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Abstract

Given an n-tuple of independent processes, each converging at an exponential rate, conditions are given
under which a cut-off occurs for the n-tuple, when the convergence is measured by different distances
between probability distributions. More precise estimates and explicit examples are given for the case of
i.i.d. coordinates.
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1. Introduction

Since its identification by Aldous and Diaconis [1], the cut-off phenomenon of steep
convergence to equilibrium has been observed on many Markov chains [2,17,5,15,18,13,22].
In [19] Saloff-Coste gives an extensive list of random walks for which the phenomenon occurs.
Before a certain ‘cut-off time’ those chains stay far from equilibrium in the sense that the total
variation distance between the distribution at time t and the equilibrium measure is close to 1;
after that instant, the total variation distance decays exponentially to 0. There exist many other
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ways of characterizing convergence than the total variation distance: see Gibbs and Su [11] for
a useful review. We shall use the following definition of cut-off, that holds for any ‘distance’ (in
the sense of [11]) between probability distributions. In order to simplify notation, all processes
are indexed by continuous time; switching to discrete time requires very little adaptation.

Definition 1. For each n ≥ 0, let X (n) be a stochastic process on a measurable space E (n),
converging in distribution to some probability law ν(n). Let d be a distance between probability
distributions, taking values between 0 and M , where M is either a positive real or +∞. For t ≥ 0,
denote by d(n)(t) the distance between the distribution of X (n) at time t and ν(n):

d(n)(t) = d(LX (n)(t), ν(n)).

Let (tn) be a sequence of positive reals. The sequence of processes (X (n)) is said to have a cut-off
at time (tn) in the sense of distance d if for c > 0:

c < 1 H⇒ lim
n→∞

d(n)(ctn) = M,

c > 1 H⇒ lim
n→∞

d(n)(ctn) = 0.

Several other definitions of cut-off have been proposed. In [19] Saloff-Coste introduces the notion
of L p-cut-off, which is very close to Definition 1 when d is the L p distance. In the same article
the author also discusses the notion of pre-cut-off (Definition 3.8, p. 280 in [19]) as a means to
capture the order of magnitude of a possible cut-off.

The purpose of this article is to study the cut-off phenomenon for n-tuples of independent
processes, identically distributed or not, and for different distances. Notice that the processes
need not be Markovian. For each i = 1, . . . , n, we assume that the i-th coordinate converges with
exponential rate ρi to its equilibrium measure. Under technical conditions on the ρi ’s, Theorem 3
states that a cut-off occurs for the n-tuple at any time equivalent to

max
{

log i

kρ(i,n)
; i = 1, . . . , n

}
,

where ρ(1,n), . . . , ρ(n,n) are the values of ρ1, . . . , ρn ranked in increasing order, and k depends
on the distance.

According to Diaconis and Saloff-Coste [7], Y. Peres recently conjectured a sufficient
condition for a Markov chain to have cut-off, bearing on the gap and the mixing time, which
is the time at which the distance to stationarity drops below 1/4. In [7] Diaconis and Saloff-
Coste proved Peres’ conjecture for birth and death chains and the separation distance. According
to [7], Chen and Saloff-Coste proved it in a more general setting for the L2 distance. If our results
are applied to a Markovian n-tuple, the gap is the smallest rate of convergence ρ(1,n). Our cut-off
time is equivalent to the mixing time. Peres’ condition corresponds to our condition (4). Thus,
not only do we prove Peres’ conjecture for n-tuples of independent processes, but we also give
an explicit expression for the mixing (cut-off) time.

When the coordinates of the n-tuple are i.i.d., sharper results can be proved (Theorems 9
and 10) for the total variation, Hellinger, chi-square and Kullback distances: if ρ is the common
rate of exponential convergence for the coordinates, then not only does a cut-off occur for the
n-tuple at time log n/(2ρ), but for any fixed u the distance to equilibrium at time log n/(2ρ)+ u
converges to a positive value. In other words, the cut-off occurs over an interval of time of length
O(1) around log n/(2ρ).



