H stochastic
LS processes
and their
applications

ELSEVIER Stochastic Processes and their Applications 82 (1999) 15-21

On tail probability of local times of Gaussian processes

Y. Kasahara® *, N. Kono®, T. Ogawa®

2 Department of Information Sciences, Ochanomizu University, Tokyo, 112-8610 Japan
Y Division of Mathematics, Department of Fundamental Sciences, Kyoto University, Kyoto, Japan
¢Graduate School of Mathematics and Computer Science, Ochanomizu University, Tokyo, Japan

Received 16 June 1998; accepted 29 January 1999

Abstract

We study the tail probability of the local time at the origin of Gaussian processes with
stationary increments. The order of infinitesimal is obtained. (© 1999 Elsevier Science B.V. All
rights reserved.
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1. Introduction
Let X ={X;;t>0} be a Gaussian process with mean zero, stationary increments and
Xo =0. Put
() = E[(Xetn = X)), £,h=0.

Throughout the paper we further assume that ¢?(/) is continuous and satisfies that

/1 dr
—— <oo,a(h) >0 (h>0). (1.1)
o o(?)

Then it is known that X has continuous local time /(z,x);

.1
11, = lim o /0 T cxre(X,) ds,

(see Berman, 1969). In what follows, we are interested in the law of /(¢,0), since
it appears in some limit theorems for occupation times of Gaussian processes (see
Koéno, 1996). As far as the authors know, we have little knowledge about the explicit
distribution of /(#,0) and so it would be of interest to study the relationship between
the incremental covariance function ¢?(-) and the law of /(z,0). As a typical example
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let us consider the case of the standard Brownian motion. It is well known that the
law of /(1,0) is the truncated normal distribution and therefore

—log P[1(1,0) > x] ~ x*/2 as x — o0, (1.2)

holds, where the sign ~ indicates that the ratio of the two sides tends to 1. The aim
of the present paper is to extend this fact to evaluate the tail probability P[/(1,0) > x]
as x — oo in terms of g(-) for more general Gaussian processes. Our main result is
that, under some conditions

—log P[1(1,0) > x] = 1/6~(1/x) asx — oo, (1.3)

holds, where f =< g means 0 < liminf f(x)/g(x) <limsup f(x)/g(x) < co and ¢~ is
the inverse function of o(¢) (if exists). The details of the conditions and the proof will
be given in Section 2, and we only remark that (1.3) is compatible with (1.2). Indeed,
in the case of Brownian motion, ¢(¢) =t and hence 1/c~'(1/x) = x?.

2. Results and proofs

For every 0=ty < t; < ---,t, < 1, let C, =C,(t4,...,t,) denote the covariance matrix
of the n-dimensional random vector

(X(t) = X(10), X (t2) = X (1), ..., X (n) = X (tn—1))-

The diagonal elements of C,(¢,...,t,) are oz(tj —ti—1) (j=1,...,n). Since C, is
positive definite, it is an elementary fact of linear algebra that

det Cy(t1,....t) < [[ ot — t;-1). (2.1)
Jj=1

In the sequel we shall assume the following condition, which may be regarded as a
kind of ‘local nondeterminism’. (See Nolan, 1989; Kono and Shieh, 1993.)

Assumption (A). There exist positive constants 6 and ¢ such that
det Cy(t1,....ta) = 8" [ [ (t; — 15-1) (2.2)
j=1

forall 0=ty <t; <---<t, <1 and for all sufficiently large n.

Remark. A sufficient condition for (A) is that ¢%(¢) is concave. Indeed, by Lemma 3.3
of Csorgd et al. (1995), the concavity of ¢2(¢) implies

det Cy(tr,....ta) 227" [ [ oty — t;-1). (2.3)
j=1

Thus (2.2) holds with c=1, § = 1.
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Before we state our main theorem, we recall the notion of regular variation, al-
though we refer to Feller (1971), Seneta (1976) or Bingham et al. (1987) for details.
A function ¢(x) (x > 0) is said to vary regularly at 0 [or co] (with index o) if and
only if

i L)
x—0[co] @(x)

A% for every A >0

holds. Clearly a function ¢(x) varies regularly at 0 with index « if and only if @(x)=
x*L(1/x) for some function L which varies slowly at co (i.e., lim,_, o, L(Ax)/L(x) =1,
for every 4 > 0). Our main result is:

Theorem 1. Suppose that (1.1) and Assumption (A) are satisfied. If o(t) is conti-
nuous, strictly increasing on the interval [0, 1] and varies regularly at 0 with expo-
nent 0 < o < 1, then

—log P[I(1,0) > x] =< 1/67'(1/x) as x — oo.
Here f =< g denotes 0 < liminf f(x)/g(x)<lim sup f(x)/g(x) < oo as before.
As a typical example of Theorem 1, let us mention the case of fractional Brownian

motion, (i.c., 6(t)=1t") in the form of Corollary: If 0 < H <3, then () is concave
(and hence Assumption (A) is satisfied). Therefore, we have:

Corollary. If X is the fractional Brownian motion with index 0 < H < %, then
—log P[I(1,0) > x] < x'# a5 x — . (2.4)
The authors believe that 0 < H S% may be replaced by 0 < H < 1 although, in the
case where % < H < 1, they do not know whether Assumption (A) is satisfied or not.
We further believe that (2.4) may be strengthened as
—log P[I(1,0) > x] ~ Cpyx"H as x — oo,
for some suitable constant C; > 0. However, it is still open.

