A

(Ax)−ζ̂1
sin(π (ρ̂ − ζ̂1))

sin(π (ζ̂2 − ζ̂1))

× 3Φ3

(
ζ̂1, 1 + ζ̂1 + ρ, 1 + ζ̂1 − ρ̂

1 + ζ̂1 − ζ̂2, 1 + ζ̂1 + ζ1, 1 + ζ̂1 + ζ2

⏐⏐⏐ 1
Ax

)
(31)

× G3,1
3,4

(
−ρ̂, ρ, 1

ζ1, ζ2,−ζ̂1,−ζ̂2

⏐⏐⏐ 1
Ay

)}
+

{
the same expression with ζ̂1 and ζ̂2 interchanged

}
.

Proof. Formula (30) can be easily obtained from (24) and (A.15). Similarly, formula (31) follows
from (25), (A.14), (A.12) and (A.8). □

Corollary 2. Assume that ζ1 > 1. Then for y ≥ x

E[Ix,q1{Ix,q>y}] =

{qxζ1 + ζ1Mx,q (ζ1)
ψ ′(ζ1)(ζ1 − 1)

y1−ζ1

× 4 F4

( 1 + ζ1, 1 + ζ1 − ρ, 1 + ζ1 + ρ̂, ζ1 − 1
1 + ζ1 − ζ2, 1 + ζ1 + ζ̂1, 1 + ζ1 + ζ̂2, ζ1

⏐⏐⏐ −
1

Ay

)}
(32)

+

{
the same expression with ζ1 and ζ2 interchanged

}
,

and for 0 < y < x

E[Ix,q1{Ix,q<y}] =

{ qy2 sin(π (ρ̂ − ζ̂1))

(Ax)ζ̂1 sin(π (ζ̂2 − ζ̂1))

× 3Φ3

(
ζ̂1, 1 + ζ̂1 + ρ, 1 + ζ̂1 − ρ̂

1 + ζ̂1 − ζ̂2, 1 + ζ̂1 + ζ1, 1 + ζ̂1 + ζ2

⏐⏐⏐ 1
Ax

)
(33)

× G4,1
4,5

( 1 − ρ̂, 1, 1 + ρ, 3
2, 1 + ζ1, 1 + ζ2, 1 − ζ̂1, 1 − ζ̂2

⏐⏐⏐ 1
Ay

)}
+

{
the same expression with ζ̂1 and ζ̂2 interchanged

}
.

Proof. Same steps as in the proof of Corollary 1. □

Remark 4. The jump–diffusion process (19) includes the Brownian motion with drift X t =

µt + σWt as a special case when λ = 0. In this case the expressions in Corollary 1 can be
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simplified. Let us denote

ν :=
2µ
σ 2 , η :=

√
8q/σ 2 + ν2

2
, κ :=

1 − ν

2
.

Then for y ≥ x ,

P(Ix,q > y) = q
Γ (η − κ + 1/2)xκ y1−κ

Γ (1 + 2η)(η + κ − 1/2)
e(1/x−1/y)/σ 2

Wκ,η

( 2
σ 2x

)
Mκ−1,η

( 2
σ 2 y

)
,

while for 0 < y < x ,

P(Ix,q < y) = q
Γ (η − κ + 1/2)xκ y1−κ

Γ (1 + 2η)
e(1/x−1/y)/σ 2

Mκ,η

( 2
σ 2x

)
Wκ−1,η

( 2
σ 2 y

)
.

Here M and W denote the Whittaker functions, whose definitions and basic properties can be
found in Olver et al. [22]. Similarly, expressions in Corollary 2 can be simplified: for y ≥ x ,

E[Ix,q1{Ix,q>y}] =
qΓ (η − κ + 1/2)xκ y2−κ

Γ (1 + 2η)(η + κ − 1/2)
e(1/x−1/y)/σ 2

Wκ,η

( 2
σ 2x

)
×

[ Mκ−2,η

(
2
σ 2 y

)
η + κ − 3/2

+ Mκ−1,η

( 2
σ 2 y

)]
,

and for 0 < y < x ,

E[Ix,q1{Ix,q<y}] =
qΓ (η − κ + 1/2)xκ y2−κ

Γ (1 + 2η)
e(1/x−1/y)/σ 2

Mκ,η

( 2
σ 2x

)
×

[
Wκ−1,η

( 2
σ 2 y

)
− Wκ−2,η

( 2
σ 2 y

)]
.

