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&(x) = X2-d (d23), 

and define the sequence (sN) by 

(1.1) 

The case Ns, = const. was studied by Sznitman (1987) who proved a propagation 

of chaos result for the density of particles. This case is of interest because the number 

of collisions before time 1 grows in proportion to N as N -+ co. 

In this paper, we study the N -+ co limiting behaviour of a point process qN on 

R, x Rd, obtained by recording the time and place of each ‘reaction’ (annihilation), 

that is by recording the time and place of the creation of each inert P molecule. This 

approach differs from that of papers on related models, such as Sznitman (1987) Lang 

and Xanh (1980), Dittrich (1988) Nappo and Orlandi (1988), Nappo et al. (1989) and 

Kotelenez (1991) who considered instead the evolving system of surviving particles. 

In contrast with the case NsN = const., we here consider cases when NsN + 0 but 

N2sN is bounded away from 0 as N -+ cc In these cases, the number of collisions 

before time 1 becomes much smaller than N; our point process approach allows the 

study of the annihilations even when their number is swamped by the number of 

surviving particles. We shall obtain Poisson limits when N’s, + const., and Gaussian 

limits (after re-normalization) when N2s, + ‘m 

2. Definitions 

Let d 2 2 be an integer. Let (u(x), x E Rd) be a bounded probability density function. 

On a probability space (Q., F-N, PN), let (X,(t), t20), 1 lilN, be independent 

standard Wiener processes in Rd, with initial distribution P [X,(O) E dx] = u(x) dx. (In 

this paper, ‘Brownian motion’ denotes a physical process, and the mathematical 

object usually given that name is denoted a ‘Wiener process’.) Note that Xi(t) runs for 

all t > 0 even after the annihilation of the corresponding particle. For distinct 

i,jE{1,2 ,..., N},set 

yij(t) = txitt) + xj(t))lJZ, 

Let (TV) be a sequence of strictly positive numbers. Let the sequence (sN) be defined 

by (1.1). Set 

Tij = inf{t>O: 1 Yij(t)JIr,/\lZ}, 

where 1.1 denotes the Euclidean modulus. Note that Tij depends on N. Then {T,j: 

1 <i < j< N, ri, > 0) are distinct, since for i’ # i, j, the distribution of X,,( rij) has 
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a density, and so for j’ # i’, by sample path continuity 

p[T<j'= Tij >O]rP[IYi’j’(Tij)lrN/~] = 0. 

Following Section 2 of Sznitman (1987) let particles i and j be ‘annihilated’ at time 

Tij, provided neither particle was annihilated at an earlier time. Let Tk be the kth time 

at which an annihilation takes place. Then 01 T’ < T2 < ... < TL, where L is the 

(random, finite) total number of such times. Also, if k< L and Tk > 0, then the 

annihilation at time Tk involves exactly two particles; denote their (random) indices 

i(k) and j(k), with i(k) <j(k) (SO Tick,, j(k) = Tk). Set 

Then Z”/&’ is the place at which the collision at time Tk occurs. 

Let qN be the point process on R + x Rd with points at ( Tk, Zk), (k I L, Tk > 0). That 

is, for any test function f: R + x Rd + R, set 

(2.1) 

where Ii ) denotes the indicator function, and for any R c [w, x [Wd, define qN(R) by 

where := denotes definition and I, denotes the characteristic function of R. 

Let u(y,J) be the version of the joint density of (Y,,(O), 5,,(O)), given by 

u(y,P): = u((P + Y)/&G - Y)l&. 

Let p,(x) (t > 0, x E Rd) denote the Brownian transition density; that is, 

pt(x) : = (2rtt))di2 exp( - 1x12/2t). 

Set nd := rrdi2 T((d/2) + 1) ‘, the volume of the unit ball in Rd. Define Cd by 

(d = 21, 

(d 2 3). 

Define the function i on R, x Rd by 

l(t,x) = Cd ss PAX - Y”)PtW4y,~)dyd9, k.4 ER+ x Rd. 
Iwd w 

(2.2) 
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Note that i(t,x) is a constant times the continuous version of the joint density of 

( Yl z @X f1 z @)I at 04. 

d 

Let + denote convergence in law. 

3. Statement of results 

3.1. Poisson limit theorems 

First, we consider the case when N’s, converges to a finite non-zero limit. Let gd+, 

denote the ring of all finite unions of sets in [w, x [Wd of the form J x A, where J c 1w + 

is a bounded interval and A is a Bore1 subset of (Wd. 

Theorem 1. Suppose N2sN + 2~ ~(0, a, ) as N + cz. Then jbr ull R E&?d+l, qN(R) 

converges in law to a Poisson random variable with mean y l, L(t, x) dt dx. 

Let the space of point measures on 1w + x 1w” have the vague topology; that is, a,, + a 

o a,f+ uj; _I” E C,( [w, x rWd). By Kallenberg (1973, Theorem 2.3), we have conver- 

gence in law of qN to a Poisson process: 

Corollary 1. Suppose N’s,.+ + 27 us N + cc , with 0 < y < m. Then the random point 

measure qN converges in law to a Poisson process with mean measure y/l(t, x) dx dt. 

