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We consider the two-dimensional weakly asymmetric simple exclusion process, where the asymmetry is 

along the X-axis. The generator for such a process can be written as .s-*&+ &-‘I+, E > 0, where L, and 

t, are the generators for the nearest neighbor symmetric simple exclusion and totally asymmetric simple 

exclusion, respectively. We prove propagation of chaos and convergence to Burgers equation with 

viscosity in the limit as E goes to zero. The density fluctuation field converges to a generalized Omstein- 

Uhlenbeck process. The covariance kernel for a class of travelling wave solutions is consistent with a 

phase boundary which fluctuates according to a linear stochastic partial differential equation. 

Infinite particle systems * simple exclusion * Burgers equation * Omstein-Uhlenbeck process 

Introduction 

The one-dimensional Burgers equation, 

0 s p s 1, r E 22, t 2 0, A 3 0, has been studied in great detail [l-9]. This equation has 

been used to model a wide variety of phenomena. Of particular interest are the 

class of travelling wave solutions of this equation. In the last decade a great deal 

of work has been devoted to the understanding of the macroscopic structure of 

Burgers equation. The approach has been along the direction suggested by McKean 

[14], namely that of using stochastic microscopic description. While there exists a 

number of works [3,20] where interacting Brownian motions are used as a model 

at the microscopic level, we focus our attention in this paper on interacting infinite 

particle systems, particularly the exclusion process. A great deal is known about 

the hydrodynamic behaviour of asymmetric simple exclusion. In particular, the 

microscopic stability of the shock has been intensively studied in the last few years 

[l, 2,7, 10,241. The recent work suggests that at the microscopic level the shock 
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fluctuates rigidly, maintaining its shape, the translations being described by standard 

Brownian motion. While this has not been proved, there is considerable evidence 

to support this conjecture. Recent work of Ferrari [8] shows that the fluctuations 

of the shock come from the initial condition and not from the dynamics, and gives 

a precise characterization of the relation. 

In this paper we consider the two dimensional Burgers equation. Very little seems 

to be known about this model at the microscopic level. There are the recent results 

of Landim [12] proving the convergence of two-dimensional asymmetric simple 

exclusion to Burgers equation in the hydrodynamic limit. We consider the two- 

dimensional weakly asymmetric simple exclusion, the asymmetry being along the 

X-axis. We prove propagation of chaos and convergence in the kinetic limit to 

Burgers equation with viscosity. We study the density fluctuation field and show 

that it converges to a mean zero generalized Ornstein-Uhlenbeck process. Then we 

consider the travelling wave solution of the Burgers equation obtained from the 

one-dimensional travelling wave solution by making the density uniform along the 

Y-direction. We show that the covariance of the fluctuation field is consistent with 

the following picture for the evolution of the boundary of the travelling wave solution 

(phase boundary). Let h”(y, t) be the height of fluctuation (in the X-direction) of 

the boundary at time t and level y. Then 

ah’ 
dt = Ah" + dlZY,,, 

where Z,,, is the space-time white noise. A discrete model at the microscopic level 

is 

dh”(y, t) = E -‘AdhE dt + ( ED) d&(y), 

where y E Z, A,, is the discrete Laplacian and (&(Y))~~~ are a countable collection 

of independent Brownian motions. D is a constant determined by the shape of the 

travelling wave solution. 

We point out that models of the type described above appear in the physics 

literature [22]. Of course, the goal in such a context usually is to start from the 

model and obtain some information about the phenomenon. We have considered 

the problem of obtaining the model starting from an appropriate stochastic micro- 

scopic description. The linearity of the equation we have obtained originates from 

the assumption (of the model) that the asymmetry is always along a fixed direction 

(X) at every point on the phase boundary. A more general situation would be where 

the boundary grows along a direction normal to the boundary at every point on the 

boundary. In this case one would expect to obtain a nonlinear equation. 

We use the correlation function technique [5] to obtain our results. This model 

was studied in one dimension by DeMasi, Presutti and Scacciatelli [4]. While we 

follow the approach in their paper there are particular technical problems which 

arise because of the two-dimensional nature of the problem. One of the important 

estimates in the correlation function technique involves the time integral of the 
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probability of two random walks being nearest neighbors (in Z’). Since this probabil- 

ity goes like l/t in two dimensions, one has to deal with logarithmic divergences, 

which are not present in one dimension. We note that this problem appears even 

in the study of symmetric simple exclusion in dimension greater than one and was 

solved using elementary methods in a recent paper [17]. 

1. Description of the model and results 

The symmetric simple exclusion process on Z2 is a Markov process whose state 

space is the set of configurations of particles in Z2, i.e., (0, l}“*. (0 denotes an empty 

site while 1 denotes an occupied site.) A particle at a site attempts to jump to one 

of its nearest neighbor sites with probability $ after an exponential waiting time of 

mean one. The jump does not take place if the site it wants to jump to is occupied. 

Let n E (0, l}@ be a configuration (an element of the state space). We denote by 

q(x) the coordinate projection of n onto site x, i.e., n(x) is the occupation number 

of the site x E Z2 for the configuration 7. It is well known that the symmetric simple 

exclusion process can be constructed with the generator Lo, where the action of L,, 

on cylinder functions is defined as follows [13]. 

Lo =t c c UWY)) -f(7))(7(x)(l- r](Y))) 
EL2 lx-yl=1 

=fxx2 ,_,I& u-wX’Y9-f(d) 

where 

r](“,y)(z) = n(z) if z # X, P%) = V(Y), ?l’x’y’(Y) = n(x), 

e,=(l,O) and e2=(0,1). 

We denote by L, the generator of the totally asymmetric simple exclusion process 

on Z2. This is the process where a particle in a configuration attempts to jump to 

the site one unit to its right. The jump takes place if the site is not occupied. The 

generator L, is defined on cylinder functions as follows: 

U-(77) =X2 U-(77 (x++e4 -f(rl))(~(x)(I - 77(x+ 4)). 

