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Abstract

Let (Xi )i≥1 be a stationary sequence. Denote m = ⌊nα
⌋, 0 < α < 1, and k = ⌊n/m⌋, where ⌊a⌋

stands for the integer part of a. Set S◦
j =

∑m
i=1 Xm( j−1)+i , 1 ≤ j ≤ k, and (V ◦

k )2
=

∑k
j=1(S◦

j )2. We

prove a Cramér type moderate deviation expansion for P(
∑k

j=1 S◦
j /V ◦

k ≥ x) as n → ∞. Applications
to mixing type sequences, contracting Markov chains, expanding maps and confidence intervals are
discussed.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Let (X i )i≥1 be a sequence of independent and identically distributed (i.i.d.) centered real
random variables, that is EX1 = 0. Denote Sn =

∑n
i=1 X i the partial sums of (X i )i≥1 and

σ 2
= EX2

1 the variance of X1. Cramér [6] has established the following asymptotic moderate
deviation expansion for the standardized sums: if E exp{c0|X1|} < ∞ for some constant c0 > 0,
termed Cramér’s condition, then for all 0 ≤ x = o(n1/2),⏐⏐⏐⏐ ln

P(Sn ≥ xσ
√

n)
1 − Φ(x)

⏐⏐⏐⏐ = O(1)
(1 + x)3

√
n

as n → ∞, (1.1)
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where Φ(x) =
1

√
2π

∫ x
−∞

exp{−t2/2}dt is the standard normal distribution. Inequality (1.1)
implies that

P(Sn ≥ xσ
√

n)
1 − Φ (x)

= 1 + o(1) (1.2)

uniformly in the normal range 0 ≤ x = o(n1/6). Notice that Cramér’s condition is sufficient but
not necessary for (1.2) to hold. Indeed, Linnik [20] proved that for α ∈ (0, 1

6 ], formula (1.2)
holds uniformly for 0 ≤ x = o(nα) as n → ∞ if and only if Ee|X1|

4α/(2α+1)
< ∞. Following the

seminal work of Cramér, various moderate deviation expansions for standardized sums have
been obtained by many authors, see, for instance, Petrov [26], Saulis and Statulevičius [31]
and [11]. See also Račkauskas [28,29], Grama [16], Grama and Haeusler [17] and [12] for
martingales, and Wu and Zhao [36] and Cuny and Merlevède [8] for stationary processes.

For establishing moderate deviation expansions of type (1.2) with a range 0 ≤ x = o(nα),
α > 0, Linnik’s condition is necessary. However, Linnik’s condition becomes too restrictive
if we only have finite moments of order 2 + ρ, ρ ∈ (0, 1]. Although we still can establish
(1.2) via (non-uniform) Berry–Esseen estimations (see Bikelis [2]), the range cannot be wider
than 0 ≤ x = O(

√
ln n), which is much more narrow than 0 ≤ x = o(nα). To overcome this

limitation, instead of considering the standardized sums, one may consider the self-normalized
sums, defined as follows:

Wn = Sn/Vn, where V 2
n =

n∑
i=1

X2
i .

One of the motivations to consider self-normalized sums is due to Student’s t-statistic:

Tn =
√

n Xn/σ̂ ,

where

Xn =
Sn

n
and σ̂ 2

=

n∑
i=1

(X i − Xn)2

n − 1
.

The Student’s t-statistic Tn is linked to the self-normalized sum Wn by the following formula:
for all x ≥ 0,

P
(

Tn ≥ x
)

= P
(

Wn ≥ x
( n

n + x2 − 1

)1/2
)

,

see Chung [5]. So, an asymptotic bound on the tail probabilities for self-normalized sums im-
plies an asymptotic bound on the tail probabilities for Tn . Shao [27] established self-normalized
large and moderate deviation principles without any moment assumptions, and Shao [32]
proved the following self-normalized Cramér type moderate deviations: if E|X1|

2+ρ < ∞ for
some ρ ∈ (0, 1], then

P(Wn ≥ x)
1 − Φ (x)

= 1 + o(1) (1.3)

uniformly for 0 ≤ x = o(nρ/(4+2ρ)) as n → ∞. The later result indicates that the
normal range of x for (1.3) on self-normalized sums can be much wider than that for
classical moderate deviation expansion (1.2) on sums of i.i.d. r.v.’s. The expansion (1.3) was
further extended to independent but not necessarily identically distributed random variables by
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Jing, Shao and Wang [19]. Their result implies the following precise asymptotic normality
under finite (2 + ρ)-th moments:

P(Wn ≥ x)
1 − Φ (x)

= exp
{

O
(
1
) (1 + x)2+ρ

nρ/2

}
, (1.4)

uniformly for 0 ≤ x = o(
√

n) as n → ∞. Moderate deviation results of types (1.3) and
(1.4) play an important role in statistical inference of means since in practice one usually does
not know the variance σ 2. Even when the later can be estimated, it is still advisable to use
self-normalized sums to obtain more precise results. Due to these significant advantages,
the limit theory for self-normalized sums attracts more and more attention. Giné, Götze and
Mason [15] gave a necessary and sufficient condition for the asymptotic normality of self-
normalized partial sums. Csörgő, Szyszkowicz and Wang [7] established Donsker’s theorem.
For various moderate and large deviations results for self-normalized sums, we refer to, for
instance, Jing, Shao and Wang [19], Liu, Shao and Wang [22], de la Peña, Lai and Shao [24],
Shao and Wang [34] and Shao [33]. Dembo and Shao [10] and Liu and Shao [21] studied
Hotelling’s T 2-statistic.

The moderate deviation theory for self-normalized sums of independent random variables
has been studied in depth. However, there are only a few results for dependent random variables.
Chen, Shao, Wu and Xu [4] established self-normalized Cramér type moderate deviations for
β-mixing sequences and functional dependent sequences (see Wu [35] for the definition of
functional dependent sequences). Fan, Grama, Liu and Shao [13] gave two self-normalized
Cramér type moderate deviation results for martingales. For a closely related topic, that is,
exponential inequalities for self-normalized martingales, we refer to de la Peña [23] and
Bercu and Touati [1]. The main purpose of this paper is to establish self-normalized Cramér
type moderate deviations for general stationary sequences. We deduce also a self-normalized
moderate deviation principle and a Berry–Esseen bound.

The paper is organized as follows. Our main results are stated and discussed in Section 2.
The applications are given in Section 3. Proofs of theorems are deferred to Section 4.

All over the paper, c and C , possibly enabled with indices (arguments), denote constants
depending only on the previously introduced constants and on its indices (arguments). Their
values may change on every occurrence. For two positive real sequences (an)i≥1 and (bn)i≥1,
we write an = O(bn) if there exists a positive constant C such that an ≤ Cbn holds for all
large n, and an = o(bn) if limn→∞ an/bn = 0. We also write an ≍ bn if an = O(bn) and
bn = O(an), and an ∼ bn if limn→∞ an/bn = 1.

2. Main results

Assume that (X i )i∈Z is a stationary sequence of centered random variables, where X i =

X0 ◦ T i and T : Ω ↦→ Ω is a bijective bimeasurable transformation preserving the probability
P on (Ω ,F). For a subfield F0 satisfying F0 ⊆ T −1(F0), let Fi = T −i (F0). Assume that X0
is F0-measurable, so that the sequence (X i )i∈Z is adapted to the filtration (Fi )i∈Z.

Denote by ⌊a⌋ the integer part of the real a. Let m ∈ [1, n] and k = ⌊n/m⌋, where m may
depend on n. Define

H j = {i : m( j − 1) + 1 ≤ i ≤ mj}, 1 ≤ j ≤ k.

Consider the block sums S◦

j =
∑

i∈H j
X i , and the block self-normalized sums

W ◦

n =

∑k
j=1 S◦

j

V ◦

k
, where (V ◦

k )2
=

k∑
j=1

(S◦

j )
2.



Please cite this article as: X. Fan, I. Grama, Q. Liu et al., Self-normalized Cramér type moderate deviations for stationary sequences and applications,
Stochastic Processes and their Applications (2020), https://doi.org/10.1016/j.spa.2020.03.001.

4 X. Fan, I. Grama, Q. Liu et al. / Stochastic Processes and their Applications xxx (xxxx) xxx

In particular, when m = 1, the block self-normalized sum W ◦
n becomes self-normalized sum

Wn . We also denote the L∞-norm of X by ∥X∥∞, that is ∥X∥∞ = inf{u : P(|X | > u) = 0}.
For any 1 ≤ m ≤ n, set

εm =
1

n1/2m1/ρσ 2/ρ+1

E[|Sm |
2+ρ

|F0]
1/ρ

∞

, (2.1)

γm =
1

m1/2σ

∞∑
j=1

1
j3/2

E[Smj |F0]


∞

(2.2)

and

δ2
m =

1
mσ 2

E[Sm |F0]
2

∞

+

 1
mσ 2 E[S2

m |F0] − 1


∞

, (2.3)

where ρ and σ are two positive constants. We are interested in the case where

max{εm, γm, δm, m/n} → 0 as n → ∞. (2.4)

We remark that δm → 0 implies that 1
m

∑m
i=1 ES2

m → σ 2 as n → ∞.