J. Barrera et al. / Stochastic Processes and their Applications 116 (2006) 1433–1446 1435

Particular cases of Theorems 3 and 10 have already appeared in the literature. One of the
first examples of cut-off was studied by Diaconis et al. [8,6] for the random walk on the
hypercube. As remarked by Ycart [23], p. 91, that random walk can be interpreted as the discrete
time version of an n-tuple of i.i.d. continuous time binary Markov chains. The cut-off for an
n-tuple of i.i.d. random walks was treated by Aldous and Diaconis [2] (Proposition 7.7, p. 89).
The case of n-tuples of i.i.d. reversible Markov chains with finite state space was treated by
Ycart [23], and applications to stopping tests for MCMC methods were described in [24]. In [4]
Bon and Păltănea considered the case of independent, but not identically distributed continuous
time binary Markov chains, in the context of reliability theory.

The original proofs of cut-off for random walks by Diaconis et al. [8,6], as well as for n-tuples
of reversible Markov chains by Ycart [23], mainly relied on the spectral analysis of the transition
matrix. The approach chosen here relates the cut-off phenomenon to the way distances account
for the concentration of product measures. A comparison of the use of different distances for
measuring cut-offs of random walks can be found in Su’s thesis [21].

The paper is organized as follows. Section 2 contains our main results, Lemma 2 and
Theorem 3. Section 3 studies the particular cases of the total variation, Hellinger, chi-square
and Kullback distances. Section 4 discusses explicit examples of cut-off times. In Section 5,
the i.i.d. case is studied and two more examples are given: M/M/∞ birth–death processes, and
Ornstein–Uhlenbeck diffusions.

2. Main result

Some distances behave better than others with respect to the product of measures. By
‘behaving’ we mean that the distance between two measure products is controlled by the sum of
some power of distances between coordinates. Here is a more precise statement.

Let n be a positive integer. For i = 1, . . . , n, let (Ei ,Fi ) be a measurable space, µi and νi
be two probability distributions on Ei . Let E (n) denote the Cartesian product E1 × · · · × En ,
endowed with the product σ -algebra. Let µ(n) and ν(n) denote the tensor products of the µi ’s and
νi ’s respectively:

µ(n) = µ1 ⊗ · · · ⊗ µn and ν(n) = ν1 ⊗ · · · ⊗ νn .

We will assume:

φ

(
n∑

i=1

(d(µi , νi ))
k

)
≤ d(µ(n), ν(n)) ≤ ψ

(
n∑

i=1

(d(µi , νi ))
k

)
, (1)

for some positive integer k and two functions φ,ψ such that φ(x) tends to M (maximal value of
d) as x tends to infinity and ψ(x) tends to 0 as x tends to 0 (examples will be given in Section 3).

The cut-off phenomenon for n-tuples of independent processes is explained by the following
lemma.

Lemma 2. For i = 1, 2, . . ., let di be a positive function defined on R+, and ρi a positive real.
For n ≥ 1, denote by ρ(1,n), . . . , ρ(n,n) the values of ρ1, . . . , ρn ranked in increasing order, and
by τn the following real:

τn = max
{

log i

ρ(i,n)
, i = 1, . . . , n

}
. (2)

Assume the following hypotheses hold.
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(1) There exists a positive function g, decreasing and tending to 0 as t tends to infinity, and a
positive real t0 such that for all t ≥ t0 and all i ≥ 1,∣∣∣∣ log di (t)

t
+ ρi

∣∣∣∣ ≤ g(t). (3)

(2)

lim
n→∞

ρ(1,n) τn = +∞. (4)

(3) For any positive real c,

lim
n→∞

g(cτn)

ρ(1,n)
= 0. (5)

Then for any positive integer k, any positive real c and any sequence (τ ′
n) such that

lim τ ′
n/τn = 1,

c < 1 H⇒ lim
n→∞

n∑
i=1

(di (cτ
′
n/k))k = +∞,

c > 1 H⇒ lim
n→∞

n∑
i=1

(di (cτ
′
n/k))k = 0.

Of the three hypotheses, the first one is obviously the most important. It says that not only should
the di (t) converge to zero at exponential rate ρi , but also they should do so uniformly in i . The
other hypotheses involve ρ(1,n), which is the minimum of ρ1, . . . , ρn . As soon as the sequence
(ρi ) does not tend to +∞, ρ(1,n) is bounded and τn tends to infinity. If (ρi ) is bounded away
from 0 and does not tend to infinity, then both (4) and (5) are trivially satisfied. But it may also
happen that some subsequence tends to 0, in which case, τn should tend to +∞, and g(cτn) to 0,
fast enough to compensate. In the Markovian case, condition (4) corresponds to Peres’ condition
(see [7] and references therein).

