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Abstract

In this note we consider differential equations driven by a signal x which is γ -Hölder with γ > 1
3 , and

is assumed to possess a lift as a rough path. Our main point is to obtain existence of solutions when the
coefficients of the equation behave like power functions of the form |ξ |κ with κ ∈ (0, 1). Two different
methods are used in order to construct solutions: (i) In a 1-d setting, we resort to a rough version of
Lamperti’s transform. (ii) For multidimensional situations, we quantify some improved regularity estimates
when the solution approaches the origin.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction 1

This article is concerned with the following Rm-valued integral equation: 2

yt = a +

d∑
j=1

∫ t

0
σ j (ys)dx j

s , t ∈ [0, T ] (1) 3

where x : [0, T ] → Rd is a noisy function in the Hölder space Cγ ([0, T ];Rd ) with γ > 1
3 , 4

a ∈ Rm is the initial value and σ j are vector fields on Rm . We shall resort to rough path 5
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techniques in order to make sense of the noisy integral in Eq. (1), and we refer to [4,5] for1

further details on the rough path theory. Our main goal is to understand how to define solutions2

to (1) when the coefficients σ j behave like power functions.3

Indeed, the rough path theory allows to consider very general noisy signals x as drivers4

of Eq. (1), but it requires heavy regularity assumptions on the coefficients σ j in order to get5

existence and uniqueness of solutions. More specifically, given the regularity of the coefficient6

σ , a minimal sufficient regularity of the driving signal that guarantees existence and uniqueness7

of the solution is provided in [4]. However, for differential equations driven by Brownian motion8

(which means in particular that x ∈ C 1
2 −) the condition amounts to the coefficient being twice9

differentiable. This is obviously far from being optimal with respect to the classical stochastic10

calculus approach for Brownian motion.11

One of the current challenges in rough path analysis is thus to improve the regularity12

conditions on the coefficients of (1), and still get solutions to the differential system at stake.13

Among the irregular coefficients which can be thought of, power type functions of the form14

σ j (ξ ) = |ξ |κ with κ ∈ (0, 1) play a special role. On the one hand these coefficients are related15

to classical population dynamics models (see e.g [2] for a review), which make them interesting16

in their own right. On the other hand, the fact that these coefficients vanish at the origin grant17

them some special properties which can be exploited in order to construct Hölder-continuous18

solutions. Roughly speaking, Eq. (1) behaves like a noiseless equation when y approaches 0, and19

one expects existence of a γ -Hölder solution whenever γ + κ > 1. This heuristic argument is20

explained at length in the introduction of [8], and the current contribution can be seen as the first21

implementation of such an idea in a genuinely rough context.22

Let us now recall some of the results obtained for equations driven by a Brownian motion B.23

For power type coefficients, most of the results concern one dimensional cases of the form:24

yt = a +

∫ t

0
σ (ys)d Bs, t ∈ [0, T ]. (2)25

The classical result [14, Theorem 2] involves stochastic integrals in the Itô sense, and gives26

existence and uniqueness for σ (ξ ) = |ξ |κ with κ ≥
1
2 . However, the rough path setting is27

more related to Stratonovich type integrals in the Brownian case. We thus refer the interested28

reader to the comprehensive study performed in [1], which studies singular stochastic differential29

equations and classifies them according to the nature of their solution. Comparing Eq. (2)30

interpreted in the Stratonovich sense with the systems analyzed in [1], their results can be read31

as follows: if σ (ξ ) = |ξ |κ with κ ≥
1
2 and the solution of (2) starts at a non-negative location,32

then it reaches zero almost surely. In addition, among solutions with vanishing local time at 0,33

there is a non-negative solution which is unique in law. However, in general we do not have34

uniqueness. The results we will obtain for a general rough path are not as sharp, but are at least35

compatible with the Brownian case. Let us also mention the works [11,12], where the authors36

study existence and uniqueness of solutions in the context of stochastic heat equations with space37

time white noise and power type coefficients.38

As far as power type equations driven by general noisy signals x are concerned, we are only39

aware of the article [8] exploring Eq. (1) in the Young case γ > 1/2. The current contribution40

has thus to be seen as a generalization of [8], allowing to cope with γ -Hölder signals x with41

γ ∈ (1/3, 1/2]. Notice that we have restricted our analysis to γ > 1/3 in order to keep our42

computations to a reasonable size. However, we believe that our techniques can be adopted to43

obtain similar results when γ < 1/3, at the price of higher order rough path type expansions. As44

we will see, it turns out that when κ + γ > 1 Eq. (1) is well defined and yields a solution. More45
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specifically, we shall obtain the following theorem in the 1-dimensional case (see Theorem 3.9 1

for a more precise and general formulation). 2

Theorem 1.1. Consider a 1-dimensional signal x ∈ Cγ , with γ ∈ (1/3, 1/2]. Let σ be the 3

power function given by σ (ξ ) = |ξ |κ and φ be the function defined by φ(ξ ) =
∫ ξ

0
ds
σ (s) . Assume 4

γ ∈
( 1

3 ,
1
2

]
and κ + γ > 1. Then the function y = φ−1(x + φ(a)) is a solution of the equation 5

yt = a +

∫ t

0
σ (ys)dxs, t ≥ 0. 6

In the multidimensional case under a slightly increased regularity assumption on x , namely 7

x ∈ Cγ+([0, T ]) as well as a roughness assumption (see Hypothesis 4.10 for precise statement), 8

the following theorem holds under a few power type hypotheses on σ and its derivatives. 9

Theorem 1.2. Consider a d-dimensional signal x ∈ Cγ+ with γ ∈ (1/3, 1/2], giving raise to 10

a rough path. Assume κ + γ > 1, and that σ (ξ ) behaves like a power coefficient |ξ |κ near the 11

origin. Then there exist a continuous function y defined on [0, T ] and an instant τ ≤ T , such 12

that one of the following two possibilities holds: 13

(A) τ = T : y is non-zero on [0, T ], y ∈ Cγ ([0, T ];Rm) and y solves Eq. (22) on [0, T ]. 14

(B) τ < T : the path y sits in Cγ ([0, T ];Rm) and y solves Eq. (22) on [0, T ]. Furthermore, 15

ys ̸= 0 on [0, τ ), limt→τ yt = 0 and yt = 0 on the interval [τ, T ]. 16

As mentioned above, Theorems 1.1 and 1.2 are the first existence results for power type 17

coefficients in a truly rough context. As in [8], their proofs mainly hinge on a quantification of 18

the regularity gain of the solution y when it approaches the origin. We should mention however 19

that this quantification requires a significant amount of effort in the rough case. Indeed we resort 20

to some discrete type expansions, whose analysis is based on precise estimates inspired by the 21

numerical analysis of rough differential equations (see e.g. [9]). 22

Having stated the key results, we now describe the outline of this article. In Section 2, a short 23

account of the necessary notions of rough path theory is provided. Section 3.1 deals with a few 24

hypotheses we assume on the coefficient σ , all of which are satisfied by the power type coefficient 25

|ξ |κ . Section 3.2 proves the existence of a solution in the one-dimensional case. In Section 4 we 26

proceed by considering a few stopping times and quantify the regularity gain mentioned above 27

of the solution when it hits 0. We achieve this through discretization techniques as employed in 28

Proposition 4.5. Finally we show Hölder continuity of our solution. 29

Notations. The following notations are used in this article: 30

1. For an arbitrary real T > 0, let Sk([0, T ]) be the kth order simplex defined by Sk([0, T ]) = 31

{(s1, . . . , sk) : 0 ≤ s1 ≤ · · · ≤ sk ≤ T }. 32

2. For quantities a and b, let a ≲ b denote the existence of a constant c such that a ≤ cb. 33

3. For an element z in the functional space R, let N [z;R] denote the corresponding norm of 34

z in R. 35

2. Rough path notions 36

The following is a short account of the rough path notions used in this article, mostly taken 37

from [5]. We review the notion of controlled process as well as their integrals with respect to a 38

rough path. We shall also give a version of an Itô-Stratonovich change of variable formula under 39

reduced regularity condition. 40
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2.1. Increments1

For a vector space V and an integer k ≥ 1, let Ck(V ) be the set of functions g : Sk([0, T ]) →2

V such that gt1···tk = 0 whenever ti = ti+1 for some i ≤ k − 1. Such a function will be called a3

(k − 1)-increment, and we set C∗(V ) = ∪k≥1Ck(V ). Then the operator δ : Ck(V ) → Ck+1(V ) is4

defined as follows5

δgt1···tk+1
=

k+1∑
i=1

(−1)k−i gt1···t̂i ···tk+1
(3)6

where t̂i means that this particular argument is omitted. It is easily verified that δδ = 0 when7

considered as an operator from Ck(V ) to Ck+2(V ).8

The sizes of these k-increments are measured by Hölder norms defined in the following way:9

for f ∈ C2(V ) and µ > 0 let10

∥ f ∥µ = sup
(s,t)∈S2([0,T ])

