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Abstract

We prove a strong approximation for the spatial Kesten–Spitzer random walk in random
scenery by a Wiener process. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let {St; t = 0; 1; 2; : : :} be a simple, symmetric random walk in Zd (in this paper,
d¿3) and let Y (x) (x ∈ Zd) be an array of i.i.d. r.v.’s with

EY (x) = 0; EY 2(x) = 1; E|Y (x)|p¡∞; p¿ 2:

We also assume that the processes {St} and {Y (x)} are independent.
The process

X (T ) =
T∑
t=0

Y (St) (T = 0; 1; 2; : : :) (1.1)

is called random walk in random scenery. The study of this model was initiated
by Kesten and Spitzer (1979). They investigated the case d = 1, and proved that in
this case, as n→ ∞, non-Gaussian limit laws appear (see (1:5) of Kesten and Spitzer
1979) as limits of {n−3=4X (bntc); t¿0}. Moreover, in general, they studied the limiting
behaviour of n−�X (bntc) with �= 1− �−1 + (��)−1, in case of the Z-valued random
walk {Sk} being asymptotically stable of index � ∈ (1; 2] and {Y (x); x ∈ Zd} being
asymptotically stable of index � ∈ (0; 2]. They showed that with the indicated positive
�; n−�X (bntc) converges weakly as n → ∞ to a self-similar process with stationary
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increments, which depends on (�; �). Recently, the weak convergence was strengthened
into strong approximations by Khoshnevisan and Lewis (1998) for Gaussian sceneries,
and by Cs�aki et al. (1999) for general sceneries.
Kesten and Spitzer (1979) also conjectured that in case of {Sk} being a simple

random walk on the planar lattice Z2, then (n logn)−1=2X (bntc) converges weakly as
n → ∞ to a Brownian motion on [0;∞). This conjecture was proved by Bolthausen
(1989) (see also Borodin, 1980), and a strong approximation was obtained by Cs�aki
et al. (2000). Bolthausen (1989) also noted that in dimensions greater than or equal
to 3, T−1=2X (T ) is asymptotically normal. (Continuous-time analogues of these can be
found in R�emillard and Dawson, 1991.)
The present paper is devoted to the case d¿3. We prove that, in this case, X (T )

can be approximated with probability 1 by a Wiener process.

Theorem 1.1. Let d¿3. Let {St} and {Y (x)} be de�ned on a rich enough probability
space {
;F;P}. Then there exists a real-valued Wiener process {W (t); t¿0} on 

such that for any �¿ 0 we have∣∣∣∣∣X (T )−

(
2− 




)1=2
W (T )

∣∣∣∣∣= o(T#+�) a:s:;

where

#=max
(
1
p
;
5
12

)
and the constant 
= 
(d) is de�ned in Lemma 2:3:

Note that Theorem 1.1 readily implies

lim
T→∞

P

{(



2− 

)1=2 X (T )√

T
¡y

}
= �(y); y ∈ R;

(where �(·) is the standard normal distribution function) and

lim sup
T→∞

(



2− 

)1=2

(2T log log T )−1=2X (T ) = 1 a:s:

Similar strong or weak laws can also be obtained.
The rest of the paper is organized as follows. In Section 2 a few results on random

walk are given. In Section 3 an invariance principle, strongly related to Theorem 1.1
is provided. Theorem 1.1 is proved in Section 4.
Throughout the paper, we assume d¿3, and write log x = logmax(x; e).

2. Random walk

Introduce the following notations:

�(x; T ) = #{t : 0¡t6T; St = x}; (x ∈ Zd; 0¡T ≤ ∞);

I(k; t) =

{
1 if St 6= St−j (j = 1; 2; : : : ; t) and �(St;∞) = k;
0 otherwise;
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A(k; T ) = {x: �(x; T )¿ 0; �(x;∞) = k};

a(k; T ) = #{x: x ∈ A(k; T )}=
T∑
t=1

I(k; t)

= #{t: 0¡t6T; St 6= St−j (j = 1; 2; : : : ; t); �(St ;∞) = k};


t = 
t(d) = P{�(0; t − 1) = 0};

N (t) = {St 6= St−j; j = 1; 2; : : : ; t};

R(t; k) = {�(St ;∞)− �(St ; t) = k};

V (u; v; ‘) = {�(Su; v)− �(Su; u) = ‘} (06u¡v):

Now we recall a few known lemmas.

Lemma 2.1 (P�olya, 1921).

