stochastic
processes
and their
applications

ELSEVIER  Stochastic Processes and their Applications 51 (1994) 167189

Fluctuations for annihilations of Brownian spheres

Mathew D. Penrose*

Department of Statistics and Applied Probability, University of California, Santa Barbara, CA 93106-3110,
UsA

Received 14 September 1992; revised 23 June 1993

Abstract

As a model for a diffusion-limited chemical reaction, we consider a large number N of
spheres, of small radius ry, which perform independent Brownian motions in Euclidean space
and annihilate one another on contact. We consider the point process of annihilations, and
show that according to the limiting behavior of ry, this point process may converge weakly,
either to a Poisson process or (after re-normalization) to white noise.

Key words: Chemistry, Reaction, Diffusion, Brownian motion, Central limit theorem, White
noise, Poisson process, U-statistics.

1. Introduction

Consider a reaction—diffusion system, consisting of N Euclidean balls of diameter ry
in R d > 2, whose centers perform independent Brownian motions, with independent
identically distributed (i.i.d.) initial positions with a bounded density function u(x),
x € R?. Suppose that whenever two balls collide, they disappear. Also, let any particle
initially placed within a distance ry of any other, be removed from the system at once.

This system is a model for the chemical reaction A + A — P, where P is an inert
product. Imagine each ball to be a molecule of substance A, which executes Brownian
motion in a suspension fluid until it touches another molecule of A. As soon as this
happens, the two A molecules which touch are replaced by a molecule of P, which
undergoes no further reaction. The reaction is diffusion-limited; the reaction of
molecules is instantaneous, while their motion is not. For surveys of related models,
see Clifford et al. (1987) and Kotelenez (1986, 1988).

We shall consider the limiting behaviour of the system as N — oc, when (ry) is
a given sequence converging to zero. Define the function S, on (0, o0 ) by

Sa(x) = log(1/x) (d =2),
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Sa(x) =x*"1 (d=3),

and define the sequence (sy) by

sn = (Salra/s/2) . (1.1)

The case Nsy = const. was studied by Sznitman (1987), who proved a propagation
of chaos result for the density of particles. This case is of interest because the number
of collisions before time 1 grows in proportion to N as N - oc.

In this paper, we study the N - oo limiting behaviour of a point process x5 on
R, x R% obtained by recording the time and place of each ‘reaction’ (annihilation),
that is by recording the time and place of the creation of each inert P molecule. This
approach differs from that of papers on related models, such as Sznitman (1987), Lang
and Xanh (1980), Dittrich (1988), Nappo and Orlandi (1988), Nappo et al. (1989) and
Kotelenez (1991), who considered instead the evolving system of surviving particles.

In contrast with the case Nsy = const., we here consider cases when Nsy — 0 but
NZ2sy is bounded away from 0 as N —» co. In these cases, the number of collisions
before time | becomes much smaller than N; our point process approach allows the
study of the annihilations even when their number is swamped by the number of
surviving particles. We shall obtain Poisson limits when NZsy — const., and Gaussian
limits (after re-normalization) when N2sy —» oo .

2. Definitions

Let d>2 be an integer. Let (u(x), x € R?) be a bounded probability density function.
On a probability space (Qy, ZF y, Py), let (X;(t), t=0), 1<i<N, be independent
standard Wiener processes in R?, with initial distribution P[ X;(0) edx] = u(x)dx. (In
this paper, ‘Brownian motion’ denotes a physical process, and the mathematical
object usually given that name i1s denoted a “Wiener process’.) Note that X,(f) runs for
all t >0 even after the annihilation of the corresponding particle. For distinct
i,jef{l,2,...,N}, set

Yi(0) = (Xie) — X (0)//2,
Yii(t) = (Xit) + X ;(0)//2-

Let (ry) be a sequence of strictly positive numbers. Let the sequence (sy) be defined
by (1.1). Set

Ty = inf {t=0: | Y,;(0|<ry/\/2),

where || denotes the Euclidean modulus. Note that T;; depends on N. Then {T;;:
I<i<j<N, T;; >0} are distinct, since for i’ # i, j, the distribution of X, (T;;) has
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a density, and so for j' # i, by sample path continuity

P[T;; = Ti; > 01< P[|Y: 1 (Tij)lra/s/2] = O.

Following Section 2 of Sznitman (1987), let particles i and j be ‘annihilated’ at time
T;;, provided neither particle was annihilated at an earlier time. Let T* be the kth time
at which an annihilation takes place. Then 0< 7' < T? < --- < TE, where L is the
(random, finite) total number of such times. Also, if k<L and T* >0, then the
annihilation at time T* involves exactly two particles; denote their (random) indices
i(k) and j(k), with i(k) < j(k) (so Tigy, ja = T*). Set

Z* = Vi, jao(T").
Then Z"/\/E is the place at which the collision at time T* occurs.

Let 7y be the point process on R, x R? with points at (T*, Z¥), (k< L, T* > 0). That
is, for any test function f:R, x RY - R, set

() = 3, f(T5 Z) I (zks ), @2.1)
k=1

where I, , denotes the indicator function, and for any R < R, x R define ny(R) by

nn(R): = nn(Ig),

where := denotes definition and Iz denotes the characteristic function of R.
Let v(y, 7) be the version of the joint density of (Y;,(0), ¥;,(0)), given by

vy, 9): = ul(F + Y/ u(@ - y)/2).
Let p(x) (t >0, x €R?) denote the Brownian transition density; that is,
p(x) := (2mt)” 2 exp( — |x|*/2¢).
Set ng:= n¥*I'((d/2) + 1)~ ', the volume of the unit ball in R?. Define C, by

Cd:=T[ (d=2)7

C,: (;—i—l)dnd (d>3).