∥ fst∥

|t − s|µ
and Cµ2 (V ) = { f ∈ C2(V ); ∥ f ∥µ < ∞}. (4)11

The usual Hölder space Cµ1 (V ) will be determined in the following way: for a continuous function12

g ∈ C1(V ), we simply set13

∥g∥µ = ∥δg∥µ14

and we will say that g ∈ Cµ1 (V ) iff ∥g∥µ is finite.15

Remark 2.1. Notice that ∥ · ∥µ is only a semi-norm on C1(V ), but we will generally work on16

spaces for which the initial value of the function is fixed.17

We shall also need to measure the regularity of increments in C3(V ). To this aim, similarly to18

(4), we introduce the following norm for h ∈ C3(V ):19

∥h∥µ = sup
(s,u,t)∈S3([0,T ])

|hsut |

|t − s|µ
. (5)20

Then the µ-Hölder continuous increments in C3(V ) are defined as:21

Cµ3 (V ) := {h ∈ C3(V ); ∥h∥µ < ∞}.22

Notice that the ratio in (5) could have been written as |hsut |
|t−u|

µ1 |u−s|µ2 with µ1 +µ2 = µ, in order to23

stress the dependence on u of our increment h. However, expression (5) is simpler and captures24

the regularities we need, since we are working on the simplex S3.25

The building block of the rough path theory is the so-called sewing map lemma. We recall26

this fundamental result here for further use.27

Proposition 2.2. Let h ∈ Cµ3 (V ) for µ > 1 be such that δh = 0. Then there exists a unique28

g = Λ(h) ∈ Cµ2 (V ) such that δg = h. Furthermore for such an h, the following relations hold29

true:30

δΛ(h) = h and ∥Λh∥µ ≤
1

2µ − 2
∥h∥µ.31

2.2. Elementary computations in C2 and C332

Consider V = R, and let Cγk for Cγk (R). Then (C∗, δ) can be endowed with the following33

product: for g ∈ Cn and h ∈ Cm we let gh be the element of Cm+n−1 defined by34
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(gh)t1,...,tm+n−1 = gt1,...,tn htn ,...,tm+n−1 , (t1, . . . , tm+n−1) ∈ Sm+n−1([0, T ]). 1

We now label a rule for discrete differentiation of products for further use throughout the article. 2

Its proof is an elementary application of the definition (3), and is omitted for sake of conciseness. 3

Proposition 2.3. The following rule holds true: Let g ∈ C1 and h ∈ C2. Then gh ∈ C2 and 4

δ(gh) = δg h − g δh. 5

The iterated integrals of smooth functions on [0, T ] are particular cases of elements of C2, 6

which will be of interest. Specifically, for smooth real-valued functions f and g, let us denote 7∫
f dg by I( f dg) and consider it as an element of C2: for (s, t) ∈ S2 ([0, T ]) we set 8

Ist ( f dg) =

(∫
f dg

)
st

=

∫ t

s
fudgu . 9

2.3. Weakly controlled processes 10

One of our basic assumptions on the driving process x of Eq. (1) is that it gives raise to a 11

geometric rough path. This assumption can be summarized as follows. 12

Hypothesis 2.4. The path x : [0, T ] → Rd belongs to the Hölder space Cγ ([0, T ];Rd ) with 13

γ ∈
( 1

3 ,
1
2

]
and x0 = 0. In addition x admits a Lévy area above itself, that is, there exists a two 14

index map x2
: S2 ([0, T ]) → Rd,d which belongs to C2γ

2 (Rd,d ) and such that 15

δx2;i j
sut = δx i

su ⊗ δx j
ut , and x2;i j

st + x2; j i
st = δx i

st ⊗ δx j
st . 16

The γ -Hölder norm of x is denoted by: 17

∥x∥γ = N (x; Cγ1 ([0, T ],Rd )) + N (x2
; C2γ

2 ([0, T ],Rd,d )). 18

Preparing the ground for the upcoming change of variable formula in Proposition 2.9, we now 19

define the notion weakly controlled process as a slight variation of the usual one. 20

Definition 2.5. Let z be a process in Cγ1 (Rn) with 1/3 < γ ≤ 1/2 and consider η > γ . We say 21

that z is weakly controlled by x with a remainder of order η if δz ∈ Cγ2 (Rn) can be decomposed 22

into 23

δzi
= ζ i i1δx i1 + r i , i.e. δzi

st = ζ i i1
s δx i1

st + r i
st 24

for all (s, t) ∈ S2 ([0, T ]). In the previous formula we assume ζ ∈ Cη−γ1 (Rn,d ) and r is a more 25

regular remainder such that r ∈ Cη2 (Rn). The space of weakly controlled paths will be denoted 26

by Qγ,η(Rn) and a process z ∈ Qγ,η(Rn) can be considered as a couple (z, ζ ). The natural 27

semi-norm on Qγ,η(Rn) is given by 28

N [z;Qγ,η(Rn)] = N [z; Cγ1 (Rn)] + N [ζ ; C∞

1 (Rn,d )] 29

+N [ζ ; Cη−γ1 (Rn,d )] + N [r; Cη2 (Rn)]. 30

Let Lipn+λ denote the space of n-times differential functions with λ-Hölder nth derivative, 31

endowed with the norm: 32

∥ f ∥n,λ = ∥ f ∥∞ +

n∑
k=1

∥∂k f ∥∞ + ∥∂n f ∥λ. 33
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The following gives a composition rule which asserts that our rough path x composed with a1

Lip1+λ function is weakly controlled.2

Proposition 2.6. Let f : Rd
→ Rn be a Lip1+λ function and set z = f (x). Then z ∈ Qγ,σ (Rn)3

with σ = γ (λ + 1), where Qγ,σ (Rn) is introduced in Definition 2.5, and it can be decomposed4

into δz = ζ δx + r , with5

ζ i i1 = ∂i1 fi (x) and r i
= δ fi (x) − ∂i1 fi (x)δx i1

st .6

Furthermore, the norm of z as a controlled process can be bounded as follows:7

N [z;Qγ,σ ] ≤ K∥ f ∥1,λ(1 + N 1+λ[x; Cγ1 (Rd )]),8

where K is a positive constant.9

Proof. The algebraic part of the assertion is straightforward. Just write10

δzst = f (xt ) − f (xs) = ∂i1 f (xs)δx i1
st + rst .11

The estimate of N [z;Qγ,σ ] is obtained from the estimates of N [z; Cγ1 (Rn)], N [ζ ; C∞

1 (Rn,d )],12

N [ζ ; Cσ−γ

1 (Rn,d )] and N [r; Cσ2 (Rn)]. The details are similar to [5, Appendix] and left to the13

patient reader. □14

More generally, we also need to specify the composition of a controlled process with a Lip1+λ
15

function. The proof of this proposition is similar to Proposition 2.6 and omitted for sake of16

conciseness.17

Proposition 2.7. Let z ∈ Qγ,σ (Rn) with decomposition δz = ζ̃ δx + r̃ and g : Rn
→ Rm be a18

Lip1+λ function. Set w = g(x). Thenw ∈ Qγ,σ (Rm) with σ = γ (λ+1) and it can be decomposed19

into δw = ζ δx + r , with20

ζ i i1 = ∂i2 fi (x)ζ̃ i2,i1 .21

The class of weakly controlled paths provides a natural and basic set of functions which can22

be integrated with respect to a rough path. The basic proposition in this direction, whose proof23

can be found in [5], is summarized below.24

Theorem 2.8. For 1/3 < γ ≤ 1/2, let x be a process satisfying Hypothesis 2.4. Furthermore25

let m ∈ Qγ,η(Rd ) with η + γ > 1, whose decomposition is given by m0 = b ∈ Rd and26

δmi
= µi i1δx i1 + r i where µ ∈ Cη−γ1 (Rd,d ), r ∈ Cη2 (Rn).27

Define z by z0 = a ∈ Rd and28

δz = miδx i
+ µi i1x2;i1i

− Λ(r iδx i
+ δµi i1x2;i1i ).29

Finally, set30

Ist (mdx) =

∫ t

s
⟨mu, dxu⟩Rd := δzst .31

Then this integral extends Young integration and coincides with the Riemann–Stieltjes integral32

of m with respect to x whenever these two functions are smooth. Furthermore, Ist (mdx) is the33

limit of modified Riemann sums:34

Ist (mdx) = lim
|Πst |→0

n−1∑
q=0

[mi
tq δx i

tq tq+1
+ µ

i i1
tq x2;i1i

tq tq+1 ],35
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for any 0 ≤ s < t ≤ T , where the limit is taken over all partitions Πst = {s = t0, . . . , tn = t} of 1