P{S2t = 0} ∼ 2
(
d
4t�

)d=2
(t → ∞):

Lemma 2.2 (Dvoretzky and Erdős, 1951).

P{N (t)}= 
t :

Lemma 2.3 (Dvoretzky and Erdős, 1951). {
t} is a decreasing sequence with
0¡
t − 
=O(t1−d=2);

where


= lim
t→∞ 
t :

Lemma 2.4 (Erdős and Taylor, 1960).

P{�(0;∞) = k}= (1− 
)k
:

The next lemmas are simple consequences of the above-presented lemmas.

Lemma 2.5.

P{�(0;∞)− �(0; T )¿ 0}6O(T 1−d=2):

Proof. Clearly

P{�(0;∞)− �(0; T )¿ 0}6
∞∑

t=T+1

P{St = 0}:

Hence we have Lemma 2.5 by Lemma 2.1.

Lemma 2.6.

P{�(0; T ) = k}6P{�(0;∞) = k}+O(T 1−d=2) = 
(1− 
)k +O(T 1−d=2):
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Proof. Since

{�(0; T ) = k}⊂{�(0;∞) = k} ∪ {�(0;∞)− �(0; T )¿ 0};
we have Lemma 2.6 by Lemmas 2.5 and 2.4.

Lemma 2.7.

P{I(k; t) = 1}= EI(k; t) = 
2(1− 
)k−1 + (1− 
)k−1O(t1−d=2);
where O(·) does not depend on k.

Proof. Observe that

{I(k; t) = 1}= N (t) ∩ {�(St ;∞) = k}
and

P{N (t) ∩ �(St ;∞) = k}= P{N (t)}P{�(0;∞) = k − 1}:
Hence we have Lemma 2.7 by Lemmas 2.2–2.4.

Lemma 2.8. For any 0¡u¡v and k = 1; 2; : : : we have

P{I(k; u)I(k; v) = 1}= 
4(1− 
)2k−2 + (1− 
)2k−2O(u1−d=2)
+ (1− 
)k−1O((v− u)1−d=2):

Proof. Write r = r(u; v) = b(u+ v)=2c. We have
{I(k; u)I(k; v) = 1}= N (u)R(u; k − 1)N (v)R(v; k − 1);
R(u; k − 1)⊂V (u; r; k − 1) ∪ {�(Su;∞)− �(Su; r)¿ 0}:

Hence by Lemmas 2.2–2.5,

P{I(k; u)I(k; v) = 1}
6P{N (u)V (u; r; k − 1)}P{{Sv 6= Sj; r6j6v− 1} ∩ R(v; k − 1)}
+P{{�(Su;∞)− �(Su; r)¿ 0} ∩ R(v; k − 1)t}

6P{N (u)V (u; r; k − 1)}
v−r(1− 
)k−1

+P{�(0;∞)− �(0; r − u)¿ 0}(1− 
)k−1


=P{N (u)V (u; r; k − 1)}
2(1− 
)k−1 + (1− 
)k−1O((v− u)1−d=2):
Now we have Lemma 2.8 by Lemmas 2.2, 2.3 and 2.6.

The following lemma is a trivial consequence of Lemma 2.7.

Lemma 2.9.

Ea(k; T ) = T
2(1− 
)k−1 + (1− 
)k−1M (T );
where

M (T ) =Md(T ) =



O(T 1=2) if d= 3;

O(log T ) if d= 4;

O(1) if d¿5:
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Lemma 2.10.

Var a(k; T )6(1− 
)k−1TM (T ):

Proof. By Lemma 2.8 we have∑
0¡u¡v6T

EI(k; u)I(k; v)6
(
T
2

)

4(1− 
)2k−2 + (1− 
)k−1TM (T ):

By Lemma 2.9

(Ea(k; T ))2 = T 2
4(1− 
)2k−2 + (1− 
)2k−2TM (T ):
Hence we have Lemma 2.10.

Let

A(k; T; �) = {|a(k; T )− T
2(1− 
)k−1|¿T 3=4+�(1− 
)(k−1)=4}; (2.1)

B(T; �) =
∞⋃
k=1

A(k; T; �): (2.2)

Then we have

Lemma 2.11.

P{A(k; T; �)}6c1(1− 
)(k−1)=2T−2� (0¡�¡ 1
4 );

where c1 = c1(d) is a constant depending only on d.