Remark 2.1. Let us comment on condition (2.4).

1. If
E[|X1|

2+ρ
|F0]


∞

< ∞, then, by convexity, we have

∥E[|
1
m

Sm |

2+ρ

|F0]∥∞ ≤
1
m

m∑
i=1

∥E[|X i |
2+ρ

|F0]∥∞ ≤
E[|X1|

2+ρ
|F0]


∞

and thus εm = O(m1+1/ρ/n1/2) as n → ∞. In particular, the claim holds provided that
X1 is bounded, that is

X1


∞
< ∞.

2. If ∥X1∥∞ < ∞ and δm → 0, then we haveE[|Sm |
2+ρ

|F0]


∞
≤ mρ

X1
ρ

∞

E[S2
m |F0]


∞

= O(m1+ρ).

Therefore, it holds εm = O(m/n1/2) as n → ∞.
3. Assume

E[|Sm |
2+ρ

|F0]


∞
= O(m1+ρ/2) as m → ∞. Then it is easy to see that

εm = O(
√

m/n) as n → ∞. In particular, if (X i ,Fi )i∈Z is a martingale difference
sequence satisfying

E[|X1|
2+ρ

|F0]


∞
< ∞, then, by Theorem 2.1 of Rio [30], it is

easy to see that

(E[|Sm |
2+ρ

|F0])2/(2+ρ)
≤ (1 + ρ)

m∑
k=1

(E[|X i |
2+ρ

|F0])2/(2+ρ)

≤ (1 + ρ)
E[|X1|

2+ρ
|F0]

2/(2+ρ)
∞

m

a.s., which leads toE[|Sm |
2+ρ

|F0]


∞
= O(m1+ρ/2) and εm = O(

√
m/n)

as n → ∞, and

γm = 0 and δ2
m =

 1
mσ 2

m∑
i=1

E[X2
i |F0] − 1


∞

.

4. Dedecker et al. [9] introduced the following two conditions for stationary sequences:
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(A1) The following sum is finite:
∞∑

n=1

1
n3/2

E[Sn|F0]


∞

< ∞. (2.5)

(A2) There exists a positive constant σ such that

lim
n→∞

1
n
E[S2

n |F0] − σ 2


∞

= 0. (2.6)

Clearly, under conditions (A1) and (A2), by Lemma 29 of Dedecker et al. [9], it holds
that max{γm, δm} → 0 for any sequence m = m(n) such that m → ∞ and m/n → 0
as n → ∞.

For any sequence of small positive numbers (εm)m≥1, let ε̂m(x, ρ) be a function of εm, x and
ρ defined as follows

ε̂m(x, ρ) =
ε

ρ(2−ρ)/4
m

1 + xρ(2+ρ)/4 . (2.7)

The following theorem gives a self-normalized Cramér type moderate deviation result for
stationary sequences.

Theorem 2.1. Assume that there exists ρ ∈ (0, 1] such that max{εm, γm, δm, m/n} → 0 as
n → ∞.

[i] If ρ ∈ (0, 1), then there exists an absolute constant αρ > 0 such that for all 0 ≤ x ≤

αρ min{ε−1
m ,

√
n/m},⏐⏐⏐⏐ ln

P(W ◦
n ≥ x)

1 − Φ (x)

⏐⏐⏐⏐ ≤ Cρ

(
x2+ρερ

m + x2
(
δ2

m + γm | ln γm | +
m
n

)
+ (1 + x)

(
δm + γm | ln γm | + ερ

m + ε̂m(x, ρ) +

√
m
n

))
,

where Cρ depends only on ρ.

[ii] If ρ = 1, then there exists an absolute constant α > 0 such that for all 0 ≤ x ≤

α min{ε−1
m ,

√
n/m},⏐⏐⏐⏐ ln

P(W ◦
n ≥ x)

1 − Φ (x)

⏐⏐⏐⏐ ≤ C
(

x3εm + x2
(
δ2

m + γm | ln γm | +
m
n

)
+ (1 + x)

(
δm + γm | ln γm | + εm | ln εm | + ε̂m(x, 1) +

√
m
n

))
.

In particular, the last two inequalities imply that, for any ρ ∈ (0, 1],
P(W ◦

n ≥ x)
1 − Φ (x)

= 1 + o(1) (2.8)

uniformly for 0 ≤ x = o
(
min

{
ε−ρ/(2+ρ)

m , δ−1
m , (γm | ln γm |)−1/2,

√
n/m

})
as n → ∞. Moreover,

the same results hold with
P(W ◦

n ≥ x)
1 − Φ (x)

replacing by
P(W ◦

n ≤ −x)
Φ (−x)

.

Remark 2.2. Let us comment on the results of Theorem 2.1.
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1. The range of validity of (2.8) can be very large. For instance, if
E[|Sn|

2+ρ
|F0]


∞

=

O(n1+ρ/2),
E[Sn|F0]


∞

= O(1), and
 1

nE[S2
n |F0] − σ 2


∞

= O
( 1

n

)
as n → ∞, then

εm = O(
√

m/n), γm, δm = O(
√

1/m).

With m = ⌊n2ρ/(2+3ρ)
⌋, equality (2.8) holds uniformly for 0 ≤ x = o(nρ/(4+6ρ)/

√
ln n)

as n → ∞. The last range coincides with the classical range, up to a term
√

ln n,
when applied for block self-normalized sums of i.i.d. random variables, that is 0 ≤ x =

o(kρ/(4+2ρ)). See Remark 1 of Shao [32].
2. If (X i ,Fi )i∈Z is a martingale difference sequence satisfying ∥E[|X1|

2+ρ
|F0]∥∞ < ∞,

then Theorem 2.1 gives a block self-normalized Cramér type moderate deviation result,
with

εm = O
(√

m/n
)
, γm = 0 and δ2

m =

 1
mσ 2

m∑
i=1

E[X2
i |F0] − 1


∞

as n → ∞, which extends the main result of Fan et al. [13] to block self-normalized
martingales. Furthermore, if ∥E[X2

i |F0] − σ 2
∥∞ ≤ Ci−θ for some positive constants C

and θ , then we have

δ2
m =

⎧⎨⎩ O(m−1), if θ > 1,
O(m−1 ln m), if θ = 1,
O(m−θ ), if θ ∈ (0, 1).

Taking

m =

{
⌊nρ/(2+2ρ)

⌋, if θ ≥ 1,
⌊nρ/(ρ+θ(2+ρ))

⌋, if θ ∈ (0, 1),

we have the following results:
[i] If ρ ∈ (0, 1), then (2.8) holds for 0 ≤ x = o(nθρ/(2ρ+2θ (2+ρ))).
[ii] If ρ = 1, then (2.8) holds for 0 ≤ x = o(nρ/(4+4ρ)/ ln n).
[iii] If ρ > 1, then (2.8) holds for 0 ≤ x = o(nρ/(4+4ρ)).

3. Besides block self-normalized sums, we can also consider the interlacing self-normalized
sums. Let α ∈ (0, 1) and m = ⌊nα

⌋, k = ⌊n/(2m)⌋ (instead of ⌊n/m⌋ considered before)
and

B j =

{
i : 2m( j − 1) + 1 ≤ i ≤ 2mj − m

}
, 1 ≤ j ≤ k.

Let Y ∗

j =
∑

l∈B j
Xl , (V ∗

k )2
=

∑k
j=1(Y ∗

j )2 and write

I ∗

n =

∑k
j=1 Y ∗

j

V ∗

k

for the interlacing self-normalized sum. Clearly, Theorem 2.1 also holds for interlacing
self-normalized sums I ∗

n , with E[ · |F0] and W ◦
n replaced respectively by E[ · |F−m] and

I ∗
n . Such type of results for β-mixing and some functional dependent sequences have

been considered by Chen et al. [4].

The following self-normalized moderate deviation principle (MDP) result is a consequence
of Theorem 2.1.
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Corollary 2.1. Assume the condition of Theorem 2.1. Let (an)n≥1 be any sequence of real
numbers satisfying an → 0 and an min{ε−1

m ,
√

n/m} → ∞ as n → ∞. Then, for each Borel
set B ⊂ R,

− inf
x∈Bo

x2

2
≤ lim inf

n→∞
a2

n lnP
(

an W o
n ∈ B

)
≤ lim sup

n→∞

a2
n lnP

(
an W o

n ∈ B
)

≤ − inf
x∈B

x2

2
,

(2.9)

where Bo and B denote the interior and the closure of B, respectively.