3.2. Gaussian limit theorems 

If N2sN -+ q then we must re-normalize ylN to obtain a limit law. Define the signed 

measure iN on test functions f on [w, x [Wd by 

in = (N’.M~ 1!2(~N(f) - EN Yld.f))r (3.1) 

(recall, EN is the expectation corresponding to P,,,). For any set R in &?d+ ,, define [N(R) 

by identifying R with its characteristic function. 

The limit we shall obtain is white noise, denoted W, on [w, x IWd+ ‘, with intensity 

measure i(t, x) dx dt. This is defined to be a set-indexed, centered Gaussian process 

(W(R, w), R E g)d+ 1, w E Q) on some probability space (a, F, P), with 

Cov ( W(R), W(R’)) = 
J 

1(t, x) dt dx. 
R nR’ 

Roughly, W is the Gaussian equivalent of a Poisson process. Viewing iN as a (general- 

ized) process indexed by sets in S%! d+ I (we were unable to obtain results on any larger 

class of sets), we have the following theorem. 

Theorem 2. Suppose N2sN + co undfor some E > 0, N’ +‘.sN + 0 as N ---t co. Then the 

finite-dimensional distributions qf the process ([N(R), R ~%fd+~) converge to those qf 
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(W(R), R EJ%~+ 1). That is, for RI, , R, EBB+ 1, 

KN(Rl), . . ..(MR.J)~ (WRA . . . . W(W) as N-, ~0. 

Another interpretation is to work in the space 9 of tempered distributions on 

Rd+ ‘; that is, the topological dual of the space Y of rapidly decreasing functions on 

Rd+‘, endowed with the strong topology; see for example Walsh (1986) for details. In 

this setting, view qN and iN, given by (2.1) and (3.1) as random elements of Y’. As for 

white noise, let (W(f ),f E 9) be a centered Gaussian generalized process with 

Cov(Wf, WY) = s f (t, x) g(t, x) A(t, x) dx dt 
Rd+l 

We can and do take a version of ( W(J w), f E 9, cc) E Q) on some probability space 

(a, 9, P) such that W(. , co) E Y’ for P-almost every o E CL See Walsh (1986, Theorem 

4.1). 

Here we study only weak convergence on bounded time intervals. For each T > 0 

define the random distributions q;, [h and W’ to be the restrictions of qN, qN and W, 

respectively, to (0, r] x Rd. That is, set 

and define [‘N similarly; set W’ to be white noise with intensity measure 

L(t, x) x I(,, TI (t)dx dt. In this setting, the result is given by the following theorem. 

Theorem 3. Suppose N2s, + cc und for some E > 0, N’ +‘sN -+ 0 as N + CO Then for 
d 

allz>O,~~--+W’inY’asN+ co. 

Theorems 2 and 3 are not entirely satisfactory, since in the expression (3.1) for cN, 

the constant to be subtracted from qN is not explicitly stated in terms of the initial 

density function u(.). When d = 3 and N413sN + 0, we can be more explicit. For r > 0, 

define the random element <,$ of Y’ by 

(3.2) 

= i;(f) + (N2s,&p 1~2js,n;Cfl - (~)s~~~i,.f(t.x))It.x)dxdt1. (3.3) 
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Theorem 4. Suppose d = 3, N2s, --f cu and N413 .sV + 0. Then for all z > 0, 5;: w’ in 

Y’asN+ fx. 

It is harder to obtain an analogous improvement to Theorem 2 (characteristic 

functions are harder to work with than functions in 9’). Here, we content ourselves 

with considering only sets R c iWd+ ’ of the form R = J x LQd, where J is a finite union 

of intervals. This amounts to looking only at the finite-dimensional distributions of 

a stochastic process with time parameter t E[O, cu), obtained by counting the total 

number of annihilations before time t. The re-normalized process, which we denote 

(GN(f),tlO) is given by 

= (N2sN/2)- 1’2 A(s, x) dx ds ‘I 

I 
l (3.4) 

= (~((0, t] x iWd) +(N2S,/2)- 1’2 E?/N ((0, t] x Rd) - ; SN ’ 0 ss /I@, x) dx ds . 
0 R’ 

(3.5) 

Observe that in (3.4) the constant subtracted from qN to get I/I~ is explicitly stated in 

terms of u(.), as in the case of the expression (3.2) for ri. 

The limit process in this setting is white noise W, on [0, cc ), with intensity iI dt 

given by 

AI(C) := s A(t, x) dx 
W” 

=cdJ I P,(Y) v(y> J) dy dy” > t > 0. 
W” lR* 

But W, (t) : = W, ([0, t]) is just a time-changed Wiener process in R, starting at 0. So 

a natural statement of the result is as follows. 

Theorem 5. If d = 3, N2sN + co and N413 sN + 0, then the finite-dimensional distribu- 

tions of the process (*N(t), t 2 0) converge to those of a process (WI (t), t 2 0) given by 

W,(t) = B( 
s 

’ I., (s)ds), 
0 

where (B(t), t>O) is a one-dimensional Wiener process starting at 0. 