[s, t], as the mesh of the partition goes to zero. 2

2.4. Itô-Stratonovich formula 3

We now state a change of variable formula for a function g(x) of a rough path, under minimal 4

assumptions on the regularity of g. To the best of our knowledge, this proposition cannot be 5

found in literature, and therefore a short and elementary proof is included. The techniques of this 6

proof will prove to be useful for the study of our system (1) in the one-dimensional case. 7

Proposition 2.9. Let x satisfy Hypothesis 2.4. Let g be a Lip2+λ function such that (λ+2)γ > 1. 8

Then 9

[δ(g(x))]st = Ist (∇g(x)dx) =

∫ t

s
⟨∇g(xu), dxu⟩Rd , (6) 10

where the integral above has to be understood in the sense of Theorem 2.8. 11

Proof. Consider a partition Πst = {s = t0 < · · · tn = t} of [s, t]. The following identity holds
trivially:

g(xt ) − g(xs) =

n−1∑
q=0

[
g(xtq+1 ) − g(xtq )

]

=

n−1∑
q=0

⎡⎣∑
i

∂i g(xtq )δx i
tq tq+1

+
1
2

∑
i1,i2

∂2
i1i2

g(xtq )δx i1
tq tq+1δx i2

tq tq+1 + rtq tq+1

⎤⎦ (7)

where 12

rtq tq+1 = g(tq+1) − g(tq ) −

∑
i

∂i g(xtq )δx i
tq tq+1

−
1
2

∑
i1,i2

∂2
i1i2

g(xtq )δx i1
tq tq+1δx i2

tq tq+1 . 13

Furthermore, an elementary Taylor type argument shows that for all i1, i2 there exists an element
ξ

q
i1i2

of [xtq , xtq+1 ] such that

rtq tq+1 =
1
2

∑
i1,i2

∂2
i1i2

g(ξ q
i1i2

)δx i1
tq tq+1δx i2

tq tq+1 −
1
2

∑
i1,i2

∂2
i1i2

g(xtq )δx i1
tq tq+1δx i2

tq tq+1

=
1
2

∑
i1,i2

(
∂2

i1i2
g(ξ q

i1i2
) − ∂2

i1i2
g(xtq )

)
δx i1

tq tq+1δx i2
tq tq+1 .

We now invoke the fact that g ∈ Lip2+λ in order to get 14⏐⏐⏐rtq tq+1

⏐⏐⏐ ≤ C |tq − tq+1|
(2+λ)γ , 15

where C is a constant depending on g and x . Thus, since (λ+ 2)γ > 1, it is easily seen that 16

lim
|Πst |→0

n−1∑
q=0

rtq tq+1 = 0. (8) 17

In addition, using Hypothesis 2.4 and continuity of the partial derivatives, we can write 18

1
2

∑
i1,i2

∂2
i1i2

g(xtq )δx i1
tq tq+1δx i2

tq tq+1 =

∑
i1,i2

∂2
i1i2

g(xtq )x2;i1i2
tq tq+1 . (9) 19
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Plugging (8) and (9) into (7) we get1

g(xt ) − g(xs) = lim
|Πst |→0

n−1∑
q=0

∂i g(xtq )δx i
tq tq+1

+

n−1∑
q=0

∂2
i1i2

g(xtq )x2;i1i2
tq tq+1 , (10)2

for all (s, t) ∈ S2 ([0, T ]).3

On the other hand looking at the decomposition of ∇g(x) as a weakly controlled process and4

using Proposition 2.6 we obtain:5

δ [∇g(x)]i
st = δ∂i g(x)st = ∂2

i1i g(xs)δx i1
st + Ri

st ,6

where R lies in C(1+λ)γ
2 . Then using the Riemann sum representation (2.8) of rough integrals, we7

have8

Ist (∇g(x)dx) = lim
|Πst |→0

⎡⎣n−1∑
q=0

∂i g(xtq )δx i
tq tq+1

+

n−1∑
q=0

∂2
i1i2

g(xtq )x2;i1i2
tq tq+1

⎤⎦ .9

Comparing the above formula with (10) proves the result. □10

3. Differential equations: setting and one-dimensional case11

In this section we will give the general formulation and assumptions for Eq. (1). Then we state12

an existence result in dimension 1, which follows quickly from our preliminary considerations13

in Section 2.14

3.1. Setting15

Recall that we are considering the following rough differential equation:16

yt = a +

d∑
j=1

∫ t

0
σ j (ys)dx j

s , (11)17

where x satisfies Hypothesis 2.4 and σ 1, . . . , σ d are vector fields on Rm . In this section we will18

specify some general assumptions on the coefficient σ , which will prevail for the remainder of19

the article.20

Let us start with a regularity assumption on σ :21

Hypothesis 3.1. Let κ > 0 be a constant such that γ + κ > 1, where γ is introduced in22

Hypothesis 2.4. We assume that σ (0) = 0, and that the following two conditions are valid:23

(i) For all ξ1, ξ2 ∈ Rm we have the following:24

|σ (ξ1) − σ (ξ2)| ≲ |ξ1 − ξ2|
κ , (12)25

(ii) Consider the function Ψ = Dσ ·σ defined on Rm . For all ξ1, ξ2 ∈ Rm such that 1
r ≤

|ξ1|

|ξ2|
≤ r26

for a fixed r > 1, there exists a constant NΨ (depending on r , m and κ) satisfying:27

|Ψ (ξ1) − Ψ (ξ2)| ≤ NΨ

⏐⏐⏐⏐ 1
|ξ1|

2(1−κ) +
1

|ξ2|
2(1−κ)

⏐⏐⏐⏐ |ξ1 − ξ2| . (13)28

In addition to above, we assume that outside of a neighborhood of 0, σ behaves like a Lipp
loc29

function with p > 1
γ

. In other words, σ is bounded with bounded two derivatives and the second30

derivative is locally Hölder continuous with order larger than ( 1
γ

− 2).31
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We also need a more specific assumption in dimension 1: 1

Hypothesis 3.2. Whenever m = d = 1, assume σ is positive on R+ and that φ defined by 2

φ(ξ ) =
∫ ξ

0
ds
σ (s) exists. Also consider κ > 0 as in Hypothesis 3.1. Then we assume for all 3

ξ1, ξ2 ∈ R we have 4

|F(ξ1) − F(ξ2)| ≲ |ξ1 − ξ2|
λ, 5

where F stands for the function (Dσ · σ ) ◦ φ−1 and λ =
2κ−1
1−κ

∧ 1. 6

We now give a typical example of a coefficient σ satisfying our standing assumptions. 7

Proposition 3.3. Let χ : R → R+ be a smooth cutoff function such that χ (z) = 1 if |z| ≤
M
2 8

and χ (z) = 0 if |z| ≥ M, for a given M > 0. Assume that σ =
(
σ 1, . . . , σm

)
where each 9

σ i
: Rm

→ R is defined by the κth power of the Euclidean norm: σ i (ξ ) = (
∑

j (ξ
j )2)κ/2χ (|ξ |). 10

Then inequality (13) holds true for all ξ1, ξ2 ∈ Rm such that 1
r ≤

|ξ1|

|ξ2|
≤ r . 11

Proof. We only handle inequality (13) when ξ1, ξ2 are close to 0, which is the relevant case in 12

our situation. We can thus assume that each σ i is of the form σ i (ξ ) = |ξ |κ in the sequel. For 13

notational sake we will set σ̃ (ξ ) = |ξ |κ in the remainder of the proof. 14

Observe that Ψ : Rm
→ Rm defined by Ψ (ξ ) = (Dσ · σ )(ξ ) satisfies Ψ i (ξ ) =∑

kσ
k(ξ )∂kσ

i (ξ ). Consequently,

∇Ψ i j (ξ ) = ∂ jΨ
i (ξ ) = ∂ j

[
m∑

k=1

∂kσ
i (ξ )σ k(ξ )

]

=

m∑
k=1

[(
∂ j∂kσ

i (ξ )
)
σ k(ξ ) +

(
∂kσ

i (ξ )
) (
∂ jσ

k(ξ )
)]
. (14)

The partial derivatives above, when evaluated for σ k(ξ ) = σ̃ (ξ ) = |ξ |κ = (
∑
ξ i 2)κ/2, turn out to 15

be as follows: 16

∂k σ̃ (ξ ) = κ|ξ |κ−2ξk and ∂ j∂k σ̃ (ξ ) = κ(κ − 2)|ξ |κ−4ξ jξk + κ|ξ |κ−21( j=k). 17