These expressions were obtained in Feng and Volkmer [8, Proposition 3.4] using spectral
methods.

4. Applications

As we have discussed in the introduction, exponential functionals arise naturally in the
analysis of insurer’s liabilities to variable annuity guaranteed benefits, due to the continual
collection of management fees as a fixed percentage of policyholders’ account value. In this
section we apply our theoretical results obtained earlier and we compute various risk measures
for the guaranteed minimum death benefit (GMDB), which is one of the most common types of
investment guarantees in the market.

Assume that the equity index {St , t ≥ 0} is modeled by an exponential Lévy process

St := S0eX t , t ≥ 0,

where X is the Kou process, as defined in (19). Assume, also, that the policyholder’s investment
account is driven by the equity-linking mechanism as in (5). Recall that the GMDB net liability
from an insurer’s viewpoint is given by

L := e−rTx (F0erTx − FTx )+ −

∫ Tx

0
e−rsmd Fs ds. (34)

Due to the independence of mortality risk and equity risk, we obtain an expression of P(L > V )
for V ≥ VaRξ > 0,

P(L > V ) =

∫
∞

0
P(t, K ) f (t) dt, (35)
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where f is the probability density function of Tx , K := (F0 − V )/(md F0) and

P(t, K ) := P
(

xeX∗
t +

∫ t

0
eX∗

s ds < K
)

with x = 1/md . The underlying Lévy process X∗ is the same as the process X in (19), but with
µ replaced by

µ∗
:= µ− r − m.

The Laplace transform of P with respect to t is given by

P̃(q, K ) :=

∫
∞

0
e−qt P(t, K )dt =

1
q
P(Ix,q < K ).

Similarly, we can show that

CTEp(L) = F0 −
md F0

1 − p

∫
∞

0
Z (t, K ) f (t)dt, (36)

where

Z (t, K ) := E
[(

xeX∗
t +

∫ t

0
eX∗

s ds
)
1{

xeX∗
t +

∫ t
0 eX∗

s ds<K
}] .

Its Laplace transform with respect to t is given by

Z̃ (q, K ) :=

∫
∞

0
e−qt Z (t, K )dt =

1
q
E

[
Ix,q1{Ix,q<K }

]
.

A common model for human mortality in the literature is the so-called Gompertz–Makeham
law of mortality, which assumes that the death rate µx is the sum of a constant A (to account for
death due to accidents) and a component Bcx (to account for aging):

µx = A + Bcx , A > 0, B > 0, c > 1.

Its probability density function f is given by

f (t) = (A + Bcx+t ) exp
{
−At −

Bcx (ct
− 1)

ln c

}
. (37)

As shown in Feng and Jing [5], we can always use a decomposition of a Hankel matrix
to approximate f by a combination of exponential functions with complex components and
complex weights,

f (t) ≈

M∑
i=1

wi e−si t , ℜ(si ) > 0.

There are many known methods in the literature for such approximations, most of which utilizes
only real components and real weights. However, the Hankel matrix method has the advantage
of using relatively small number of terms. Then, for large enough M ,

P(L > V ) ≈

M∑
i=1

wi P̃(si , K ). (38)

Similarly, we can approximate the CTE risk measure by

CTEp(L) ≈ F0 −
md F0

1 − p

M∑
i=1

wi Z̃ (si , K ). (39)
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(a) Bases. (b) Weights.

Fig. 1. Approximating exponential sum.

(a) Mortality density. (b) Approximation error.

Fig. 2. Approximation of mortality density.

Let us illustrate the application to GMDB with a numerical example.