Proof. By Lemmas 2.9, 2.10 and the Chebyshev inequality we have

P{|a(k; T )− T
2(1− 
)k−1|¿�(1− 
)(k−1)=2T 3=4}6 c2
�2

for some c2 = c2(d). Choosing

�= T�(1− 
)−(k−1)=4

we have Lemma 2.11.

Lemma 2.11 easily implies

Lemma 2.12.

P{B(T; �)}6c1(1− (1− 
)1=2)−1T−2�:

Lemma 2.13. There exists a su�ciently large constant c3 = c3(d) such that for all
k¿c3 log T ,

A(k; T; �)⊂{a(k; T ) = 0};
where �A denotes the complementer of A.

Proof. Trivial.

Now, we present the main result of this section.
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Theorem 2.1. Among the events A(T; �) (T=1; 2; : : :) only �nitely many might occur
with probability 1 if 1=12¡�¡ 1=4.

Proof. Let

Tj = b jKc; 2K�¿ 1; j = 1; 2; : : : :

Then by Lemma 2.12 among the events B(Tj; �) (j=1; 2; : : :) only �nitely many might
occur with probability 1. Let Tj6t ¡Tj+1. Then

a(k; t)6 a(k; Tj+1)6Tj+1
2(1− 
)k−1 + T 3=4+�j+1 (1− 
)(k−1)=4

6 Tj
2(1− 
)k−1 + T 3=4+�+�j (1− 
)(k−1)=4

for any �¿ 0 if j is big enough and

(2�)−1¡K¡
(
1
4
− �
)−1

:

Similarly

a(k; t)¿ a(k; Tj)¿Tj
2(1− 
)k−1 − T 3=4+�j (1− 
)(k−1)=4

¿ Tj+1
2(1− 
)k−1 − T 3=4+�+�j (1− 
)(k−1)=4

for any �¿ 0 if j is big enough and K satis�es the above inequality. Hence we have
Theorem 2.1.

3. An invariance principle

Throughout this section, Z1; Z2; : : : denote a sequence of i.i.d. r.v.’s with

EZ1 = 0; EZ21 = 1; E|Z1|p¡∞; p¿ 2:

We �rst recall two useful results.

Lemma 3.1 (Koml�os et al., 1976; Major, 1976). Let {Zn} be de�ned on a rich enough
probability space. Then there exists a Wiener process {W (t); t¿0} such that

P

{
max
16k6n

∣∣∣∣∣
k∑
i=1

Zi −W (k)
∣∣∣∣∣¿z

}
¡Cnz−p

if

0¡z¡ (n log n)1=2;

where C is a positive constant depending only on the distribution of Z1.

Lemma 3.2 (Cs�orgő and R�ev�esz, 1981, p. 24). Let {W (t); t¿0} be a standard
Wiener process. For any �¿ 0; there exists a constant c4 = c4(�) such that for all
v¿ 0 and all h ∈ (0; 1);

P

(
sup

06s; t61; |t−s|¡h
|W (s)−W (t)|¿v

√
h

)
6
c4
h
exp
(
− v2

2 + �

)
:
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The condition “z¡ (n log n)1=2” in Lemma 3.1 can be removed, as long as we replace
Cnz−p by a larger term. Indeed, when n¿z2, we have z¡ (n log n)1=2, thus Lemma 3.1
applies. On the other hand, if n6z2, then n6n∗ where n∗ = bz2c + 1. Since z¡
(n∗ log n∗)1=2, we can apply the lemma to (n∗; z) in place of (n; z), to see that

P

{
max
16k6n

∣∣∣∣∣
k∑
i=1

Zi −W (k)
∣∣∣∣∣¿z

}
6P

{
max

16k6n∗

∣∣∣∣∣
k∑
i=1

Zi −W (k)
∣∣∣∣∣¿z

}

6
Cn∗

zp
6
C(z2 + 1)

zp
:

Therefore, whenever n¿1 and z¿ 0,

P

{
max
16k6n

∣∣∣∣∣
k∑
i=1

Zi −W (k)
∣∣∣∣∣¿z

}
6c5

max(n; z2)
zp

:

So we arrive at the following form of Lemm 3:1 which is more appropriate for appli-
cations later.

Lemma 3.3. After possible rede�nitions of variables; there exists a Wiener process
{W (t); t¿0} such that for all n¿1 and all z¿ 0;

P

{
max
16k6n

∣∣∣∣∣
k∑
i=1

Zi −W (k)
∣∣∣∣∣¿z

}
6c5

n+ z2

zp
;

where c5 is a �nite constant depending on the law of Z1.