By weakly asymmetric simple exclusion, we mean the family of processes with 

generators L, = Lo+ FL,, E > 0. We are interested in studying the process obtained 

when E + 0 and space is scaled like 6-i and the time is scaled like E-~. The typical 

displacement of a particle under Lo (root mean square displacement) in a time E-’ 

is of the order s-l, while under L,, whch is a pure drift, the typical displacement 

in the same time is of the order of E-‘. If we did not weaken L, by multiplying it 
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by E, the drift would totally dominate the diffusion as E + 0. Since we are interested 

in studying the microscopic structure of Burgers equation with viscosity, we want 

both the drift and diffusion terms to survive in the limit. Therefore we have weakened 

the drift by multiplying it by F, i.e., scaled down the rate of jumps by E. 

Theorem 1. Let p,, be a bounded C” function on R2 with bounded derivatives and 

values in [0, I]. For E >O, let pLF be the product measure on (0, 1}“2 such that 

~FF(~lI~~)=l)=PO(~X). 7% en f or r E R2 and t > 0 uniformly in compacts of R2 x Iw, , 

lim IELr(q[eP1r], ee2t)-p(r, t)l =O, 
E’O 

where p(r, t) is the solution of the Burgers equation 

$=$Ap-;p(l-p), (1.1) 

and p(r, 0) = pO(r). [x] denotes the integral part of x. 

This theorem states that the average value of particle density at [C’r] at time 

e-‘t, with respect to the measure pLBP: (where PL is the transition operator for the 

weakly asymmetric simple exclusion, WASEP), is well approximated by p( r, t), the 

solution to Burgers equation with initial condition po. We indicate why this is a 

reasonble expectation by the following heuristic argument. 

First note that if f(T) = r](x), then 

Lrl(x) =; / _x,=, (77(Y) - 77(x)) 
x Y 

+47(x - 4(1- 77(x)) - 77(x)(1 - 77(x+ eJ)l. 

If we assume the pair correlation function of the density factors (mean field) and 

denote EL.(q(x, t)) by pe(x, t), we obtain 

$+, I)=$; I_ (Ps(Y, t)-PE(X, t)) 
XY 1 

-dA(x, t)(l-p,(x+e,, t))-p,(x-el, t)(l-A(x, t))l. 

(1.2) 

It is easy to see that (1.2) is a discretization of the resealed Burgers equation 

where the scaling is p?(x) t) = p( EX, ant). Therefore we see that with the >Ssumption 

that the correlation functions for density factor, the forward equation for density 

in the WASEP under diffusive scaling gives a discretized Burgers equation. This 

suggests that WASEP is an appropriate model for the Burgers equation with viscosity 

and that one might be able to make the heuristic arguments rigorous, if one is able 

to show that the discrepancy in the factoring property goes to zero fast enough as 

E goes to zero. This turns out to be a feasible strategy and motivates the next 

proposition. We need a few definitions before stating the proposition. 



K. Ravishankar / Exclusion 227 

Let p,(x, t) be the solution of the following integral equation with p,(x, 0) = Pi, 

PE(4 t) =c, R(x+ Z)&(Z, 0). 

--E 
I 

* 
dsC ~t-,b+4b&, s>(l-~,(z+e,))-p,(z-e,, s)(~-P,(z, s>>l, 

0 2 
(1.3) 

p,(x + z) denotes the transition kernel for the symmetric random walk in Z2. 

Definition. For any n 2 1, let x = (x1, x2, . . . , x,), xi E Z2, be an n-tuple of distinct 

points in Z2. 

where EEc denotes expectation with respect to WASEP with parameter E. 

Proposition. Let T > 0, y > 0. Then for each n 2 3, there is C, such that 

sup (V:(&, t)l< Cnen-‘, tits E-~T, V’E > 0, 
x 

Cl.41 

and for n = 1, 2, there exists a > 0 such that 

JVz(&, t)j < ae2g(x,, x2, t), Vt G E-IT, V/E > 0, (1-S) 

whereg(x,,x,, t)=l+~~~zP,_,(~+~)l{~~l-~z~=l}dsandP,_,(~+_z) isthetransi- 

tion probability kernel for two symmetric simple exclusion particles. 

Let Y:(4) = &2Cx +(&x)77(x, sp2 t), where 4 E S(R2), be the density field for the 

WASEP. It is easy to establish that lim,,, Y;(4) =jIw2 +(x)p(x, t) dx, Vt E [0, T], 

T < 00. Given this law of large numbers, we next define the fluctuation field and 

state a central limit theorem. The fluctuation field X;(4) for 4 E S(R’) is defined as 

X:(4) = c c &cx)(n(x, E-‘t) -E,e(n(x, E-2f))). (1.6) 

S(R2) denotes the space of C” functions which, along with their derivatives, decay 

exponentially fast at infinity. 

Given an initial measure pUE, we have thus defined a random linear functional on 

S(R2) at each time t. Let 9” be the law of this process with paths in D(R+ + S’(R’)), 

right-continuous left-limited paths taking values in the space of linear functionals 

on S(R2). 

Theorem 2. The law of 9’ converges weakly to 9, the law of a mean zero generalized 

Ornstein- Uhlenbeck process (0- lJ process). 9 solves the following Martingale prob- 

lem. For any 4 E S(U2’) and FE Ca(S(R2)), 

F(X(4)) - I,’ ds F’(X(ti))X(A4) - J ’ ds ~II&#412F”Ws(4)) (1.7) 
0 
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is a 8 Martingale on C”(l%+ S’([w2)). Operators A, and B, are de$ned as follows, 

(A&)(r) =&(r)+(l-2p(r, s)): 4(r), (1.8) 

where p is the solution to Burgers equation, and 

(1.9) 

Remark. We note that if we considered the density field Y;(4), it would be easy 

to check the Martingale condition stated in Theorem 2, with A, =$A - 

(a/ax)(p,( 1 - ps)) and B, = 0, thus proving the weak convergence of the density field 

to the deterministic functional given by 5 p( . , t). 

It is well known that there exists travelling wave solutions to the Burgers equation 

in one dimension [21]. If we consider an initial profile which is in the shape of a 

travelling wave solution to the one-dimensional Burgers equation along the X- 

direction and uniform along the Y-direction, then it is easy to see that this will be 

a travelling wave solution to the two-dimensional Burgers equation. Let us consider 

such a solution p((x, y), t) = p(x - ct), where c is the velocity of the travelling wave. 