Rephrased in terms of distance to equilibrium for an n-tuple of processes, Lemma 2 becomes:

Theorem 3. Let d be a distance between probability distributions satisfying (1). Let (X i )i∈N be
a sequence of independent processes. Denote by di (t) the distance to equilibrium of X i at time
t. Assume that the functions di (t) satisfy the hypotheses (3), (4) and (5) of Lemma 2. Let X (n)

denote the n-tuple of processes (X1, . . . , Xn).
The sequence of processes (X (n)) has a cut-off in the sense of distance d at any sequence of

times equivalent to τn/k, where τn is defined by (2).

Here is the proof of Lemma 2.

Proof. We first prove the result for τn . Define

gi (t) =
log di (t)

t
+ ρi .

Thus:
n∑

i=1

(di (cτn/k))k =

n∑
i=1

exp(−ρi cτn + cτngi (cτn/k)).
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By (3), the gi ’s are uniformly bounded:

∀t ≥ t0, ∀i, |gi (t)| ≤ g(t).

Therefore for n large enough:

Sn exp
(
−cτng

(
c
τn

k

))
≤

n∑
i=1

di

(
c
τn

k

)k
≤ Sn exp

(
cτng

(
c
τn

k

))
,

with

Sn =

n∑
i=1

exp(−ρi cτn) =

n∑
i=1

exp(−ρ(i,n)cτn).

We first treat the upper bound, for c > 1. Observe that for all i = 1, . . . , n, exp(−ρ(i,n)cτn) ≤

i−c, since τn ≥ log i/ρ(i,n). For all l = 1, . . . , n − 1, one can write:

Sn ≤ le−ρ(1,n)cτn +

n∑
i=l+1

i−c

≤ le−ρ(1,n)cτn +

∫ n

l
x−c dx

= le−ρ(1,n)cτn +
1

c − 1

(
l−(c−1)

− n−(c−1)
)
.

This bound also holds for l = n. Define now ln = beρ(1,n)τn c, where b·c denotes the integer part;
ln is no larger than n, by definition of τn . One has:

Sn ≤ lne−ρ(1,n)cτn +
l−(c−1)
n

c − 1

≤ e−ρ(1,n)(c−1)τn +
(eρ(1,n)τn − 1)−(c−1)

c − 1

= e−ρ(1,n)(c−1)τn

(
1 +

(1 − e−ρ(1,n)τn )−(c−1)

c − 1

)
.

Therefore:
n∑

i=1

di

(
c
τn

k

)k
≤ e−ρ(1,n)(c−1)τn

(
1 +

(1 − e−ρ(1,n)τn )−(c−1)

c − 1

)
exp

(
cτng

(
c
τn

k

) )
=

(
1 +

(1 − e−ρ(1,n)τn )−(c−1)

c − 1

)
exp

(
−ρ(1,n)τn

(
(c − 1)− c

g( cτn
k )

ρ(1,n)

))
,

which tends to 0 as n tends to infinity, using (4) and (5).
Let us now treat the lower bound, for 0 < c < 1. For each n, choose i∗n such that

τn = log i∗n/ρ(i∗n ,n), i.e. i∗n = exp(τnρ(i∗n ,n)) ≥ exp(τnρ(1,n)). One has:

Sn ≥

i∗n∑
i=1

exp(−cρ(i,n)τn)

≥ exp((1 − c)ρ(i∗n ,n)τn)

≥ exp((1 − c)ρ(1,n)τn).
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Hence:
n∑

i=1

di

(
c
τn

k

)k
≥ exp

(
ρ(1,n)τn

(
(1 − c)− c

g( cτn
k )

ρ(1,n)

))
,

which tends to +∞ as n tends to infinity, using (4) and (5).
Consider now another sequence (τ ′

n), equivalent to (τn). The new sum can be bounded as
before:

S′
n exp

(
−cτ ′

ng

(
c
τ ′

n

k

))
≤

n∑
i=1

di

(
c
τ ′

n

k

)k

≤ S′
n exp

(
cτ ′

ng

(
c
τ ′

n

k

))
,

with

S′
n =

n∑
i=1

exp(−ρi cτ
′
n).