Define the function 4 on R, x R? by

19 =Co | [ pc=- DpOe D ds 10 eR, xR 02
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Note that 4(t, x) 1s a constant times the continuous version of the joint density of
(Y12(1), Yy,(1)) at (0, x).

d
Let — denote convergence in law.

3. Statement of results
3.1. Poisson limit theorems

First, we consider the case when NZsy converges to a finite non-zero limit. Let %, , ;
denote the ring of all finite unions of sets in R, x R? of the form J x A, where J ¢ R,
is a bounded interval and A is a Borel subset of R%

Theorem 1. Suppose N2sy— 2y €(0, oc) as N — oc. Then for all R € R4+ 1, ny(R)
converges in law to a Poisson random variable with mean y [, A(t, x)dt dx.

Let the space of point measures on R, x R? have the vague topology; that is, a,, — a
<a,f— af, f€Co(R, x RY). By Kallenberg (1973, Theorem 2.3), we have conver-
gence in law of y to a Poisson process:

Corollary 1. Suppose N*sy — 2y as N - oo, with 0 < y < oc. Then the random point
measure yy converges in law to a Poisson process with mean measure yA(t, x)dx dt.

3.2. Gaussian limit theorems

If N2sy — oc, then we must re-normalize 5y to obtain a limit law. Define the signed
measure {y on test functions fon R, x R by

() = (N2sn/2)" 12 mn(f) — Exnin(f)), (3.1)

(recall, Ey is the expectation corresponding to Py). For any set R in %, ,, define {y(R)
by identifying R with its characteristic function.

The limit we shall obtain is white noise, denoted W, on R, x R?*!, with intensity
measure Az, x)dx dt. This 1s defined to be a set-indexed, centered Gaussian process
(W(R,w),R € #,4.,,0 € ) on some probability space (2, %, P), with

Cov(W(R), W(R")) = J At, xyde dx.
ROR
Roughly, W is the Gaussian equivalent of a Poisson process. Viewing {y as a (general-
ized) process indexed by sets in %, (we were unable to obtain results on any larger
class of sets), we have the following theorem.

Theorem 2. Suppose N2sy — oc and for some e >0, N'" sy — 0as N — oo. Then the
finite-dimensional distributions of the process ({y(R), R € R4+ ) converge to those of
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(W(R), R 6@44. 1). That iS,fOr Rl’ aRn GQ,HI,
Cn(R), - (Cn(R,) > (W(RY), ..., W(R,)) as N— .

Another interpretation is to work in the space &’ of tempered distributions on
R**1; that is, the topological dual of the space & of rapidly decreasing functions on
R?*! endowed with the strong topology; see for example Walsh (1986) for details. In
this setting, view ny and {, given by (2.1) and (3.1), as random elements of .%’. As for
white noise, let (W(f),f € %) be a centered Gaussian generalized process with

Cov(Wf, Wg) = f(t,x)yg(t, x) A(t, x)dx dt.

R+t

We can and do take a version of (W(f,w), f €%, w € Q) on some probability space
(2, #, P) such that W(-,w) € &' for P-almost every o € Q. See Walsh (1986, Theorem
4.1).

Here we study only weak convergence on bounded time intervals. For each 7 > 0
define the random distributions 5k, {} and W" to be the restrictions of #y, @y and W,
respectively, to (0,7] x R That is, set

’7160) = ”N(f(.)l((), r]de(.))a

and define ( similarly; set W* to be white noise with intensity measure
Alt,x) X 1o, ;) (t)dx dt. In this setting, the result is given by the following theorem.

Theorem 3. Suppose N2sy — oo and for some ¢ >0, N' **sy — 0 as N - oo . Then for

d
allt >0,y —=W'in ¥ as N— .

Theorems 2 and 3 are not entirely satisfactory, since in the expression (3.1) for (y,
the constant to be subtracted from #y is not explicitly stated in terms of the initial
density function u(-). When d = 3 and N*3sy — 0, we can be more explicit. For 7 > 0,
define the random element £ of &' by

0 =25 2= (3 )so [ | semaeoxarl 62)

= {N(f) + (N2sy/2)" 12 {EN () — <];]> sNJIJ S, x) AL, x)dxdt}. (3.3)
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d
Theorem 4. Supposed = 3, N*sy— o and N*3sy - 0. Thenforallt > 0, 5 — W' in

S as N— .

It is harder to obtain an analogous improvement to Theorem 2 (characteristic
functions are harder to work with than functions in .#°). Here, we content ourselves
with considering only sets R = R?" ! of the form R = J x R%, where J is a finite union
of intervals. This amounts to looking only at the finite-dimensional distributions of
a stochastic process with time parameter ¢ €[0, c0), obtained by counting the total

number of annihilations before time t. The re-normalized process, which we denote
(¥n(1),t=0) is given by

Yn(t) = En(l)

= (N2sy/2)" /2 {nN((O, ] x RY) — <]4;> SNJIJ A(s, x)dx ds} (3.4)

= {n((0, 1] x RY) +(N2sy/2)~ V2 {EnN ((0,1] x [Rd)_(j;l>s,vff Als, x)dx ds}.
0 JR!
(3.5)

Observe that in (3.4), the constant subtracted from ny to get ¥y is explicitly stated in
terms of u(*), as in the case of the expression (3.2) for &y.

The limit process in this setting is white noise W, on [0, o0 ), with intensity 4,(¢t) dt
given by

/ll(t):zf Alt, x)dx

=Cdf f py)o(y,y)dydy, ¢>0.
R? J R*

But W, (t):= W,([0,t]) is just a time-changed Wiener process in R, starting at 0. So
a natural statement of the result is as follows.