Specifically, let 6 be monotonically increasing in x with limxi+m p(x) = p+, and 

p,(O) = $(p++p-). The microscopic stability of this profile in one dimension was 

considered in [4]. There it was shown that the covariance of the fluctuation field is 

consistent with the following picture. At time t define a (random) local equilibrium 

profile p&(r, t) = p(r - ct + BF), where B; is a Brownian motion with a diffusion 

coefficient DE. The vaue of D depends on the shape of p. Let &(r) = +( r+ ct) and 

Eg, the expectation with respect to Brownian motion. Let pR,E,r be the random 

product measure defined by pi(r, t), i.e., ~n,J~ (q(x) = 1) = p&(&x, t) for all x in 

Z. It was proved in [4] that 

This supports the conjecture that even at the microscopic level, the profile of the 

travelling wave solution is stable except for rigid translations. 

In two dimensions, the picture for which we argue is a bit more complicated. 

Here too the profile seems to be shifted rigidly at the microscopic level. In this 

model, in addition to the drift along the X-direction, there is also diffusion along 

the Y-direction. The picture which emerges is the following. Microscopically, the 

profile is shifted along the X-direction randomly. If we denote the shift for given 

values of y and t and scaling parameter E by h’(y, t), then 

$ (y, t) = Ah”(y, t) + eDZ,,,, (1.10) 

where Z,, is the space-time white noise [22] and D > 0 is determined by p. Equation 

(1.10) may be thought of as a model of fluctuations of a phase boundary. We can 
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think of the straight line I(t) = (ct, y) as an approximate macroscopic phase boun- 

dary, separating the occupied sites (to the right) from empty ones (to the left). The 

boundary would be sharp if the profile p was a step function instead of being 

smooth. At time t, I(t) describes the macroscopic average position of the correspond- 

ing microscopic boundary. The microscopic fluctuations around this line can be 

obtained from the fluctuation field of the WASEP. We now describe a different 

model for the fluctuations of the phase boundary which will be shown to be consistent 

with the WASEP at the level of covariance. Let I”(t) = (ct+ h”(y, t), y), where h’ 

is defined by equation (1 .lO). Z’(t) is the position of the microscopic phase boundary 

in a shifted profile p&(x, y) = p(x - cr+ h”(y, t)). Expected value of l”(t) with 

respect to h”(t) is I(t). We show that the microscopic fluctuations of WASEP are 

asymptotically equal to the microscopic fluctuations produced by the random shifting 

of the macroscopic phase boundary described above. 

Let p$,, be the random measure on configurations in (0, I}‘*, given by the 

random profile p&(x, y) =P(x-ct+hE(y, t)). That is, pi,,=n vfX,,),,, where 

G,I,,(v(x, Y) 1 T(X, Y) = 1) = P&(EX, WI. Then 

for all 4, $ E S(R2), where E,e is expectation with respect to h”. 

2. The proofs 

Proof of the proposition. We proceed along the same line as in the one-dimensional 

case [4]. We obtain an integral equation for V,,. (We omit the superscript E to 

simplify notation.) This equation, as in the one-dimensional case, involves integrals 

of V,, K-r, Vn-2, and V,+,. That is, we obtain an infinite hierarchy of equations. 

To terminate the hierarchy, we need to control V,, when n is large. This is done by 

obtaining a bound of the type supxl V,(g, t)l< c,,F”~, Vt s Y2T, for some 6 > 0. This 

was done in one dimension by first establishing this bound for a microscopic time 
(tGE-2fy T y> 0) and then iterating to extend it to macroscopic times (C2T). 

There is no essential difference in this part of the argument for the two-dimensional 

case. Therefore, we assume the existence of such an a priori bound and proceed 

with the proof of the proposition. 

The integral equation satisfied by V,(x t), n 32, can be written as follows. A 

detailed derivation of the integral equation can be found in [18]. 

Kk t> = ’ C~,-~(,,,)(Q,(E,S)+Q,(_~,~~))+FR(X_Z,,---S) I ds, 

(2.1) 
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where 

QI(& t> = E 
[ 
T; l{Xi + el# xj, Vj f i>Vn+~(&, xi + e,, t> 

-Cl{x,-e,#x,,Vj#f}V,+,(XXi-e,,t) i 1 
+C l{xj=xi+ell[(P,(xi, t)-P~tXjv t))+tl-P~t~j~ t))lVntX t, 

i.i 

+E C l{Xj=Xi-eilP~tXi-el, t)tV,(&, t)), 
i,i 

(2.2) 

2 1 
Q2(X r)= C -1 l{x~=xi+EaJ a = 1 4 i,J 

+& 1 l{Xj=Xi+el} 
[ i,i 

- PE(Xi, f) v”-,txt~L 1)) 
1 

+‘I l{xJ=xi+e,}(pE(xip t)-PF(Xj) t)) 

i.j 

-8, iz, l{xj=xi+eal(Pe(Xi, f)-PF(Xjv t))2K-2MCjL l), 

61 

(2.3) 

+(p,-,tx~_z-ei,l)-p,-,(x~~Z))PE(Zi, S)VntZ, S) 

+p,-,tx~_z+ei,l)(p,tZi, s)-p,tZi+el, S))K(Z, S) 

+P,-,tx~_z-ei,l)tpB(Zi-el, S)-PE(zi, S))vr~t_Z, S) 

+Pc-,(S+Z)(p,(zi+e,, S)-_p,(zi-c,, s))V,(z, s). (2.4) 

P+,(x + _z) is the semi-group for the symmetric simple exclusion process, starting 

from a configuration with n particles. We have identified a configuration with the 

set of occupied sites (x). Ci,j indicates sum over all distinct ordered pairs. x(i, j) = X\{xi9 xjI, x(i) = X\{Xil. 

Before proceeding with the proof of the proposition, we note that the above 

integral equation applies only for n 2 2. It is easy to write down an integral equation 



K. Ravishankar / Exclusion 

for V,, which we do now. 