In the i.i.d. case, W o
n is a self-normalized sum of k i.i.d. random variables. According to

the classical result of Jing, Shao and Wang [19], the MDP holds for 0 ≤ x = o(k1/2). Since
k = ⌊n/m⌋, the last range reads also as 0 ≤ x = o(

√
n/m). Notice that ε−1

m is of order
√

n/m.
Thus, the convergence rate of an in the last corollary cannot be improved even for i.i.d. random
variables.

Theorem 2.1 also implies the following self-normalized Berry–Esseen bound for stationary
sequences.

Corollary 2.2. Assume the condition of Theorem 2.1. Then, for ρ ∈ (0, 1],

sup
x

⏐⏐⏐P(W ◦

n ≤ x) − Φ (x)

⏐⏐⏐ ≤ Cρ

(
δm + γm | ln γm | + ερ(2−ρ)/4

m +

√
m
n

)
,

where Cρ depends only on ρ.

3. Applications

In this section, we present some applications of our results, including φ-mixing type
sequences, contracting Markov chains, expanding maps and confidence intervals.

3.1. φ-mixing type sequences

Let Y be a random variable with values in a Polish space Y . If M is a σ -field, the φ-mixing
coefficient between M and σ (Y ) is defined by

φ(M, σ (Y )) = sup
A∈B(Y)

PY |M(A) − PY (A)


∞

. (3.1)

For a sequence of random variables (X i )i∈Z and a positive integer m, denote

φm(n) = sup
im>···>i1≥n

φ(F0, σ (X i1 , . . . , X im )),

and let φ(k) = limm→∞ φm(k) be the usual φ-mixing coefficient. Under the following condition

∑
k≥1

k−1/2φ1(k) < ∞ and lim
k→∞

φ2(k) = 0, (3.2)

Dedecker et al. [9] obtained a MDP for standardized sums of bounded φ-mixing random
variables. See also Gao [14] for an earlier version of MDP under the condition

∑
k≥1 φ(k) < ∞

which is stronger than (3.2). Denote

η1,n = sup
k≥n

∥E[Xk |F0]∥∞,
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η2,n = sup
k,l≥n

∥E[Xk Xl |F0] − E[Xk Xl]∥∞.

Clearly, when the random variable X0 is bounded, it holds that η1,n = O(φ1(n)) and η2,n
= O(φ2(n)) as n → ∞.

From Theorem 2.1 we obtain the following self-normalized Cramér type moderate deviation
expansion with depending structure defined by η1,n and η2,n .

Proposition 3.1. Assume that ∥X0∥∞ < ∞,

σ 2
:=

∞∑
k=−∞

E[X0 Xk] > 0 and max
i=1,2

{ηi,n} = O(n−β), n → ∞,

for some constant β > 1.

[i] If β ≥ 3/2, then (2.8) with m = ⌊n2/7
⌋ holds uniformly for 0 ≤ x = o(n1/14/

√
ln n) as

n → ∞.

[ii] If β ∈ (1, 3/2), then (2.8) with m = ⌊n1/(3β−1)
⌋ holds uniformly for 0 ≤ x

= o(n(β−1)/(6β−2)) as n → ∞.

[iii] Assume m := m(n) → ∞ and n1/2/m → ∞ as n → ∞. Let (an)n≥1 be any sequence of
real numbers such that an → 0 and ann1/2/m → ∞ as n → ∞. Then (2.9) holds.

By point 3 of Remark 2.1, if E|Sn|
2+ρ

= O(n1+ρ/2) for some ρ > 0, then point [iii] of
Proposition 3.1 can be further improved. Indeed, in this case, (2.9) holds for any m → ∞, and
any sequence of real numbers (an)n≥1 such that an → 0 and an

√
n/m → ∞ as n → ∞.

3.2. Contracting Markov chains

Let (Yn)n≥0 be a stationary Markov chain of bounded random variables with invariant
measure µ and transition kernel K . Denote by ∥·∥∞,µ the essential norm with respect to µ. Let
Λ1 be the set of 1-Lipschitz functions. Assume that the Markov chain satisfies the following
condition:

(B) There exist two constants C > 0 and ρ ∈ (0, 1) such that

sup
g∈Λ1

∥K n(g) − µ(g)∥∞,µ ≤ Cρn

and for any g, g′
∈ Λ1 and any m ≥ 0,

lim
n→∞

K n(g′K m(g)
)
− µ

(
g′K m(g)

)
∞,µ

= 0.

Denote by L the class of functions f : R ↦→ R such that

| f (x) − f (y)| ≤ h(|x − y|), (3.3)

where h is a concave and non-decreasing function satisfying∫ 1

0

h(t)
t
√

| ln t |
dt < ∞, (3.4)

see [9]. Clearly, inequality (3.4) holds if h(t) ≤ c| ln(t)|−γ for some constants c > 0 and
γ > 1/2. In particular, L contains the class of α-Hölder continuous functions from [0, 1] to
R, where α ∈ (0, 1].
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Dedecker et al. [9] proved a MDP for the sequence

Xn = f (Yn) − µ( f ) (3.5)

under the condition that the function f belongs to the class L. The following proposition gives

an extension of the MDP to self-normalized sums W ◦
n =

∑k
j=1 S◦

j
V ◦

k
, where S◦

j =
∑

i∈H j
X i and

(V ◦

k )2
=

∑k
j=1(S◦

j )
2.

Proposition 3.2. Assume that the stationary Markov chain (Yn)n≥0 satisfies condition (B), and
let Xn be defined by (3.5), with f belonging to L. Assume m := m(n) → ∞ and n1/2/m → ∞

as n → ∞. Let an be any sequence of real numbers such that an → 0 and ann1/2/m → ∞

as n → ∞. If

σ 2
:= σ 2( f ) = µ

(
( f − µ( f ))2)

+ 2
∑
n≥1

µ
(
K n( f ) ( f − µ( f ))

)
> 0,

then (2.9) holds.

Proof. By Lemma 15 of Dedecker et al. [9], it is easy to see that X1 is bounded: ∥X1∥∞,µ

≤ h(Cρ) with h defined by (3.3). Then by point 2 of Remark 2.1, we have εm = O(m/n1/2) as
n → ∞. The conditions of Proposition 3.2 imply the conditions (2.5) and (2.6): see the proof
of Proposition 14 in Dedecker et al. [9]. Hence, by point 4 of Remark 2.1, the conditions of
Proposition 3.2 imply the conditions of Corollary 2.1, thus Proposition 3.2 follows. □

Furthermore, assume that the Markov chain satisfies the following condition which is
stronger than condition (B).

(C) There exist two constants C > 0 and ρ ∈ (0, 1) such that

sup
g∈Λ1

∥K n(g) − µ(g)∥∞,µ ≤ Cρn

and for any m ≥ 0,

sup
g,g′∈Λ1

K n(g′K m(g)
)
− µ

(
g′K m(g)

)
∞,µ

≤ Cρn.

Then we have the following self-normalized Cramér type moderate deviation expansion.

Proposition 3.3. Assume that the stationary Markov chain (Yn)n≥0 satisfies condition (C),
and let Xn be defined by (3.5). Assume f ∈ L,

σ 2
:= σ 2( f ) = µ

(
( f − µ( f ))2

)
+ 2

∑
n>0

µ
(

K n( f ) · ( f − µ( f ))
)

> 0

and, for some constant β > 1,

h(ρn) = O(n−β), n → ∞, (3.6)

where h is defined by (3.3).

[i] If β ≥ 3/2, then (2.8) with m = ⌊n2/7
⌋ holds uniformly for 0 ≤ x = o(n1/14/

√
ln n) as

n → ∞.

[ii] If β ∈ (1, 3/2), then (2.8) with m = ⌊n1/(3β−1)
⌋ holds uniformly for 0 ≤ x =

o(n(β−1)/(6β−2)) as n → ∞.
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Notice that if g(t) ≤ c| ln(t)|−β for some constants c > 0 and β > 1, then (3.6) is satisfied.

Proof. From the proof of Propositions 14 of [9], it is easy to see that

max
i=1,2

{ηi,n} = O
(
h(Cρn)

)
,

where C is given by condition (C) and h is defined by (3.3). Notice that Cρn
≤ ρn/2 for n

large enough. Hence, Proposition 3.3 is a simple consequence of Proposition 3.1. □

3.3. Expanding maps

Dedecker et al. [9] have obtained the MDP for expanding maps. Here we show that our
results can also be applied to expanding maps for getting self-normalized MDP and Cramér
type moderate deviations.

Let T be a map from [0, 1] to [0, 1] preserving a probability µ on [0, 1], and denote

Xk = f ◦ T n−k+1
− µ( f ),

for any function f ∈ L2([0, 1], µ). Let W ◦
n =

∑k
j=1 S◦

j
V ◦

k
, where S◦

j =
∑

i∈H j
X i and (V ◦

k )2

=
∑k

j=1(S◦

j )
2. Denote by BV the class of bounded variation functions from [0, 1] to R.

