
Available online at www.sciencedirect.com

Stochastic Processes and their Applications 122 (2012) 2521–2552
www.elsevier.com/locate/spa

A contrast estimator for completely or partially
observed hypoelliptic diffusion

Adeline Samsona,∗, Michèle Thieullenb
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Abstract

Parametric estimation of two-dimensional hypoelliptic diffusions is considered when complete
observations – both coordinates discretely observed – or partial observations – only one coordinate observed
– are available. Since the volatility matrix is degenerate, Euler contrast estimators cannot be used directly.
For complete observations, we introduce an Euler contrast based on the second coordinate only. For partial
observations, we define a contrast based on an integrated diffusion resulting from a transformation of the
original one. A theoretical study proves that the estimators are consistent and asymptotically Gaussian.
A numerical application to Langevin systems illustrates the nice properties of both complete and partial
observations’ estimators.
c⃝ 2012 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we consider parametric estimation for hypoelliptic diffusions. We focus on two
dimensional diffusions, which are generalizations of systems called Langevin or hypoelliptic
by different communities. They appear in many domains such as random mechanics, finance
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modeling and biology. Their common form is as follows:
dYt = g(Yt , Z t )dt
d Z t = β(Yt , Z t )dt + α(Yt , Z t )d Bt

(1)

where g, β and α are real functions depending on unknown parameters θ . In these systems, noise
acts directly on the “speed” Z t and on the “position” Yt only through Z t . We refer to [15] for
examples of such systems arising in applications.

In some applications, it is not possible to measure the two coordinates. Therefore, we consider
two observations cases. The complete observations case assumes that both (Yt ) and (Z t ) are
discretely observed. The partial observations case assumes that only the first coordinate (Yt ) is
observed.

Statistical inference for discretely observed diffusion processes is complex and has been
widely investigated (see e.g. [16,18]). It is not possible in general to express the density of
stochastic differential equation (SDE) explicitly. So different types of contrast estimators have
been introduced for elliptic SDEs estimation, such as the multidimensional Euler contrast
[6,10]. However for the hypoelliptic system (1), Euler contrast methods are not directly
applicable as the volatility matrix is noninvertible. References on hypoelliptic estimations are
few, even in the case of complete observations. The main paper is [15]. They propose an empirical
approximation of the likelihood based on Itô–Taylor expansion so that the variance matrix
becomes invertible. They construct a Bayesian estimator of θ based on a Gibbs sampler. They
consider both complete and partial observation cases. Their method is limited to g(Yt , Z t ) = Z t ,
a drift function β(Yt , Z t ) which is linear with respect to the parameter and a constant volatility
function α(Yt , Z t ). In this paper, we consider more general models. We assume that g belongs
to a family of functions such that it is possible to reduce to the case of integrated diffusions with
a non-autonomous diffusion for (Z t ). Then, we propose to reduce to an Euler contrast based
only on the second equation. This allows to consider general drift and volatility functions. We
prove the consistency and the asymptotic normality of this contrast estimator when the number
of observations n → ∞ and the time step between two observations ∆n → 0.

The case of partial observations introduces more difficulties because (Yt ) is not Markovian
while (Yt , Z t ) is Markovian. A maximum-likelihood estimation from discrete and partial
observations of a two-dimensional linear system with a non-degenerate volatility function has
been proposed [3]. However, their approach cannot be extended to a degenerate volatility
function. Main references for partial observations of hypoelliptic diffusions are when the function
g(Yt , Z t ) is equal to Z t . In this case, model (1) can be viewed as an integrated diffusion process.
Parametric estimation methods have been proposed in this context under the additional condition
that Z t satisfies an autonomous equation, meaning that the only coupling between Yt and Z t is
through the identity Yt =

 t
0 Zsds. Prediction-based estimating functions have been studied [2].

Gloter (2006) proposes an Euler contrast function and studies the properties of this estimator
when the sampling interval ∆n tends to zero [8]. However, their approaches are not adapted
when Z t does not satisfy an autonomous equation and when g(Yt , Z t ) ≠ Z t . In this paper, we
extend the approach of [8] to this case. We prove the consistency and the asymptotic normality
of this contrast estimator when ∆n → 0 when n → ∞.