231 

,& (VI(Y, t) - V*(x, t)) 
1 1 

+ d( V,(x + e, , t> - V,(x, 1)) + (V2tx-C el, x, t) - VAX, x - el, t)>l, 

V,(x, t) = & I ‘~p~-.,(xj_z)[(V,(z+e,,s)-V,(z,s)) 
0 = 

+ ( V,(z+ e, , z, s) - VAz, z - e,, ~111 ds 

=& ‘~(pi-.~(rj_z-e,)-P,-,(x-,_z)) 
x(V,(z,s)+V,(z,z-e,,s))ds. 

P, (x + _z) in the above expression is the transition kernel for a symmetric simple 

random walk in Z2. By coupling two random walks, one starting from x and the 

other starting from x + e,, in such a way that they move independently until they 

meet and together afterwards, one can easily show that [S] 

where C is independent of t-s. 

Let U(E, k, u) = SU~~,~~~( V,(x s)(. We now show that, given T> 0, there is M(T) 

such that 

Let 

parts, 
m-l. 

Q(&, 1, f)<M(7)4&,2, U), vts&-27, E>O. (2.5) 

rnE N be such that C-S$. Divide the interval [0, ~~~71 into m equal 

that is, sub-intervals of the form [TV, TV+,], where 7k = (k/m)&-27, 0~ ks 

Let t E IQ, 7k+J. 
rh+I 

V,(x, f)GU(&, 1, Tk)+& 
I 

C l~T.C+I-S(~~~-e,)-~,,+l_~(x~z)l 
Tk = 

~(a(&, 1, ~+l)+a(&, 2, G+J) ds 

< a(&, 1, %)+%a(&, 1, 7/c+l)+a(&, 2, T!X+,)). 

Therefore, 

U(E, 1, 7k+1) s 2a(s, 1, Tk)+ a(.% 2, 7k-tl) s 2a(.% 1, 7k)+ a(.% 2, 7,). 

From this, by iteration, it is easy to see that there is a constant M(T) with 

a(&, 1, 7,) < M(~)u(E, 2, 7,). Before proceeding with the iteration of (2.1), we 

rewrite the first two terms in C, P,_,(x-+ _z)Q1@, S) by summation by parts. The idea 

is to obtain in place of the gradient of V,,,, with the indicator functions, a gradient 

of the transition function and an indicator function for two exclusion particles to 

be nearest neighbors. 

Consider 

CCpt-.~(x~_z)l{zi+e,fzj,~j#ii)V,+,(_z,Zi+e,,s). 

i z 
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Let z’ = z + ei,, . Then we can rewrite the above as 

CC P,_,(~+z’-ei,I)l{Z~ f Zj, Vj # i}V,+,(_z’, Zi- e,, s). 
i z 

Since there is a one-to-one correspondence between the set of _z”s and z’s, we 

can replace the sum over _z by the sum over z’. Thus we obtain 

CCP~-s(x~_z)(l{Zi+e,fZj,tljf:i}V,+,(Z,Z,+e,,s) 
i z 

- l{Z, -e, # Zj, Vj Z i}V,+,(_z, Zi - e,, S)) 

= N (P,_,(~+~-ei,l)-P,_,(&+_2))l{Zifzj,Vj#i} 
i z 

+ C P~-s(X+Z)l{Zi-e,=zjl v,+~(_Z,z~-ee,,.S) . 

j#i 1 ) (2.6) 

We use a set of inequalities in our argument. Hereafter C is a constant whose 

value changes from line to line. 

suplp,(x+eO,s)-p,(x s)l<Cs, a =1,2, (2.7) 
x 

where C is a constant independent of E and s. This follows from the equation for 

PF and the smoothness of pE [5]. 

(2.8) 

(2.9) 

(2.8) and (2.9) can be proved using the two-dimensional version of the arguments 

given in [5]. We also note that ~~(3, s) is uniformly bounded in E, 3, and s. From 

(2.6) we get 

II ( ’ 1 ~Pf-S(~~~-ei,~)-P,_,(~~_z)l{Zi-el#zj,Vj#i} 
0 i z 

+ C P,-.~(x~Z)l{zi-e,=zj} Vn+l(~,zl-el,s) ds 

j#i > 

+2 C P,-,(~+~)l{Zi=e,=Zj} a(~, n+l, S) ds. 
j#i > 
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We prove equations (1.4) by induction. Let 0 < y < 1 be the number specified in 

the proposition. Let K EN and k 2 2. 

Claim 1. If there exist positive real numbers {CK,n}nzK, {Cn,n}Ocn<K, and a, > 

n - y, 16 n s K such that 

tl.s >O, then there exist positive real numbers {CK+,,n}naK+l and aK+r > 

(K + 1) - y such that 

a(&, n, T) < 
{ 

C K+,,n&OLKtL, n>K+l, 

Cn,& an, n<K+l, 

V&>O. 

Proof of Claim 1. Let O< u < t, then it follows from (2,3) that 

I Kk, t)l s a(&, 4 u> 

+2&n(n - 1) En 

t-s+1 
a(&, n+l, s)+---- 

t-s+1 
a(&, n, s) 

+ &( ( &a .s,n-l,s)+~a(e,n-2,s)+a(qn-1,s)) 

+z 
a(&, n, s)+n.z2a(&, n, s) 1 ds. (2.10) 

Let T=E-~T. Let nr~kJ be such that max((ne)c,nz/m)<$. Divide the 

interval [0, E-~G-] into m equal parts, that is, consider the set of intervals [Q, T,.+~], 

06 ks m - 1, where rk = Ew2Tk/m. Let t E [TV, ~~+i]. We use (2, IO) to estimate 

V,(~t).Let N=min{p(p~>K+1}.Thuswehavea(~,n,T)<C,s””<C,~Kf’,if 

n 2 N. If K + 12 N, then we are done with the proof. Suppose K < N - 1. From 

(2.10) we obtain 

a(&, N- 1, Q+J 

<a(&, N-l, TV) 

1 
s.C Tk+l_s+l (2&(N-l)(N-2)a(&,n,s) 

+&(N-l)a(a, N-l,s)+a*(N-l)a(~, N-2,s) 

+(N-l).s2a(q N-3,s)+~(N-l)a(~, N-2,s)) 

+;s a(&, N,s)+>bsa(.q N-1,s) 

+(N-1)c2a(&, N-1,s) ds. 1 
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Let AK =:min{aK -(K-y), oK_, - (K - 1 - y)}. Let CA, be a positive real number 

such that 

‘do > 0. Using this estimate in the inequality above we get 

a(&, N-l, Q+r)<U(E, N-l, q)+&(E, N-l, 7k+,)+CEaK+I, 

where czK+r > (K + 1) - y and C is independent of E. Thus we have 

a(s, N-l, Tk+,)G2u(&, N-l, 7k)+2C&01K+‘. 