For any f ∈ BV , denote by ∥d f ∥ the total variation norm of the measure d f : ∥d f ∥ =

sup{
∫

gd f, ∥g∥∞ ≤ 1}. A Markov kernel K is said to be BV-contracting if there exist two
constants k > 0 and ρ ∈ [0, 1) such that

∥d K n( f )∥ ≤ kρn
∥d f ∥. (3.7)

Define the Perron–Frobenius operator K from L2([0, 1], µ) to L2([0, 1], µ) via the equality∫ 1

0
(K h)(x) f (x)µ(dx) =

∫ 1

0
h(x)( f ◦ T )(x)µ(dx). (3.8)

The map T is said to be BV-contracting if its Perron–Frobenius operator is BV-contracting.
We have the following corollary for the self-normalized sum W ◦

n .

Proposition 3.4. Assume that T is BV-contracting, f ∈ BV and σ 2
:= µ

(
( f − µ( f ))2

)
+

2
∑

n≥2 µ
(

f ◦ T n
· ( f − µ( f ))

)
> 0.

[i] Let m = ⌊n2/7
⌋. Equality (2.8) holds uniformly for 0 ≤ x = o(n1/14/

√
ln n) as n → ∞.

[ii] Assume m := m(n) → ∞ and n1/2/m → ∞ as n → ∞. Let (an) be any sequence of real
numbers such that an → 0 and ann1/2/m → ∞ as n → ∞. Then (2.9) holds.

Proof. Let (Yi )i≥1 be the Markov chain with transition kernel K and invariant measure µ in
the stationary regime. Using equality (3.8), it is easy to see that (Y0, . . . , Yn) is distributed as
(T n+1, . . . , T ). Assume that f ∈ BV . Since K is BV-contracting, by the proof of Corollary 18
of [9], we have

∥E[Xk |Y0]∥∞ ≤ Cρk
∥d f ∥

and, for any l > k ≥ 0,

∥E[Xk Xl |Y0] − E[Xk Xl]∥∞ ≤ C(1 + C)ρk
∥d f ∥

2.

By an argument similar to the proof of Proposition 3.1, Proposition 3.4 follows. □
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3.4. Application to confidence intervals

Consider the problem of constructing confidence intervals for the mean value µ of the
stationary sequence (ζi )i≥1. Let X i = ζi − µ, i ≥ 1. Assume that (X i )i≥1 satisfies the
conditions (2.1)–(2.4). Let

Tn =

∑k
j=1(Y j − mµ)√∑k

j=1(Y j − Y j )2
,

where Y j =
∑m

i=1 ζm( j−1)+i , 1 ≤ j ≤ k, and Y j = k−1 ∑k
j=1 Y j .

Proposition 3.5. Let κn ∈ (0, 1). Assume that κn → 0 and⏐⏐ ln κn
⏐⏐ = o

(
min

{
ε−2

m , n/m
})

, n → ∞. (3.9)

Let ∆n =

√
2| ln(κn/2)|

km

√∑k
j=1(Y j − Y j )2. Then [An, Bn] with

An =

∑k
j=1 Y j

km
− ∆n, Bn =

∑k
j=1 Y j

km
+ ∆n,

is a 1 − κn confidence interval for µ, for n large enough.

Proof. It is well known that for all x ≥ 0,

P
(

Tn ≥ x
)

= P
( ∑k

j=1(Y j − mµ)√∑k
j=1(Y j − mµ)2

≥ x
( k

k − 1

)1/2( k
k + x2 − 1

)1/2
)

,

see Chung [5]. The last equality and Theorem 2.1 together imply that
P(Tn ≥ x)
1 − Φ (x)

= exp
{

o(1)(1 + x)2
}

(3.10)

uniformly for 0 ≤ x = o
(
min

{
ε−1

m ,
√

n/m
})

. Let F(x) = 1 − (1 − Φ (x)) exp{o(1)(1 + x)2
}.

Notice that

1 − Φ (xn) →
1

xn
√

2π
e−x2

n/2
= exp

{
−

x2
n

2

(
1 +

2
x2

n
ln(xn

√
2π )

)}
, xn → ∞.

Thus the upper (κn/2)-th quantile of the distribution function F satisfies

F−1(κn/2) →
√

2| ln(κn/2)|, n → ∞,

which, by (3.9), is of order o
(
min

{
ε−1

m ,
√

n/m
})

. Then applying (3.10) to Tn , we complete the
proof of Proposition 3.5. □

By (3.9), a good choice of the size m is such that Rn := min
{
ε−2

m , n/m
}

is large enough, so
that κn can be small enough. A suitable choice is m = ⌊ln n⌋; then, by Remark 2.1, we have

Rn =

⎧⎪⎨⎪⎩
n

⌊ln n⌋2 , if ∥X1∥∞ < ∞,
n

⌊ln n⌋2+2/ρ , if
E[|X1|

2+ρ
|F0]


∞

< ∞,
n

⌊ln n⌋
, if

E[|Sm |
2+ρ

|F0]


∞
= O(m1+ρ/2).

Proposition 3.5 uses a condition on the L∞-norm. We should mention that Hannan’s central
limit theorem (cf. Hannan [18]) holds under the condition on the L2-norm. Accordingly, a
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confidential interval for linear regression can be obtained via Hannan’s theorem (cf. Caron and
Dede [3]), but with larger risk probability; the risk probability can be significantly improved,
using Cramér type moderate deviations of Wu and Zhao [36] and Cuny and Merlevède [8]
on stationary sequences. Notice that the results of [36] and [8] also hold when X i has finite
pth moments with p > 2. See also Chen et al. [4] for self-normalized Cramér type moderate
deviations for β-mixing sequences and functional dependent sequences.

4. Proofs of theorems

The proofs of our results are mainly based on the following lemmas which give some
exponential deviation inequalities for the partial sums of dependent random variables.

4.1. Preliminary lemmas

Assume on the probability space (Ω ,F ,P) we are given a sequence of martingale differ-
ences (ξi ,Fi )i=0,...,n , where ξ0 = 0, {∅,Ω} = F0 ⊆ ... ⊆ Fn ⊆ F are increasing σ -fields.
Define

M0 = 0, Mk =

k∑
i=1

ξi , k = 1, . . . , n. (4.1)

Let [M]n and ⟨M⟩n be respectively the squared variance and the conditional variance of the
martingale M = (Mk,Fk)k=0,...,n , that is

[M]0 = 0, [M]k =

k∑
i=1

ξ 2
i , ⟨M⟩0 = 0, ⟨M⟩k =

k∑
i=1

E[ξ 2
i |Fi−1], k = 1, . . . , n.

(4.2)

Assume the following two conditions:

(C1) There exist ϵn ∈ (0, 1
2 ] and ρ ∈ (0, +∞) such that

E[|ξi |
2+ρ

|Fi−1] ≤ ϵρ
n E[ξ 2

i |Fi−1], 1 ≤ i ≤ n.

(C2) There exists ιn ∈ [0, 1
2 ] such that ∥ ⟨M⟩n − 1∥∞ ≤ ι2n .

In many situations we have ϵn, ιn → 0 as n → ∞. In the case of sums of i.i.d. random
variables with finite (2 + ρ)-th moments, conditions (A1) and (A2) are satisfied with ιn = 0
and ϵn = O(1/

√
n) as n → ∞.

Define the self-normalized martingale

Wn =
Mn

√
[M]n

, n ≥ 1. (4.3)

Define ϵ̂m(x, ρ) in the same way as in (2.7) but with εm replaced by ϵm . The proof of
Theorem 2.1 is based on the following technical lemma which gives a Cramér type moderate
deviation expansion for self-normalized martingales.

Lemma 4.1. Assume conditions (C1) and (C2).
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[i] If ρ ∈ (0, 1), then there exists an absolute constant αρ,0 > 0 such that for all 0 ≤ x ≤

αρ,0ϵ
−1
n ,⏐⏐⏐⏐ ln

P(Wn ≥ x)
1 − Φ (x)

⏐⏐⏐⏐ ≤ cρ

(
x2+ρϵρ

n + x2ι2n + (1 + x)
(
ιn + ϵρ

n + ϵ̂n(x, ρ)
))

.

[ii] If ρ = 1, then there exists an absolute constant α0 > 0 such that for all 0 ≤ x ≤ α0ϵ
−1
n ,⏐⏐⏐⏐ ln

P(Wn ≥ x)
1 − Φ (x)

⏐⏐⏐⏐ ≤ c
(

x3ϵn + x2ι2n + (1 + x)
(
ιn + ϵn| ln ϵn| + ϵ̂n(x, 1)

))
.

Moreover, the two above inequalities remain valid with P(Wn≤−x)
Φ(−x)

instead of P(Wn≥x)
1−Φ(x)

.

Proof. The points [i] and [ii] follow from Corollary 2.3 of Fan et al. [13].

Remark 4.1. Notice that in Fan et al. [13], the range for Lemma 4.1 is 0 ≤ x = o(ϵ−1
n ).