Plugging these partial derivatives in the formula obtained in (14), we get 18

∇Ψ i j (ξ ) = 2κ(κ − 1)|ξ |2κ−4ξ j (ξ · 1) + κ|ξ |2(κ−1), (15) 19

where ξ · 1 denotes the inner product of ξ and the vector 1 ∈ Rm . Now we use the multivariate 20

mean value theorem in integral form given by: 21

Ψ (ξ1) − Ψ (ξ2) =

∫ 1

0
∇Ψ (ξt ) · (ξ1 − ξ2) dt, 22

where we have set ξt = (1 − t)ξ2 + tξ1 for t ∈ [0, 1]. From (15) we thus obtain 23

Ψ i (ξ1) − Ψ i (ξ2) =

m∑
j=1

∫ 1

0

(
2κ(κ − 1)|ξt |

2κ−4ξ
j

t (ξt · 1)+ κ|ξt |
2(κ−1)

) (
ξ

j
1 − ξ

j
2

)
dt. 24

Assume wlog that |ξ1| ≤ |ξ2|, which implies by our assumption on ξ1, ξ2 that 1 ≤
|ξ2|

|ξ1|
≤ r . Now

observe

|ξ1|
2(1−κ)

⏐⏐Ψ i (ξ1) − Ψ i (ξ2)
⏐⏐
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= |ξ1|
2(1−κ)

⏐⏐⏐⏐⏐⏐
m∑

j=1

∫ 1

0

(
2κ(κ − 1)|ξt |

2κ−4ξ
j

t (ξt · 1)+ κ|ξt |
2(κ−1)

) (
ξ

j
1 − ξ

j
2

)
dt

⏐⏐⏐⏐⏐⏐
≤

m∑
j=1

∫ 1

0

(
2κ(κ − 1)

⏐⏐⏐⏐ ξt

|ξ1|

⏐⏐⏐⏐2κ−4
⏐⏐⏐⏐⏐ ξ j

t

|ξ1|

⏐⏐⏐⏐⏐
⏐⏐⏐⏐ (ξt · 1)

|ξ1|

⏐⏐⏐⏐+ κ

⏐⏐⏐⏐ ξt

|ξ1|

⏐⏐⏐⏐2(κ−1)
) ⏐⏐⏐ξ j

1 − ξ
j

2

⏐⏐⏐ dt. (16)

Since ξt
|ξ1|

= (1 − t) ξ2
|ξ1|

+ t ξ1
|ξ1|

and 1 ≤
|ξ2|

|ξ1|
≤ r we must have 1 ≤ |

ξt
|ξ1|

| ≤ r . Using this1

information in (16) we get2

|ξ1|
2(1−κ)

⏐⏐Ψ i (ξ1) − Ψ i (ξ2)
⏐⏐ ≲ m∑

j=1

|ξ1 − ξ2| ≲ |ξ1 − ξ2|.3

This yields (13). □4

Remark 3.4. A sufficient condition for σ to satisfy Hypothesis 3.1 is the boundedness of5

|ξ1|
2(1−κ)

|∇Ψ (ξ̃ )| for any ξ̃ such that 1 ≤
|ξ̃ |

|ξ1|
≤ r .6

Remark 3.5. Let χ be defined as in Proposition 3.3. It can be easily shown that perturbations7

of the power function, e.g. σ (ξ ) = (σ 1(ξ ), . . . , σm(ξ )) where each σ j is of the form σ j (ξ ) =8

(|ξ |κ + sin(|ξ |κ ))χ (ξ ), also fall under the purvue of Hypothesis 3.1.9

Finally we add some assumptions on the first and second order derivatives of σ , which will10

be mainly invoked in the proof of Proposition 4.5.11

Hypothesis 3.6. The derivatives of σ satisfy the following: there exists a ℓ0 > 0 such that for all12

ξ with 0 < |ξ | ≤ ℓ0 we have13

|Dσ (ξ )| ≲ |ξ |κ−1 and |D2σ (ξ )| ≲ |ξ |κ−2. (17)14

Remark 3.7. Observe that Hypotheses 3.1 and 3.6 imply: there exists a ℓ0 > 0 such that for all15

ξ with 0 < |ξ | ≤ ℓ0 we have16

|Dσ · σ (ξ )| ≲ |ξ |2κ−1. (18)17

In addition, the reader can check that (17) and (18) are satisfied for σ as in Proposition 3.3.18

Definition 3.8. Let Nα,F be defined as:19

Nα,F := sup
{

|F(ξ )|
|ξ |α

; |ξ | ̸= 0
}
, (19)20

where α = κ if F = σ and α = 2κ − 1 if F = Ψ = (Dσ · σ ).21

3.2. One-dimensional differential equations22

In the one-dimensional case, similarly to what is done for more regular coefficients (See [15]),23

one can prove that a suitable function of x solves Eq. (11). This stems from an application of our24

extension of Itô’s formula (see Proposition 2.9) and is obtained in the following theorem.25

Theorem 3.9. Consider Eq. (11) with m = d = 1, let σ : R → R and assume Hypothesis 3.226

to hold true. Assume γ ∈
( 1

3 ,
1
2

]
and κ + γ > 1. Let φ be the function defined in Hypothesis 3.2.
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Then the function y = φ−1(x + φ(a)) is a solution of the equation 1

yt = a +

∫ t

0
σ (ys)dxs, t ≥ 0. (20) 2

Proof. Let ψ(ξ ) = φ−1(ξ + φ(a)). Due to the definition of φ, some elementary computations 3

show that ψ ′(ξ ) =
1

φ′(φ−1(ξ+φ(a)))
= σ (ψ(ξ )) and thus we are reduced to show 4

δψ(x)st =

∫ t

s
ψ ′(xu)dxu . (21) 5

To this aim, observe that the second derivative of ψ satisfies 6

ψ ′′(ξ ) = Dσ (ψ(ξ ))ψ ′(ξ ) = (Dσ · σ )(ψ(ξ )). 7

Using Hypothesis 3.2, ψ ′′ is thus λ−Hölder continuous where λ =
2κ−1
1−κ

∧ 1, that is, ψ is a 8

Lip2+λ function. Moreover, since κ+γ > 1 and γ ∈
( 1

3 ,
1
2

]
we find (λ+2)γ > 1. Consequently 9

we can invoke Proposition 2.9 and hence we obtain directly (21). The result is now proved. □ 10

Remark 3.10. It is readily checked that the power coefficient σ (ξ ) = |ξ |κ satisfies the conditions 11

of Theorem 3.9, with a function F defined by F(ξ ) = cκ |ξ |λsgn(ξ ) and where the exponent λ is 12

given by λ =
2κ−1
1−κ

. 13

Remark 3.11. If a = 0, we do not have uniqueness of solution since in addition to the solution 14

defined above, y ≡ 0 solves Eq. (20). This is not in contradiction to the results stated in [1] where 15

the authors deal with equations with non-vanishing coefficients. In our case, σ (0) = 0. 16

Remark 3.12. As the reader might see, Theorem 3.9 is an easy consequence of the change of 17

variable formula (6). This is in contrast with the corresponding proof in [8], which relied on a 18

negative moment estimate and non trivial extensions of Young’s integral in the fractional calculus 19

framework. 20

4. Multidimensional differential equations 21

In the multidimensional case, our strategy in order to construct a solution is based (as in [8]) 22

on quantifying an additional smoothness of the solution y as it approaches the origin. However, 23

our computations here are more involved than in [8], due to the fact that we are handling a rough 24

process x . 25

4.1. Prelude 26

In this section, we will introduce a sequence of stopping times, similarly to [8]. We assume 27

that each component σ j
: Rm

→ Rm satisfies Hypothesis 3.1 and we consider the following 28

equation for a fixed a ∈ Rm
\ {0}: 29

yt = a +

d∑
j=1

∫ t

0
σ j (yu) dx j

u , t ∈ [0, T ], (22) 30

where T > 0 is a fixed arbitrary horizon and x = (x, x2) is a γ -rough path above x , as given in 31

Hypothesis 2.4. 32
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Our considerations start from the fact that, as long as we are away from 0, we can solve1

Eq. (22) as a rough path equation with regular coefficients. In particular the following can be2

shown under the above set-up. See [4].3

Theorem 4.1. Assume Hypothesis 3.1 is fulfilled. Then there exist a continuous function y4

defined on [0, T ] and an instant τ ≤ T , such that one of the following two possibilities holds:5

(A) τ = T , y is non-zero on [0, T ], y ∈ Cγ ([0, T ];Rm) and y solves Eq. (22) on [0, T ], where6

the integrals
∫
σ j (yu) dx j

u are understood in the rough path sense.7

(B) We have τ < T . Then for any t < τ , the path y sits in Cγ ([0, t];Rm) and y solves Eq. (22)8

on [0, t]. Furthermore, ys ̸= 0 on [0, τ ), limt→τ yt = 0 and yt = 0 on the interval [τ, T ].9