Let us treat the upper bound. Fix c′ < 1 such that cc′ > 1. For n large enough, c′
≤ τ ′

n/τn ≤ 1/c′.
Therefore:

S′
n ≤

n∑
i=1

exp(−ρi cc′τn),

and

exp
(

cτ ′
ng

(
c
τ ′

n

k

))
≤ exp

( c

c′
τng

(
cc′
τn

k

) )
,

since g is decreasing. The upper bound of Sn can be applied to S′
n , replacing c by cc′. One gets:

n∑
i=1

di

(
c
τ ′

n

k

)k

≤ e−ρ(1,n)(cc′
−1)τn

(
1 +

(1 − e−ρ(1,n)τn )−(cc′
−1)

cc′ − 1

)
exp

( c

c′
τng

(
cc′
τn

k

) )
=

(
1 +

(1 − e−ρ(1,n)τn )−(cc′
−1)

cc′ − 1

)
exp

(
−ρ(1,n)τn

(
(cc′

− 1)−
c

c′

g( cc′τn
k )

ρ(1,n)

))
,

which tends to 0 as n tends to infinity. For the lower bound, the proof is similar and will be
omitted. �

3. Examples of distances

We will discuss here the behavior of some classical distances with respect to products. We
follow the presentation by Gibbs and Su [11] (see also Pollard, [14] Section 3.3, p. 59 and Reiss
[16], Chapter 3). The definition of some distances may change from one textbook to another. The
choices made here ensure that, for a large class of processes converging at an exponential rate
for all four distances, the rates are equal.

Let E be a measurable space, with σ -algebra F . Let µ and ν be two measures on E . We will
denote by λ any dominating measure (for instance (µ+ ν)/2), and by f , g the densities of µ, ν
with respect to λ.
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Definition 4. (1) The total variation distance between µ and ν is

dT V (µ, ν) = sup
A∈F

|µ(A)− ν(A)|

=
1
2

sup
‖ϕ‖∞≤1

∣∣∣∣∫
E
ϕ dµ−

∫
E
ϕ dν

∣∣∣∣
=

1
2

∫
E

| f − g| dλ. (6)

(2) The Hellinger distance between µ and ν is

dH (µ, ν) =
1

√
2

(∫
E
(
√

f −
√

g)2 dλ
)1/2

=

(
1 −

∫
E

√
f gdλ

)1/2

. (7)

(3) The L2(λ) distance between µ and ν is

dL2(λ)(µ, ν) =

(∫
E
( f − g)2 dλ

)1/2

. (8)

(4) The Kullback distance between µ and ν is

dK (µ, ν) =

(∫
Sµ

f log( f/g) dλ

)1/2

, (9)

where Sµ denotes the support of µ.

Notice that the expressions of dT V , dH and dK do not depend on the choice of the dominating
measure λ, whereas dL2(λ) is not intrinsic. It is customary to overlook the fact that among these
quantities, some of them are not distances in the topological sense (the Kullback ‘distance’ is not
even symmetric). If µ is absolutely continuous with respect to ν, then d2

L2(ν)
(µ, ν) is the usual

chi-square distance of µ with respect to ν. Since we shall mainly deal with that case, and in order
to ensure homogeneity, we will call chi-square distance of µ and ν and denote by dχ2(µ, ν) the
L2(ν) distance:

dχ2(µ, ν) = dL2(ν)(µ, ν).

The following inequalities between distances are classical (see figure 1 in the article of Gibbs
and Su [11], together with references and historical remarks therein).

Proposition 5. (1) d2
H (µ, ν) ≤ dT V (µ, ν).

(2) dT V (µ, ν) ≤ dH (µ, ν)

√
2 − d2

H (µ, ν).
(3) dT V (µ, ν) ≤ dχ2(µ, ν)/2.
(4) dT V (µ, ν) ≤ dK (µ, ν)/

√
2.

(5) dH (µ, ν) ≤
√

2 dK (µ, ν).
(6) dK (µ, ν) ≤ dχ2(µ, ν).