However, the proof of Fan et al. [13] can be applied with no changes to extend the range to
0 ≤ x ≤ αρ,0ϵ

−1
n , where αρ,0 is a sufficiently small positive constant.

Denote by x+
= max{x, 0} the positive part of x .

Lemma 4.2. Assume that ξi ≥ −a a.s. for all i ∈ [1, n]. Write

Hn(β) =

n∑
i=1

(
E

[
(ξ+

i )β |Fi−1
]
+ aβ

)
, β ∈ (1, 2].

Then for all x, v > 0,

P
(
Sn ≤ −x, Hn(β) ≤ vβ

)
≤ exp

{
−

1
2

C(β)
( x

v

) β
β−1

}
, (4.4)

where C(β) = β−1/(β−1)
− β−β/(β−1) > 0 and β ∈ (1, 2].

Proof. Let β ∈ (1, 2]. Using the inequality

e−x
≤ 1 − x + xβ for x ≥ 0,

we have, for all i ∈ [1, n] and all t > 0,

E
[
e−t(ξi +a)

⏐⏐Fi−1
]

≤ 1 − E
[
t(ξi + a)

⏐⏐Fi−1
]
+ E

[
tβ(ξi + a)β

⏐⏐Fi−1
]

≤ 1 − ta + 2β−1tβ
(
E

[
(ξ+

i )β |Fi−1
]
+ aβ

)
≤ exp{−ta + 2β−1tβ

(
E

[
(ξ+

i )β |Fi−1
]
+ aβ

)
}.

Therefore, for all x, t, v > 0,

P
(
Sn ≤ −x, Hn(β) ≤ vβ

)
≤ E

[
exp

{
−t x − t

n∑
i=1

(ξi + a) + tna + 2β−1tβHn(β) − 2β−1tβHn(β)
}

1{Hn (β)≤vβ }

]
≤ e−t x+tna+2β−1tβvβE

[
exp

{
−t

n∑
i=1

(ξi + a) − 2β−1tβHn(β)
}]
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≤ e−t x+tna+2β−1tβvβE
[
exp

{
−t

n−1∑
i=1

(ξi + a) − 2β−1tβHn(β)
}
E

[
e−t(ξn+a)

⏐⏐Fn−1
]]

≤ e−t x+t(n−1)a+2β−1tβvβE
[
exp

{
−t

n−1∑
i=1

(ξi + a) − 2β−1tβHn−1(β)
}]

≤ e−t x+2β−1tβvβ
.

Taking t =
1
2

( x
βvβ

)1/(β−1) yields the desired inequality. □

The following exponential inequality of Peligrad et al. [25] (cf. Proposition 2 therein) plays
an important role in the proof of Theorem 2.1.

Lemma 4.3. Let (X i )i∈Z be a sequence of random variables adapted to the filtration (Fi )i∈Z.
Then, for all x ≥ 0,

P
(

max
1≤i≤n

|Si | ≥ x
)

≤ 4
√

e exp
{
−

x2

2n(∥X1∥∞ + 80
∑n

j=1 j−3/2∥E[S j |F0]∥∞)2

}
. (4.5)

The last lemma shows that the tail probability of max1≤i≤n |Si | has a sub-Gaussian decay
rate. In the proof of Theorem 2.1, we apply it to estimate the tail probabilities for the drift of
a stationary sequence.

4.2. Proof of Theorem 2.1

Define

D◦

j = S◦

j − E[S◦

j |F( j−1)m], 1 ≤ j ≤ k.

Then (D◦

j ,F( j−1)m)1≤ j≤k is a stationary sequence of martingale differences. Clearly,

E[(D◦

j )
2
|F( j−1)m] = E[(S◦

j )
2
|F( j−1)m] − (E[S◦

j |F( j−1)m])2.

By stationarity and the fact that k = ⌊n/m⌋, it follows that

1
n

 k∑
j=1

(E[S◦

j |F( j−1)m])2


∞

≤
1
m

E[Sm |F0]
2

∞

,

and that1
n

k∑
j=1

E[(S◦

j )
2
|F( j−1)m] − σ 2


∞

≤
1
n

k∑
j=1

E[(S◦

j )
2
|F( j−1)m] − mσ 2


∞

+
n − mk

n
σ 2

≤

 1
m
E[S2

m |F0] − σ 2


∞

+
m
n

σ 2. (4.6)

Consequently, we have 1
nσ 2

k∑
j=1

E[(D◦

j )
2
|F( j−1)m] − 1


∞

≤

 1
nσ 2

k∑
j=1

E[(S◦

j )
2
|F( j−1)m] − 1


∞

+
1

nσ 2

 k∑
j=1

(E[S◦

j |F( j−1)m])2


∞
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≤

 1
mσ 2 E[S2

m |F0] − 1


∞

+
m
n

+
1

mσ 2

E[Sm |F0]
2

∞

= δ2
m +

m
n

. (4.7)

Since δm → 0 as n → ∞, it follows that 1
m
E[(D◦

j )
2
|F( j−1)m]


∞

=

 1
m
E[S2

m |F0] −
1
m

(E[Sm |F0])2


∞

∼ σ 2, n → ∞. (4.8)

Using the inequality

|x − y|
2+ρ

≤ 21+ρ(|x |
2+ρ

+ |y|
2+ρ), (4.9)

by (4.8) and stationarity, we deduce that

E[|D◦

j /(n1/2σ )|
2+ρ

|F( j−1)m] ≤ (nσ 2)−1−ρ/222+ρE[|S◦

j |
2+ρ

|F( j−1)m]

≤
22+ρ

nρ/2σ ρ

E[|S◦

j |
2+ρ

|F( j−1)m]

E[(D◦

j )2|F( j−1)m]


∞

E[(D◦

j /(n1/2σ ))2
|F( j−1)m]

≤ Cρ,0
1

nρ/2mσ 2+ρ

E[|Sm |
2+ρ

|F0]


∞

E[(D◦

j /(n1/2σ ))2
|F( j−1)m]

= Cρ,0 ερ
mE[(D◦

j /(n1/2σ ))2
|F( j−1)m]. (4.10)

We first prove Theorem 2.1 for ρ ∈ (0, 1). Set ξ j = D◦

j /(n1/2σ ), and denote Mk =
∑k

j=1 ξ j .
Then, by (4.7) and (4.10), conditions (C1) and (C2) are satisfied with n = k, ϵ

ρ
n = Cρ,0ε

ρ
m and

ι2n = δ2
m +

m
n . By Lemma 4.1, there exists a constant αρ,0 > 0 such that for all 0 ≤ x ≤ αρ,0ε

−1
m ,⏐⏐⏐⏐ ln

P(Mk/
√

[M]k ≥ x)
1 − Φ (x)

⏐⏐⏐⏐
≤ cρ

(
x2+ρερ

m + x2(δ2
m +

m
n

) + (1 + x)
(
δm +

√
m
n

+ ερ
m + ε̂m(x, ρ)

))
. (4.11)

Notice that, by Cauchy–Schwarz’s inequality, [M]k

(V ◦

k )2/(nσ 2)
− 1


∞

=

 2
(V ◦

k )2

k∑
j=1

S◦

jE[S◦

j |F( j−1)m] +
1

(V ◦

k )2

k∑
j=1

(
E[S◦

j |F( j−1)m]
)2


∞

≤

 2
(V ◦

k )2

k∑
j=1

S◦

jE[S◦

j |F( j−1)m]


∞

+

k∑
j=1

 1
(V ◦

k )2 (E[S◦

j |F( j−1)m])2


∞

≤

 2
(V ◦

k )2

k∑
j=1

(
E[S◦

j |F( j−1)m]
)2


1/2

∞

+

k∑
j=1

 1
V ◦

k

⏐⏐E[S◦

j |F( j−1)m]
⏐⏐2

∞

.

By stationarity and the fact that δm → 0, when (V ◦

k )2
≥

1
2 nσ 2, we have [M]k

(V ◦

k )2/(nσ 2)
− 1


∞

≤
2
√

2
√

nσ

 k∑
j=1

(
E[S◦

j |F( j−1)m]
)2


1/2

∞

+
2

nσ 2

k∑
j=1

E[S◦

j |F( j−1)m]
2

∞

≤
2
√

2k
√

nσ

E[Sm |F0]


∞

+
2

mσ 2

E[Sm |F0]
2

∞

≤
6

√
mσ

E[Sm |F0]


∞

=: κm .
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Clearly, δm → 0 as n → ∞ implies that κm → 0 as n → ∞. Thus, the last inequality implies
that

V ◦

k
√

nσ
≥

√
[M]k

1 + κm
≥

√
[M]k(1 − κm).