Option (A) above leads to classical solutions of Eq. (22). In the rest of this section, we will10

assume (B), that is the function y given by Theorem 4.1 vanishes in the interval [τ, T ]. The aim11

of this section is to prove the following:12

• The path y is globally γ -Hölder continuous on [0, T ].13

To achieve this we will require some additional hypotheses on x (See Hypothesis 4.6).14

Quantification of the increased smoothness of the solution as it approaches the origin would15

require a partition of the interval (0, τ ] as follows. Let a j = 2− j and consider the following16

decomposition of R+:17

R+ =

∞⋃
j=−1

I j ,18

where19

I−1 = [1,∞) , and Iq = [aq+1, aq ), q ≥ 0.20

Also consider:21

J−1 = [3/4,∞) , and Jq =

[
aq+2 + aq+1

2
,

aq+1 + aq

2

)
=:
[
âq+1, âq

)
, q ≥ 0.22

Observe that owing to the definition of aq , we have âq =
3

2q+2 . Let q0 be such that a ∈ Iq0 .23

Define λ0 = 0 and24

τ0 = inf{t ≥ 0 : |yt | ̸∈ Iq0}.25

By definition, yτ0 ∈ Jq̂0 with q̂0 ∈ {q0, q0 − 1}. Now define26

λ1 = inf{t ≥ τ0 : |yt | ̸∈ Jq̂0}.27

Thus we get a sequence of stopping times λ0 < τ0 < · · · < λk < τk , such that28

yt ∈

[
b1

2qk
,

b2

2qk

]
, for t ∈ [λk, τk] ∪ [τk, λk+1], (23)29

where b1 =
3
8 , b2 =

3
4 and qk+1 = qk + ℓ, with ℓ ∈ {−1, 0, 1}, for qk ≥ 1. If qk = 0 or qk = 1,30

then we can choose the upper bound b2 as b2 = ∞.31

Remark 4.2. Since this problem relies heavily on radial variables in Rm , we alleviate vectorial32

notations and carry out the computations below for m = d = 1. Generalizations to higher33

dimensions are straight forward.34



SPA: 3321

Please cite this article in press as: P. Chakraborty, S. Tindel, Rough differential equations with power type nonlinearities, Stochastic Processes and
their Applications (2018), https://doi.org/10.1016/j.spa.2018.05.010.

P. Chakraborty, S. Tindel / Stochastic Processes and their Applications xx (xxxx) xxx–xxx 13

4.2. Regularity estimates 1

Let π = {0 = t0 < t1 < · · · < tn−1 < tn = T } be a partition of the interval [0, T ] for n ∈ N. 2

Denote by C2(π ) the collection of functions R on π such that Rtk tk+1 = 0 for k = 0, 1, . . . n − 1. 3

We now introduce some operators on discrete time increments, which are similar to those in 4

Section 2. First, we define the operator δ : C2(π ) → C3(π ) by 5

δRsut = Rst − Rsu − Rut for s, u, t ∈ π. (24) 6

The Hölder seminorms we will consider are similar to those introduced in (4) and (5). Namely, 7

for R ∈ C2(π ) we set 8

∥R∥µ = sup
u,v∈π

Ruv

|u − v|µ
and ∥δR∥µ = sup

s,u,t∈π

|δRsut |

|t − s|µ
. 9

We now state a sewing lemma for discrete increments which is similar to [9, Lemma 2.5]. Its 10

proof is included here for completeness. 11

Lemma 4.3. For µ > 1 and R ∈ C2(π ), we have 12

∥R∥µ ≤ Kµ∥δR∥µ, 13

where Kµ = 2µ
∑

∞

l=1
1

lµ . 14

Proof. Consider some fixed ti , t j ∈ π . Since R ∈ C2(π ) we have
∑ j−1

k=i Rtk tk+1 = 0. Hence, for 15

an arbitrary sequence of partitions {πl; 1 ≤ l ≤ j − i −1}, where each πl is a subset of π∩
[
ti , t j

]
16

with l + 1 elements, we can write (thanks to a trivial telescoping sum argument): 17

Rti t j = Rti t j −

j−1∑
k=i

Rtk tk+1 =

j−i−1∑
l=1

(Rπl − Rπl+1 ), (25) 18

where we have set Rπl =
∑l−1

k=0 Rt l
k t l

k+1
. We now specify the choice of partitions πl recursively: 19

Define π j−i = π ∩ [ti , t j ]. Given a partition πl with l + 1 elements, l = 2, . . . , j − i , we can 20

find t l
kl

∈ πl \ {ti , t j } such that 21

t l
kl+1 − t l

kl−1 ≤
2(t j − ti )

l
. (26) 22

Denote by πl−1 the partition πl \ {t l
kl
}. Owing to (24), we obtain: 23

|Rπl−1 − Rπl | =

⏐⏐⏐⏐δRt l
kl −1t l

kl
t l
kl +1

⏐⏐⏐⏐ ≤ ∥δR∥µ(t l
kl+1 − t l

kl−1)µ ≤ ∥δR∥µ
2µ(t j − ti )µ

lµ
, 24

where the second inequality follows from (26). Now plugging the above estimate in (25) we get 25

⏐⏐Rti t j

⏐⏐ ≤ 2µ(t j − ti )µ∥δR∥µ

j−i−1∑
l=1

1
(l + 1)µ

≤ Kµ(t j − ti )µ∥δR∥µ. 26

By dividing both sides by (ti − t j )µ and taking supremum over ti , t j ∈ π , we obtain the desired 27

estimate. □ 28

Next we define an increment R which is obtained as a remainder in rough path type expansions. 29
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Definition 4.4. Let y and τ be defined as in Theorem 4.1. For (s, t) ∈ S2 ([0, τ ]), let Rst be1

defined by the following decomposition:2

δyst = σ (ys)δx st + (Dσ · σ )(ys)x2
st + Rst . (27)3

The theorem below quantifies the regularity improvement for the solution y of Eq. (22) as it4

gets closer to 0.5

Proposition 4.5. Consider a rough path x satisfying Hypothesis 2.4. Assume σ and (Dσ · σ )6

follow Hypothesis 3.1. Also assume Hypothesis 3.6 holds. Then there exist constants c0,x , c1,x7

and c2,x such that for s, t ∈ [λk, λk+1) satisfying |t − s| ≤ c0,x 2−αqk , with α :=
1−κ
γ

, we have the8

following bounds:9

N
[
y; Cγ1 ([s, t])

]
≤ c1,x 2−κqk (28)10

and11

N
[

R; C3γ
2 ([s, t])

]
≤ c2,x 2(2−3κ)qk . (29)12

Proof. We divide this proof in several steps.13

Step 1: Setting. Consider the dyadic partition on [s, t]. Specifically, we set14

[[s, t]] =

{
ti : ti = s +

i(t − s)
2n

; i = 0, . . . , 2n
}

15

for all n ∈ N. Define yn on [[s, t]] by setting yn
s = ys , and16

δyn
ti ti+1

= σ (yn
ti )δxti ti+1 + (Dσ · σ )(yn

ti )x
2
ti ti+1

.17

We also introduce a discrete type remainder Rn , defined for all (u, v) ∈ S2 ([[s, t]]), as follows:18

Rn
uv = δyn

uv − σ (yn
su)δxuv − (Dσ · σ )(yn

u )x2
uv.19

Since γ > 1/3 and σ is sufficiently smooth away from zero, a second order expansion argument20

(see [4, Section 10.3]) shows that δyn
st converges to δyst .21

Step 2: Induction hypothesis. Recall that we are working in [λk, λk+1). Hence, using (23) we can22

choose n large enough so that23

yn
u ∈

[ a1

2qk
,

a2

2qk

]
for u ∈ [[s, t]], (30)24

where a1 =
2
8 and a2 =

7
8 . In addition, using Hypothesis 3.1, (19) and (30), we also have25

|σ (yn
u )| ≤ Nκ,σ |yn

u |
κ

≤ Nκ,σ

( a2

2qk

)κ
(31)26

as well as:27

|(Dσ · σ )(yn
u )| ≤ N2κ−1,Ψ |yn

u |
2κ−1

≤ N2κ−1,Ψ

( a2

2qk

)2κ−1
. (32)28

We now assume that s and t are close enough, namely for a given constant c0 > 0, we have29

|t − s| ≤ c02−αqk = T0. (33)30

We will proceed by induction on the points of the partition ti . That is, for q ≤ 2n
− 1 we assume31

that Rn satisfies the following relation:32

N [Rn
; C3γ

2 [[s, tq ]]] ≤ c22(2−3κ)qk (34)33
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where c2 is a constant to be fixed later. We will try to propagate this induction assumption to 1

[[s, tq+1]]. 2

Step 3: A priori bounds on yn . For (u, v) ∈ S2
(
[[s, tq ]]

)
we have: 3

δyn
uv = σ (yn

u )δxuv + (Dσ · σ )(yn
u )x2

uv + Rn
uv. (35) 4

Hence, using (31), (32) and our induction assumption (34) we get:

N [yn
; Cγ1 [[s, tq ]]] ≤ Nκ,σ

( a2

2qk

)κ
∥x∥γ + N2κ−1,Ψ

( a2

2qk

)2κ−1
∥x∥γ |tq − s|γ

+ N [Rn
; C3γ

2 [[s, t]]]|tq − s|2γ .