Theorem 5. Ifd = 3, N2sy —» o and N*3sy — 0, then the finite-dimensional distribu-
tions of the process (Yx(t), t >0) converge to those of a process (W,(t), t =0) given by

t
Wit = B(|1(ds),
0
where (B(t), t =0} is a one-dimensional Wiener process starting at 0.
Theorems 4 and 5 can be extended to some higher-dimensional cases. We omit

these results for the sake of brevity. See below for a remark on a possible extension of
theorems 4 and 5 beyond the case where N*?sy — 0.
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The following are the main ideas in the proofs to follow. First, we approximate to
1% by a point process ¢ obtained by simply recording each (7}, Y #{T;;)), ignoring the
question of whether particle i or j has already been annihilated by time 7;;. That is, for
7 >0 and all test functions f on R, x R? set

o) = 1 ZZ Nf(Tija ?ij(Tij))I{o<Tijg:}' (3.6)
<i<js<

But ¢4 (f) has the form of a U-statistic; that is, a sum over all distinct pairs taken
from N ii.d. E-valued random variables, of a given function on E x E, where E is the
measurable space C([0, oo ), R*). We use limit theorems on U-statistics found in
Jammalamadaka and Janson (1986) or elsewhere. Those results are stated in the case
when E is Euclidean space, but the proofs carry over to the case where E is an
arbitrary measurable space.

To apply these results, we need to know about the limit behaviour of the law of T, ,
as ry becomes small. Such results are to be found in Le Gall (1986).

The mean number of particles which would collide before time t with two distinct
others, if the annihilation reaction were ‘switched off’, is of the order of N3 s%, since the
probability that a specified particle collides with both of two other specified particles
is O(s3). The renormalization in (3.1) involves dividing by (N2sy)'/2. Therefore, when
N*3sy— 0, ¢%(f) is a good approximation to nk(f), since in this case
(N3s%)/(N?sy)'/? approaches 0. Otherwise we must estimate the variance of the error
caused by approximating to ny by ¢y We do this in Section 8, studying the
combinatorics of a series of collisions by a graph-theoretic method.

When d = 3, it may be possible to use the graph-theoretic method to obtain an
approximation for Eynz(f) in terms of the initial density u, and thus to extend
Theorems 4 and 5 beyond the case N*?sy —» 0. However, the approximation to
Exnyn(f) will be much more complicated in the general case than it is in Eq. (3.3) for
the case N*3sy — 0; it will be a sum over graphs.

The use of U-statistics should be applicable in some of the related models discussed
in the papers referred to in Section 1. The method can also be applied to a model with
two types of particles, A and B, for the reaction A + B — P, with P inert. See Penrose
(1992).

In the proofs to follow, ¢ denotes a finite positive constant, and may change from
line to line.

4. Preliminary results

Lemma 1. Suppose © > 0 and f e L*(R, x R*). Then
(i) if N¥%5y— 0 then

Pyl[ox(f)=nx(f)]>1 as N— oo,
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(i1) if N*3sy— 0 then

(NZsy)" V2 Ex[Io(f) —nd(/ M1 =0 as N— oo,

Proof. Suppose 1 <i < j<N.Only when T}, <T;;<tor T,;<T;;<t for some k # i,j,

does the contribution of pair (i, j) to n5(f) differ from its contribution to ¢ 5( f). That is,

DR ) = md NI e 2 irpesr, y=c

where the sum runs through all distinct i,j and k in {1,2, ..., N}. The result follows
from the fact that

Py[T;,<T;3<1] = O0(s%) as N— . (4.1)

See the proof of (6.1) of Penrose (1991), or Proposition 2. [J

The next result is based on the limiting expression for the probability that a Wiener
process in R? hits a small ball, found in Le Gall (1986).

Lemma 2. Suppose h e L™ (R, x R?), and for some © > 0, for all § e R%, h(t, ) = 0 for
t > v and h(-, ) is piecewise continuous {the intervals of continuity may depend on 7).
Then

lim sy Eyh(Ts3, T12(0) = Ca j f f hit. ) pi(y) vy, 5) di dy dj (42)
RJrJ 0

N-ox

and the limit in (4.2) is finite.
Proof. By definition, we have

ENh(T12~)712(0)):J‘ J E'Th(Ty, 7)]o(y, )dy dy (4.3)
R J R

where E” is expectation (and P’ is probability) with respect to a Brownian motion
(Y(t),t =0) starting at y, and

Ty = inf{e:| Y())|<ry//2).

Fix y and y for the moment, with y # 0. Suppose h(-, y) is the characteristic function
of an interval. Then by Corollaire 1-2 of Le Gall (1986),

sv ' EPh(Ty, §) f CCh(t P p)de as N - o (44)

0
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Also, the limit (4.4) still holds if h(-, J) is a step function, by linearity. Finally, if 4(-, J) is
piecewise continuous, it is Riemann integrable; approximating to & from above and
below by step functions, we may deduce that (4.4) still holds, using the fact that p,(y) is
bounded on {0 < t<1}.