Recall that W ◦
n =

∑k
j=1 S◦

j
V ◦

k
=

∑k
j=1 S◦

j /(n1/2σ )

V ◦
k /(n1/2σ )

. It is easy to see that, for all x ≥ 0,

P
(

W ◦

n ≥ x,
(V ◦

k )2

nσ 2 ≥
1
2

)
≤ P

(∑k
j=1 S◦

j /(n1/2σ )
√

[M]k
≥ x

√
1 − κm,

(V ◦

k )2

nσ 2 ≥
1
2

)
≤ P

(
Mk

√
[M]k

≥ x(1 − γm | ln γm |)
√

1 − κm,
(V ◦

k )2

nσ 2 ≥
1
2

)
+P

(
1

n1/2σ

k∑
j=1

E[S◦

j |F( j−1)m] ≥ xγm | ln γm |

√
1 − κm

)
≤ P

(
Mk

√
[M]k

≥ x(1 − γm | ln γm |)
√

1 − κm

)
+P

(
1

n1/2σ

k∑
j=1

E[S◦

j |F( j−1)m] ≥ xγm | ln γm |

√
1 − κm

)
=: I1(x) + I2(x). (4.12)

We proceed to estimate I1(x) and I2(x). First, we deal with I1(x). From (4.11), we have,
for all 0 ≤ x ≤ αρ,0ε

−1
m ,

I1(x)
1 − Φ

(
x(1 − γm | ln γm |)

√
1 − κm

)
≤ exp

{
c′

ρ

(
x2+ρερ

m + x2(δ2
m +

m
n

) + (1 + x)
(
δm +

√
m
n

+ ερ
m + ε̂m(x, ρ)

))}
.

Using the following inequalities

1
√

2π (1 + x)
e−x2/2

≤ 1 − Φ(x) ≤
1

√
π (1 + x)

e−x2/2, x ≥ 0, (4.13)

we deduce that, for all x ≥ 0 and 0 ≤ ε ≤ 1,

1 − Φ
(
x
√

1 − ε
)

1 − Φ (x)
= 1 +

∫ x
x
√

1−ε
1

√
2π

e−t2/2dt

1 − Φ (x)

≤ 1 +

1
√

2π
e−x2(1−ε)/2xε

1
√

2π (1+x)
e−x2/2

≤ 1 + C(1 + x2)εex2ε/2

≤ exp
{

C(1 + x2)ε
}
. (4.14)
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Notice that (1 − γm | ln γm |)
√

1 − κm ≥
√

1 − 2(γm | ln γm | + κm). Using inequality (4.14) and
the fact that κm ≤ 6γm ≤ 6γm | ln γm |, we obtain, for all 0 ≤ x ≤ αρ,0ε

−1
m ,

I1(x)
1 − Φ (x)

=
I1(x)

1 − Φ
(
x(1 − γm | ln γm |)

√
1 − κm

) 1 − Φ
(
x(1 − γm | ln γm |)

√
1 − κm

)
1 − Φ (x)

≤ exp
{

C ′

ρ

(
x2+ρερ

m + x2
(
δ2

m +
m
n

+ γm | ln γm | + κm

)
+ (1 + x)

(
δm +

√
m
n

+ ερ
m + ε̂m(x, ρ) + γm | ln γm | + κm

))}
≤ exp

{
C ′′

ρ

(
x2+ρερ

m + x2
(
δ2

m + γm | ln γm | +
m
n

)
+ (1 + x)

(
δm +

√
m
n

+ ερ
m + γm | ln γm | + ε̂m(x, ρ)

))}
, (4.15)

which gives the suitable bound for I1(x).
Now we deal with I2(x). By Lemma 4.3, the definition of γm (cf. (2.2)) and the fact that

γm → 0, we derive that, for all x ≥ 0,

I2(x) ≤ 4
√

e exp
{
−

nσ 2x2γ 2
m(ln γm)2(1 − κm)

2k(
E[Sm |F0]


∞

+ 80
∑k

j=1 j−3/2∥E[S jm |F0]∥∞)2

}
≤ 4

√
e exp

{
−C0x2(ln γm)2

}
. (4.16)

From the last inequality, using (4.13), we deduce that, for all x ≥ 1,

I2(x)
1 − Φ (x)

≤ C1(1 + x) exp
{
−C0x2(ln γm)2

+
1
2

x2
}

(4.17)

≤ C2 (1 + x)γm | ln γm |,

which gives the suitable bound for I2(x). Thus, from (4.12), for all x ≥ 1,

P
(

W ◦
n ≥ x,

(V ◦
k )2

nσ 2 ≥
1
2

)
1 − Φ (x)

≤
I1(x) + I2(x)

1 − Φ (x)

≤ exp
{

c′′

ρ

(
x2+ρερ

m + x2
(
δ2

m + γm | ln γm | +
m
n

)
+ (1 + x)

(
δm +

√
m
n

+ ερ
m + γm | ln γm | + ε̂m(x, ρ)

))}
. (4.18)

Clearly, we have

P
(

(V ◦

k )2 <
1
2

nσ 2
)

= P
( k∑

j=1

(
(S◦

j )
2
− E[(S◦

j )
2
|F( j−1)m]

)
<

1
2

nσ 2
−

k∑
j=1

E[(S◦

j )
2
|F( j−1)m]

)

≤ P
( k∑

j=1

(
(S◦

j )
2
− E[(S◦

j )
2
|F( j−1)m]

)
< −

1
4

nσ 2
)

, (4.19)
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where the last line follows from (4.6) and the fact that δm → 0 and m/n → 0. Denote

η j =

( S◦

j

σ
√

n

)2
− E

[( S◦

j

σ
√

n

)2⏐⏐⏐F( j−1)m

]
.

Then, by (4.9) and stationarity, it is easy to see that
k∑

j=1

E[|η j |
(2+ρ)/2

|F( j−1)m]


∞

≤ 21+ρ

k∑
j=1

E[⏐⏐⏐ S◦

j

σ
√

n

⏐⏐⏐2+ρ⏐⏐⏐F( j−1)m

]
∞

≤ 21+ρερ
m

and that, for some positive constant c,

ηi ≥ −
1

nσ 2

E[
S2

m

⏐⏐F0
]

∞
≥ −

m
n

c a.s.,

where the last inequality follows from the fact that δm → 0 as n → ∞. From (4.19), using
Lemma 4.2 with a =

m
n c and β = (2 + ρ)/2, we have

P
(

(V ◦

k )2

nσ 2 <
1
2

)
≤ exp

{
−C(ρ)

( 1
ε2

m
+

n
m

)}
, (4.20)

where C(ρ) > 0 depends only on ρ. Notice that, by (4.13), it holds, for small enough αρ,0 > 0
and all 1 ≤ x ≤ αρ,0 min{ε−1

n ,
√

n/m},

1
1 − Φ (x)

exp
{
−C(ρ)

( 1
ε2

m
+

n
m

)}
≤

√
2π (1 + x)

(√
m
n

+ ερ
m

)
. (4.21)

Then, by (4.18), (4.20) and (4.21), we obtain, for all 1 ≤ x ≤ αρ,0 min{ε−1
n ,

√
n/m},

P
(

W ◦
n ≥ x

)
1 − Φ (x)

≤

P
(

W ◦
n ≥ x,

(V ◦
k )2

nσ 2 ≥
1
2

)
1 − Φ (x)

+

P
(

(V ◦
k )2

nσ 2 < 1
2

)
1 − Φ (x)

≤ exp
{

c′′

ρ

(
x2+ρερ

m + x2
(
δ2

m + γm | ln γm | +
m
n

)
+ (1 + x)

(
δm +

√
m
n

+ ερ
m + γm | ln γm | + ε̂m(x, ρ)

))}
+

1
1 − Φ (x)

exp
{
−C(ρ)

( 1
ε2

m
+

n
m

)}
≤ exp

{
c′′′

ρ

(
x2+ρερ

m + x2
(
δ2

m + γm | ln γm | +
m
n

)
+ (1 + x)

(
δm +

√
m
n

+ ερ
m + γm | ln γm | + ε̂m(x, ρ)

))}
.