From this estimate it is easy to see that there exists a constant C,+,,,_, such that 

U(&, iv- 1, T) G CK+,,N_,EaK+l. 

Since N - (K + 1) is finite, repeating this argument a finite number of times gives us 

U(&, n, T) s CK+,,n&aK+I, n3K+l. 

This completes the proof of Claim 1. 

Claim 2. There exist positive real numbers C,,,{ C2,n}n32, a2 > 2 - y and LY, > 1 - y 

such that 

U(&,$ T)<C2,,EU’, n22, U(&, 1, T) < C1,rEal. 

Proof of Claim 2. We proceed as in the proof of claim 1. Let M = 

min{pIp8>2- y}. If n 2 M, then U(E, n, T) < C,E”’ < Cn~2--y. We estimate U(E, 

M - 1, T) using (2.10). Put A = + min{6,6M - (2 - y)}. Let CA be a positive real 

number such that 

I 

Tkfl ds 

-s+l 
< CAYA. 

Q TIC+1 

Using this estimate and the a priori estimate U(E, n, T) < C,,sns in (2.10), we easily 

obtain 

U(E, M - 1, T) < C2,M_-1~az, 

where o2 > 2 - y. Since M - 2 is finite, repeating this argument a finite number of 

times we get 

U(E, n, T) < C2,n~a2. 

Since U(E, 1, T) < M(T)u(F, 2, T), we easily obtain U(E, 1, T) < CI,,eal where (Y, > 

1 - y. This completes the proof of Claim 2. 

Equation (1.4) follows from Claim 1 and 2 by induction. 

We have proved equation (1.4) of the proposition, and now we proceed with the 

proof of equation (1.5). Note that the main difference between equations (1.4) and 

(1.5) is that in the former, the bound is in the uniform norm, while in the latter, it 

is pointwise. The implication for the proof is that we have to continue the iteration 

a few more steps before estimating the terms. 
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We start with the integral equation for V,. Recall from equation (2.1), 

V,(x r) = 
I[ 
’ CPt-,(x~_z)(Q,(_z,,s)+Q,(_z,,s))-t&R(~_~,,---S) ds 0 = 1 

(2.11) 

Note that R(g, _z, t -s) can be written as 

R(z,,,t-~)=R,(xz, t-s)V~(z,s). 

Therefore we can iterate equation (2.11) by substituting for V, in the expression 

for R. Iterating, we obtain 

Vz(~t)= ‘E:~,-~(x-t_z)(Q,+Q~)(_z,,s,)ds J 0 i 
* ’ ’ ~R,(zk-, , ?k, sk-l - sk) 

x c Ps,-s,+,(x+z)(Q,+Q*) 
Qt, 

x (gk+l, sk+l)) ds, ds> . . . dsk+, . 

(2.12) 

Using the bounds used in the proofs of Claims 1 and 2, it is easy to see that the 

contribution of the Q, term in the first integral goes like &‘+a for some p >O. 

Therefore we consider only the contribution from the Qz term in the first integral. 

Since we know ) V,(x, t)l< Cs”, for some o! > 1 and for all t G ~-~r and x E iZ*, it is 

easy to see that the first two terms in Q2 contribute less than CE~+~, for some /I > 0. 

Therefore, it is enough to consider the last term. The integral of the first term is 

bounded in absolute value by 

CE2 J r~P,_,~(~-t_z)l{~z,-zz(=l}ds=C~2g(x~,~~,~,f). 
0 r 

Therefore, we see that the contribution from the first integral is of the right type. 

We now show that the second term on the right-hand side of (2.12) is bounded in 

absolute value by CE~. We do this in two steps. First, we show that the term obtained 

after the last two iterations is bounded in absolute value by CE~. Then we show 

that further iterations lead to a convergent infinite series in k and show that the 

second term converges to a value bounded above by CE~. 

We note that R,(x, z, t-s) contains two types of terms: (i) terms of the form 

P,-,(x~_z+ei,,)-P,-,(x~_zlf(_z, 3) and (ii) terms of the form P+.(x+_z) x 

(p,(Zi + em) - PE(Zi))* Consider the last two iterations for the kth term in the series. 

First we consider terms of the first type in R,. A typical term of this type is 

J 3-l & c (P,,_,-,,(_Zk--1’Zk-ei,,)-P,,~,-,,(_z,-,~_z,))p,(~~i, Sk) 
0 Zk 

X J ‘* 1 P,-sk+,(Z+ -Zk+l)(@ + Qz)(-Zk+l, Sk+11 dSk dsk+, , 
0 a+* 
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where z+ is the ith coordinate projection of _z. Using equations (2.7)-(2.10), it is 

easy to see that the contribution from the Q1 term is bounded by CE’+~, for some 

p > 0. Therefore, we consider only the contributions from the Q2 term. 

Here we have used the translation invaraiance property of the exclusion process 

and the Markov property. Thus 

x c psk-sk+,(zk + ?k+l)(QZ)(Zk+l, sk+l) 

Zktl 

= c (p(sk_,-sc),Z(-zk--l + ZL - ei.1) - P(sk-,-sk),2(-Zk--l + ZL)) 
r; 

Therefore, 

x 1 Ps~~z~+,(_Zk”_Zk+l)(QZ)(_Zk+, , sk+l)l. 

lk+l 

c (P(sk_,-sk)&k-l + zl, - ei,l> - p(skm,-sk),2(zk-l + 4) 
rr: 

XC p(skml-sk)/2(z; + zk)Pa(zk,i, Sk) 