Since |tq − s| ≤ T0 = c02−αqk , we thus have

N [yn
; Cγ1 [[s, tq ]]] ≤ Nκ,σ

( a2

2qk

)κ
∥x∥γ + N2κ−1,Ψ

( a2

2qk

)2κ−1
∥x∥γ

(
c02−αqk

)γ
+ N [Rn

; C3γ
2 [[s, t]]]

(
c02−αqk

)2γ
.

Therefore taking into account the fact that α =
1−κ
γ

and our assumption (34), we obtain: 5

N [yn
; Cγ1 [[s, tq ]]] ≤ c̃ 2−κqk (36) 6

where the constant c̃ is given by: 7

c̃ = Nκ,σaκ2 ∥x∥γ + N2κ−1,Ψa2κ−1
2 cγ0 ∥x∥γ + c2c2γ

0 . (37) 8

Step 4: Induction propagation. Recall that Rn
uv = δyn

uv − σ (yn
su)δxuv − (Dσ · σ )(yn

u )x2
uv . Hence 9

invoking Proposition 2.3 we have: 10

δRn
uvw = An,1

uvw + An,2
uvw + An,3

uvw, (38) 11

with 12

An,1
uvw = −δσ (yn)uvδxvw, An,2

uvw = −δ((Dσ · σ )(yn))uvx2
vw 13

and 14

An,3
uvw = (Dσ · σ )(yn

u )δx2
uvw. 15

We now treat those terms separately. The term An,1
uvw in (38) can be expressed using Taylor 16

expansion, which yields 17

An,1
uvw = −

(
Dσ (yn

u )δyn
uv +

1
2

D2σ (ξ n)
(
δyn

uv

)2
)
δxvw, 18

for some ξ n
∈ [yn

u , yn
v ]. Now, using (35) the above becomes

An,1
uvw = − Dσ (yn

u )
(
σ (yn

u )δxuv + (Dσ · σ )(yn
u )x2

uv + Rn
uv

)
δxvw

−
1
2

D2σ (ξ n)
(
δyn

uv

)2
δxvw

= − (Dσ · σ )(yn
u )δxuvδxvw − Dσ (yn

u )(Dσ · σ )(yn
u )x2

uvδxvw

− Dσ (yn
u )Rn

uvδxvw −
1
2

D2σ (ξ n)(δyn
uv)

2δxvw. (39)
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Due to Hypothesis 2.4, the first term of (39) cancels An,3
uvw in (38). Therefore we end up with:1

An,1
uvw + An,3

uvw = −Dσ (yn
u )(Dσ · σ )(yn

u )x2
uvδxvw2

− Dσ (yn
u )Rn

uvδxvw −
1
2

D2σ (ξ n
w)(δyn

uv)
2δxvw.3

Taking into account (12), (17) and (18) (similarly to what we did for (31)–(32)), as well as4

Hypothesis 2.4 and relation (33) for |t − s|, plus the induction (34) on Rn , we easily get:5

An,1
uvw + An,3

uvw ≤

{(
ã1

2qk

)κ−1( ã2

2qk

)2κ−1

∥x∥
2
γ +

(
ã1

2qk

)κ−1

∥x∥γ T γ

0 N [Rn
; C3γ

2 [[s, tq ]]]6

+
1
2

(
ã1

2qk

)κ−2

∥x∥γN [yn
; Cγ1 [[s, tq ]]]2

}
|w − u|

3γ , (40)7

where we have incorporated the constants on the right hand side of inequalities (17) inside ã18

and that of inequality (18) inside ã2.9

We are now left with the estimation of An,2. To bound this last term we first use inequality (13)10

with r =
7
2 . Taking into account (30), we get11 ⏐⏐An,2

uvw

⏐⏐ ≤ NΨ (|yn
u |

−2(1−κ)
+ |yn

v |
−2(1−κ))|yn

v − yn
u |∥x∥γ |w − v|2γ .12

Invoking (30) again and the definition of N [yn
; Cγ1 [[s, tq ]]], this yields:13 ⏐⏐An,2

uvw

⏐⏐ ≤ NΨ

(
2qk

a1

)2(1−κ)

N [yn
; Cγ1 [[s, tq ]]]|v − u|

γ
∥x∥γ |w − v|2γ .14

Finally using the a priori bound on yn stated in (36) we obtain:15 ⏐⏐An,2
uvw

⏐⏐ ≤ NΨ

(
2qk

a1

)2(1−κ)

c̃2−κqk ∥x∥γ |w − u|
3γ , (41)16

which can be recast as:17 ⏐⏐An,2
uvw

⏐⏐ ≤
NΨ

a2(1−κ)
1

c̃ ∥x∥γ 2(2−3κ)qk |w − u|
3γ . (42)18

We can now plug (40) and (42) back into (38) in order to get:19

N [δRn
; C3γ

3 [[s, tq+1]]] ≤

(
ã1

2qk

)κ−1( ã2

2qk

)2κ−1

∥x∥
2
γ20

+

(
ã1

2qk

)κ−1

∥x∥γ T γ

0 N [Rn
; C3γ

2 [[s, tq ]]]21

+
1
2

(
ã1

2qk

)κ−2

∥x∥γN [yn
; Cγ1 [[s, tq ]]]2

22

+
1

a2(1−κ)
1

NΨ c̃∥x∥γ 2(2−3κ)qk .23

Therefore, thanks to our induction assumption (34) and the a priori bound (36), the above24

becomes25

N [δRn
; C3γ

3 [[s, tq+1]]] ≤ d2(2−3κ)qk26

with27

d =

(
ãκ−1

1 ã2κ−1
2 ∥x∥

2
γ + ãκ−1

1 ∥x∥γ cγ0 c2 +
1
2

ãκ−2
1 c̃2

∥x∥γ +
1

ã2(1−κ)
1

NΨ c̃∥x∥γ

)
. (43)28
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Then using the discrete sewing Lemma 4.3, we obtain 1

N [Rn
; C3γ

2 [[s, tq+1]]] ≤ K3γN [δRn
; C3γ

3 [[s, tq+1]]] ≤ ĉ2(2−3κ)qk , (44) 2

where K3γ =
∑

∞

l=1
1

l3γ and ĉ = d K3γ . 3

Plugging in the value of c̃ from (37) in the expression for d in (43) we find that ĉ can be 4

decomposed as 5

ĉ = d K3γ = (d1,x + d2,x )K3γ , 6

where 7

d1,x =

(
ãκ−1

1 ã2κ−1
2 ∥x∥

2
γ +

1
2

ãκ−2
1 N 2

κ,σa2κ
2 ∥x∥

3
γ +

1

a2(1−κ)
1

NΨNκ,σaκ2 ∥x∥
2
γ

)
8

and d2,x consist of terms containing positive powers of c0, where we recall that c0 is defined 9

by (33). 10

Looking at inequality (44), we need ĉ to be less than c2 in order to complete the induction 11

propagation. Let us now fix c2 =
3
2 d1,x K3γ = c2,x and choose c0 = c0,x small enough so that 12

d2,x <
d1,x

2 . This implies ĉ = d K3γ = (d1,x + d2,x )K3γ <
3
2 d1,x K3γ = c2,x , which is what we 13

required. Our propagation is hence established. 14

Step 5: Conclusion. Completing the iterations over tq in [[s, t]] we get that relation (34) is valid 15

for N [Rn
; C3γ

3 [[s, t]]]. Next, put the values of c0,x and c2,x in c̃ as defined in (36) and call this 16

new value c1,x . We thus get the following uniform bound over n: 17

N [yn
; Cγ1 [[s, t]]] ≤ c1,x 2−κqk . 18

Our claims (29) and (28) are now achieved by taking limits over n. □ 19

In order to further analyze the increments of yn , we need to increase slightly the regularity 20

assumptions on x . This is summarized in the following hypothesis: 21

Hypothesis 4.6. There exists ε1 > 0 such that for γ1 = γ + ε1, we have ∥x∥γ1 < ∞. 22

The extra regularity imposed on x allows us to improve our estimates on remainders (in rough 23

path expansions) in the following way. 24

Proposition 4.7. Let us assume that Hypothesis 4.6 holds, as well as Hypotheses 3.1 and 3.6. 25