Theorems 4 and 5 can be extended to some higher-dimensional cases. We omit 

these results for the sake of brevity. See below for a remark on a possible extension of 

theorems 4 and 5 beyond the case where N413sN --f 0. 
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The following are the main ideas in the proofs to follow. First, we approximate to 

qh by a point process 4I; obtained by simply recording each (Tij, ~ij( rij)), ignoring the 

question of whether particle i or j has already been annihilated by time Ti j. That is, for 

r > 0 and all test functions f on R + x Rd, set 

(3.6) 

But +I;(/) has the form of a U-statistic; that is, a sum over all distinct pairs taken 

from N i.i.d. E-valued random variables, of a given function on E x E, where E is the 

measurable space C([O, cc ), Rd). We use limit theorems on U-statistics found in 

Jammalamadaka and Janson (1986) or elsewhere. Those results are stated in the case 

when E is Euclidean space, but the proofs carry over to the case where E is an 

arbitrary measurable space. 

To apply these results, we need to know about the limit behaviour of the law of Ti2 

as TN becomes small. Such results are to be found in Le Gall (1986). 

The mean number of particles which would collide before time r with two distinct 

others, if the annihilation reaction were ‘switched off, is of the order of N3 s& since the 

probability that a specified particle collides with both of two other specified particles 

is O(si). The renormalization in (3.1) involves dividing by (N’sN)i”. Therefore, when 

;;%,(I. ,,,,) IS a good approximation to qhcfl, since in this case 

SN SN approaches 0. Otherwise we must estimate the variance of the error 

caused by approximating to r; by 4;. We do this in Section 8, studying the 

combinatorics of a series of collisions by a graph-theoretic method. 

When d = 3, it may be possible to use the graph-theoretic method to obtain an 

approximation for ENqh(f) in terms of the initial density u, and thus to extend 

Theorems 4 and 5 beyond the case N4j3 sN -+ 0. However, the approximation to 

ENqr;(f) will be much more complicated in the general case than it is in Eq. (3.3) for 

the case N413sN + 0; it will be a sum over graphs. 

The use of U-statistics should be applicable in some of the related models discussed 

in the papers referred to in Section 1. The method can also be applied to a model with 

two types of particles, A and B, for the reaction A + B ---t P, with P inert. See Penrose 

(1992). 

In the proofs to follow, c denotes a finite positive constant, and may change from 

line to line. 

4. Preliminary results 

Lemma 1. Suppose 7 > 0 andf E I!,“@+ x Rd). Then 

(i) if N3”sN + 0 then 

PN[6l;(f) = f’&(f)] + 1 as N + cc , 
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(ii) if’N 4’3~N -+ 0 then 

Proof. Suppose 1 Si < j<N. Only when T,,< Tij<t or Tkj< Tij<z for some k # i,j, 

does the contribution of pair (i,.j) to q,$(j) differ from its contribution to 4h(,f). That is, 

where the sum runs through all distinct i,j and k in { 1,2, . , N ). The result follows 

from the fact that 

P,[T,,IT,,I~] = O(.si) as N+ 4~. (4.1) 

See the proof of (6.1) of Penrose (1991), or Proposition 2. 0 

The next result is based on the limiting expression for the probability that a Wiener 

process in Rd hits a small ball, found in Le Gall (1986). 

Lemma 2. Suppose h E L”‘( R, x tQd), and,for some z > 0,fbr all y E Rd, h(t, J) = Ofbr 

t > T and h(.,J) is piecewise continuous (the intervals qf continuity may depend on 3). 

Then 

hm .~,;l ENh(T12, F12(0)) = Cd 
N+ % 

h(t> J) PAY) v(y, .?) dt dy dJ (4.2) 
0 

and the limit in (4.2) is finite. 

Proof. By definition, we have 

where I? is expectation (and PJ’ is probability) with respect to a Brownian motion 

(Y(t), t 20) starting at y, and 

Tzr = inf{t:lY(t)IIv,~/J~). 

Fix 27 and y for the moment, with y # 0. Suppose h(., J) is the characteristic function 

of an interval. Then by Corollaire 1-2 of Le Gall (1986), 

78 

s~‘E”~(T,~,++ cdh(t,p)p,(y)dt as N -+ r~(, . (4.4) 
0 
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Also, the limit (4.4) still holds if h( ., 9) is a step function, by linearity. Finally, if h( ., J) is 

piecewise continuous, it is Riemann integrable; approximating to h from above and 

below by step functions, we may deduce that (4.4) still holds, using the fact that p,(y) is 

bounded on (0 < t I T}. 
We can also now deduce (4.2) provided we can find a suitable function to dominate 

the function si 1 EYh(TN,y”). By the majorization of Le Gall (1986) Lemme 2-1, and 

routine use of Brownian scaling to account for the possibility that z > 1, we have for 

some c and No and all N 2 No, y and y” in [wd: 

s~‘IE~~(T~,Y”)IIII~II,s~~~~[T~I~]Ic~~(z-~’~~~I) (4.5) 

where 

f&x) := (&(x)+ + 1) eXp( - x2/16) (4.6) 

and a, := max(a,O) is the positive part of a. Finally, by Holder’s inequality we have 

s 
r(~>Y)d~~~l/4z < cc 3 (4.7) 

w 

(since the density u was assumed bounded), and so 

Jw Jw JW 

The result (4.2) follows by (4.5) and Dominated 

assumptions on h and the fact that lIpt II 1 = 1, the 

5. Proof of Theorem 1. 

Convergence. Also, by (4.7) the 

limit in (4.2) is finite. 0 

Let R ELJ?~+ 1. Take z > 0 so that R c [0, t] x Ltd. By Lemma 1, it is enough to 

prove that 

4;.(R)APoisson (yJRi(t,x)dtdx). (5.1) 

Define the functionfon [w, x lWd to be the characteristic function of R (sof2 -f). 