Zk [ 

x 1 psk-sk+,(-zk + Zk+&Q&k+l, sk+l 

Zk+l Ill 
cc jp(sk_,--sk),2(-zk-I + A - ei,l) - Psk_,-s),Z(Zk-l + &)I 

ri 

x c Psk-sk+,(--Zk + Zk+l)(Qd(Zk+l, sk+l 

Ilit, 4 

“5 ) P~sk_,-s~)lz(-zk-l + 26 - d - P~Sk_,-S4)12(zk--I -, 4) j 

x c psk-sk+,(-zk + ~k+l)l(Q2)(~k+l, sk+l)[* 
Zk+, 
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Each term in Q2 is bounded in absolute value by C~21{~zk+I,i -z~+~,~/ = 1) for an 

appropriate choice of i,j. Therefore, we have 

C (~~Sk_,-Sk~&~-~ +_ZL - ei.1) - ~~sk_,-sa&k-l + dJl 
zi 

x P~s~-,-sk),2-s~+,(_Z~ + z k+l)lOZ/c+l,i -zk+l,jl = l) 

(Here we have used the positivity and boundedness of pB, and the Markov property 

again) 

Jz 2 

<cE2a (Sk+S&l)-2Sk+,’ 

where we have made use of inequalities (2.8) and (2.9). Therefore, 

I J 

Sk-1 

& c Psk-,-sk(-Zk-l +zk - ~i,l)ps~-l-sk(~k-l -+~k)Pa(~k,,i, Sk) 

0 Zk 

X J ‘Ic c psk-sk+,(% +-Zk+,)(Q&k+l, Sk+11 dSk dSk+l 

0 a+, Sk-1 Sk 
< CE3 J J 42 2 

0 0 a (Skfsk-I)-hk+l dSk dsk+l. 

Now using the fact that Sk < L2r, Vk E N, one can easily show that the term above 

is bounded above by G2, where C is independent of 8. Now we consider the 

contribution from the second type of term 

I J Sk-1 & c P,,_,-,,(_Zk--lj_Zk)(PB(_Zk,i+E,, Sk)-Ps(~krip Sk)) 
0 z* 

x PE(zk,i, Sk) J ” c psk-sk+I(--zIL +‘~k+l)(@)(-Zk+l, sk+l) dSk dSk+, 
0 IkC, 

J L-l 

<& 2 ~,,_,-,,(~k--l~~k)~P~(~~i+E,,Sk)-Ps(~lii, sk)\ 
0 z* 

‘* XPe(-Zk,i, Sk) J c Psk-sk+,(--Zk +-Zk+&Q&k+l 3 Sk+l)i dSk dSk+l 

0 Zktl Sk-1 St < CE4 J J dSk dsk+lPs~_l-s~+l(Zk-l + ~k+l)l{(zk+l,i - zk+l,jl = 1) 
0 0 
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(where we have again made use of the Markov property and the uniform boundedness 

of pE by a constant) 

Sk+1 

< CE4 J J dsk 
sk ds,+, 

0 0 sk-l - sk+l 

Again using the fact that sk < 6’7, Vk E N, we easily obtain the desired estimate. 

Call 

% II J Sk-2 Ak= . . . I... c &RI& Zl, t - ~1)4kI, 22, s1- 4 
0 0 ZI z!s+, 

To complete the proof of the proposition, we now show that 

; Ak<K<a, 
k=2 

where K is independent of E, and s,,= t. 

A/c< c,F’+&) ds, . . + lb’-‘( c,~2+/~;sk_,) dsk-r, (2.13) 

where C, and C, are constants independent of E. Since sk - sk+r c t s ~~~7, we have 

for some constant C,. Therefore, 

J 
I 

o&ds,... C 

8 
Ak<C 

Ck-I 

Sk-2-Sk-1 
dsk-‘<f(k-l)! 

[4]. This proves (2.13), and completes the proof of the proposition. q 

Proof of Theorem 1. From the proposition, we know that 

I VI([E-l, II, f2 t)(=(EW=(T([~plr], C2t)-pE([C’r], c-‘t))l+O, 

as E + 0, for all r E 0X2, uniformly on compact intervals of time. Therefore, the proof 

of the theorem will be complete once we show that p,([E-‘r], s-‘t) converges 

uniformly on compacts to the solution p(r, t) of the Burgers equation with initial 

condition pO(x). This can be proved easily as was done in the one-dimensional case 

[4]. Propagation of chaos can be proved in a similar manner, using the estimates 

for V,. Cl 
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Proof of Theorem 2. We now prove that the fluctuation field X:(4) converges to a 

mean zero O-U process in the space D(R+ + S’(R2)). From the Holley-Stroock 

[ 11, 16, 19, 151 characterization of the O-U process, it follows that it is sufficient to 

establish the following criteria. 

(a) The set of measures {?i”“, 0 < E s l} for the WASEP is tight in D(R+ + S’(R’)), 

and any limit point of the set has support in C’(R++ S’(R’)). 

(b) Any limit point 9 (in the weak-*-topology) of the set {?J”“, O< E 5 1) solves 

the following Martingale problem. For any 4 E S(R2) and FE C”(Iw2), 

F(X(4)) - 
I 

’ dsF’Wd+))Xs(As+) - ’ ds ~11~s~1~2F”Wt(4N 

0 I 0 

is a Y-Martingale, with respect to the canonical filtration in C(R+ + S’(R”)). The 

operators A, and B, are defined as follows: 

where r = (x, y) and p is the solution to Burgers equation. 

(2.14) 

(2.15) 

Remark. Note that A, is the dual of the linearization of the operator on the 

right-hand side of Burgers equation. We may interpret the Martingale condition as 

saying that the limiting fluctuation field X,(4) formally satisfies the stochastic 

differential equation 

dX,(+) =X,(A,d) dt+dW,(B,+). 

(c) The law of the limiting process at time zero is Gaussian with mean zero and 

a covariance kernel 

Co(r, r’) =Po(r)(l -Po(r))G(r-r’). 

It is easy to check condition (c). The support properties of the process follow from 

the observation that jumps of X:(4) are bounded by CE. We now verify the 

conditions (a) and (b). 