For k ≥ 0, consider (s, t) ∈ S2 ([λk, λk+1)) such that |t − s| ≤ c0,x 2−αqk , where c0,x is defined 26

in Proposition 4.5. Then the following second order decomposition for δy is satisfied: 27

δyst = σ (ys) δxst + rst , with |rst | ≤ c3,x 2−κε1 qk |t − s|γ , (45) 28

where we have set κε1 = κ + 2ε1α. 29

Proof. From (27) we have 30

|rst | = |(Dσ · σ )(ys)x2
st + Rst | ≤ |(Dσ · σ )(ys)| |x2

st | + |Rst |. (46) 31

Under the constraints we have imposed on s, t , namely s, t ∈ [λk, λk+1) such that |t − s| ≤ 32

c0,x 2−αqk , and recalling that we have set γ1 = γ + ε1, we have 33

sup
s,t

|x2
st |

|t − s|γ
= sup

s,t

|x2
st |

|t − s|2γ+2ε1
|t − s|γ+2ε1 ≤ sup

s,t

|x2
st |

|t − s|2γ1
sup
s,t

|t − s|γ+2ε1 34

≤ N
[
x2

; C2γ1
2

]
(c0,x 2−αqk )γ+2ε1 (47) 35
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where we have used sups,t to stand for supremum over the set {(s, t) : s, t ∈ [λk, λk+1) and |t −1

s| ≤ c0,x 2−αqk }.2

Note that under Hypothesis 4.6, the quantity ∥x∥γ1 is finite and hence (47) can be read as:3

sup
s,t

|x2
st |

|t − s|γ
≤ ∥x∥γ1cγ+2ε1

0,x 2−α(γ+2ε1)qk . (48)4

Moreover, owing to (29) applied to γ := γ + ε1, and κ as in Hypothesis 3.1, we get5

sup
s,t

|Rst |

|t − s|γ
= sup

s,t

|Rst |

|t − s|3(γ+ε1) |t − s|2γ+3ε1 ≤ sup
s,t

|Rst |

|t − s|3γ1
sup
s,t

|t − s|2γ+3ε16

≤ c̃2,x 2(2−3κ)qk (c0,x 2−αqk )2γ+3ε1 . (49)7

Here we have used the notation c̃2,x to stand for the coefficient c2,x in (29), with ∥x∥γ replaced8

by ∥x∥γ1 . Thus we have9

sup
s,t

|Rst |

|t − s|γ
≤ c̃2,x c2γ+3ε1

0,x 2−(α(2γ+3ε1)+3κ−2)qk . (50)10

Now incorporating (48) and (50) in (46), and recalling that α =
1−κ
γ

, we easily get:

sup
s,t

|rst |

|t − s|γ
≤ N2κ−1,Ψ

(
b2

2qk

)2κ−1

∥x∥γ1cγ+2ε1
0,x 2−α(γ+2ε1)qk

+ c̃2,x c2γ+3ε1
0,x 2−(α(2γ+3ε1)+3κ−2)qk

= N2κ−1,Ψb2κ−1
2 ∥x∥γ1cγ+2ε1

0,x 2−(κ+2ε1α)qk + c̃2,x c2γ+3ε1
0,x 2−(κ+3ε1α)qk .

Collecting terms and recalling that we have set κε1 = κ + 2ε1α, we end up with:11

sup
s,t

|rst |

|t − s|γ
≤ c3,x 2−(κ+2ε1α)qk = c3,x 2−κε1 qk ,12

which is our claim (45). □13

Thanks to our previous efforts, we can now slightly enlarge the interval on which our improved14

regularity estimates hold true:15

Corollary 4.8. Let the assumptions of Proposition 4.7 prevail, and consider 0 < ε1 < 1 − γ as16

in Hypothesis 4.6. Then with α = γ−1(1 − κ), there exist 0 < ε2 < α and a constant c4,x such17

that for all (s, t) ∈ S2 ([λk, λk+1)) satisfying |t − s| ≤ c4,x 2−(α−ε2)qk we have18

|δyst | ≤ c5,x 2−qkκ
−
ε2 |t − s|γ , where κ−

ε2
= κ − (1 − γ )ε2. (51)19

Moreover, under the same conditions on (s, t), decomposition (45) still holds true, with20

|rst | ≤ c6,x 2−qkκε1,ε2 |t − s|γ , where κε1,ε2 = κ + 2αε1 − γ ε2 − 2ε1ε2. (52)21

Proof. We split our computations in 2 steps.22

Step 1: Proof of (51). Start from inequality (28), which is valid for |t − s| ≤ c0,x 2−αqk . Now let23

m ∈ N and consider s, t ∈ [λk, λk+1) such that c0,x (m − 1)2−αqk < |t − s| ≤ c0,x m2−αqk . We24

partition the interval [s, t] by setting t j = s + c0,x j2−αqk for j = 0, . . . ,m − 1 and tm = t . Then25

we simply write26

|δyst | ≤

m−1∑
j=0

|δyt j t j+1 | ≤ c1,x 2−qkκ
m−1∑
j=0

(
t j+1 − t j

)γ
≤ c1,x 2−qkκm1−γ

|t − s|γ ,27
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where the last inequality stems from the fact that t j+1 − t j ≤ (t − s)/m. Now the upper bound 1

(51) is easily deduced by applying the above inequality to a generic m ≤ [2ε2qk ] + 1, where 2

0 < ε2 <
κ

1−γ
. This ensures κ−

ε2
= κ − (1 − γ )ε2 > 0. 3

Step 2: Proof of (52). We proceed as in the proof of Proposition 4.7, but now with a relaxed 4

constraint on (s, t), namely |t − s| ≤ c4,x 2−(α−ε2)qk where ε2 > 0 satisfies: 5

ε2 < min
(

κ

1 − γ
,
ε1α

γ + ε1

)
. (53) 6

The equivalent of relation (49) is thus 7

sup
s,t

|Rst |

|t − s|γ
= sup

s,t

|Rst |

|t − s|3(γ+ε1) |t − s|2γ+3ε1 ≤ sup
s,t

|Rs,t |

|t − s|3γ1
sup
s,t

|t − s|2γ+3ε1 8

≤ c̃2,x 2(2−3κ)qk (c4,x 2−(α−ε2)qk )2γ+3ε1 . (54) 9

As in Proposition 4.7 we have used the notation c̃2,x to stand for the coefficient c2,x with ∥x∥γ 10

replaced by ∥x∥γ1 and sups,t to stand for supremum over the set {(s, t) : s, t ∈ [λk, λk+1) and |t − 11

s| ≤ c4,x 2−(α−ε2)qk }. Collecting the exponents in (54) we thus end up with: 12

sup
s,t

|Rst |

|t − s|γ
≤ c̃2,x c4,x 2−(κ+3ε1α−2ε2γ−3ε1ε2)qk . (55) 13

Similarly to (47), we also get: 14

sup
s,t

|x2
st |

|t − s|γ
= sup

s,t

|x2
st |

|t − s|2γ+2ε1
|t − s|γ+2ε1 ≤ sup

s,t

|x2
st |

|t − s|2γ1
sup
s,t

|t − s|γ+2ε1 15

≤ ∥x∥γ1 (c4,x 2−(α−ε2)qk )γ+2ε1 . (56) 16

Consequently, owing to Hypothesis 3.6, we get the following relation: 17

|(Dσ · σ )(ys)x2
st | ≤ N2κ−1,Ψ

(
b2

2qk

)2κ−1

∥x∥γ1cγ+2ε1
4,x 2−(α−ε2)(γ+2ε1)qk 18

= N2κ−1,Dσ ·σb2κ−1
2 ∥x∥γ1cγ+2ε1

4,x 2−(κ+2ε1α−ε2γ−2ε1ε2)qk . (57) 19

Notice that under the conditions on ε2 in (53), we have κ + 2ε1α − ε2γ − 2ε1ε2 < κ + 3ε1α − 20

2ε2γ − 3ε1ε2. Therefore incorporating (55) and (57) we have: 21

|rst | ≤ |(Dσ · σ )(ys)x2
st | + |Rst | ≲ 2−qkκε1,ε2 |t − s|γ 22

which is our claim (52). □ 23

4.3. Estimates for stopping times 24

Thanks to the previous estimates on improved regularity for the solution y to Eq. (22), we 25

will now get a sharp control on the difference λk+1 − λk . Otherwise stated we shall control the 26

speed at which y might converge to 0, which is the key step in order to control the global Hölder 27

continuity of y. This section is similar to what has been done in [8], and proofs are included for 28

sake of completeness. We start with a lower bound on the difference λk+1 − λk . 29

Proposition 4.9. Assume σ and (Dσ · σ ) follow Hypothesis 3.1. Also assume Hypothesis 3.6 30

holds. Then the sequence of stopping times {λk, k ≥ 1} defined by (23) satisfies 31