Recall that we are interested in distances between measure products. Let n be a positive
integer. For i = 1, . . . , n, let µi and νi be two probability distributions. Let µ(n) and ν(n)

denote the tensor products of the µi ’s and νi ’s respectively. If λi is a dominating measure for
µi and νi , then λ(n) = λ1 ⊗ · · · ⊗ λn will be taken as the dominating measure for µ(n) and ν(n).
The following proposition summarizes the relations between distances of measure products and
distances of their coordinates.
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Proposition 6. (1) Total variation:

1 − exp

(
−

1
2

n∑
i=1

d2
T V (µi , νi )

)
≤ dT V (µ

(n), ν(n)) ≤

n∑
i=1

dT V (µi , νi ). (10)

(2) Hellinger:

d2
H (µ

(n), ν(n)) = 1 −

n∏
i=1

(
1 − d2

H (µi , νi )
)
.

1 − exp

(
−

n∑
i=1

d2
H (µi , νi )

)
≤ d2

H (µ
(n), ν(n)) ≤

n∑
i=1

d2
H (µi , νi ). (11)

(3) Chi-square:

d2
χ2(µ

(n), ν(n)) =

n∏
i=1

(
1 + d2

χ2(µi , νi )
)

− 1

n∑
i=1

d2
χ2(µi , νi ) ≤ d2

χ2(µ
(n), ν(n)) ≤ exp

(
n∑

i=1

d2
χ2(µi , νi )

)
− 1. (12)

(4) Kullback:

d2
K (µ

(n), ν(n)) =

n∑
i=1

d2
K (µi , νi ). (13)

Proof. For the Hellinger, chi-square and Kullback distances, the relations are well known
(see Lemma 3.3.10, p. 100 in [16]). For the total variation distance, the upper bound is also
classical. The lower bound is an easy consequence of (11), together with points (1) and (2) of
Proposition 5. �

Proposition 6 shows that the Hellinger, the chi-square and the Kullback distances satisfy
hypothesis (1): Theorem 3 applies with k = 2. Observe that the value of k, and hence the location
of the cut-off instant, may depend on the definition of the distance; if the classical definition of
the chi-square and Kullback distances had been used instead of (8) and (9) the value of k would
have been 1 instead of 2.

The total variation distance does not behave well in the sense of (1), since no upper bound in∑
d2(µi , νi ) is available. However the inequalities of Proposition 5 show that, if there is a cut-off

at time tn for the Hellinger distance then there is a cut-off at the same time for the total variation
distance. Moreover, if each process X i has the same rate of exponential convergence for the total
variation and either the chi-square or the Kullback distance then there is a cut-off in the sense of
the total variation distance if the hypotheses of Theorem 3 hold for both distances. The cut-off
phenomenon in the sense of the total variation distance can be related to Kakutani’s theorem
(e.g. Shiryaev [20], p. 528), which states that the distributions of two sequences of independent
random variables are either mutually singular (their total variation distance is 1) or absolutely
continuous. Our results can be seen as a finite dimensional version which describes where and
how the transition from singularity takes place in exponentially converging n-tuples.
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4. Cut-off times

In order to illustrate Theorem 3, let us consider a sequence of independent binary Markov
jump processes. For i ≥ 1, let αi and ρi be positive reals such that 0 < αi < ρi . The process X i
takes its values in {0, 1}. It jumps from 0 to 1 with rate αi , from 1 to 0 with rate ρi −αi . It is well
known (see e.g. Section 7.5 in Bhat [3]) that the distribution of X i (t), starting from 0 at time 0 is
Bernoulli with parameter

pi (t) =
αi

ρi

(
1 − e−ρi t

)
.

The distances to equilibrium are easy to compute.

Total variation: di (t) =
αi

ρi
e−ρi t

Hellinger: di (t) =

√
αi

8(ρi − αi )
e−ρi t (1 + o(1))

Chi-square: di (t) =

√
αi

ρi − αi
e−ρi t

Kullback: di (t) =

√
αi

2(ρi − αi )
e−ρi t (1 + o(1)).

What follows holds for any distance satisfying hypothesis (1), and also for the total variation
distance, using Proposition 5. In order to simplify statements, we will describe as the ‘cut-off
time’ the instant τn defined by (2), overlooking the fact that for the distances of Definition 4 the
actual cut-off time will be τn/2.