Now we turn to the study of X (T ) =
∑T

t=0 Y (St), the random walk in random
scenery which was introduced in (1.1). We recall that the simple random walk {Si;
i = 0; 1; 2; : : :} is independent of the random scenery {Y (x); x ∈ Zd}.
We �rst look at

∑
x∈A(k;T ) Y (x) (for the de�nition of A(k; T ), see Section 2). Ac-

cording to Lemma 3.3, conditionally on {Si; i= 0; 1; 2; : : :}, there exists a sequence of
independent Wiener processes (depending on Si; i=0; 1; 2; : : :), denoted by {Wk(·)}k¿1,
such that for all y¿ 0,

P


 max
16t6T

∣∣∣∣∣∣
∑

x∈A(k; t)
Y (x)−Wk(a(k; t))

∣∣∣∣∣∣¿y | Si; i = 0; 1; 2; : : :



6c5
a(k; T ) + y2

yp
: (3.1)

We mention that both A(k; t) and a(k; t) are measurable with respect to �{Si;
i = 0; 1; 2; : : :}.
Let � ∈ (0; 14 ). Recall A(k; T; �) from (2.1) in Section 2, and write B(T; �) =⋃∞
k=1A(k; T; �) as before.
Fix r ¿ 1=p and let

Bk =


 max
16t6T

∣∣∣∣∣∣
∑

x∈A(k; t)
Y (x)−Wk(a(k; t))

∣∣∣∣∣∣¿Tr


 :
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It is clear that

P

{∞⋃
k=1

Bk

}
6P{B(T; �)}+

∞∑
k=1

P{A(k; T; �) ∩ Bk}:

By Lemma 2.13, when k¿c3 log T , on A(k; T; �) we have a(k; T )=0 (thus A(k; t)= ∅
for any t6T ), which implies Bk = ∅. Therefore A(k; T; �)∩Bk = ∅ for all k¿c3 log T .
On the other hand, Lemma 2.12 guarantees P{B(T; �)}6c6=T 2�. Accordingly,

P

{∞⋃
k=1

Bk

}
6
c6
T 2�

+
bc3 log Tc∑
k=1

P{A(k; T; �) ∩ Bk}: (3.2)

Observe that each A(k; T; �) is measurable with respect to �{Si; i = 0; 1; 2; : : :}.
Moreover, on A(k; T; �), we have

a(k; T )6T
2(1− 
)k−1 + T 3=4+�(1− 
)(k−1)=462T (1− 
)(k−1)=4:
In view of inequality (3.1), we have

P{A(k; T; �) ∩ Bk | Si; i = 0; 1; 2; : : :}6 c5
2T (1− 
)(k−1)=4 + T 2r

T rp

=
2c5(1− 
)(k−1)=4

T rp−1
+

c5
T r(p−2)

:

Going back to (3.2), we obtain

P

{∞⋃
k=1

Bk

}
6

c6
T 2�

+
2c5
T rp−1

∞∑
k=1

(1− 
)(k−1)=4 + c5c3 log T
T r(p−2)

6
c6
T 2�

+
c7

T rp−1
+
c8 log T
T r(p−2)

:

Since r ¿ 1=p, we can choose a constant b such that

b¿max
(
1
2�
;

1
rp− 1 ;

1
r(p− 2)

)
:

Take T = T‘ = b‘bc (for ‘= 1; 2; : : :). By the Borel–Cantelli lemma, almost surely for
all large ‘ and all k¿1,

max
16t6T‘

∣∣∣∣∣∣
∑

x∈A(k; t)
Y (x)−Wk(a(k; t))

∣∣∣∣∣∣6(T‘)r :
Let T ∈ [T‘; T‘+1]. For large T and all k¿1,

max
16t6T

∣∣∣∣∣∣
∑

x∈A(k; t)
Y (x)−Wk(a(k; t))

∣∣∣∣∣∣6 max
16t6T‘+1

∣∣∣∣∣∣
∑

x∈A(k; t)
Y (x)−Wk(a(k; t))

∣∣∣∣∣∣
6 (T‘+1)r62T r:

Since {Wk(·)}k¿1 are independent Wiener processes under the conditional probability
P{· | Si; i= 0; 1; 2; : : :}, they are also independent Wiener processes under the absolute
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probability P. As r ¿ 1=p is arbitrary, we have succeeded in proving the following:
for any �¿ 0, when T goes to in�nity,

sup
k¿1

∣∣∣∣∣∣
∑

x∈A(k;T )
Y (x)−Wk(a(k; T ))

∣∣∣∣∣∣= o(T 1=p+�) a:s: (3.3)

Now we need to control the increment Wk(a(k; T )) − Wk(T
2(1 − 
)k−1). Fix any
1
12¡�¡ 1

4 . On B(T; �), |a(k; T )− T
2(1− 
)k−1|¡T 3=4+�, which yields

|Wk(a(k; T ))−Wk(T
2(1− 
)k−1)|6�k(T );
where

�k(T ) = sup
06s; t62T;|t−s|¡T 3=4+�

|Wk(s)−Wk(t)|:

Now using the scaling property of the Wiener process, and applying Lemma 3.2 to
h= T�−1=4=2, �= 1 and v= 3

√
log T ,

P(�k(T )¿3T�=2+3=8(log T )1=2)

=P

(
sup

06s; t61;|t−s|¡T�−1=4=2
|Wk(s)−Wk(t)|¿ 3√

2
T�=2−1=8(log T )1=2

)

6 c9T−�−11=4;

where c9 is an absolute constant. As a consequence,

P
(
max
16k6T

�k(T )¿3T�=2+3=8(log T )1=2
)
6c9T−�−7=4;

which, by virtue of the Borel–Cantelli lemma, yields that, for any 1
12¡�¡ 1

4 ,

max
16k6T

�k(T ) = O(T�=2+3=8(log T )1=2) a:s:

Since |Wk(a(k; T ))−Wk(T
2(1−
)k−1)|6�k(T ) on B(T; �), and since by Theorem 2.1
almost surely only �nitely many events among {B(T; �)}T=1;2; ::: can occur, we can go
back to (3.3) to see that, for any �¿ 0, with probability one,

max
16k6T

∣∣∣∣∣∣
∑

x∈A(k;T )
Y (x)−Wk(T
2(1− 
)k−1)

∣∣∣∣∣∣= o(T#+�); (3.4)

where #=max(1=p; 512 ).
For large k, it is easy to estimate the di�erence between

∑
x∈A(k;T ) Y (x) and

Wk(T
2(1 − 
)k−1). More precisely, we now prove that both terms are very small
when k is a large constant multiple of log T . We �rst look at

∑
x∈A(k;T ) Y (x). Let

1
12¡�¡ 1

4 . Again, owing to Theorem 2.1, we only have to work on the set B(T; �)=⋂∞
k=1A(k; T; �). Recall that by Lemma 2.13, for k¿c3 log T , on A(k; T; �), we have

a(k; T ) = 0, i.e., A(k; T ) = ∅. Consequently, with probability one, for all large T ,∑
x∈A(k;T )

Y (x) = 0; k¿c3 log T: (3.5)
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On the other hand, we can choose c10=c10(d) su�ciently large so that (1−
)(k−1)=126
1=T for all k¿c10 log T . Accordingly,

P

(
sup

k¿c10 log T

|Wk(T
2(1− 
)k−1)|
(1− 
)(k−1)=4 ¿1

)

6P

(
sup

k¿c10 log T

|Wk(T
2(1− 
)k−1)|
T (1− 
)(k−1)=3 ¿1

)

6
∑

k¿c10 log T

P(|Wk(T
2(1− 
)k−1)|¿T (1− 
)(k−1)=3)

6
∑

k¿c10 log T

exp
(
− T
2
2(1− 
)(k−1)=3

)
;

which is summable for T¿1. By the Borel–Cantelli lemma, uniformly for all k¿
c10 log T ,

Wk(T
2(1− 
)k−1) = O((1− 
)(k−1)=4) a:s:

Let c11 = c10 + c3. Taking (3.5) into account, we obtain: uniformly for k¿c11 log T ,∑
x∈A(k; T )

Y (x)−Wk(T
2(1− 
)k−1) = O((1− 
)(k−1)=4) a:s:

This, jointly considered with (3.4), yields
∞∑
k=1

k
∑

x∈A(k; T )
Y (x)−

∞∑
k=1

kWk(T
2(1− 
)k−1) = o(T#+�) a:s:

Take

W (T ) =
(



2− 


)1=2 ∞∑
k=1

kWk(T
2(1− 
)k−1); T¿0;

which is again a standard Wiener process. We have therefore proved the following:

Theorem 3.1. There exists a Wiener process {W (t); t¿0} such that for any �¿ 0
∞∑
k=1

k
∑

x∈A(k;T )
Y (x)−

(
2− 




)1=2
W (T ) = o(T#+�) a:s:;

where #=max(1=p; 512 ).