Our basic tool for the proof of Theorem 1 is the following Tauberian theorem
obtained by one of the authors (Kasahara, 1978, Theorem 4).

Theorem A. Let & be a positive random variable and let ¢(x) be a function which
varies regularly at oo with exponent 0 < oo < 1. Then,

—logP[¢ > p(x)] <x asx —
holds if and only if

E[E"" < o(n) as n— oo.
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Therefore, let ¢(x)=1/a(x). Since ¢~ '(x)=1/c"'(1/x), Theorem 1 is equivalent to:

Theorem 2. Suppose that (1.1) and Assumption (A) are satisfied. If o(t) is conti-
nuous, strictly increasing and varies regularly at 0 with exponent 0 < oo < 1, then

nyl/n _ 1 N
E[I(1,0)"] Aig(l/n), n — oo.

Thus, in what follows we shall prove Theorem 2 instead of 1 and to this end
let us start with expressing the moments E[/(1,0)"] (n>=1) as multiple integrals. Let
0=ty <t <---t, <1 and recall that C,, =C,(ty,...,t,) denote the covariance matrix
of the n-dimensional random vector

(X(t1) = X(20), X (12) = X(t1),..., X () — X(ta—1))

Therefore, its Gaussian kernel is
(t tyx) = %ex {—(C'x,x)2}, x€R"
g 1sevesln, _(Zﬂ)n/z\/m p n ’ ) .

So, for any non-negative, continuous function F(x)(x € R),

1 n
([ Feras) | n [ ] BUFCR,) O -
0 o<h<---<t, <l
:n!/~~~/ dt1~~dt,,/ g(ti, ...ty x)
o<h<---<t, <l 7

XF(x1)---F(x1 4+ -+ +x,)dx.

E

By a standard argument we may let F(x) approach the Dirac function (x) to have

E[(l(l,O))"]:n!/~~/ g(t1,...,t,;0)dey - - - dt,,.
o<h<---<t,<l
Thus we obtain:

Lemma 1.

n! dey - --d,
B0 = [ | Lozl
V2n 0<ty<--<t,<1 v/det C,(t1,...,t,)
Now combining Lemma 1 with (2.1) and (2.2), we obtain:

Lemma 2.

1/n
E[(I(1,0)y']"" = n'// _ dn-dh as 1 — oo,
0<n <<t <1 ;l:1 a(tj = tj-1)
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In order to evaluate the right-hand side of the above relation we shall prepare an
auxiliary result, which is the key lemma of this paper.

Lemma 3. Let U(x) be a right continuous, non-decreasing function defined on
=[0,00) such that U(0) = 0. If U(x) varies regularly at 0 with index > 0, then

1/n
(// dU(tl)-~-dU(tn)> = U(l/n) asn— oo.
mo<ti+---+t, <1

Proof. The lower estimate is easy;

// AUt dU(1)
I"0<ti+---+t,<1

>/ /0<,k<1/n,k_1,.,_,,, U(n)-+-dU(t) = (U(1/n)

To prove the upper inequality, define

F,,(z):/---/ dU(t)---dU(t,), n=12,....
1"0<ti4--+t, <t

It is F,(1) that we need to evaluate. Now notice that

/000 e S dF,(t) = (/000 e_‘”dU(t))n.

Therefore, we have

1 [eS) oo n
Fn(l)ge"/ e_”’an(t)ée”/ e "dF, (1)< (e/ e"”dU(t)) ,
0 0 0

which implies

e
limsup ———F(1)"" < lim su / e "dU(¢).
i U(l/) . e, U(1/n) Jo )

By the well-known Karamata’s Tauberian theorem (see e.g. Feller, 1971, p. 443)
we see that the right-hand side equals el'(f + 1), which completes the proof of
Lemma 1. [J

We are now ready to prove Theorem 2. Let

U(;):/ ﬂ, t>0.
0

<u<min{s1} O'(Ll)

Since ¢ is a regularly varying function by assumption, we have

1
U(t)w—— ast — 0.

a(t)
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Therefore, U(t) varies regularly as ¢ goes to 0 with index =1 — o (> 0). Since

1/n

dty - - - dt,
n! DRI n—
Ino<n<-<ty<1 1lj=1 O'(tj - tjfl)

1/n
=<n'// dU(sl)-~-dU(sn)> , (2.5)
1"0<si+-+s, <1

we can apply Lemma 3 and obtain

1/n
n'// _ dn---dn
. n
O<ti<---<t, <1 Hj:l o(t; —tj—1)
1

- /n - 1/n
= (m)'""U1/n) < (n!) ey

Here, we used (2.5). Since (n!)"" ~ n/e by Stirling’s formula, we conclude that

1/n
n'/ / dry - diy ! as n — 0o
L A . = — 00.
o<t <-<ty<l 1lj= a(ti —ti_1) a(1/n)

Combining this with Lemma 2, we complete the proof of Theorem 2.
In the above, we did not actually use the regular variation of a(¢) itself but that of
U(t) = fot 1/o(u) du. Therefore, we have

Theorem 3. Suppose that (1.1) and Assumption (A) are satisfied. If U(t):fot 1/o(u)
du varies regularly at 0 with index 0 < f < 1, then

E[1(1,0)"1"" < nU(1/n) asn— oo
and

—log P[I(1,0) > xU(1/x)] <x asx — oo. (2.6)

We also remark that, if U(¢) varies regularly at 0 with index 0 < f < 1, (2.6) is
equivalent to the following condition by Theorem 2 of Kasahara (1978):

log E[e"09 < 1/U~(1/2), 4 — oo
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