(i) Survival model. Suppose that the variable annuity contract under consideration is issued to
a 65-year-old, whose survival model is determined by the Gompertz–Makeham law of mortality
with the probability density given in (37) where x = 65, A = 0.0007, B = 0.00005, c = 100.04.

Using the Hankel matrix method, we approximate the mortality density by a combination of
M = 15 terms of exponential functions. The bases and weights of the 15-term exponential sum
are shown in Fig. 1. In Fig. 2, we show the plot of the original density function as well as the error
from the 15-term approximating exponential sum. It is clear from the plots that the maximum



Please cite this article in press as: R. Feng, et al., Exponential functionals of Lévy processes and variable annuity guaranteed benefits, Stochastic
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error is controlled,

sup
t∈[0,100]

⏐⏐⏐⏐⏐ f (t) −

M∑
i=1

wi e−si t

⏐⏐⏐⏐⏐ < 10−6.

(ii) Equity model. Suppose that the variable annuity contract is invested in a single equity fund
which is driven by either of the following two models

1. Geometric Brownian motion (GBM): Here we use a standard model from the insurance
industry calibrated to monthly S&P 500 total return data from December 1955 to
December 2003 inclusive. The model is also known to pass the calibration criteria for
equity return models set by the AAA (c.f. AAA report [10, p. 35]).

µ1 = 0.064161, σ1 = 0.16.

2. Exponential Lévy process with bilateral exponential jumps (Kou): we employ two sets of
parameters for comparison with the GBM model.

(Parameter set A) µ2 = 0.119161, σ2 = 0.100499, λ = 1, p = 0.3, ρ = 20,
ρ̂ = 10;

(Parameter set B) µ2 = 0.064186, σ2 = 0.144395, λ = 0.00005, p = 0.3,
ρ = 0.1, ρ̂ = 0.2.

The parameters are chosen so that the first two moments of X1 are kept the same for both
the GBM model and the Kou model, i.e.

µ1 = µ2 +
λp
ρ

−
λ(1 − p)

ρ̂
,

σ 2
1 = σ 2

2 +
2λp
ρ2 +

2λ(1 − p)
ρ̂2 .

The first set of parameters leads to relatively frequent occurrence of small jumps, whereas
the second set of parameters is chosen to exhibit relatively rare occurrence of large jumps.

(iii) Fee schedule. The initial purchase payment is assumed to be F0 = 1. The guarantee level
starts off at G0 = 1 and the yield rate on the insurer’s assets backing up the GMDB liability is
given by r = 0.02. The mortality and expenses (M&E) fee is charged at the rate of m = 0.01
per dollar of the policyholder’s investment account per time unit. The GMDB rider charge rate
is assumed to be 35% of the M&E fee rate, i.e. md = 0.0035.

Recall that the GBM model is in fact a special case of the Kou model. Hence we shall first use
tail probabilities of the GMDB net liability under the GBM model as benchmarks against which
the accuracy of corresponding results under the Kou model can be tested. In Table 1, the last row
of tail probabilities are computed by formula (38) where P̃(s, K ) is determined by formulas in
Remark 4. The rest of the table are by formula (38) where P̃(s, K ) is determined by formulas in
Corollary 1. For the ease of direct comparison with the GBM model, we set for the Kou model

µ2 = 0.064161, σ2 = 0.16, p = 0.3, ρ = 20, ρ̂ = 10.

As expected, Table 1 indicates that the tail probability of the GMDB net liability under the Kou
model converges point-wise to the corresponding result under the GBM model, as the intensity
rate λ of jumps declines to zero.
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Table 1
Tail probabilities for the GMDB net liability.

λ = 1 λ = 0.01 λ = 0.0001 λ = 0.000001 GBM (λ = 0)

P(L > 0.2) 0.4794368114 0.0954727742 0.0927572184 0.0927302874 0.0927300396
P(L > 0.4) 0.3313624187 0.03327852158 0.03185715421 0.03184312600 0.03184298681
P(L > 0.6) 0.1787553560 0.06201911742 0.005797295345 0.005793340382 0.005793300500

Table 2
Tail probabilities for the GMDB net liability with λ = 1.