We call your attention to the following corollary of Theorems 1.1 and 3.1.

Corollary. For any �¿ 0; as T → ∞;

X (T )−
∞∑
k=1

k
∑

x∈A(k; T )
Y (x) = o(T#+�) a:s:;

where # is as in Theorem 1:1 and

A(k; T ) = {x: �(x; T )¿ 0; �(x;∞) = k}:
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4. Proof of Theorem 1:1

Let {St ; t=0; 1; 2; : : :} be a simple, symmetric random walk in Zd(d¿3), independent
of the scenery {Y (x); x ∈ Zd} which is an array of i.i.d. r.v.’s with

EY (x) = 0; EY 2(x) = 1; E|Y (x)|p¡∞ for some p¿ 2:

To prove Theorem 1.1, we assume p6 12
5 without loss of generality (otherwise, we

replace p by min(p; 125 )).
Introduce the following notations:

JT (k; t) =

{
1 if St 6= St−j (j = 1; 2; : : : t) and �(St ; T ) = k
0 otherwise;

B(k; T ) = {x: �(x; T ) = k};

�∗(T ) = sup
x∈Zd

�(x; T );

V (T ) =
T∑

i; j=0

1{Si=Sj};

where 1A is the indicator of A. Note that T6V (T )6T�∗(T ).

Lemma 4.1. There exists a constant c12 =c12(d) ∈ (0;∞); depending only on d; such
that for all T¿1 and y¿1;

P{�∗(T )¿y}6Texp(−c12y): (4.1)

Proof. This was implicitly proved in Erdős and Taylor (1951). For any x ∈ Zd; �(x; T )
is stochastically smaller than or equal to �(0; T ). Therefore,

P{�∗(T )¿y}6T sup
x∈Zd

P{�(0; T )¿y}:

Now (4.1) follows from Lemma 2.4.

Lemma 4.2. Let 0¡t6T . Then

P{I(k; t) 6= JT (k; t)}= (1− 
)k=2O((T − t)1−d=2);
where as before O(·) does not depend on k.

Proof. Let

�1 = �1(t; T ) = max
{
m: t6m6

T + t
2
; Sm = St

}
;

�2 = �2(t; T ) = min
{
m: m¿

T + t
2
; Sm = St

}
with the usual convention that min ∅=∞. Note that �2 =∞ with positive probability.
We have

{I(k; t) 6= JT (k; t)}= E1 ∪ E2; (4.2)
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where

E1 =
{
I(k; t) 6= JT (k; t); �(St; �1)¿k2

}
;

E2 =
{
I(k; t) 6= JT (k; t); �(St ; �1)¡ k

2

}
:

We call St to be a new site if St 6= St−j for all j = 1; 2; : : : ; t. Observe that

E1 ⊆
{
St is a new site; �(St; �1)¿

k
2
; ∃ u¿T; Su = S�1 = St

}

⊆ {St is a new site; St is visited at least (k=2) times up to �1;
and the random walk returns to S�1 at least once after T}:

By the strong Markov property and Lemmas 2.5 and 2.7 (noting that T−�1¿(T−t)=2),
we get

P(E1) = (1− 
)k=2O((T − t)1−d=2): (4.3)

On the other hand,

E2 ⊆
{
�2¡∞; �(St ;∞)− �(St ; �2)¿k2

}

⊆ {the random walk returns to St at �2¡∞;
the site St = S�2 is visited at least (k=2) times after �2};

which, in view of the strong Markov property and Lemmas 2.5 and 2.4 (noting that
�2 − t¿(T − t)=2), yields

P(E2) = O((T − t)1−d=2)(1− 
)k=2: (4.4)

Combining (4.2)–(4.4) implies Lemma 4.2.

Lemma 4.3. Let

Z(k; T ) =
∑

x∈A(k; T )
Y (x)−

∑
x∈B(k; T )

Y (x) =
T∑
t=1

Y (St)(I(k; t)− JT (k; t)):

Then we have

E(Z(k; T ))2 = (1− 
)k=2O(M (T ));
where M (T ) is as in Lemma 2:9.