In order to establish asymptotic properties of our estimators we need existence and uniqueness
of an invariant measure for system (1). This is a major difference with respect to Gloter’s work
since in his framework the second component Z t satisfies an autonomous equation. Hence
the invariant measure he introduces is that of a one dimensional diffusion. In our case, we
need an invariant measure for the vector (Yt , Z t ). Ergodicity of Langevin systems has been
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widely studied, relying on the hypoellipticity of the system as well as a Lyapunov condition
involving a Lyapunov function [12,13]. We detail these conditions and propose examples where
our assumptions are verified. A numerical study is performed on these examples, to which we
compare results obtained by [15].

The paper is organized as follows. Section 2 presents the hypoelliptic system, general
assumptions and more details for Langevin systems. Section 3 defines the two observations cases
and the contrast estimators. The main results are presented, which consist in consistency and
asymptotic normality of both estimators. Asymptotic properties of functionals of the processes
are given in Section 4. Proofs of the estimator asymptotic properties are given in Section 5.
Estimation methods are illustrated in Section 6 on simulated data. Section 7 presents some
conclusions and discussions. Supplementary proofs are given in Appendix.

2. Hypoelliptic system and assumptions

2.1. The model

Let us consider system (1) and assume that the following condition holds

(C1) ∀(y, z) ∈ R × R, ∂zg(y, z) ≠ 0.

Under assumption (C1), system (1) is hypoelliptic in the sense of stochastic calculus of
variations [14]. Indeed, the Stratonovich form of (1) is

dYt = g(Yt , Z t )dt
d Z t = β̃(Yt , Z t )dt + α(Yt , Z t ) ◦ d Bt

(2)

with β̃(y, z) := β(y, z) −
1
2α(y, z)∂zα(y, z). Writing the coefficients of (2) as vector fields

A0(y, z) =


g(y, z)
β̃(y, z)


and A1(y, z) =


0

α(y, z)


and computing their Lie bracket leads to

[A0, A1] =


∂zg(y, z)
γ (y, z)


.

The form of γ is explicit but not detailed here. Under condition (C1) the vectors A1 and [A0, A1]

generate R2 and system (1) is hypoelliptic. We will discuss the consequence of this property in
Section 2.2.

Condition (C1) plays also a crucial role to reduce model (1) to an integrated diffusion. Indeed,
by the change of variable X t := g(Yt , Z t ), the first equation of system (1) becomes dYt = X t dt
which suggests that the process (Yt , X t ) should be an integrated diffusion. Condition (C1)
enables us to apply the implicit function theorem which states that Z t can be uniquely defined as
a function of (Yt , X t ). Consequently the vector (Yt , X t ) satisfies

dYt = X t dt
d X t = b(Yt , X t )dt + a(Yt , X t )d Bt

(3)

where b and a result from the combination of the implicit function theorem and Itô formula.
However the result of the implicit function theorem is only local and no explicit expression is
available in general for Z t as a function of (Yt , X t ). Therefore in this paper, we assume that
system (1) verifies the following condition
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(C2) The process (Yt , X t ) with X t := g(Yt , Z t ) satisfies a system of the form (3) with explicit
functions b and a.

This includes in particular functions g for which an explicit function f is available such that
Z t = f (Yt , X t ). Examples are g(y, z) = θ1 y + θ2z or g(y, z) = φθ (y) + θ2z for a function
φθ which depends on parameter θ . This condition is also satisfied for more general systems. The
following system

dYt = −(θ1Yt − θ2 Z2
t )dt

d Z t = −(θ3 Z t + Z t Fθ (Yt ))dt + α(Yt , Z t )d Bt

with F ∈ C∞(R, [0, +∞[) a possibly non-linear function depending on parameter θ and
α(Yt , Z t ) = σ Z t is an example where the change of variables X t := g(Yt , Z t ) yields to explicit
functions b and a, even if there exists no explicit function f such that Z t = f (Yt , X t ). Variants
with volatility functions α(Yt , Z t ) = σ Z t/(1+Z2

t ) or α(Yt , Z t ) = σ Z t F(Yt ) are other examples
of systems that we consider in this paper.