Analytic Monte Carlo Monte Carlo
(N = 1000) (N = 100,000)

P(L > 0.2) 0.4794368114 0.4787000000 0.4796620000
(0.0154956700) (0.0015078343)

Time 11.097 68.422203 7107.196853

P(L > 0.4) 0.3313624187 0.3342000000 0.3321305000
(0.0143218640) (0.0013534030)

Time 10.912 – –

P(L > 0.6) 0.1787553560 0.1780 0.1794875000
(0.0105481353) (0.0011432358)

Time 10.463 – –

We can also test the accuracy of results on tail probabilities of GMDB net liability against
those resulting from a Monte Carlo method. Take the case of λ = 1 for example in Table 2.
For the Monte Carlo method, we first employ an acceptance–rejection method to generate
policyholders’ remaining lifetimes from the Gompertiz–Makeham law of mortality in (37). In
each experiment, we simulate N sample paths of the equity index based on the exponential
Levy model from the beginning to policyholders’ times of death. Under each sample path, we
determine the GMDB net liability by the Riemann sum corresponding to (34) with a step size of
0.01. The GMDB payment is assumed to be payable at the end of the time step upon death. The
tail probabilities P(L > 0.2),P(L > 0.4),P(L > 0.6) are estimated respectively by the number
of sample paths under which the GMDB net liability surpasses the thresholds 0.2, 0.4, 0.6,
respectively, divided by the total number of sample paths N . In Table 2, we report tail probability
results from both analytic formulas and estimates from Monte Carlo simulations. Computing
time is reported in seconds. All algorithms based on the Monte Carlo method are implemented
in Matlab (version 2016a) whereas results from analytic formulas are obtained in Maple (version
2016.1). In addition, each Monte Carlo result is the mean of estimates from 20 independent
experiments and the corresponding sample standard deviation is quoted in brackets. Observe
that Monte Carlo simulations are very time consuming to reach accuracy up to three decimal
places. Therefore, it is worthwhile performing the above analysis to develop analytical formulas,
as they are in general much more efficient and more accurate than Monte Carlo simulations.

Owing to the analytical formulas developed in this paper, the computational algorithm for tail
probability is very efficient, enabling us to plot the tail probability function. The visualization
of tail probabilities allows us to develop an understanding of the impact of jumps to the overall
riskiness of insurer’s liability. For example, we plot tail probability functions of the GMDB rider
under the GBM model and the Kou models. In Fig. 3, the blue line represents the tail probability
function under the GBM model whereas the red line and green line represent the tail probability
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(a) All positive liabilities. (b) Extremely large liabilities.

Fig. 3. Tail probability of GMDB net liability. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

function under the Kou models with parameter sets A and B respectively. The horizontal axis
shows the level of net liability as a percentage of initial purchase payment and the vertical
axis measures the corresponding tail probability. Fig. 3(a) appears to indicate that the models
with jumps tend to result in smaller probability of losses (positive net liability), which may be
counterintuitive. This is likely caused by the fact that parameter sets A and B for the Kou models
introduce smaller volatilities of white noise than that in the GBM model, which implies that
larger probability masses are concentrated around negative net liabilities (profits for the insurer).
The presence of jumps appears to play a role for generating extremely large liabilities, as shown
in Fig. 3(b). The tail probability in the Kou model with large jumps, represented by the green
line, has a fatter tail than that in the GBM model, represented by blue line. The tail probability
in the Kou model with smaller jumps, represented by the red line, also has a fatter tail, although
to a less extent than the Kou model with large jumps. This is not surprising, as the equity index
in Kou models with jumps can drop faster than the GBM can, thereby leading to severe losses
for the insurer in extreme cases. This experiment shows that Kou models tend to produce more
conservative estimates of insurer’s net liabilities at the far right tail than the standard GBM model
used in practice.