Take for instance αi = ρi/2. Then the uniform convergence hypothesis (3) is trivially
satisfied, since log (di (t)/t) + ρi can be bounded by g(t) = K/t , with a suitable constant K .
Hence g(cτn)/ρ(1,n) = K/(cτnρ(1,n)) and hypotheses (4) and (5) are equivalent. Whether they
are satisfied or not only depends on the sequence (ρi ). As already observed, if 0 < lim inf ρi <

+∞, then τn tends to infinity and ρ(1,n) remains bounded away from 0, so Theorem 3 applies.
If both ρi and log i/ρi increase to infinity (e.g. ρi = log(log(i + 2))) then τn = log n/ρn is a
cut-off time. The sequence (ρi ) may also tend to 0. Take for instance ρi = 1/ log(i + 1): again
Theorem 3 applies; in this case the cut-off time τn is equivalent to (log(n))2.

If (3) holds and if the convergence rates ρi converge to ρ > 0, then Theorem 3 applies. As
we shall see, the cut-off time τn is equivalent to log n/ρ, as if all rates were equal to ρ. It is
natural to look for more general conditions under which log n/ρ is a cut-off time. In the setting
of binary processes, Bon and Păltănea [4] propose sufficient conditions for a cut-off to occur at
time log n/(2 lim inf ρi ) in the sense of the total variation distance. Their result can be seen as a
particular case of Theorem 3 and Proposition 7 below.

Proposition 7. For any positive ρ, denote by N (ρ, n) the number of rates no larger than ρ
among ρ1, . . . , ρn:

N (ρ, n) =

n∑
i=1

I[0,ρ](ρi ),

where IA denotes the indicator function of a set A. For n ≥ 1, define ρ∗
n as:

ρ∗
n = min

{
ρi log n

log N (ρi , n)
; i = 1, . . . , n

}
,
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with 1/ log(1) = +∞. The instant τn defined by (2) is asymptotically equivalent to τ ′
n = log n/ρ

if and only if the sequence (ρ∗
n ) converges to ρ > 0.

Proof. Observe that tn can be expressed using N (ρi , n) as follows.

τn = max
{

log i

ρ(i,n)
; i = 1, . . . , n

}
= max

{
log N (ρi , n)

ρi
; i = 1, . . . , n

}
.

The ratio τ ′
n/τn tends to 1 as n tends to infinity if and only if

ρ = lim
n→∞

log n

τn

= lim
n→∞

log n

max
{

log N (ρi ,n)
ρi

; i = 1, . . . , n
}

= lim
n→∞

min
{

ρi log n

log N (ρi , n)
; i = 1, . . . , n

}
. �

Proposition 7 can be understood as follows. For ρ > 0, N (ρ, n) is the number of coordinates
in the n-tuple which converge more slowly than e−ρt . If that number is large enough (in the sense
that log n/ log N (ρ, n) remains bounded), then the sub-tuple of corresponding coordinates will
converge only after log N (ρ, n)/ρ. This will be the cut-off time for the full n-tuple, provided it is
the latest convergence time of all sizeable sub-tuples. We think it interesting to further illustrate
the idea of a cut-off for sub-tuples by the following proposition, which treats the case where the
sequence (ρi ) has a finite number of accumulation values.

Proposition 8. Let A be a fixed integer. For a = 1, . . . , A, let k 7→ ϕa(k) be an increasing
integer valued function. Denote by ma(n) the number of values of ϕa(k) between 1 and n:

ma(n) =

∑
k

I[1,n](ϕa(k)).

Assume that m1(n) + · · · + m A(n) = n and the ϕa(k) are pairwise distinct. Assume moreover
that for a = 1, . . . , A, the subsequence (ρϕa(k)) converges to %a > 0. Denote by σn the following
real:

σn = max
{

log ma(n)

%a
; a = 1, . . . , A

}
,

with log 0 = −∞. Then (σn) and (τn) (defined by (2)) are asymptotically equivalent.

Proof. The hypotheses imply that any value ρi belongs to only one of the subsequences
(ρϕ1(n)), . . . , (ρϕA(n)). Without loss of generality, we will assume that %1, . . . , %A are all distinct
and ranked in increasing order. For a = 1, . . . , A, let m∗

a(n) = m1(n) + · · · + ma(n).
Let

σ ∗
n = max

{
log m∗

a(n)

%a
; a = 1, . . . , A

}
.