In this paper, we focus on systems (1) for which conditions (C1) and (C2) hold. The first
step of the estimation method consists in transforming system (1) into system (3). We denote µ

and σ the parameters of functions b and a, respectively. These parameters include parameters of
functions g, β and α of system (1). Our parameter is the vector (µ, σ 2) = θ . In the sequel, we
denote bµ(Yt , X t ) and aσ (Yt , X t ) the drift and volatility functions.

2.2. Assumptions

We assume that the vector θ belongs to Θ = Θ1 × Θ2 for Θ1 ⊂ Rd1 and Θ2 ⊂ Rd2 two
compact subsets.

We now come to the assumptions regarding the drift and volatility functions. In this paper
we work under conditions (C1)–(C2). In the present section we list our additional assumptions
(A1)–(A4). Then we provide a set of sufficient conditions (S1)–(S3) ensuring that these
assumptions are satisfied. We also examine the particular case of Langevin systems.

(A1) (a) There exists a constant c such that supσ∈Θ2
|a−1

σ (y, x)| ≤ c(1 + |y| + |x |)

(b) for all θ ∈ Θ , bµ and aσ belong to the class F of functions f ∈ C 2(R2) for which there
exists a constant c such that the function, its first and second partial derivatives with
respect to y and x are bounded by c(1 + |y| + |x |), for all x, y ∈ R, uniformly in θ .

(A2) (a) ∀k ∈]0, ∞[supt≥0 E(|X t |
k
+ |Yt |

k) < ∞

(b) there exists a constant c such that ∀t ≥ 0, ∀δ ≥ 0,

E


sup

s∈[t,t+δ[

|Xs |
k
|Gt


+ E


sup

s∈[t,t+δ[

|Ys |
k
|Gt


≤ c(1 + |X t |

k
+ |Yt |

k)

where Gt = σ(Bs, s ≤ t).
(A3) (Yt , X t ) admits a unique invariant probability measure ν0 with finite moments of any order

i.e. ∀k > 0, ν0(| · |
k) < ∞.

(A4) (Yt , X t ) satisfies a weak version of the ergodic theorem namely

1
T

 T

0
f (Ys, Xs)ds0( f ) a.s

for any continuous function f with polynomial growth at infinity.
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Remark 1. 1. Actually we need assumption (A2) only for k ≤ 4 to prove the properties of our
estimators.

2. We need (A4) for all f ∈ {a j , a j log a2, bk/a j , (∂b)k/a j , (∂2b)k/a j , (∂a2)k/a j , (∂2a2)k/a j ,

j ∈ {0, 1, 2, 4, 6}, k ∈ {0, 1, 2}}. These have indeed polynomial growth at infinity thanks to
(A1).

We now provide a set of sufficient conditions, sometimes called stability conditions, for
(A2)–(A4) to hold. They are based on the existence of a function V , called Lyapunov function.
Lyapunov functions are efficient tools in the asymptotic study of systems; their use is classical
for the Langevin systems that we consider in Section 6.

(S1) For all θ ∈ Θ ,
(a) V (y, x) ≥ 1, lim∥(y,x)∥→+∞ V (y, x) = +∞

(b) there exist c1 > 0 and c2 > 0 such that Lθ V (y, x) ≤ −c1V (y, x) + c2, ∀(y, x) ∈ R2

where Lθ denotes the infinitesimal generator corresponding to (3).
(S2) (Yt , X t ) admits a unique invariant probability measure ν0.
(S3) For all θ ∈ Θ , ∃C > 0 such that (aσ (y, x)∂x V (y, x))2

≤ CV (y, x) for all (y, x) ∈ R2.

Assumption (S1) implies existence and uniqueness of a solution to system (3) as well as existence
of an invariant probability measure. Moreover, under (S1) the process St := ec1t (V (Yt , X t )−

c2
c1

)

is a local submartingale, hence (cf. [17]) for all k ≥ 1 and all t ≥ 0,

E


sup

s∈[t,t+δ[

|Ss |
k
|Gt


≤


k

k − 1

k

E

|St+δ |

k
|Gt


≤


k

k − 1

k

|St |
k . (4)