We have 

where 

I<icjcN 

Uij:=,f(Tij, yij(Tij))zjO<T,lsr). (5.2) 
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Since Y1 z (. ) - Y, *(O) and PI 2 (.) - PI 2 (0) are independent Wiener processes starting 

at 0, we have 

where we set 

h(6 8 = 40, r,(t) s f2k x)pt(x - 8) dx, (t, Y) E CO, co I x Rd. 
W” 

Sincef E L”(Iw+ x [Wd), andf(., x) is piecewise continuous for each x, the function h is 

piecewise continuous in t, bounded, and of bounded support. By Lemma 2, 

lim s; 1 EN [u:,] = cd 
N+m 

h(t> J)P~(Y) U(Y> y”) dt dy dY 
0 

= f’(t,x)&x)dtdx, (5.3) 

by the definition (2.2) of A. By the assumption N2sN + 2y and the definition off, we 

have 

lim (N2/2)EN[U:,] = y 
s 

/Z(t,x)dtdx. (5.4) 
N-a R 

Also, by (4.1), 

lim N3EN[U,2 U13] = 0. (5.5) 
N+CC 

By (5.4), (5.5) and results on U-statistics (see Silverman and Brown (1978, Theorem A) 

or Jammalamadaka and Janson (1986, Theorem 3.1)), (5.1) holds. 0 

6. Proof of Gaussian limits when N413sN + 0. 

The following application of a theorem on U-statistics is the key to the Gaussian 

limit theorems. Recall that W’ denotes white noise with intensity 1(x, t) I,,, r,(t) dx dt. 

For z > 0 and f E L”(Iw+ x [wd), define Tiu) analogously to cN(f), but with q,$ re- 

placed by 4h: 

ti(.f 1: = (N2S~/2) - 1’2 C4.ht.f) - EN &J(f)], 

Proposition 1. Suppose NsN + 0 and N2s, + co as N -+ CO. Let T > 0. Then 
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(i) for anyf 6 L” (IF! + x Rd), withf( ., x) piecewise continuous (the intervals ofcontinu- 

ity may depend on x), all x E Rd, 

ti(f) 5 Normal (0, T f”(t,x)I(t,x)dxdt) as N+ cc. (6.1) 

(ii) For any fi, , fn in L”( R, x Rd), with f;(., x) piecewise continuous, all x E Rd, 

1 <i<n, we have 

Proof. (i) Observe that 

(N2s~/2)F”’ 4hU”) = C C f’ij > (6.2) 

where Vij : = (N2S,/2)- “’ V, with Vij given by (5.2). By the estimate (4.1), we have ‘J’ 

for some c > 0, 

N3&[Vr2 V,,]<CNSN +o ZiS N+ 00. (6.3) 

Also, by the proof of Theorem 1, (5.3) holds; that is, 

lim (N2/2) EN [ v:2] = x) l(t, x)dt dx. (6.4) 
N-tCC 

Let FN be the distribution function of VI,. Since 11 V1211m + 0, the measure 

(N2/2)(t2/(1 + t’))dF,(t) converges completely (in the sense of Loeve (1963, page 

178)) to a point mass at 0, of size given by the expression in (6.4). 

Also, for some c > 0 (which may change from line to line), 

(N2/2)IE,[J’/,,/(1 + v:,)] - EN~IZ~< cN2E~C1~/12131 

which approaches 0 as N + co, by Lemma 2 and the assumption that N2sN + co. 

Moreover, by (6.2) 

I(N2/2)E, VIZ - (N2S~/2)-1’2E~d6(f)i = (NP)IE, v121, 

which also approaches 0 as N + co. So 

(N2/2) EN( vl2/(1 + b’f2)) - (N'SN/~)-"~ EN 4;(f) + 0 as N + CO . (6.5) 

By (6.2))(6.5) and Jammalamadaka and Janson (1986, Theorem 3.1) we obtain (6.1). 

(ii) This result follows from part (i) by use of the Cramer-Wold device. See 

Billingsley (1968) Theorem 7.7. 0 



Proof of Theorems 2 and 3 when N4j3sN -+ 0. Apply Proposition 1 to characteristic 

functions of sets in W,, 1. By Lemma 1 and Billingsley (1968, page 28, problem l), the 

case N4!“sN + 0 of Theorem 2 is immediate. 

As for Theorem 3 when N4’3sN + 0, the same argument shows that for,f,, ,.fi in 

Y, (ii.( . , [j(,j;,)) converges in law to ( WT(,jl), . . . , WT(fn)). The desired conver- 

gence in law in Y’ now follows from Mitoma’s theorem. See for example Walsh (1986, 

Theorem 6.15) setting X,(.) to be the constant Y’-valued process X,v = [,\. c! 