We can also now deduce (4.2), provided we can find a suitable function to dominate
the function sy ! E*h(Tw, 7). By the majorization of Le Gall (1986), Lemme 2-1, and
routine use of Brownian scaling to account for the possibility that © > 1, we have for
some ¢ and N, and all N>N,,y and § in R%:

ST ER(Tw, P)I<|lhl o sy P PP[Ty<t]< cfy(z™ 172 |y)) 4.5)
where
fa(x) :=(S4(x)+ + 1) exp( — x?/16) (4.6)

and a, := max(qa,0) is the positive part of a. Finally, by Hélder’s inequality we have

jdv(y,ﬁ)dﬁsﬁ}ulz< . 47

(since the density u was assumed bounded), and so

[ [ e e nasdy< 2ius | e v2dy < o

The result (4.2) follows by (4.5) and Dominated Convergence. Also, by (4.7), the
assumptions on h and the fact that ||p,||, = 1, the limit in (4.2} is finite. [

5. Proof of Theorem 1.

Let R e, .. Take © >0 so that R = [0,7] x R%. By Lemma 1, it is enough to
prove that

$5(R)—> Poisson (d At, x) dt dx>. 5.1)

Define the function fon R, x R? to be the characteristic function of R (so 12 = f).
We have

dv(Ry= Yy Uy

1<i<j<N

where

Uij:=f(Tij: Y’ij(Tij))I(o<T,.j5r}- (5.2)
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Since Y,;,(-) — ¥;,(0)and ¥,,(-) — ¥,,(0) are independent Wiener processes starting
at 0, we have

Ey[U%,] = EN[Ex(U33| T2, Y12(0)] = Exh(Ty2, ¥12(0)),

where we set

BT = Toa®) | fH0x)px = 5dx, (e5) [0, 0] xR

Since f € L* (R, x R?), and f(-, x) is piecewise continuous for each x, the function h is
piecewise continuous in t, bounded, and of bounded support. By Lemma 2,

lim sN-lEN[U%ZJ=c,,f f J hit, 7) piy) oy, 5) de dy d
R? JR? [4]

N-ow

=f ffz(t,x)/l(t,x)dtdx, (5.3)
r‘Jo

by the definition (2.2) of A. By the assumption N2sy — 2y and the definition of f, we
have

lim (N2/2)Ex[U2,] = yJ Alt, x)dt dx. (5.4)
N-w R
Also, by (4.1),

llm N3EN[U12 U13] =0. (5.5)

N-ow

By (5.4),(5.5) and results on U-statistics (see Silverman and Brown (1978, Theorem A)
or Jammalamadaka and Janson (1986, Theorem 3.1)), (5.1) holds. O

6. Proof of Gaussian limits when N*/3sy — 0.

The following application of a theorem on U-statistics is the key to the Gaussian
limit theorems. Recall that W* denotes white noise with intensity A(x,t) I, .;(t)dxdr.
For 7 >0 and fe L*(R, x RY), define {x(f) analogously to {x(f), but with nj re-
placed by ¢F:

TN(f):i= (N2sy/2) 2 [o5(f) — Exdi(N)].

Proposition 1. Suppose Nsy — 0 and N*sy — o as N — oo. Let © > 0. Then
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(i) for any f € L® (R, x R?Y), with (-, x) piecewise continuous (the intervals of continu-
ity may depend on x), all x e R,

T (f) — Normal (0, JJ 26, x) A, x)dxdt) as N> oo. (6.1)
0JR!

(i) For any fy, ..., f, in L®(R, x R?), with f,(-,x) piecewise continuous, all x e R?,
1 <i<n, we have

DT, s TR ) S W, W, oo, W) as N> oo

Proof. (i) Observe that
(N*sy/2) 12 05N = 22 Vijs (6.2)
1<i<j<N

where V;;:= (N?sy/2)~ '/ U;;, with U,; given by (5.2). By the estimate (4.1), we have
for some ¢ > 0,

N3EN[V12 V13]SCNSN—>0 as N- . (63)

Also, by the proof of Theorem 1, (5.3) holds; that is,
lim (N2/2)Ex[V3,] = J sz(t,x)i(t,x)dtdx. (6.4)
N- o R*JO

Let Fy be the distribution function of Vy,. Since |Vy,|,— 0, the measure
(N2/2)(t?/(1 + t2))dFy(t) converges completely (in the sense of Loéve (1963, page
178)) to a point mass at 0, of size given by the expression in (6.4).

Also, for some ¢ > 0 (which may change from line to line),

(N?/2)|Ex[Vi2/(1 + Vi2)] — ExVial < e N2 Ex[[V12)*]
<cN?(N?%sy/2)” %2 Py[T1,< 1],

which approaches 0 as N — oo, by Lemma 2 and the assumption that N%sy — 0.
Moreover, by (6.2),

[((N?/2)Ex Vs — (N?sy/2)" V2 Ex d5(f) = (N/2)| Ex V1ial,
which also approaches 0 as N > 0. So
(N*/2)Ex(V12/(1 + Vi) — (N?5/2) Y2 Exydn(f) >0 as N— oo. (6.5)

By (6.2)—(6.5) and Jammalamadaka and Janson (1986, Theorem 3.1), we obtain (6.1).
(i1) This result follows from part (i) by use of the Cramér-Wold device. See
Billingsley (1968), Theorem 7.7. [
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Proof of Theorems 2 and 3 when N*3s5y — 0. Apply Proposition 1 to characteristic
functions of sets in 2, ;. By Lemma 1 and Billingsley (1968, page 28, problem 1), the
case N*3sy —» 0 of Theorem 2 is immediate.
As for Theorem 3 when N%/3sy — 0, the same argument shows that for fy, ... .f, in
ChCf) - Cn () converges in law to (W7(fy), ..., W (f,)). The desired conver-
gence in law in &' now follows from Mitoma’s theorem. See for example Walsh (1986,
Theorem 6.15), setting X y(-) to be the constant &’-vatued process Xy = {y. [

7. Proof of Theorems 4 and 5

In these results d = 3 so sy = rN/\/ﬁ2. The next two results are estimates on the rate
of convergence in Lemma 2.