From the last inequality, we get, for all 1 ≤ x ≤ αρ min{ε−1
m ,

√
n/m},

ln
P(W ◦

n ≥ x)
1 − Φ (x)

≤ c′′′

ρ

(
x2+ρερ

m + x2
(
δ2

m + γm | ln γm | +
m
n

)
+ (1 + x)

(
δm +

√
m
n

+ ερ
m + γm | ln γm | + ε̂m(x, ρ)

))
, (4.22)

which gives the upper bound of ln P(W◦
n ≥x)

1−Φ(x)
for ρ ∈ (0, 1). The proof of the lower bound of

ln P(W◦
n ≥x)

1−Φ(x)
, 1 ≤ x ≤ αρ,0 min{ε−1

n ,
√

n/m}, is similar to the proof of (4.22), but, instead of
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using (4.12), we use the following inequalities: for all x ≥ 0,

P
(

W ◦

n ≥ x
)

≥ P
(

W ◦

n ≥ x,
(V ◦

k )2

nσ 2 ≥
1
2

)
≥ P

(∑k
j=1 S◦

j /(n1/2σ )
√

[M]k
≥ x

√
1 + κm,

(V ◦

k )2

nσ 2 ≥
1
2

)
≥ P

(
Mk

√
[M]k

≥ x(1 + γm | ln γm |)
√

1 + κm,
(V ◦

k )2

nσ 2 ≥
1
2

)
−P

(
1

n1/2σ

k∑
j=1

E[S◦

j |F( j−1)m] ≥ xγm | ln γm |

√
1 + κm,

(V ◦

k )2

nσ 2 ≥
1
2

)

≥ P
(

Mk
√

[M]k
≥ x(1 + γm | ln γm |)

√
1 + κm

)
− P

(
(V ◦

k )2

nσ 2 <
1
2

)
−P

(
1

n1/2σ

k∑
j=1

E[S◦

j |F( j−1)m] ≥ xγm | ln γm |

√
1 + κm

)
=: P1(x) − P2 − P3(x). (4.23)

By an argument similar to that of (4.15), we deduce that, for all 0 ≤ x ≤ αρ,0ε
−1
m ,

P1(x)
1 − Φ(x)

≥ exp
{
−cρ

(
x2+ρερ

m + x2(δ2
m + γm | ln γm | +

m
n

)

+ (1 + x)
(
δm +

√
m
n

+ ερ
m + γm | ln γm | + ε̂m(x, ρ)

))}
. (4.24)

By (4.20), we have, for small enough αρ,0 > 0 and all 0 ≤ x ≤ αρ,0 min{ε−1
n ,

√
n/m},

P2

1 − Φ (x)
≤

√
2π (1 + x) exp

{
−C(ρ)

( 1
ε2

m
+

n
m

)
+

1
2

x2
}

≤ Cρ,3

(√
m
n

+ ερ
m

)
exp

{
−

1
2

x2
}
. (4.25)

By an argument similar to that of (4.17), we get, for all x ≥ 1,

P3(x)
1 − Φ (x)

≤ C1(1 + x) exp
{
−C0x2(ln γm)2

+
1
2

x2
}

≤ C4 γm | ln γm | exp
{
−

1
2

x2
}
. (4.26)

Combining the inequalities (4.23)–(4.26) together, we obtain, for all 1 ≤ x ≤ αρ,0 min{ε−1
n ,

√
n/m},

ln
P(W ◦

n ≥ x)
1 − Φ (x)

≥ −Cρ

(
x2+ρερ

m + x2
(
δ2

m + γm | ln γm | +
m
n

)
+ (1 + x)

(
δm +

√
m
n

+ ερ
m + γm | ln γm | + ε̂m(x, ρ)

))
.

This completes the proof of Theorem 2.1 for all 1 ≤ x ≤ αρ,0 min{ε−1
n ,

√
n/m}.
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For the case 0 ≤ x ≤ 1, instead of (4.12), we make use of the following estimations:

P
(

W ◦

n ≥ x,
(V ◦

k )2

nσ 2 ≥
1
2

)
≤ P

(∑k
j=1 S◦

j /(n1/2σ )
√

[M]k
≥ x

√
1 − κm,

(V ◦

k )2

nσ 2 ≥
1
2

)
≤ P

(
Mk

√
[M]k

≥ (x − γm | ln γm |)
√

1 − κm,
(V ◦

k )2

nσ 2 ≥
1
2

)
+ I2(1)

≤ P
(

Mk
√

[M]k
≥ (x − γm | ln γm |)

√
1 − κm

)
+ I2(1)

=: Ĩ1(x) + I2(1).

By an argument similar to the case of 1 ≤ x ≤ αρ,0 min{ε−1
n ,

√
n/m}, we obtain the upper

bound of ln
P(W ◦

n ≥ x)
1 − Φ (x)

for all 0 ≤ x ≤ 1. To prove the lower bound of ln
P(W ◦

n ≥ x)
1 − Φ (x)

, 0 ≤

x ≤ 1, instead of (4.12), we should use the following estimations:

P
(

W ◦

n ≥ x
)

≥ P
(

W ◦

n ≥ x,
(V ◦

k )2

nσ 2 ≥
1
2

)
≥ P

(∑k
j=1 S◦

j /(n1/2σ )
√

[M]k
≥ x

√
1 + κm,

(V ◦

k )2

nσ 2 ≥
1
2

)
≥ P

(
Mk

√
[M]k

≥ (x + γm | ln γm |)
√

1 + κm,
(V ◦

k )2

nσ 2 ≥
1
2

)
− I2(1)

≥ P
(

Mk
√

[M]k
≥ (x + γm | ln γm |)

√
1 + κm

)
− P

(
(V ◦

k )2

nσ 2 <
1
2

)
− I2(1).

Again by an argument similar to the case of 1 ≤ x ≤ αρ,0 min{ε−1
n ,

√
n/m}, we get the lower

bound of ln
P(W ◦

n ≥ x)
1 − Φ (x)

for all 0 ≤ x ≤ 1. This completes the proof of Theorem 2.1 for

ρ ∈ (0, 1).
For ρ = 1, the proof of Theorem 2.1 is similar to the case of ρ ∈ (0, 1), where the

term εm | ln εm | comes from point [ii] of Lemma 4.1 with ϵn = C1,0εm . Notice that if (X i )i∈Z
satisfies the condition of Theorem 2.1, then (−X i )i∈Z also satisfies the same condition. Thus

the assertions in Theorem 2.1 remain valid when
P(W ◦

n ≥ x)
1 − Φ (x)

is replaced by
P(W ◦

n ≤ −x)
Φ (−x)

,

x ≥ 0.

4.3. Proof of Corollary 2.1

First, we prove that

lim sup
n→∞

a2
n lnP

(
an W ◦

n ∈ B
)

≤ − inf
x∈B

x2

2
. (4.27)

For any given Borel set B ⊂ R, let x0 = infx∈B |x | ≥ infx∈B |x |. By Theorem 2.1, we deduce
that

P
(

an W ◦

n ∈ B
)

≤ P
(

W ◦

n ≥
x0

an

)
+ P

(
W ◦

n ≤ −
x0

an

)
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≤ 2
(

1 − Φ
( x0

an

))
exp

{
C

(
(
x0

an
)2+ρερ

m +

( x0

an

)2(
δ2

m + γm | ln γm | +
m
n

)
+ (1 +

x0

an
)
(
δm + γm | ln γm | + ερ/4

m +

√
m
n

))}
.

Notice that an → 0 and an min{ε−1
m ,

√
n/m} → ∞ as n → ∞. Using (4.13) and (2.4), we

deduce that

lim sup
n→∞

a2
n lnP

(
an W ◦

n ∈ B
)

≤ −
x2

0

2
≤ − inf

x∈B

x2

2
,

which gives (4.27).
Next, we prove that

lim inf
n→∞

a2
n lnP

(
an W ◦

n ∈ B
)

≥ − inf
x∈Bo

x2

2
. (4.28)

Without loss of generality, we assume that Bo
̸= ∅, otherwise (4.28) holds obviously, since in

this case the infimum of a function over an empty set is equal to ∞ by convention. For any
given ε1 > 0, there exists an x0 ∈ Bo such that

0 <
x2

0

2
≤ inf

x∈Bo

x2

2
+ ε1. (4.29)

We only consider the case when x0 > 0, the case x0 < 0 being proved in the same way. Since
Bo is an open set, for x0 ∈ Bo and small enough ε2 ∈ (0, x0) it holds (x0 − ε2, x0 + ε2] ⊂ B.
Clearly, x0 ≥ infx∈B x . It is easy to see that

P
(

an W ◦

n ∈ B
)

≥ P
(

W ◦

n ∈ (a−1
n (x0 − ε2), a−1

n (x0 + ε2)]
)

≥ P
(

W ◦

n > a−1
n (x0 − ε2)

)
− P

(
W ◦

n > a−1
n (x0 + ε2)

)
.

By Theorem 2.1, we have

lim
n→∞

P
(

W o
n > a−1

n (x0 + ε2)
)

P
(

W o
n > a−1

n (x0 − ε2)
) = 0.

Again, by Theorem 2.1, (4.13) and (2.4), it follows that

lim inf
n→∞

a2
n lnP

(
an W ◦

n ∈ B
)

≥ lim inf
n→∞

a2
n ln

1
2
P
(

W ◦

n > a−1
n (x0 − ε2)

)
= −

1
2

(x0 − ε2)2.

Letting ε2 → 0, we obtain

lim inf
n→∞

a2
n lnP

(
an W ◦

n ∈ B
)

≥ −
x2

0

2
≥ − inf

x∈Bo

x2

2
− ε1.

Since ε1 > 0 can be arbitrarily small, we get (4.28). The proof of Corollary 2.1 is complete.