7. Proof of Theorems 4 and 5 

In these results d = 3 so s,,, = r,w/d!2. The next two results are estimates on the rate 

of convergence in Lemma 2. 

Lemma 3. Suppose d = 3, z > 0. Then thrrr ure constants c and No, such that,fiw all 

t I 5 and ail bounded measurable .functions (a(j), j E R3), ,for N 2 No, 

Proof. We may re-write (4.3) as follows: 

ENCa(kl,(o))~:o<7.,*,,il = .is a(47)P”[T,~~t]L.(Y,~)dyd~ (7.1) 
R” 1p; > s,\, 

where, under Pp, as before, TN is the first time a Wiener process starting at y visits 

[[xl I sN}. When d = 3 there is an exact expression for Py [ T~v < t]. See (2.12) of Clifford 

et al. (1987). The expression (for 1.~1 >.s,) is 

P’[T,lt] = (s,/lyI) erfc 

(7.2) 

(the last line is the result of routine integration). For 1yJ > 2s, (so Iy - sNI 2 Iyl/2), the 

second term in the right-hand side of (7.2) is bounded above by 

2SN ( 1 Ivl& 
.sN(2t)) li2 exp ( - Iy - s,v12/(2t)) 
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24 ( > ,-lA*/Gw 

5 WJTE 

(IYl”/(2t))“” 

where c = (2n:-“‘) SUP~,~ (zl/’ e-Z/4 ). Approximating in (7.1) to P”[T,lt] by the 

first term in the right-hand side of (7.2), we have 

5 CSN ss My”) I IYI - ’ U(Y> Y) dy dY (7.3) 
R” lylz2s, 

But 

(7.4) 

(split the integral into integrals over {Iyl s 1) and {Iyl 2 1}, and use the integrability of 

u(y, .)), so that the right-hand side of (7.3) is at most a constant times Ilull m sN. Also, 

IG1 -w4mN~{T,, St) ~{,Y,Jo),s2s,)ll 

5 si'~~a~~mPN~~Y12(~)~ < 2sN1 

(7.5) 

Finally, for t< r, 

4~) - c M4ds4y,J)dydJ I c II4 
I 

5 c IMI, s IYI - 1 dy 
IYI S 2SN 

~~ll4lcos~. (7.6) 

Combining (7.3) (7.5) and (7.6) gives us the desired result. q 

Lemma 4. Suppose d = 3. Suppose h: R, x R3 --f [0, CC) is a bounded measurable 

function such that for some t, and t2, O<tl < t2 < co, h(t,y)= 0 for all y” unless 

t E [tl, t2]. Suppose there exists K < 00, such thutfor each y” E R3, h(.,j) is continuous- 

ly differentiable on (tl, t2) and Ih'(., jj)I b zs ounded on (tl, t2) by K. Then there exists 
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c < ;o and No such that,for N >N,,, 

Is;lENh(Tlz, P,,(O))- 2x ‘I h(t,~)p,(y)u(y,y”)dtdydL:I 
0 

< c$‘. (7.7) 

Proof. Let (MN) be a sequence chosen so M,s$~ + 1 as N + cc. 

Let h,(., y) be a function which is zero outside [tl, tJ and which is a step function, 

with MN equally spaced steps inside the interval [tI,t2]. (The steps are in the same 

places for each J). Since h(., jj) has a uniformly bounded derivative, we may choose hN 

so that for some constant c, 

llhN - hII,< CM,‘. (7.8) 

We may also arrange for hN to be jointly measurable. We have 

Edh(T,,, 6,(O)) - hdT,2, %,(o))l~ /Ih, - hllx P~Ij”121fzl 

5 c M,‘“s~ (7.9) 

by (7.8) and Lemma 2. 

Also, hN(t, 9) is the sum of MN functions of the form 

where a(.) is measurable and t3 < t,< t2. So by Lemma 3 there are constants c and 

No such that for N 2 No, 

IG1 E,h,v(T,2, %2(O)) - 271 h4t>.P)pt(~) D(Y> J)dtdyd.F 
0 

lCM,S,. (7.10) 

Finally, 

m 

IMt>.P) - h(t,~)I~,(~)u(~,~)dtdydy” 
0 

IYI - ’ U(Y> 3 dt dy dJ 

(7.11) 

since the last integral is finite. Combining (7.9), (7.10) and (7.11) gives us the desired 

result (7.7). 0 
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Proof of Theorem 4. In view of (3.3) Lemma 1 and Theorem 3, it suffices to prove that 

forfeYand~>O, 

(N2sN/2)- 1’2 LEN &‘f.f) - 0 ss ; sN f(t,x)A(t,x)dxdt] + 0 as N-t cc. 
o iWd 

(7.12) 

As in the proof of Theorem 1, EN4I;Cf) = 
N 

0 
2 EN[h(T12, F1 2 (O))], where h is given by 

WY 9 = I(,, T] 0) s fkx)& - J)dx, (t,J) EC% a,1 x Rd. 
ad 

By Ito’s formula, for 0 < t < r, 

which is finite, since f ~9'. 