Lemma 3. Suppose d = 3, © > 0. Then there are constants ¢ and N, such that for all
t <zt and all bounded measurable functions (a(7), y e R®), for N> N,

t
lsv P Ex[a(Y 1200 j0<1,<0;] —Zﬂf J Ja(ﬁ)ps(y) o(y, F)dsdydy| < csylal ..
R JRYJO
Proof. We may re-write (4.3) as follows:

ExLa(PiaO) o= 1,201 j j a7) LTy <t o(y, ) dy d7 (1)
R I¥i>sy

where, under P, as before, Ty is the first time a Wiener process starting at y visits

{Ix| < sy}. When d = 3 there is an exact expression for P*[ Ty <t]. See (2.12) of Clifford

et al. (1987). The expression (for |y|=sy) 1S

1| — sa
PLTy<1] = (sn/1y]) erfe (“ | @)

V
2sn >J‘1 L, < 25y >J1y,'\,”2 e 7 ds
= Pds + B
<|y| NEIREINGT ENCIA RSN
! D¢ EING - g
= ISy J p(y)ds + < SN >J —e s 22
Iyl /) Jusi—sni 3

(the last line is the result of routine integration). For |y| > 2sy (so |y — sy[=[y[/2), the
second term in the right-hand side of (7.2) is bounded above by

>s @0 exp{ — |y — syI*/(20)}

<|y|\/—
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< (2 Yy syze e

Ivl2, /e
N A
< cs3/191%)

where ¢ = (2n 1'?) sup,. o (z}/? e~ #*). Approximating in (7.1) to P*[Ty<t] by the
first term in the right-hand side of (7.2), we have

sy ! 1“31~J[11()712(0))I:0<T12 <t Ly Loz 2500 ]

_sz f o) J P} ds () dy 7
RY Jy|=2sy

(0]
< sy f f @)1 2 oy, §) dydF. (7.3)
R4 Jlyl= 25,

But

[ [ ot paray < e, (74

(split the integral into integrals over {|y| <1} and {|y| > 1}, and use the integrability of
v(y,-)), so that the right-hand side of (7.3} is at most a constant times ||a|, Sy. Also,

|sw ! Ex[a(¥2(0)) Lir, <o lyy Lon<2sa Jl
< sy'llafle Pyl Y12(0) < 2s5]
< s llall o (7.3)

Finally, for t <,

j J a9) j Ps(y)dsv(yaf)dydf)sCllaliooj J’ps(y)dsdy
dJIy< 2sm 0 |y <2s8 4 O

Scuar(mf v~ dy
Iyl<2sw

< cllafl sk (7.6)

Combining (7.3), (7.5) and (7.6) gives us the desired result. []

Lemma 4. Suppose d = 3. Suppose h:R, x R* - [0, oc) is a bounded measurable
Sfunction such that for some t, and t,, 0<t; <t, < oo, h(t,y) =0 for all § unless
t €[ty,t,]. Suppose there exists K < oo, such that for each § € R3, h(-, §) is continuous-
ly differentiable on (ty,t;) and |k'(-, )| is bounded on (t{,t,) by K. Then there exists
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¢ < oo and N such that for N> N,

|s;‘E~h(T12,?12<0))—2nf f j Bt 7)) o, 7 de dy |
R¢ J R? (o]

<csy? (7.7)

Proof. Let (M) be a sequence chosen so My s)/>

Let hy(-, ¥) be a function which is zero outside [t4,t,] and which is a step function,
with My equally spaced steps inside the interval [¢,t,]. (The steps are in the same
places for each 7). Since h(-, y) has a uniformly bounded derivative, we may choose hy
so that for some constant ¢,

—lasN- .

[hy —h|,<cMy (7.8)
We may also arrange for hy to be jointly measurable. We have
ExIH(T 2, ¥12(0) — hy(Tha, Vo)< llhy — k. Py[T12<15]
<cMy'Nsy {7.9)

by (7.8) and Lemma 2.
Also, hy(t, 7) is the sum of My functions of the form

a(y) | (AT

where a(-) is measurable and t; < 1, < t,. So by Lemma 3 there are constants ¢ and
N, such that for N >N,

155! Enhy(T12, T12(0)) — 2n j f j bt ) pi(y) 05, 5) di dy d|
R¢ JR? 0
<My s (7.10)

Finally,

J f J (t, 7) — bt )| pu ) oy, 5) de dy d7
RIVRES O

ScHhN—humf J v o(v, ) di dydy
R J R?

<cMyh, (7.11)

since the last integral is finite. Combining (7.9), (7.10) and (7.11) gives us the desired
result (7.7). O
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Proof of Theorem 4. In view of (3.3), Lemma 1 and Theorem 3, it suffices to prove that
for fe& and t >0,

(N25p/2) V2 [End5(f) — <§>3ij f(t,x)At,x)dxdf] >0 as N- .

(7.12)

N
As in the proof of Theorem 1, Ey ¢y (f) = (

5 )EN[h(T1 2, ¥1,(0))], where h is given by

ht, ) = Lo, () f 6.0 pilx — Jydx, (6,7) €[0, o0 ] x B
Rd

o 1
<it=+3z4
|G
By Lemma 4, the left-hand side of (7.12) is at most

wves ()

< c(NZsy) V2 N2s3?

By It6’s formula, for 0 < t < 1,

| ~
|5+ 34 |remne— e

which is finite, since f € &.

o0

0, . .
Eh(tay)‘ =

Exh(Ty2, Y1,(0) — sy ff f(t, x) At, x)dx dt
0 JR3

which convergesto 0 as N—» . O

Proof of Theorem 5. By Theorem 2 and Lemma 1, it suffices to show that for any
bounded interval J, contained in [0, 7) say, we have

(N2s5y/2) 112 {EN¢;V (J x RY) — (1;] >sN J A1 (s) ds} 0. (7.13)

But Ey¢i(J x RY) = (§) Py[T,, € J], and by Lemma 3 the left-hand side of (7.13) is at
most a constant times (N2sy)~ /2 (¥)sZ, which converges to zero as N— oo. [0

8. Proof of Theorems 2 and 3 (general case).

Fix 7 > 0 throughout this section. We shall study the combinatorics of this proof
using the language of graph theory. We shall identify a graph with the set of its edges.
A natural random graph on {1,2, ..., N} on our probability space Qy is obtained by
taking its edges to be those {i,j} for which T;;< . Divide these edges into two classes,
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those for which 7;; = 0 and those for which 7;; > 0. Since the strictly positive T;; are
distinct almost surely, there is a natural ordering on the second class of edges of this
graph, determined by the order of the 7;;. This graph, together with its subdivision
and the ordering, determines the set of {i,j} for which particles i and j collide and
annihilate before time t (that is, 7;; = T* < 7 for some k<L, in the notation of
Section 2).