We observe that 

F(X(4)) - c2 J 
f ds ~“(FGW+))) 

0 

I 

f 

+C2 ds F’(XY(~))E,~L”(F(X,‘(~))) 

0 

(2.16) 

is a E,e-Martingale, where L” is the generator of the WASEP. From the definition 

of the WASEP, it follows that 

L”(F(X:(4)))- F’(X:(4))E,=L”(F(X;(4))) 

= F’(X:(4))y;(r, ~)+F”(X:(@J))~;(& 4)+R”(r, +), (2.17) 
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where C2R”(t, q%)+O as E+O, 

E-*y,(t,+) = Z($A+)+ YT , 

(EXN7T)(X &-I t)(1-rl(X+e,, &-2t>> 

-&~(rl(z, E-2t)(l-77(z+ee,, e-*t)>>), 
(2.18) 

E-*y;(t, 4) =BE2 c 
Xt2 

2 

(E~)(7j(~,C2t)-7j(~+e,,&p2t))2 . 
3 

(2.19) 

Using this observation we first establish tightness for the process. It is well known 

[16] that a family of processes (XF( *))O< E 6 l), with values in D([O, T], S’(R’)) 

is tight if, for each test function 4, the family of processes (X;(4) 10 < E G 1) with 

values in D([O, T], R”) is tight. The Martingale conditions for tightness of 

(X%$)10<& 5 1) are as follows: 

(i) For all E with 0-C E < 1, 

(ii) There exist non-anticipating functions jj;( t, +), rr”( t, 4) such that for t E 

lo, Tl, 

are E,e-Martingales, and 

sup sup E,q[y:(s, r##) <co, i = 1,2. 
B OS(=GT 

It can be shown that M” and N’ are Martingales if we choose 

%(s, 4) = E -zL”x:(~)-E,~(&-2L”x,“(~)) 

and 

%(S, ‘$) = E-2(LE(X:(4))2-2X:(+)LEX:(4)) 

[6, 111. Now let F(z) = z and z* in (2, 17). Then we obtain 

L&X:(+) - &e(L”X::(+)) = y;(t, +)+R;(t, +), 

WX%$))‘-2XWQWXW) 

=2X:(+)7:(4 4)+2$(t, 4)+R;(t, 4). 
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Thus 

a-*&, 4) = j%r, 4) - e-2K(r, 4). 

&-“r;(t, 4) =%r;(r, 4)+2e-2R:(4 ~)X(~)--E-‘RZ(~, +)I, 
Since C’RL(t, 4) is uniformly bounded in E and t, it is easy 

E,~(C2Rf(t, 4))’ is uniformly bounded for i = 1,2. We show that 

SUP oust E,&=%$)12)<~. 
F 

Therefore, it follows that it is sufficient to show that 

SUP~Z~~_~T. E,C2bX~, &I’> <a 
F _. 

to see that 

(2.20) 

in order to check condition (ii). Condition (2.10) for -yg(f, 4) follows easily from 

the boundedness of r](x, t) and the integrability of (a4/ax)’ and (dc5/~y)~. It can 

be easily seen that 

JQ((X:(+)~~)<C~* C 1V2h xz, ~-~t)l+Rc. (2.21) 
XI.% 

The sum on the right-hand side of (2.21) can be shown to be uniformly bounded 

in E and t [17]. To verify the condition for rT(t, 4), we note that E,e( YS)’ can be 

seen to be uniformly bounded in E and t by expressing it in terms of V, and V,. 

With this observation, it is easy to see from equation (2.18) that condition (2.20) is 

true for rT(t, 4). This completes the proof of tightness (a). 

Verification of the Martingale condition (b): The term on the right-hand side of 

equation (2.17) is a Martingale for every E > 0. Now if we take the limit E + 0, then 

we see that the second term converges to the third (F”) term in condition (b). The 

first term on the right-hand side of (2.16) has two parts. The XF(aA+) term converges 

to the X,(aAc$) term in condition (b). The Martingale condition (b) will be proven 

if we show that 

lim E,= 
s-0 

[1-2p(.,s)]z(9 (2.22) 

From the known results of the Boltzmann-Gibbs principle [6,9], we have 

,+7- 

Y:2J+)-X:zs 
f 

[I-2&s)]:(.)) d,)2=0. 

(2.23) 

(2.22) follows from (2.23). This completes the verification of condition (b), and 

completes the proof of Theorem 2. 0 

We now obtain an integral equation for the equal time covariance kernel for the 

limiting process of the fluctuation field. The covariance kernel is defined by the 

following relation. 
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where X, is the limiting O-U process. If we let F(z) = z2 in the Martingale condition 

(b), we obtain 

E(X,(+)X,(4)) - E 2Xs(+Ws(As4) ds - ’ II&4112 ds = 0. 

Using the definition of the covariance kernel, we obtain 

II 
+(r)CT(r, r’)$(r’) dr dr’ 

RZ 58 f = JJJ 24( r)Cg( r, r’) dr dr’ ds 
0 

JJ 
f + tdr, s)Cl -dr, ~1) o [($)2+($)2] dsdr. (2.24) 

We now define a modified covariance kernel C,(r, r’) by 

C:‘(r, r’) = C,(r, r’)+p(r, t>(l -p(r, t))6(r- r’). 

This splitting of C? into diagonal and non-diagonal parts is a natural one, as can 

be seen from the form of the expected value of the square of the fluctuation field. 

With this definition from (2.24), we obtain 

JJ C,(r, r’)4(r)4(r’) dr dr’ 

=- J ddr)‘dr, t)(l -dr, t)> dr f + J JJ 2+( r)C,( r, r’)(A,+( r’)) dr dr’ ds 
0 1 + JJ W(r)&$(rMr, s)(f -dr, s)) dr ds 
0 

+f t JJ 0 
p(r,s)(I-p(r,s))[(~)2+($)2]drdr. (2.25) 

We integrate the second term on the right-hand side by parts to transfer the 

derivatives in A, on to C’,(r, r’) to obtain ji Ij 2qb(r)4(r’)L,tEs(r, r’) dr dr’ where L, 

is the linearization of the operator on the right-hand side of Burgers equation, i.e., 

L,C,(r, r’)=ad+C,--s(l--2p(r’,s))C,(r, r’). 