We will prove first that (τn) and (σ ∗
n ) are equivalent. We use the same expression for τn as in the

proof of Proposition 7.
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τn = max
{

log N (ρi , n)

ρi
; i = 1, . . . , n

}
= max

a=1,...,A
max

{
log N (ρϕa(k), n)

2ρϕa(k)
; k = 1, . . . ,ma(n)

}
.

Fix ε > 0, small enough to ensure that all intervals (%a − ε , %a + ε) are disjoint. For i large
enough, if i = ϕa(k) then ρi ∈ (%a − ε , %a + ε). Thus there exists an integer K such that for n
large enough,

max
{

log N (ρϕa(k), n)

ρϕa(k)
; k = 1, . . . ,ma(n)

}
≤

log(m∗
a(n)+ K )

(%a − ε)
. (14)

Take now n such that ρϕa(ma(n)/2), . . . , ρϕa(ma(n)) are all smaller than %a + ε, and consider the
largest among these ma(n)/2 values. This yields:

max
{

log N (ρϕa(k), n)

ρϕa(k)
; k = 1, . . . ,ma(n)

}
≥

log(m∗

a−1(n)+ ma(n)/2 − K ′)

%a + ε
, (15)

for some fixed integer K ′. It follows from (14) and (15) that τn is equivalent to σ ∗
n .

It remains to prove that σ ∗
n = σn(1 + o(1)). Obviously, σn ≤ σ ∗

n . In the definition of σ ∗
n , the

maximum is reached either for a = 1, or for some a > 1 such that:

log m∗
a(n)

%a
≥

log m∗

a−1(n)

%a−1
⇐⇒

log m∗
a(n)

log m∗

a−1(n)
≥

%a

%a−1
> 1.

If n is large enough, this implies:

log m∗
a(n) > log m∗

a−1(n)+ log 2

⇐⇒ m∗
a(n) > 2m∗

a−1(n)

⇐⇒ ma(n) > m∗

a−1(n)

⇐⇒ 2ma(n) > m∗
a(n).

Therefore:

σ ∗
n ≤ max

{
log(2ma(n))

%a
; a = 1, . . . , A

}
,

hence the result. �

Proposition 8 can be understood as follows. For A = 1, the sequence of rates converges to
%1, and the cut-off occurs at the same time as if all rates were equal to %1. For A > 1, the
n-tuple under consideration is made of A independent sub-tuples, with respective cardinalities
m1(n), . . . ,m A(n). The a-th sub-tuple has a cut-off at time log ma(n)/%a . The cut-off time
σn for the full n-tuple is the latest among these times. This may have somewhat unexpected
consequences. Take for instance A = 2 and ϕ1(k) = k2. One has m1(n) = b

√
nc and

m2(n) = n − m1(n) = n(1 + o(1)). Take %1 = 1 and %2 = 3. The cut-off for the n-tuple
occurs at time sn = log n/2, and not log n or log n/3 as one could have thought.

5. The i.i.d. case

In the particular case where all coordinates converge at the same exponential rate ρ, the cut-
off conditions (4) and (5) are naturally fulfilled and condition (3) only says that the sequences
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(log di (t)/t) must converge uniformly in i to −ρi . This is trivially the case when di (t) is the
same for all i (in particular if the coordinates are i.i.d. processes). We will assume moreover that
the di (t) converge exponentially in a stronger sense than (3): there exist two positive reals R and
ρ such that for all i ,

lim
t→+∞

di (t)eρt
= R. (16)

In what follows, ρ remains constant, but R may depend on the distance. Different values will
be denoted by RT V , RH , Rχ2 , and RK . Under the hypothesis (16), Proposition 6 yields more
precise estimates of the distance d(n)(t) for t around the cut-off instant. Here are the results for
the Hellinger, chi-square and Kullback distances (the proofs are easy and will be omitted).

Theorem 9. (1) Assume d is the Hellinger distance and (16) holds.

lim
n→∞

d(n)
(

log n

2ρ
+ u

)
=

(
1 − exp

(
−R2

H e−2ρu
))1/2

.