By Lemma 4, the left-hand side of (7.12) is at most 

ENh(Ti2, &2(O)) - sN ' 
ss 

f(b4W,x)dxdt 
0 w 

I c(N2sN)- 1’2 N2 s$~ 

which converges to 0 as N + co. 0 

Proof of Theorem 5. By Theorem 2 and Lemma 1, it suffices to show that for any 

bounded interval J, contained in [0, r) say, we have 

(N2sN/2)- 1’2 
i 

&$A (J X Rd) - (;)%vjJ&,S,d~}-o~ (7.13) 

But ENc#I,&(J x Rd) = (T)PN[T12 E 51, and by Lemma 3 the left-hand side of(7.13) is at 

most a constant times (N’S,)- ‘I2 (T)s,& which converges to zero as N---f cc. 0 

8. Proof of Theorems 2 and 3 (general case). 

Fix T > 0 throughout this section. We shall study the combinatorics of this proof 

using the language of graph theory. We shall identify a graph with the set of its edges. 

A natural random graph on { 1,2, . , N} on our probability space !& is obtained by 

taking its edges to be those {i,j> for which rij< r. Divide these edges into two classes, 
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those for which Ti j = 0 and those for which Ti j > 0. Since the strictly positive Tij are 

distinct almost surely, there is a natural ordering on the second class of edges of this 

graph, determined by the order of the Tij. This graph, together with its subdivision 

and the ordering, determines the set of {i,j} for which particles i and j collide and 

annihilate before time r (that is, Ti, = Tk < T for some k< L, in the notation of 

Section 2). 

Let ?JN denote the following class of objects. An element G of 9’ is a triple 

G = (G,, G+, cc), where Go and G, are graphs on { 1,2, . , N),, such that the set of 

edges of G,, is disjoint from the set of edges of G+, their union is a connected 

non-empty graph on some subset of { 1,2, , Nj, and -c~ is a total ordering on the 

edges of G + 

We can write Go as a set of distinct edges on ( 1,2, , N), and G + as an ordered 

sequence of edges on {1,2, . . . . N), distinct from those in Go; that is, for 

G = (Go,G+, cc) c9YN, we can write 

Go = {{i,,j~), . ..>{ik>jkiir (8.1) 

and 

G+ = {{ik+,,jk+,), ,{bmjm;)> 63.2) 

with 

{ik+Irjk+l}<G (ik+2,jk+2) <G . <G (im&)9 (8.3) 

and Go u G+ = {(iI,jI>, , {h,,.L}), a connected graph on a subset of [ I, , N). 

Write {i, j} E G if {i, ji is an edge of Go or of G,. For G given by (8.1)(8.3), define the 

event F, on Q;2h’ by 

FG = {Tilj, = Tiz,* = .‘. = Ti,jr = 0) 

If G, G’ E$!?,~, we shall say G’ is an ordered subgraph of G if Gb c G,,, G; c G+ and 

the orderings cG and cc, on edges of G; coincide. Note that in this case, FG c FG.. 

Proposition 2. There is u constunt c depending only on d, z and the initiul density 

jimction u, such that fbr ccery N > rn> 1 und G = (G,, G,. <G) E??‘, such thut 

Go u G+ is u tree with m edges, 

PN [FJ < (C.sN)* (8.4) 

Proof. For x1, . . . ,x,+ 1 E Rd, let PC ,,,,,, Xm+, denote probability with respect to N in- 

dependent Wiener processes denoted X,(.),X,(.), . ,X,(.) as before, but now with 

Xi(O) = xi, 1 <i<m + 1, and Xi(O), m + 2 I i I N, i.i.d. with density u( .) as before. Let 

E,N,.....x,,+, denote the corresponding expectation. 
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We shall prove that for some constant cl depending only on d, if G, u Go is a tree 

on {1,2, . . . . m + l}, then for x1 E[W~, 

s s . f’:~rxz,...,xm+, Ckldxz . dx_+,s (c,sN)~, 
W” w 

(8.5) 

which implies (8.4) with c = c1 IIu 11 m. 

We prove (8.5) by induction on m. If m = 1, then Go u G, = { { 1,2}}. By Lemme 2.1 

of Le Gall (1986), withf, as in that result vd is given by (4.6)), 

-1 
SN 

s 
E, y CFcl dy I co (8.6) 

w s 
Rlh(~+zl~ - xl)dy 

where c,, depends only on d and r. This implies (8.5) for m = 1, when we set ci to be the 

right-hand side of (8.6), which is finite. 

Now suppose m > 1, and G = (Go,G+, <c), with GOu G+ an ordered tree on 

{1,2, . . . . m + 11. Write Go and G, as in (8.1H8.3). 

Consider the case ii # 1 (the case ii = 1 is tackled by a similar argument to the one 

below, which we omit). With no loss of generality, assume ir = 2 and j, = 3. Also 

without loss of generality, assume 3 is closer to 1 than 2 is, in the sense that the path 

from 2 to 1 along G passes through 3 (if this is not true, then 2 is closer to 1 than 3 is; 

interchange 2 and 3 in the argument below). 

By the change of variable Zz = x2 - x3, the left side of (8.5) equals 

s s 
. PN - X,,X*fXg, x3, . . . . Xmt, [Fc] dlz dx3 . . . , dx_+ 1. 