Let 4™ denote the following class of objects. An element G of 4" is a triple
G = (Go, G4, <g), where Gy and G, are graphs on {1,2, ..., N}, such that the set of
edges of G, is disjoint from the set of edges of G, their union is a connected
non-empty graph on some subset of {1,2, ..., N}, and < is a total ordering on the
edges of G, .

We can write G, as a set of distinct edges on {1,2, ..., N}, and G, as an ordered
sequence of edges on {1,2,...,N}, distinct from those in G,; that is, for
G =(Go, G, <g) €9", we can write

Go = {{inJifs - {lodi} s (8.1)
and

G o= {{ikt ks 1) o s Umodm) o (8.2)
with

L todir 17 <G Uks 20dkr 2} <G oo <G Umodmy» (8.3)

and Gou Gy = {{i1,j1}s - » {ims jm}}, @ connected graph on a subset of {1,...,N}.
Write {i, j} € G if {i, j} is an edge of G, or of G .. For G given by (8.1)+8.3), define the
event F; on Qy by

Fg= {Ti T;

1y = i T :Tikjkzo}

< T;

N{0<T; i < T

et < iy 2ipe,

If G,G' €%V, we shall say G’ is an ordered subgraph of G if G, < G,, G; < G, and
the orderings <; and <4 on edges of G coincide. Note that in this case, F; < Fg.

Proposition 2. There is a constant ¢ depending only on d, v and the initial density
function u, such that for every N >m>1 and G = (Go,G4, <) €%, such that
Gow G, is a tree with m edges,

Pyl Fg]<(csy)" (8.4)