Proof. Write

C(k; T ) = {t: 0¡t6T; I(k; t) = 1; JT (k; t) = 0};
D(k; T ) = {t: 0¡t6T; I(k; t) = 0; JT (k; t) = 1};
c(k; T ) = #{t: t ∈ C(k; T )};
d(k; T ) = #{t: t ∈ D(k; T )}:

Then

Z(k; T ) =
∑

t∈C(k; T )
Y (St)−

∑
t∈D(k; T )

Y (St):
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Hence by Lemma 4.2

E(Z(k; T ))2 =EE{(Z(k; T ))2 | Si; i = 0; 1; 2; : : :}

=E(c(k; T ) + d(k; T ))

= O

(
(1− 
)k=2

T∑
t=1

(T − t)1−d=2
)
;

which, in turn, implies Lemma 4.3.

Lemma 4.4. Let X (T ) be the random walk in random scenery de�ned in (1:1); and
let r ¿ 0. If Tn = bnrc; then for any �¿ 0;

X (Tn)−
∞∑
k=1

k
∑

x∈A(k; Tn)
Y (x) = o(T 1=4+1=(2r)+�n ); a:s:

Proof. We can write X (T ) as

X (T ) =
∞∑
k=1

k
∑

x∈B(k; T )
Y (x):

According to Lemma 4.3,

E




X (T )− ∞∑

k=1

k
∑

x∈A(k; T )
Y (x)



2

=O(M (T )):

Since M (T )=O(T 1=2), an application of Chebyshev’s inequality and the Borel–Cantelli
lemma immediately yields the desired result.

Now we recall two known results. The �rst (Lemma 4.5), which can be found in
Lewis (1993), is a maximal inequality for X (T ). See also Bolthausen (1989) for a
detailed proof, formulated for dimension d = 2 though valid for any dimension. The
second result, borrowed from Shorack and Wellner (1986, p. 849), is a re�nement of
the classical Berry–Esseen inequality.

Lemma 4.5. For T¿1 and a¿
√
2;

P
{
max
06t6T

X (t)¿a
√
V (T )

}
6 2P{X (T )¿ (a−

√
2)
√
V (T )}:

Lemma 4.6. Let {�i}i¿1 be a sequence of i.i.d. random variables with E(�1) = 0;
E(�21) = 1 and E(|�1|p)¡∞ for some 2¡p63. Then there exists a constant c13 =
c13(p) ∈ (0;∞); depending only on p; such that for all x 6= 0 and all n¿1;∣∣∣∣∣P

{
n∑
i=1

�i ¿
√
n x

}
− P{N(0; 1)¿x}

∣∣∣∣∣6c13 n
(
√
n|x|)p ;

where N(0; 1) denotes a standard Gaussian variable.
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We present a few preliminary estimates.

Lemma 4.7. For T¿1; v¿ 0 and k¿1;

P



∣∣∣∣∣∣
∑

x∈B(k; T )
Y (x)

∣∣∣∣∣∣¿v


6exp

(
− v2

2T

)
+ 2c13

T
vp
:

Proof. According to Lemma 4.6, for any x¿ 0,

P

{∣∣∣∣∣
n∑
i=1

�i

∣∣∣∣∣¿√
nx

}
6P{|N(0; 1)|¿x}+ 2c13 n

(
√
n|x|)p

6 exp
(
−x

2

2

)
+ 2c13

n
(
√
n|x|)p :

Let b(k; T ) = #B(k; T ). Conditioning on the random walk {Si; i=0; 1; 2; : : :};∑
x∈B(k;T ) Y (x) is the sum of b(k; T ) random variables which are i.i.d. Therefore,

P



∣∣∣∣∣∣
∑

x∈B(k; T )
Y (x)

∣∣∣∣∣∣¿v


6E exp

(
− v2

2b(k; T )

)
+ 2c13E

b(k; T )
vp

:

This yields Lemma 4.7 by virtue of the fact that b(k; T )6T .

Lemma 4.8. If T¿1; �¿ 0 and y¿1; then

P{|X (T )|¿�}6Te−c12y + y exp
(
− �2

2y2T

)
+ 2c13

yp+1T
�p

:

Proof. We have

X (T ) =
�∗(T )∑
k=1

k
∑

x∈B(k;T )
Y (x):

Applying Lemma 4.1 implies

P{|X (T )|¿�}6P{�∗(T )¿y}+ P



y∑
k=1

k

∣∣∣∣∣∣
∑

x∈B(k;T )
Y (x)

∣∣∣∣∣∣¿�




6 Te−c12y +
y∑
k=1

P



∣∣∣∣∣∣
∑

x∈B(k;T )
Y (x)

∣∣∣∣∣∣¿
�
y


 ;

which yields the desired estimate by applying Lemma 4.7 to v= �=y.