Next we illustrate the computation of risk measures for the GMDB net liability. The CTE0.9
risk measure is commonly used to determine risk-based capitals for variable annuity guarantee
products in the US. First we use the expression in (38) to determine tail probability of GMDB
net liability for various levels and then employ a bisection root search algorithm to determine the
exact quantiles. The algorithm terminates when the search interval narrows down to a width less
than 10−7. Then all results in Table 3 are rounded to nearest sixth decimal place. Then the VaR
results are fed into the algorithm for determining the CTE based on the expression (39). Note
that in Table 3 both quantile and CTE risk measures at confidence levels p = 0.85, 0.9, 0.95 for
the model with parameter set A are larger than those in the model with parameter set B, which is
consistent with the observation in Fig. 3(a) that tail probability for the model with parameter set
A (red line) tends to dominate that for the model with parameter set B (green line). However, if
we move to the far right tail, the quantile and CTE risk measures at p = 0.9999 for the model
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Table 3
Risk measures for the GMDB net liability.

VaR0.85 VaR0.9 VaR0.95 VaR0.9999

Parameter set A 0.069344 0.187615 0.349984 0.868025
Parameter set B 0.038537 0.132969 0.266704 0.967712

CTE0.85 CTE0.9 CTE0.95 CTE0.9999

Parameter set A 0.295863 0.380809 0.498331 0.890319
Parameter set B 0.226736 0.298245 0.401757 0.983389

with parameter set A become less than those for the model with parameter set B, confirmed by
the reversed dominance in Fig. 3(b). Again the comparison of risk measures show that infrequent
occurrence of large jumps only increases the tail probability at extremely high levels of liabilities
whereas frequent occurrence of small jumps may significantly increase the tail probability at
more modest levels of liabilities, which are often of interest to insurance applications.
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Appendix. Meijer G-function and hypergeometric functions

In this section we define Meijer G-functions and hypergeometric functions and discuss some
of their properties. We begin with four non-negative integers m, n, p and q and two vectors
a = (a1, . . . , ap) ∈ Cp and b = (b1, . . . , bq ) ∈ Cq and define for 0 ≤ m ≤ q, 0 ≤ n ≤ p,

Gmn
pq

(a
b

⏐⏐⏐s) :=

∏m
j=1 Γ (b j + s)

∏n
j=1 Γ (1 − a j − s)∏q

j=m+1 Γ (1 − b j − s)
∏p

j=n+1 Γ (a j + s)
. (A.1)

We denote

b(m) := min
1≤ j≤m

Re(b j ), ā(n) := max
1≤ j≤n

Re(a j ), (A.2)

and we set b(0) = +∞ and ā(0) = −∞. When the parameters m, n, a and b are fixed we will
write simply b = b(m) and ā = ā(n).

Definition 3. Assume that parameters m, n, p, q, a and b satisfy the following two conditions

Condition A: ā − 1 < b (A.3)

Condition B: p + q < 2m + 2n. (A.4)

We define the Meijer G-function as follows

Gmn
pq

(a
b

⏐⏐⏐x)
:=

1
2π i

∫
λ+iR

Gmn
pq

(a
b

⏐⏐⏐s)x−sds, (A.5)

where x > 0 and λ ∈ (−b, 1 − ā).
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Let us explain why the Meijer G-function is well-defined. The condition (A.3) is needed
because it separates the poles of Γ (b j + s) from the poles of Γ (1 − a j − s) in the numerator
in (A.1), thus the function s ↦→ Gmn

pq (a,b|s) is analytic in the strip −b < Re(s) < 1 − ā.
Condition (A.4) and Stirling’s asymptotic formula for the Gamma function ensure that the
integrand in (A.5) converges to zero exponentially fast as Im(s) → ∞, and it is easy to check
that (A.5) defines the Meijer G-function as an analytic function in a sector |arg(z)| < (m + n −

(p + q)/2)π .

Remark 5. Our definition of Meijer G-function is sufficient for our purposes, but it is not the
most general possible. One could relax conditions (A.3) and (A.4) by appropriately deforming
the contour of integration in (A.5) . See Chapter 8.2 in Prudnikov et al. [25] for more details.