Proof. For x,, ..., X1 €R% let PY, . . denote probability with respect to N in-
dependent Wiener processes denoted X (-), X,(*), ..., Xn(-) as before, but now with
X:(0)=x, 1<i<m + 1,and X;(0), m + 2<i <N, i.i.d. with density u(-) as before. Let
E¥, denote the corresponding expectation.

~~~~~ Xm+1
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We shall prove that for some constant ¢; depending only on d, if G, U Gy is a tree
on {1,2,...,m + 1}, then for x, e RY,

f f PYoon [Foldxs oo dx < (e sw)™ 8.5)
R4 R

which implies (8.4) with ¢ = ¢; ||u| .
We prove (8.5) by induction on m. If m = 1, then G, U G, = {{1,2}}. By Lemme 2.1
of Le Gall (1986), with f; as in that result (f; is given by (4.6)),

vt | PR dvsco | Ry - sy 5.6)
R* R?

where ¢, depends only on d and 1. This implies {8.5) for m = 1, when we set ¢, to be the
right-hand side of (8.6), which is finite.

Now suppose m > 1, and G = (G, G, <g), with Gy U G, an ordered tree on
{1,2,...,m + 1}. Write G, and G, as in (8.1)+8.3).

Consider the case i; # 1 (the case i; = 1is tackled by a similar argument to the one
below, which we omit). With no loss of generality, assume i; = 2 and j; = 3. Also
without loss of generality, assume 3 is closer to 1 than 2 is, in the sense that the path
from 2 to 1 along G passes through 3 (if this is not true, then 2 is closer to 1 than 3 is;
interchange 2 and 3 in the argument below).

By the change of variable X, = x, — x3, the left side of (8.5) equals

By the strong Markov property, this is at most

N ~
J J X1, £3+ X50 Xg0 o0y Xma 1 1{T23 <t} PX](T23),...,Xm+1(T23) [FeldX,dx; --~,dx,,,+l (8.7

where G’ = (Gy, G+, <g) is the ordered subgraph of G obtained by removal of {2, 3}
from G. One construction of the probability measure PY is to arrange to have,

X1yenns Xm+ 1

on a probability space (Qy, % v, Py), a set of N independent d-dimensional Wiener
processes B;(*), 1 < i< N, each starting at 0, and a set of N — (m + 1) independent
R‘-valued random variables X;(0), m + 1 < i<N, with density u; then set

Xi(t) = X{0) + Bi(t) (m+1<i<N).

With this construction, the expression (8.7) becomes

J J‘ J’ ;I\ T23 <1
RY JR? RiJ Q)

Px1+31(723) X2+x3+B2(T23), x3+B3(T23),.... Xm+1 +Bm+1(T23)[FG]dPNdx2 dX3 o dxm+l-

(8.8)
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Since 7,5 depends only on %, and the Wiener processes B;(*) 1 <i<N (in fact, only
B,(-) and B;(‘)), we may take the xj, ..., x,,+, integrations inside the others, so that
expression (8.8) is at most

J dj I’«Tu <t}
RiJa;

X sup {f J Pl s vatxs oy txmes LFe1dxs .. dx,,,ﬂ}dP,’\,d)Ez. (8.9)
R4 R

Yis oo Ym+1

In general, G’ splits into two components G? and G>, where 2 is a vertex of G2 and 3 is
a vertex of G>. By application of the inductive hypothesis to G? and then to G>, the
middle line of (8.9) is at most (c;sy)™ ', so that expression (8.9) is at most

(cysy)™ ! j dP}V [Tr3<t]dX,,
R
and by (8.6), this is at most (¢, sy)™ as desired. O

Let 4} be the set of G €%", such that the graph Gou G, has n vertices. Let
4, = UNE,, %N As a consequence of Proposition 2 we have the following lemma.

Lemma 5. Under the hypothesis of Theorem 2, there exists no such that

Y  Py[Fs]-0 as N- w. (8.10)

-GN
Gedny+1

Proof. Take n, such that N*°*! §%? — 0 as N — oo . This is possible by the hypothesis
that N'*¢ sy — 0 for some ¢ > 0.

Forany G € %11, G has an ordered subgraph in %, ., which is a tree, so that by
Proposition 2,

Py[Fgl<c™ syl

There are only finitely many G in 47211, and the number of size ny + 1 subsets of
{1,...,N} is less than N™*1 So for some ¢ < o,

Y. Py[Fs] <cspeNmt!

N
Gedyit

and (8.10) follows. U
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Suppose G € ", Denote by M the event that F; occurs maximally in the sense that
F; occurs but there is no G' e 4", G’ # G, with G an ordered subgraph of G’, such that
Fg occurs.

Suppose G € ¥". Then if M occurs, for {i,j} € G the question of whether particles
i and j annihilate one another at a strictly positive time before 7 (that is,
0 < T;; = T*<1 for some k) is fully determined by the structure of G.

Define the function f; on edges by setting fs({i,j}) =1 if {i,j} € G is such that
0 < T;; = T*<1 for some k whenever M occurs. Set f;({i,j}) = 0 for all other {i,j},
including {i,j} ¢ G. For example, if G =(Go,G,. <g), with Gy = {{1,2}},
G, = {{3,4},{2,3},{3,5},{2,6}} and

{3,4} <¢{2,3} < {3.5} <¢{2,6},
then B6({3,4}) = 1, and Bs({i,j}) = O for all other {i,j}.

We have for any function f e L*(R, x R?), with probability 1

i = X VY Iy Be(Li AT, Tii(Ty)), (8.11)

GegN1<i<j<N

the exceptional event being contained in the event that the {T;;,0 < T;;<t} are not
distinct.

For each G = (Go, G, <g) €| Jn=2 %", define the integer valued function y¢ on
edges inductively by

v6(lij}) = Be{ij}) if G €%y
G({i’j}) = BG({i’j}) - ZVG/({i,j}) ifGe%,, n>2,
rex

where the last sum is over ordered, connected proper subgraphs G’ of G. It follows
from the definition that for 1<i < j,

Bo({ij}) = ;ycr({i,j})

where the sum is over all connected subgraphs G’ of G (including G’ = G). Also,
v6({i,j}) = 0if {i,j} ¢ G (proof by induction). By (8.11) we have for f e L*(R, x R?),

)= X Y I v6(Li DTy Viy(T:))

GegNi<j<N

Y. Vw6 (8.12)

Gegl
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where we set
Vf,N(G) -= IFG ZZ v, AT i j» Yij(Tij))~
1<i<j<N

Let f € & or let f be the characteristic function of a set in %, . Define the random
distribution ¢ by
no

k()= X ¥ 56

n=2Gegy

=22 Z 2 Lpyv6(0) [ (Tej, Yij(Tiy) (8.13)

i<j<Nn= 2(&4”

where ng is as in Lemma 5. Since every ordered graph in ¢}, n > n,, has an ordered
subgraph in ¢} . ,, it is immediate from Lemma 5 that Pyldi(f)=nr(f1]1—1 as
N — oo . We shall prove the following results.

Propesition 3. Under the hypothesis of Theorem 2, for fe L™ (R, x RY),

(N255/2) "2 Exlni(f) = $3()| =0 as N 0.
Proposition 4. Under the hypothesis of Theorem 2, for fe€ S or f= Ig with R € R,

NZsy/2) 2 [E5(f) — Ex (] —Wif) as N— oo,

where W(f) is normally distributed with mean O and variance
f j F2(, x) A(t, x) dx dt.
o Jme

By these two results, {5(f) converges in law to W<(f). The general cases of
Theorems 2 and 3 now follow as in Section 6.