Iw* Iwd 

By the strong Markov property, this is at most 

s s . . EN - x,.x,+x3.x3. . . . . Xm+l I (T,, ST) PN X~CTA. , x,+ ~(TA C&l dlz dxs . ., dx,p, + , (8.7) 
W” R’ 

where G’ = (Gb, G’+, < c,) is the ordered subgraph of G obtained by removal of {2,3} 

from G. One construction of the probability measure PC,, _, Xm+ 1 is to arrange to have, 

on a probability space (aN,pb,Pk), a set of N independent d-dimensional Wiener 

processes Bi(‘), 1 < i I N, each starting at 0, and a set of N - (m + 1) independent 

Rd-valued random variables Xi(O), m + 1 < is N, with density u; then set 

Xi(t) = Xi + Bi(t) (1 SiSrn + l), 

Xi(t) = Xi(O) + Bi(t) (m + 1 < i<N). 

With this construction, the expression (8.7) becomes 

PN ~~+B,(T~~),~~+x~+Bz(Tz~).x~+B~(Tz~).....x~+~ +Bm+1(T23) [Fc]dP;dl,dx3 . dx,.,. 

(8.8) 
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Since Tz3 depends only on 5Z2 and the Wiener processes Bi(.) 11 i < N (in fact, only 

B2(.) and B3(.)), we may take the x3, . . . ,x,+i integrations inside the others, so that 

expression (8.8) is at most 

X sup 
is j_ 

. PN 
YllY2.Y3+x3 . . . . ..I ‘m+l+xm+l [F, $1 dxg . . dx, + 1 dP; d&. (8.9) 

Y,. . . . y,+, R” R” 

In general, G’ splits into two components G2 and G3, where 2 is a vertex of G2 and 3 is 

a vertex of G3. By application of the inductive hypothesis to G2 and then to G3, the 

middle line of (8.9) is at most (c,s~)“~~, so that expression (8.9) is at most 

(ClSNYl j PX[T,,<T]dl,, 
@ 

and by (8.6), this is at most (c~s,,,)~ as desired. 0 

Let CC?: be the set of G E YN, such that the graph G,, u G+ has n vertices. Let 

gn = UN>n 9:. As a consequence of Proposition 2 we have the following lemma. 

Lemma 5. Under the hypothesis of Theorem 2, there exists no such that 

c PNIFG]+O USN-+ cc. 
1 N 

GE9Y,o+l 

(8.10) 

Proof. Take n, such that N”O+ ’ s’; + 0 as N -+ CC. This is possible by the hypothesis 

that N1+’ sN + 0 for some & > 0. 

For any G EcY;;Z :, G has an ordered subgraph in g,,,+ 1 which is a tree, so that by 

Proposition 2, 

There are only finitely many G in gE:T:, and the number of size n,, + 1 subsets of 

{ 1, . . . , N} is less than Nno’il. So for some c < m , 

c PN[FG] <cs;;PN”~+~ 
N 

GEgllg+ 1 

and (8.10) follows. 0 
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Suppose G E 9JN. Denote by M, the event that FG occurs maximally in the sense that 

FG occurs but there is no G’ E BN, G’ # G, with G an ordered subgraph of G’, such that 

F,, occurs. 

Suppose G E gN. Then if M, occurs, for {i,j} E G the question of whether particles 

i and j annihilate one another at a strictly positive time before r (that is, 

0 < ri j = Tk 5 7 for some k) is fully determined by the structure of G. 

Define the function PC on edges by setting pc({i,j}) = 1 if {i,j} E G is such that 

0 < Tij = Tks~ for some k whenever MG occurs. Set &((i,jj) = 0 for all other {i,j}, 

including {i,j} cf G. For example, if G = (G,, G,, <c), with 

G+ = {{3,4>,{2,3>,{3,5>,{2,6}} and 

Go = {{1,2}}, 

{3,4$ <,{2,3) <.{3,5} <~{2,6}, 

then P&3,4}) = 1, and p,({i,j}) = 0 for all other {i,j}. 

We have for any functionfE L”(R+ x Rd), with probability 1 

the exceptional event being contained in the event that the { Tij, 0 < 

distinct. 

For each G = (GO,G+, cc) EU,,,%~, define the integer valued 

edges inductively by 

r&{i,j}) = /M{Cj}) if G ~32; 

yc({Cj)) = B&{&j}) - c yc, ({Cj}) if G l g”, n > 2, 
G 

(8.11) 

Tij I Z} are not 

function yG on 

where the last sum is over ordered, connected proper subgraphs G’ of G. It follows 

from the definition that for 1 <i < j, 

PG({d}) = 1 YG! (ci,j)) 
G' 

where the sum is over all connected subgraphs G’ of G (including G’ = G). Also, 

rG({kj)) = 0 if {i,j> $ G (p roof by induction). By (8.11) we have forfe L”(R+ x Rd), 

vlW)= c -yJ I 
GeSNi<jsN 

FGYG((i,j))f(Tij, ftj(rij)) 

= c v,, N(G) 
GECJ~ 

(8.12) 



where we set 

LetfEY or letfbe the characteristic function of a set in gd+ 1. Define the random 

distribution $1; by 

no 

&df) := 1 1 I",JG) 
n=2 GE92 

(8.13) 

where no is as in Lemma 5. Since every ordered graph in C@Yf, n > no, has an ordered 

subgraph in %e,“,, 1, it is immediate from Lemma 5 that PN[$h(j’) = q;(f)] + I as 

N + CC We shall prove the following results. 