The hypergeometric function is defined as

p Fq

(a1, . . . , ap

b1, . . . , bq

⏐⏐⏐z) :=

∑
k≥0

(a1)k . . . (ap)k

(b1)k . . . (bq )k
×

zk

k!
, (A.6)

where (a)k := Γ (a+k)/Γ (a) is the Pochhammer symbol. We will also work with the regularized
hypergeometric function

pΦq

(a1, . . . , ap

b1, . . . , bq

⏐⏐⏐z) = Γ
[a1, . . . , ap

b1, . . . , bq

]
p Fq

(a1, . . . , ap

b1, . . . , bq

⏐⏐⏐z). (A.7)

We record here some properties of Meijer G-function, which were used elsewhere in this
paper. These properties and many other results on Meijer G-functions can be found in Gradshteyn
and Ryzhik [11]. In Chapter 8.4 in Prudnikov et al. [25] one can find an extensive collection of
formulas expressing various special functions in terms of Meijer G-functions.

(i)

xcGmn
pq

(a
b

⏐⏐⏐x)
= Gmn

pq

(a + c
b + c

⏐⏐⏐x)
. (A.8)

(ii)

Gmn
pq

(a
b

⏐⏐⏐x)
= Gnm

qp

(1 − b
1 − a

⏐⏐⏐x−1
)
. (A.9)

(iii) For any ϵ > 0

Gmn
pq

(a
b

⏐⏐⏐x)
=

{
O(xb−ϵ), as x → 0+,

O(x ā−1+ϵ), as x → +∞.
(A.10)

(iv) Assume that b j − bk ̸∈ Z for 1 ≤ j < k ≤ m. If p < q or p = q and |x | < 1 we have

Gmn
pq

(a
b

⏐⏐⏐x)
=

m∑
k=1

∏
1≤ j≤m

j ̸=k
Γ (b j − bk)

∏n
j=1 Γ (1 + bk − a j )∏q

j=m+1 Γ (1 + bk − b j )
∏p

j=n+1 Γ (a j − bk)
(A.11)

× xbk
p Fq−1

( 1 + bk − a1, . . . , 1 + bk − ap

1 + bk − b1, . . . , ∗, . . . , 1 + bk − bq

⏐⏐⏐(−1)p−m−n x
)
,

where the asterisk in the function p Fq−1 denotes the omission of the kth parameter. If
p > q or p = q and |x | > 1, the corresponding representation of Meijer G-function in
terms of q Fp−1 functions can be obtained using (A.9) and (A.11).
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(v) If one of the parameters a j (for j = 1, 2, . . . , n) coincides with one of the parameters b j

(for j = m + 1,m + 2, . . . , q), the order of the G-function decreases. For example

Gmn
pq

( a1, . . . , ap

b1, . . . , bq−1, a1

⏐⏐⏐x)
= Gm,n−1

p−1,q−1

( a2, . . . , ap

b1, . . . , bq−1

⏐⏐⏐x)
. (A.12)

An analogous relationship occurs when one of the parameters b j (for j = 1, 2, . . . ,m)
coincides with one of the parameters a j (for j = n + 1, . . . , p). In this case, it is m and
not n that decreases by one unit.

Gmn
pq

( a1, . . . , ap

ap, b2 · · · , bq

⏐⏐⏐x)
= Gm−1n

p−1,q−1

(a1, . . . , ap−1
b1, . . . , bq−1

⏐⏐⏐x)
. (A.13)

(vi) ∫
∞

1
xα−1Gmn

pq

(a
b

⏐⏐⏐zx
)

dx = Gm+1,n
p+1,q+1

(a, 1 − α

−α,b

⏐⏐⏐z). (A.14)

(vii) For p ≤ q and Re(α) > 0,∫ 1

0
xα−1

p Fq

(a1, . . . , ap

b1, . . . , bq

⏐⏐⏐zx
)

dx = α−1
× p+1 Fq+1

(
α, a1, . . . , ap

α + 1, b1, . . . , bq

⏐⏐⏐z). (A.15)
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