Proof of Proposition 3. We shall show there is a number ¢ depending on ny but not on
N, such that for large N,

1R ()= nxDI<clflle X e, (8.14)

Ge f"f"r’x\;ﬁ 1 '
which implies the desired result, by Lemma 5 and the assumption N2sy— o,
To prove (8.14), first note that the contribution of {i,j} to the expression (8.12) for
nx(f) is either 0 or f(7T;, Y(T;;)), and has absolute value of at most I i« Also, the
contribution of {i,j} to the expression (8.13) for @ ~(f) has absolute value of at most
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Kiflode Iy, where the sum is over those G € (Unzno %n for which {i,j} € G, and we
set

K:=max{lyc({1,2}|:G € G 4,} (8.15)
n=2

which is finite.

The contribution of edge {i,j} to nx(f) differs from its contribution to éx(f) only
when there exists G € 45 | with {i,j} € G, such that Fg occurs. Denoting this event as
Hj; j), we have by the last two estimates that

T Ings K -
i) = BN 1w S I, |1 T 2z ). @816
Ge U gN.pisea

Now there exists a number ¢, such that for every N > n,, every G € @Y . has at
most ¢, ordered subgraphs in | J;°, 4.

Suppose the event Hy, j, occurs. Then for each G €| Jy<n, n with {i.j} €G such
that F; occurs, G may be extended to some G' € % ; such that Fg, occurs and G is an
ordered subgraph of G'. If we do this for each G €| J,<,, % with {i,j} €G, we cannot
obtain the same G’ more than ¢, times. Hence,

Z IFG$C2 Z IF ’

G .
Ge N.g i G e @gN i jle G
ngnog"'ll‘J‘EG {4"0+1.{11,E

whenever Hy; j;, occurs.
Thus the right-hand side of (8.16) is at most

1l £ In, |1 F e 2 Iy, 8.17)

. : ! ?
i<j<N Ge gnNO+1;{1.J}eG

and since each G € 4% .| has at most no(ne + 1)/2 edges, there is a constant ¢ such
that expression (8.17) is at most

clflle 2 Ir

N
Ge%Gpy+1

G
and (8.14) follows by Lemma 5. [
Proof of Proposition 4. By definition, Yoesd V5, ~G) = dn(f). We shall show

Vary[(N2sy) ™12 3 Y Vw(G)] -0 asN- oo, (8.18)

n=3 Geg®
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which implies the desired result by use of the definition (8.13) of ¢ (f), Proposition 1,
and Billingsley (1968, page 28, Problem 1). The left-hand side of (8.18) equals

(N2sy/2)" 1 3 (E[V; N (G} N(G")] — Ex Vn(G) Ex V7 n(GT)) (8.19)
G. G
where the sum is over G’ and G” in {_J;% 3 1. The only non-zero terms in the last sum
are those for which G’ and G” have at least one vertex in common (since otherwise
Vi x(G') and V; (G") are independent). In this case the union of the edges of G’ and
G" is a connected graph, denoted G (with no ordering), with between 3 and (2n, — 1)
vertices. Hence the expression (8.19) equals

2no—1

(Va2 Y X ¥ BNV (G Vi (G)] = By V(G Ex Vyn(G)} (820)
n=3 G L G”
where the second sum is over connected graphs G on size nsubsets of {1,2, ..., N} and
the third sum is over all G" and G” in | J,2 3 %2 such that the union of the edges of
Go. Gy, Gy and GY is G. The number of such pairs (G, G”) is at most some constant,
depending on n, but not N.
Defining K by (8.15), we have for all G’ and G” in the last sum that

Ex| Vi n(G) Vi n(G) < (Kng /2 || fI%, PxlEg 0 Egr]< esy !

(n being the number of vertices of G) where the last inequality follows from Proposi-
tion 2. By the same reasoning, since the sum of the number of vertices in G’ and the
number of vertices in G” is at least n + 1,

EWV; mGHEIV, MG < esy

Hence, the absolute value of expression (8.20) is at most a constant times

2np—1
2.1 n—1
(N30 Y Y sy
n=3 G
where the sum is over the same class of G as before. The number of such G is at most
a constant times N, so the last expression is at most a constant times

2np—1

(NZsy) ™' ) (N"syh)

n=23

which converges to zero as N — oo, since by assumption N sy — 0. This completes the
proof of (8.18). []

References

P. Billingsley, Convergence of Probability Measures (Wiley, New York, 1968).
P. Clifford, N.J.B. Green and M.J. Pilling, Statistical models of chemical kinetics in liquids, J. Roy. Statist.
Soc. Ser. B 49 (1987) 266 300.



M.D. Penrose/Stochastic Processes and their Applications 51 (1994) 167189 189

P. Dittrich, A Stochastic particle system: fluctuations around a non-linear reaction-diffusion equation,
Stochastic Process. Appl. 30 (1988) 149-164.

S.R. Jammalamadaka and S. Janson, Limit theorems for a triangular scheme of U-statistics with applica-
tions to inter-point distances, Ann. Probab. 14 (1986) 1347-1358.

0. Kallenberg, Characterization and convergence of random measures and point process, Z. Wahrsch.
Verw. Gebiete 27 (1973) 9-21.

P. Kotelenez, Law of large numbers and central limit theorem for linear chemical reactions with diffusion,
Ann. Probab. 14 (1986) 173-193.

P. Kotelenez, High density limit theorems for nonlinear chemical reactions with diffusion, Probab. Theory
Rel. Fields 78 (1988) 11-37.

P. Kotelenez, Fluctuations in a nonlinear reaction—diffusion model, Ann. Appl. Probab. 2 (1992) 669-694.

R. Lang and N.X. Xanh, Smoluchowski’s theory holds rigorously in the Boltzman-Grad limit, Z. Wahrsch.
Verw. Gebiete 54 (1980) 227-280.

J.-F. Le Gall, Sur la saucisse de Wiener et les points multiples du mouvement browniens, Ann. Probab. 14
(1986) 1219-1244.

M. Loéve, Probability Theory, (Van Nostrand, New York, 3rd ed., 1963).

G. Nappo and E. Orlandi, Limit laws for a coagulation model of interacting random particles, Ann. Inst.
Henri Poincaré 24 (1988) 319-344.

G. Nappo, E. Orlandi and H Rost, A reaction—diffusion model for moderately interacting particles. J. Stat.
Phys. 55 (1989) 579-600.

M.D. Penrose, Minima of independent Bessel processes and of distances between Brownian particles,
J. London Math. Soc. (2) 43 (1991) 355-366.

M.D. Penrose, Generalized two-sample U-statistics and a two-species reaction—diffusion model, Preprint
1992, Stochastic Process. Appl. (to appear).

B.W. Silverman and T.C. Brown, Short distances, flat triangles and Poisson limits, J. Appl. Probab. 15
(1978) 815-825.

A.S. Sznitman, Propagation of chaos for a system of annihilating Brownian spheres, Comm. Pure Appl.
Math. 40 (1987) 663-690.

J.B. Walsh, An introduction to stochastic partial differential equations, Ecole d’Eté de probabilitiés de
Saint-Flour XIV-1984. Lecture notes in Mathematics 1180 (Springer, Berlin, 1986) pp. 265-439.