Proposition 3. Under the hypothesis of Theorem 2,,for f’~ L”,([w+ x Rd), 

(N2sN/2)~l~2EN l?/,;(f) - &(/)I + 0 us N + cc. 

Proposition 4. Under the hypothesis qf Theorem 2,,for f E Y or,f = I, with R E%J~+ 1, 

where W’(f) is normally distributed M?ith mean 0 and variance 

f 2 (t, x) /_(t, x) dx dt. 

By these two results, i,k.(,f) converges in law to W’(f). The general cases of 

Theorems 2 and 3 now follow as in Section 6. 

Proof of Proposition 3. We shall show there is a number c depending on tiO but not on 

N, such that for large N, 

which implies the desired result, by Lemma 5 and the assumption N2s,$ + ‘CC. 

To prove (8.14), first note that the contribution of {i,j) to the expression (8.12) for 

k/,;(f) is either 0 or,f(Tij, ~(Tij)), and has absolute value of at most 1l.f 1, x. Also, the 

contribution of {i,,j) to the expression (8.13) for &&(f’) has absolute value of at most 
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K lIfll&J~~~ where the sum is over those G E Unsno 3: for which {i,j> E G, and we 

set 

K: = max{(l/G((1,2})1:G E fi 9”) 
n=2 

(8.15) 

which is finite. 

The contribution of edge {i,j} to q;(f) differs from its contribution to 3;(r) only 

when there exists G E YcO+ 1 with {i, j} E G, such that F, occurs. Denoting this event as 

H:i, j), we have by the last two estimates that 

c IF (8.16) 
Gc U gF:(i,j)tG 

nsno 

Now there exists a number c2 such that for every N > IZ~, every G E 9r0+ 1 has at 

most c1 ordered subgraphs in UF=i 3:. 

Suppose the event H[i, j) occurs. Then for each G E lJnsno 99; with (i,j} EC such 

that FG occurs, G may be extended to some G’ E S:O+ 1 such that FG, occurs and G is an 

ordered subgraph of G’. If we do this for each G E Unsn,, 9: with {i,j} E G, we cannot 

obtain the same G’ more than c2 times. Hence, 

whenever Hji, j) occurs. 

Thus the right-hand side of (8.16) is at most 

(8.17) 

and since each G E S,“,, 1 has at most no(no + 1)/2 edges, there is a constant c such 

that expression (8.17) is at most 

and (8.14) follows by Lemma 5. 0 

Proof of Proposition 4. By definition, CGEB; Vf, N(G) = 4;(f). We shall show 

VarN[(N2sN)- 1’2 f c I’f,N(G)]+ 0 as N+ CC, (8.18) 
n = 3 G E 9,: 
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which implies the desired result by use of the definition (8.13) of &h(j), Proposition 1, 

and Billingsley (1968, page 28, Problem 1). The left-hand side of (8.18) equals 

WZ%v/2)-1 c (ECVf, N(G’)Q-, dG”)l - EN V’j,,(G’)& P”,,v(G”)) (8.19) 
C’, G” 

where the sum is over G’ and G” in uz 3 9:. The only non-zero terms in the last sum 

are those for which G’ and G” have at least one vertex in common (since otherwise 

I$, ,.,(G’) and l+, ,,,(G”) are independent). In this case the union of the edges of G’ and 

G” is a connected graph, denoted G (with no ordering), with between 3 and (2no - 1) 

vertices. Hence the expression (8.19) equals 

zno- 1 

W2%4T’ 1 c 1 C&v CV’,N(G) V/,dG’)l - EN ~,,(G’)hv f”,,dG”)) (f3.20) 
n=3 G G’. G” 

where the second sum is over connected graphs G on size n subsets of { 1,2, , N} and 

the third sum is over all G’ and G” in U:‘L, CC?: such that the union of the edges of 

Gb, G’+, GI;, and G’; is G. The number of such pairs (G’, G”) is at most some constant, 

depending on no but not N. 

Defining K by (8.15) we have for all G’ and G” in the last sum that 

ENI I”, dG’) Vf.,(G”)I 5 (Knfj/2)2 ll.fll$ P,[E,, n E,.,] I cs”,: ’ 

(n being the number of vertices of G) where the last inequality follows from Proposi- 

tion 2. By the same reasoning, since the sum of the number of vertices in G’ and the 

number of vertices in G” is at least II + 1, 

E/F+, N(G’)/ El V”, ,v(G”)Is CS,,~ 

Hence, the absolute value of expression (8.20) is at most a constant times 

where the sum is over the same class of G as before. The number of such G is at most 

a constant times N”, so the last expression is at most a constant times 

(N2sJ l 1 (N”.$ ‘) 

.=3 

which converges to zero as N + m. since by assumption Ns, + 0. This completes the 

proof of (8.18). n 
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