λk+1 − λk ≥ c5,x 2−αqk , (58) 32

where we recall that α = (1 − κ)/γ . 33
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Proof. We show that the difference τk − λk satisfies a lower bound of the form1

τk − λk ≥ c6,x 2−αqk . (59)2

There exists a similar bound for λk+1 − τk , and consequently we get our claim (58).3

To arrive at inequality (59) we observe that in order to leave the interval [λk, τk), an increment4

of size at least 2−(qk+1) must occur. This is because at λk the solution lies at the mid point of Iqk ,5

an interval of size 2−qk . Thus, if |δyst | ≥ 2−(qk+1) and |t − s| ≤ c0,x 2−αqk , relation (28) provides6

us with:7

c1,x
|t − s|γ

2κqk
≥

1
2qk+1 , (60)8

which implies9

|t − s| ≥
(
2c1,x

)− 1
γ 2−

(1−κ)qk
γ =

(
2c1,x

)− 1
γ 2−αqk .10

This completes the proof. □11

In order to sharpen Proposition 4.9, we introduce a roughness hypothesis on x , again as in [8].12

This assumption is satisfied when x is a fractional Brownian motion.13

Hypothesis 4.10. We assume that for ε̂ arbitrarily small there exists a constant c > 0 such that14

for every s in [0, T ], every ϵ in (0, T/2], and every φ in Rd with |φ| = 1, there exists t in [0, T ]15

such that ϵ/2 < |t − s| < ϵ and16

|⟨φ, δxst ⟩| > c ϵγ+ε̂.17

The largest such constant is called the modulus of (γ + ε̂)-Hölder roughness of x , and is denoted18

by Lγ,ε̂ (x).19

Under this hypothesis, we are also able to upper bound the difference λk+1 − λk .20

Proposition 4.11. Assume σ and (Dσ · σ ) follow Hypothesis 3.1. Also assume Hypothesis 3.621

holds and σ (ξ ) ≳ |ξ |κ . Then for all ε2 <
αε1
γ+ε1

∧
κ

1−γ
and qk large enough (that is for k large22

enough, since limk→∞qk = ∞ under Assumption (B) of Theorem 4.1), the sequence of stopping23

times {λk, k ≥ 1} defined by (23) satisfies24

λk+1 − λk ≤ cx,ε22−qk (α−ε2), (61)25

where we recall that α = (1 − κ)/γ . Furthermore, inequality (51) can be extended as follows:26

there exists a constant cx such that for s, t ∈ [λk, λk+1) we have27

|δyst | ≤ cx 2−κ−
ε2 qk |t − s|γ . (62)28

Proof. We prove by contradiction. Assume the contrary, that is, (61) does not hold. This implies29

that for some ε2 <
αε1
γ+ε1

∧
κ

1−γ
30

λk+1 − λk ≥ C2−qk (α−ε2) (63)31

holds for infinitely many values of k, for any constant C . Consequently32

λk+1 − λk ≥ C 2−qk (1−κ)/(γ+ε̂), (64)33
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for an ε̂ small enough so that (1 − κ)/(γ + ε̂) ≥ α − ε2. We now show that there exists 1

s, t ∈ [λk, λk+1] such that |δyst | > |Jqk | providing us with our contradiction. Here |Jqk | denotes 2

the size of the interval Jqk . 3

To achieve this we now use Hypothesis 4.10. Taking into account we are in the one- 4

dimensional case let us choose 5

ε :=
c1 2−

qk (1−κ)
γ+ε̂[

Lγ,ε̂(x)
] 1
γ+ε̂

≤ C 2−
qk (1−κ)
γ+ε̂ , 6

where the inequality is true for a fixed constant c1 and a large enough constant C . Due to (63) 7

and Hypothesis 4.10 there now exist s, t ∈ [λk, λk+1] such that 8

ε

2
≤ |t − s| ≤ ε, and |δxst | ≥ cγ+ε̂

1 2−qk (1−κ). (65) 9

Moreover, due to our assumptions on σ and because ys ≥ b12−qk ≥ 2−qk−2, we have 10

|σ (ys)| ≥ c2−qkκ for s ∈ [λk, λk+1]. Consequently, for s, t as in (65) 11

|σ (ys)δxst | ≥ ccγ+ε̂

1 2−qk . 12

For fixed ε, c1 can be chosen arbitrarily large (by increasing k or decreasing ε̂) such that 13

ccγ+ε̂

1 ≥ 6. We thus have 14

|σ (ys)δxst | ≥ 6 · 2−qk = 2|Jqk |. 15

In particular the size of this increment is larger than twice the size of Jqk (see relation (23)). 16

Recall, ε̂ is small enough so that (1 − κ)/(γ + ε̂) ≥ α − ε2, so that from the bound on 17

|t − s| in (65) we have |t − s| ≤ c7,x 2−qk (α−ε2). With s, t as in relation (65) we use the fact that 18

δyst = σ (ys)δx st + rst and the bound (52) to get 19

|δyst | ≳ A1
st − A2

st , with A1
st = 6 · 2−qk , A2

st ≤ c6,x 2−qkκε1,ε2 |t − s|γ ≤ c9,x 2−qkµε2 , 20

where we recall that κε1,ε2 = κ + 2αε1 − γ ε2 − 2ε1ε2 to obtain 21

µε2 = κε1,ε2 + (α − ε2)γ = 1 + 2αε1 − 2(γ + ε1)ε2. 22

Compared to 2−qk , A2
st can be made negligible for large enough qk by making sure that µε2 > 1. 23

One can ensure µε2 > 1 by choosing ε1 large enough and ε2 small enough. As a consequence 24

|δyst | ≳ A1
st − A2

st , where A1
st is larger than twice |Jqk | = 3 · 2−qk and A2

st is negligible compared 25

to A1
st as qk gets large. That is, |δyst | > |Jqk | for k large enough. We now have our contradiction 26

and this proves (61). □ 27

4.4. Hölder continuity 28

Eventually the control of the stopping times λk leads to the main result of this section, that 29

is the existence of a Cγ solution to Eq. (22). The crucial step in this direction is detailed in the 30

proposition below. It is achieved under the additional assumption γ + κ > 1, and yields directly 31

the proof of Theorem 1.2. 32

Proposition 4.12. Suppose that our noise x satisfies Hypotheses 4.6 and 4.10. Assume σ and 33

(Dσ · σ ) follow Hypotheses 3.1 and 3.6 holds as well. Also assume σ (ξ ) ≳ |ξ |κ and that 34

γ + κ > 1. Then, the function y given in Theorem 4.1 belongs to Cγ ([0, T ];Rm). 35
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Proof. We start with the assumption that y satisfies condition (B) in Theorem 4.1. We first1

consider s = λk and t = λl with k < l and decompose the increments |δyst | as:2

|δyst | ≤

l−1∑
j=k

⏐⏐⏐δyλ jλ j+1

⏐⏐⏐ .3

Due to Proposition 4.11 we have λk+1 −λk ≤ cx,ε22−qk (α−ε2) for a large enough k. An application4

of Corollary 4.8 yields5

|δyst | ≤

l−1∑
j=k

⏐⏐⏐δyλ jλ j+1

⏐⏐⏐ ≤ c5,x

l−1∑
j=k

2−q j κ
−
ε2 |λ j+1 − λ j |

γ . (66)6

Rewriting inequality (58),7

2−
q j (1−κ)

γ ≤ c−1
7,x

(
λ j+1 − λ j

)
8

which implies9

2−q j κ
−
ε2 ≤ (c7,x )−

γ κ
−
ε2

1−κ
(
λ j+1 − λ j

) γ κ−ε2
1−κ .10

Using this inequality in (66) and defining c8,x = c5,x (c7,x )−
γ κ

−
ε2

1−κ , we get:11

|δyst | ≤ c8,x

l−1∑
j=k

|λ j+1 − λ j |
µ̃ε2 , where µ̃ε2 = γ

(
1 +

κ−
ε2

1 − κ

)
.12

Recall κ−
ε2

= κ−(1−γ )ε2, which can be made arbitrarily close to κ . Hence under the assumption13

γ + κ > 1, µ̃ε2 is of the form µ̃ε2 = 1 + ε3. We thus obtain14

|δyst | ≤ c8,x

l−1∑
j=k

|λ j+1 − λ j |
1+ε3 ≤ c8,x |λl − λk |

1+ε3 ≤ c8,x τ
1+ε3−γ

|t − s|γ ,15

where we recall s = λk and t = λl . Having proved our claim for this special case, the general16

case for s < λk ≤ λl < t is obtained by the following decomposition17

δyst = δysλk + δyλkλl + δyλl t .18

Finally, we make use of (62) in order to bound δysλk and δyλl t . □19
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