We observe that 

J %2AMr, f)(l -dr, t>)) dr 
= I 4(r)(&)(r)p(r, t)(l -dr, t)) dr 

J 

+ J p(r, t)(l -p(r, r))[ ($)2+(z)2] dr. 
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Therefore, if we differentiate equation (2.25) with respect to t, we get 

I aC,(r, r’) 
at 

~#~(r)+(r’) dr dr’ 

=- 4’(r)(l -b(r, t)) $&CC 1) -b (p(r, t)(l -p(r, t))) 1 dr 

+2 qS(r)qS(r’)L,C,(r, r’) dr dr’ 

p(r, t)(l -p(r, t)) dr I 
-i 4(rWh(r)dr, f>(l -dr, t>> dr 

= 2 4(r)c++(r’)L,C,(r, r’) dr dr’ 

+2 
I 

42(r) 2 (r, f)(p(r, f)(l -p(r, t)) dr 

-f 1 42(r)[ (2)2+(z)‘] dr. (2.26) 

We now consider the special initial profile of the form p,,(x, JJ) = j&(x), where 

PO(x) is the profile of a travelling wave solution of the one-dimensional Burgers 

equation with viscosity. limx++m PO(x) = p+ and 0 s p_ <p+ s 1. p(x, t) =&x - ct) 

where c = 1 - (p_ + p,). Clearly, p((x, y), t) = p(x, t) is a travelling wave solution to 

the Burgers equation in two dimensions. We now obtain an integral representation 

for the equal time covariance kernel of the limiting fluctuation field in this special 

case. We are interested in the fluctuations of the shape of the travelling wave. 

Therefore, we consider the fluctuations at r = (x + ct, y) = r,, r’ = (x’+ ct, y’) = r:. 

It follows from (2.26) that 

t)= ~A,-$(1-2~,Jx)-c) 
> 

Ct(rc,ri, t) 

+ ~A,~-~(l-2~o(x’)-c) 
> 

C,(r,, ri, t) 

+~(r-r’){2~(~o(l-~o))(x)-~(~)2}, C,(r, r’)=O. 

(2.27) 
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Let K,(z, r) be the transition kernel for a two-dimensional diffusion which is a 

product of two independent diffusions. Along the X-direction, we take a diffusion 

with drift (l -2p - c) and along the Y-direction, we take the standard Brownian 

motion. The transition kernel for this process can be written as 

K(z, r) =tQt(Zl> xl - Ate -b-z*)Zl(zt) 

z = (zr , z2) and I = (x, y), and Q, satisfies the forward equation 

Qdz,, xl = s(z, -xl. 

With these definitions, C,(r,, r:) can be written as 

I 

CAra r:> = II &AZ, r)K,-AZ, 4 
0 RZ 

x WXzJ(1 -&(zJ)Po(zd) -~b6bd121 dz ds 

= e(-(Y-z,)*-(Y'-z,)2)/(2(t-s)) dz, & 

Qr-.A 21, x)0,-AZ,, x’> 

x {2(A(zd(1 -i&(zdh%(4) -%dhN’~ dz, 
1 

, 

where pb(z,) is the derivative of &(z,). We note that except for the coefficient 5 in 

front of the (pb(z,))’ term, the term in the curly brackets is the same as the one 

which appeared in the one-dimensional case [4]. We have chosen the origin of the 

initial profile &, such that p,,(O) = i(p+ + p-). Therefore (1 - 2p0( r) - c) is negative if 

r > 0 and positive if r < 0. That is, QI is the probability kernel for a diffusion with 

drift directed towards the origin. Therefore, the process with the transition kernel 

Q, has an invariant measure EL. Since i5& is a stationary solution of the linearized 

Burgers equation, the invariant measure can be written as 

We note that 

I 1 
e(-(Y-Z2)Z-(Y'-Z,)Z)/(2(f-S)) dZ2= -(y-y'Pl(4(r-s)) 

R2lr(t-s) 
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x N%(z,)(l -ihb,)Mz~)) -hGdz~))‘) dz, . 
1 

(2.28) 

It is easy to see from (2.28) that 

!EmmJi 
r -%(4%)X(+~) 

x 
J 

WXdz~)(l -P(zdh%h)) --hd(z~))*~ dz, dr dr’ 

=D 4(rMr’K(xMW) d* dr’, 

where A(r) = 4(x+ ct, y). Now consider the stochastic partial differential equation 

s(y, t)=Ah”+d’&Zy,,, 

where Z,,, is the space-time white noise [22]. Then it is known that 

h’(4, t) = ~(YM"(Y, f) dy 

‘ 

= EVD I II -(Y-Y')'/(2(t-s)) dz,,,, dy 

0 ~%&y 

for all (b E S(R). Therefore, 

&(h”(4, t)h”(+, t)) f = e2D J 111 ~~YMY’) 2nc:_s) e 
(-(Y-U)2-(Y'-U)2)/(2(r-~)) dy dy'du ,js, 

0 

where Ehr is the expectation for the process h”. Now we define a random set of 
profiles (for almost every path of h”) pk,, as 

P&(X, Y, f> =$0(x- ct+ h’(Y, t)>. 

Now we define a (random) product measure on configurations in Z2, as 

Puht = II. y;, 
&Y 
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where vZ,,(n(x, y) = 1) = P&(&X, my, t). Note that the random measure pi,, describes 

the random shifts of the profile, where the shift at a given value y of the Y-coordinate 

is h”(y, t). 

lim E,,eE .&p~(~)x~(~)) 
F-O 

= lim E,,’ 
E”0 K 

c ~,+(~x+Cf~ &Y) 
X,Y x .Y 

x +(~x’+cf, ~y’)&(~x’)h’(y, t)h”(y’, t) + R, , 
> 1 

where E,eR, goes to zero as E tends to zero. Now we can see that 

=D $(r)$(r’)p/,(x)ph(x’) dr dr’. 

Thus we have shown that the covariance of the limiting fluctuation field is 

consistent with the picture of random rigid translation of the profile of the travelling 

wave we described in Section 1. We note that, instead of modelling the phase 

boundary at the macroscopic level by a stochastic partial differential equation, we 

could model it at the microscopic level by a (countable) system of stochastic 

differential equations, which will give us the same covariance in the limit. Such a 

model is given by 

dh”(y, t) = F -*Adh’ dt+ FD d&(y), 

where y E Z, Ad is the discrete Laplacian and (B,(Y))~~~ are a countable collection 

of independent standard Brownian motions. 
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