Lemma 4.9. For T¿1; z ¿ 0; y¿1 and a¿
√
2;

P
{
max
06t6T

|X (t)|¿z
}
6 4Te−c12y + 4y exp

(
− a2

2y2

)

+
8c13yp+1

apT (p−2)=2
+ 2T exp

(
−c12z

2

4Ta2

)
:
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Proof. Observe that

P
{
max
06t6T

X (t)¿z
}
6P

{
max
06t6T

X (t)¿ (a+
√
2)
√
V (T )

}

+P
{
V (T )¿

z2

(a+
√
2)2

}
;

which, in view of Lemma 4.5 and the fact that T6V (T )6T�∗(T ), is

62P{X (T )¿a
√
V (T )}+ P

{
�∗(T )¿

z2

T (a+
√
2)2

}

62P{X (T )¿a
√
T}+ P

{
�∗(T )¿

z2

4Ta2

}
:

By Lemma 4.8,

P{X (T )¿a
√
T}6Te−c12y + y exp

(
− a2

2y2

)
+
2c13yp+1

apT (p−2)=2
;

whereas by Lemma 4.1,

P
{
�∗(T )¿

z2

4Ta2

}
6T exp

(
−c12z

2

4Ta2

)
:

Assembling these pieces gives that

P
{
max
06t6T

X (t)¿z
}
6 2Te−c12y + 2y exp

(
− a2

2y2

)

+
4c13yp+1

apT (p−2)=2
+ T exp

(
−c12z

2

4Ta2

)
:

The same estimate holds for P{max06t6T (−X (t))¿z}, we have proved the lemma.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Fix an arbitrary #1¿# = max(1=p; 512 ) = 1=p (recalling that
we assume p6 12

5 ). Let

r :=
2p
4− p;

which satis�es
1
4
+
1
2r
¡#1: (4.5)

Let �¿ 0 be such that

8− 3p
2(4− p)¡�¡

(2#1 − 1)r + 1
2

: (4.6)

Since 2�p+ (r − 1)(p− 2)¿ 2, it is possible to choose 0¡�¡� such that

�p+
(r − 1)(p− 2)

2
− (p+ 1)�¿ 1: (4.7)
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Let Tn = bnrc for n¿1. Then Tn+1 − Tn ∼ rnr−1 as n → ∞. Applying Lemma 4.9 to
T = Tn+1 − Tn; z = T#1n , y = n� and a= n� gives

P
{

max
06t6Tn+1−Tn

|X (t)|¿T#1n

}

6 c14nr−1exp(−c12n�) + 4n�exp
(
−n

2(�−�)

2

)

+
c15

n�p+(r−1)(p−2)=2−(p+1)�
+ c16nr−1exp(−c17n(2#1−1)r+1−2�);

which, in view of (4.7) and (4.6), is summable in n. Since maxTn6t6Tn+1 |X (t)−X (Tn)|
is distributed as max06t6Tn+1−Tn |X (t)|, we obtain∑

n

P
{

max
Tn6t6Tn+1

|X (t)− X (Tn)|¿T#1n

}
¡∞:

By the Borel–Cantelli lemma, as n→ ∞,
max

Tn6t6Tn+1
|X (t)− X (Tn)|=O(T#1n ); a:s:

This, jointly considered with Lemma 4.4, (4.5) and Theorem 3.1, yields

max
Tn6t6Tn+1

∣∣∣∣∣X (t)−
(
2− 




)1=2
W (Tn)

∣∣∣∣∣=O(T#1n ); a:s:

On the other hand, the usual Brownian increment result (see Theorem 1:2:1 of Cs�orgő
and R�ev�esz, 1981, p. 30) tells us that, for any �¿ 0,

max
Tn6t6Tn+1

|W (t)−W (Tn)|=O(T (r−1)=(2r)+�n ); a:s:

Since (r − 1)=(2r)¡#1, we have proved that, when T → ∞,

X (T )−
(
2− 




)1=2
W (T ) = O(T#1 ); a:s:

This yields Theorem 1.1, as #1¿# is arbitrary.
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