(2) Assume d is the chi-square distance and (16) holds.

lim
n→∞

d(n)
(

log n

2ρ
+ u

)
=

(
exp

(
R2
χ2 e−2ρu

)
− 1

)1/2
.

(3) Assume d is the Kullback distance and (16) holds.

lim
n→∞

d(n)
(

log n

2ρ
+ u

)
= RK e−ρu .

The total variation distance is particular, as already remarked. Even if we assume that
(16) holds both for the total variation and another distance, Proposition 6 does not imply the
convergence of d(n)(log n/(2ρ) + u). Only bounds are obtained, which are easy consequences
of (10) and (11) in Proposition 6, together with point (2) in Proposition 5.

Theorem 10. Denote by dT V,i (t) and dH,i (t) the distances to equilibrium of the i-th component,
measured as total variation and Hellinger distances respectively. Assume that there exist positive
reals RT V , RH and ρ such that for all i ,

lim
t→+∞

dT V,i (t)eρt
= RT V and lim

t→+∞
dH,i (t)eρt

= RH .

Let d(n)T V (t) denote the total variation distance to equilibrium of the n-tuple X (n)(t). Then the
following inequalities hold:

1 − exp
(

−
1
2

R2
T V e−2ρu

)
≤ lim inf

n→∞
d(n)T V (log(n)/(2ρ)+ u),

and:

lim sup
n→∞

d(n)T V (log(n)/(2ρ)+ u) ≤

(
1 − exp

(
−2R2

H e−2ρu
))1/2

.

Theorem 10 suggests that the total variation distance to equilibrium of the n-tuple behaves as
a double exponential when u tends to −∞,

lim inf
n→∞

1 − d(n)T V (tn + u) ≤ exp
(

−
1
2

R2
T V e−2ρu

)
+ o(u),
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and a simple exponential when u tends to +∞,

lim sup
n→∞

d(n)T V (tn + u) ≤
√

2RH e−ρu
+ o(u).

Applying Theorem 10 to binary processes as in the previous section yields bounds which are
coherent with those obtained for the random walk on the n-dimensional hypercube by Diaconis
et al. [8,6], and for finite state space reversible Markov chains by Ycart [23].

Further illustration is given by the M/M/∞ birth–death process, and the Ornstein–Uhlenbeck
diffusion.

M/M/∞ birth–death process
The process X is a birth–death process with constant birth rate α (from k to k + 1) and linear

death rate kρ, from k to k−1 (see e.g. [9], Section 7a, Ch. XVII). If X (0) = 0, the distribution
of X (t) is Poisson with parameter

α(t) =
α

ρ

(
1 − e−ρt) ,

and the asymptotic distribution ν is also Poisson, with parameter α/ρ. Theorems 9 and 10 apply,
with

RT V = R

(
α

ρ

)
, RH =

√
α

8ρ
, Rχ2 =

√
α

ρ
, RK =

√
α

2ρ
,

where

R(a) =
e−a

bac!
abac+1.

The cut-off phenomenon for the family of M/M/∞ processes indexed by the initial state n
was studied by Martı́nez and Ycart [13] in the context of birth–death processes on trees. In
Proposition 6.1 they found bounds analogous to those given above for the total variation distance
(see also p. 293 of [22]).

Ornstein–Uhlenbeck diffusion
The process X is a solution of the following stochastic differential equation (see e.g. [10],

example 4(b), Ch. X):{
dX (t) = α

√
2ρdBt − ρX (t)dt,

X (0) = x0,

where α, ρ > 0 and {Bt , t ≥ 0} is the standard Brownian motion. The distribution of X (t) is
Gaussian with parameters

m(t) = x0e−ρt and v(t) = α2
(

1 − e−2ρt
)
,

and the asymptotic distribution ν is also Gaussian, with parameters 0 and α2. Theorems 9 and 10
apply with

RT V =
|x0|

α
√

2π
, RH =

|x0|

α
√

8
, Rχ2 =

|x0|

α
, RK =

|x0|

α
√

2
.

The cut-off for Ornstein–Uhlenbeck diffusions has been studied by Lachaud [12], who relates it
to the asymptotic distribution of the hitting time of 0 via the empirical mean of the n-tuple.
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