4.4. Proof of Corollary 2.2

We only need to consider the case where max{γm, εm, δm, m/n} ≤ 1/10. Otherwise,
Corollary 2.2 holds obviously by choosing Cρ large enough. Denote

κn = min{γ −1/4
m , ε−ρ(2−ρ)/8

m , δ−1/4
m , (m/n)−1/4

}.
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It is easy to see that

sup
x

⏐⏐⏐P(W ◦

n ≤ x) − Φ (x)

⏐⏐⏐ ≤ sup
|x |≤κn

⏐⏐⏐P(W ◦

n ≤ x) − Φ (x)

⏐⏐⏐ + sup
|x |>κn

⏐⏐⏐P(W ◦

n ≤ x) − Φ (x)

⏐⏐⏐
= sup

|x |≤κn

⏐⏐⏐P(W ◦

n ≤ x) − Φ (x)

⏐⏐⏐
+ sup

x<−κn

P(W ◦

n ≤ x) + sup
x<−κn

Φ (x)

+ sup
x>κn

P(W ◦

n > x) + sup
x>κn

(1 − Φ (x)). (4.30)

Notice that

sup
|x |≤κn

{ερ
m | ln εm |, ε̂m(x, ρ)} = ερ(2−ρ)/4

m .

By Theorem 2.1 and the inequality |ex
− 1| ≤ |x |e|x |, we have

sup
|x |≤κn

⏐⏐⏐P(W ◦

n ≤ x) − Φ (x)

⏐⏐⏐
≤ sup

|x |≤κn

(
1 − Φ(|x |)

)⏐⏐⏐⏐eCρ

(
x2+ρε

ρ
m+x2

(
δ2

m+γm | ln γm |+
m
n

)
+(1+x)

(
δm+γm | ln γm |+ε

ρ(2−ρ)/4
m +

√
m
n

))
− 1

⏐⏐⏐⏐
≤ Cρ,1

(
δm + γm | ln γm | + ερ(2−ρ)/4

m +

√
m
n

)
. (4.31)

From the last inequality, we get

sup
x<−κn

P(W ◦

n ≤ x) = P(W ◦

n ≤ −κn)

≤ Cρ,1

(
δm + γm | ln γm | + ερ(2−ρ)/4

m +

√
m
n

)
+ Φ (−κn)

≤ Cρ,2

(
δm + γm | ln γm | + ερ(2−ρ)/4

m +

√
m
n

)
. (4.32)

Similarly, we have

sup
x>κn

P(W ◦

n > x) ≤ Cρ,3

(
δm + γm | ln γm | + ερ(2−ρ)/4

m +

√
m
n

)
. (4.33)

Clearly, it holds that

sup
x>κn

(1 − Φ (x)) = sup
x<−κn

Φ (x) = Φ (−κn) ≤ Cρ,4

(
δm + γm | ln γm | + ερ(2−ρ)/4

m +

√
m
n

)
.

(4.34)

Combining the inequalities (4.30)–(4.34) together, we obtain the desired inequality.

4.5. Proof of Proposition 3.1

We only need to show that the quantities γm and δm can be dominated via the quantities
η1,n and η2,n . By the definition of γm , it is easy to see that

γm ≤
1

m1/2σ

∞∑
j=1

1
j3/2

( mj∑
i=1

η1,i

)
.
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Thus, when η1,n = O(n−β) for some β > 1, it holds

γm = O(1/m1/2).

Next, we give an estimation for δm . It is obvious that

∥E[Sm |F0]∥∞ ≤

m∑
i=1

η1,i

and  1
mσ 2 E[S2

m |F0] − 1


∞

≤
1

mσ 2
n

(
∥E[S2

m |F0] − E[S2
m]∥∞ + |E[S2

m] − mσ 2
|

)
.

Clearly, it holds

∥E[S2
m |F0] − E[S2

m]∥∞ ≤

m∑
i=1

∥E[X2
i |F0] − E[X2

i ]∥∞

+ 2
m−1∑
i=1

m∑
j=i+1

∥E[X i X j |F0] − E[X i X j ]∥∞.

Splitting the last sum as∑
1≤i≤m/2

∑
i+1≤ j≤2i

+

∑
1≤i≤m/2

∑
2i+1≤ j≤m

+

∑
m/2≤i≤m−1

∑
i+1≤ j≤m

,

by the condition maxi=1,2{ηi,n} = O(n−β), we infer that

∥E[S2
m |F0] − E[S2

m]∥∞

≤ C1

( m∑
i=1

i−β
+

∑
1≤i≤m/2

iη2,i + ∥X0∥∞

∑
1≤i≤m/2

∑
j≥i

η1, j + m
∑

i≥m/2

η2,i

)
,

Notice that

|E[X i X0]| = |E[X0E[X i |F0]]| ≤ ∥X0∥∞∥E[X i |F0]∥∞.

By η1,n = O(n−β), β > 1, it is easy to see that

|E[S2
m] − mσ 2

| ≤

m∑
i=1

⏐⏐⏐ m∑
j=1

E[X i X j ] −

∞∑
j=−∞

E[X i X j ]
⏐⏐⏐

=

m∑
i=1

⏐⏐⏐ 0∑
j=−∞

E[X i X j ] +

∞∑
j=m+1

E[X i X j ]
⏐⏐⏐

≤ ∥X0∥∞

m∑
i=1

( −i∑
j=−∞

O(| j |−β) +

∞∑
j=m+1−i

O( j−β)
)

≤ C2

m∑
i=1

i−β

≤ C3 .



Please cite this article as: X. Fan, I. Grama, Q. Liu et al., Self-normalized Cramér type moderate deviations for stationary sequences and applications,
Stochastic Processes and their Applications (2020), https://doi.org/10.1016/j.spa.2020.03.001.

24 X. Fan, I. Grama, Q. Liu et al. / Stochastic Processes and their Applications xxx (xxxx) xxx

Hence, it holds

δ2
m ≤

C1

mσ 2
n

[( m∑
i=1

η1,i

)2
+

m∑
i=1

i−β
+

∑
1≤i≤m/2

iη2,i + ∥X0∥∞

∑
1≤i≤m/2

∑
j≥i

η1, j

+ m
∑

i≥m/2

η2,i + C4

]
.

Then, taking into account that maxi=1,2{ηi,n} = O(n−β), we have

δm =

⎧⎨⎩
O(m−(β−1)/2), if β ∈ (1, 2),
O(m−1/2

√
ln m), if β = 2,

O(m−1/2), if β > 2.

By point 2 of Remark 2.1, we have εm = O(m/n1/2). If β ≥ 3/2, then equality (2.8) with
m = ⌊n2/7

⌋ holds uniformly for 0 ≤ x = o(n1/14/
√

ln n) as n → ∞. If β ∈ (1, 3/2), then
equality (2.8) with m = ⌊n1/(3β−1)

⌋ holds uniformly for 0 ≤ x = o(n(β−1)/(6β−2)) as n → ∞.
This completes the proof of points [i] and [ii].

To prove [iii], notice that m := m(n) → ∞ and n1/2/m → ∞ imply εm, γm, δm → 0 as
n → ∞. Then, point [iii] follows from Corollary 2.1. □
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[31] L. Saulis, V.A. Statulevičius, Limit Theorems for Large Deviations, Kluwer Academic Publishers, 1978.
[32] Q.M. Shao, A Cramér type large deviation result for student’s t−statistic, J. Theor. Probab. 12 (2) (1999)

385–398.
[33] Q.M. Shao, On necessary and sufficient conditions for the self-normalized central limit theorem, Sci. China

Math. 61 (10) (2018) 1741–1748.
[34] Q.M. Shao, Q.Y. Wang, Self-normalized limit theorems: A survey, Probab. Surv. 10 (2013) 69–93.
[35] W.B. Wu, Nonlinear system theorey: Another look at dependence, Proc. Natl. Acad. Sci. USA 102 (2005)

14150–14154.
[36] W.B. Wu, Z. Zhao, Moderate deviations for stationary processes, Statist. Sinica 18 (2008) 769–782.

http://refhub.elsevier.com/S0304-4149(19)30431-4/sb11
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb11
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb11
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb12
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb12
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb12
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb13
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb13
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb13
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb14
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb14
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb14
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb15
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb15
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb15
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb16
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb17
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb17
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb17
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb18
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb18
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb18
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb19
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb19
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb19
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb20
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb20
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb20
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb20
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb20
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb21
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb21
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb21
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb22
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb22
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb22
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb23
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb23
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb23
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb24
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb24
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb24
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb25
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb25
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb25
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb26
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb27
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb28
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb29
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb29
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb29
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb30
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb30
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb30
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb31
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb32
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb32
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb32
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb33
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb33
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb33
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb34
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb35
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb35
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb35
http://refhub.elsevier.com/S0304-4149(19)30431-4/sb36

	Self-normalized Cramer type moderate deviations for stationary sequences and applications
	Introduction
	Main results
	Applications
	-mixing type sequences
	Contracting Markov chains
	Expanding maps
	Application to confidence intervals

	Proofs of theorems
	Preliminary lemmas
	Proof of th1 
	Proof of co0 
	Proof of co01 
	Proof of pro3.3 

	Declaration of competing interest
	Acknowledgments
	References