Uniqueness of the invariant probability measure is not guaranteed by (S1) and is the purpose
of assumption (S2). We show now that, if there exists a polynomial Lyapunov function (or
a Lyapunov function with polynomial growth at infinity), then (S1)–(S3) imply (A2)–(A4).
The examples of Section 6 admit quadratic Lyapunov functions. So, let us assume here that
a polynomial V in y and x satisfies (S1). An analogous argument can be used when V
is dominated at infinity by a polynomial. From (4) and the polynomial character of V we
deduce (A2) and (A3). From (S1) to (S3), we know that for any λ <

2c1
C , the function

Ṽ (y, x) := exp(λV (y, x)) satisfies (S1) or in other words is a Lyapunov function, and also that
∀ f ∈ C, 1

T

 T
0 f (Ys, Xs)ds −−−→

T →∞
ν0( f ) a.s. where C denotes the class of measurable functions

f such that | f | is negligible w.r.t. exp(λ
2 V (y, x)). The class C contains all polynomials.

As already mentioned, (S3) is satisfied when aσ is constant and V quadratic at infinity. The
following assumption can also be used

(S3’) For all θ ∈ Θ , ∃C > 0 and ζ ∈ [0, 1[ such that (aσ (y, x)∂x V (y, x))2
≤ CV (y, x)2−ζ

for all (y, x) ∈ R2.
In this case it is still possible to generate Lyapunov functions from V which are polynomials

in V of bounded degree and a weak version of (A4) holds on a class C which contains all
polynomials of degree smaller than some value. The reader can find more details about (S1)–(S3)
and their consequences for the long time behavior of (3) in [12].

We test our estimator numerically in Section 6 on particular Langevin systems. Such systems
are defined by

dYt = X t dt
d X t = [−γ X t − F ′

D(Yt )]dt + σdWt
(5)
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with σ > 0, F ∈ C∞(R, [0, +∞[) is a possibly non-linear function depending on parameter D
and F ′ denotes the derivative of F w.r.t. y.

For these systems the invariant probability ν0 is unique and admits the density

ρ(y, x) = C exp −
γ

σ 2 (x2
− 2FD(y))

where C is a multiplicative constant. Hence (A3) is fulfilled. Stability conditions for these
systems are presented in [13]. If FD(y) ≥ 0, ∀y ∈ R and satisfies

βFD(y) −
1
2

F ′

D(y)y +
γ 2

8
β(2 − β)

(1 − β)
y2

≤ α (6)

for some β ∈]0, 1[ and α > 0, a Lyapunov function (which satisfies (S1)) is provided by

V (y, x) =
1
2

x2
+ FD(y) +

γ

2
⟨y, x⟩ +

γ 2

4
y2

+ 1 (7)

and condition (S3) is fulfilled. Note that the hypoelliptic property of these Langevin systems is
exploited in [13] in order to establish their geometric ergodicity. In our numerical Section 6 we
study respectively γ = 0, FD ≡ 0 which corresponds to our Model I, γ > 0, FD(y) ≡

D
2 y2

in Model II and γ > 0, FD(y) ≡ −Σ n
j=1 j−1 D j (cos y) j in Model III. In these three examples

(A1) is satisfied as well as (A3) (cf. [13]). Moreover aσ is constant and V quadratic so (S3) holds
which, as noticed previously, implies (A2) and (A4). Moreover, Models II and III satisfy (6).

3. Estimators and their properties

In this section, we first present the two observations frameworks. Then, for both frameworks,
we introduce a discretized scheme of the system. The properties of these schemes are studied.
They yield to the definition of the two contrast functions. Finally, we present the main results of
the two contrast estimators, namely their consistency and the asymptotic normality.

3.1. Observations

We assume that (Yt , X t ) is the unique solution of the system
dYt = X t dt
d X t = bµ0(Yt , X t )dt + aσ0(Yt , X t )d Bt

(8)

where θ0 = (µ0, σ0) is the true value of the parameter and functions bµ, aσ are such that
assumptions (A1)–(A4) are fulfilled. We assume that θ0 ∈ Θ . From now on, we set b(y, x) =

bµ0(y, x) and a(y, x) = aσ0(y, x).
Now, we describe the two observations frameworks. The first case assumes that both

components (Yt ) and (X t ) are observed at discrete times 0 = t0 < t1 < · · · < tn . The second case
assumes that the process (X t )t≥0 is hidden or not observed and that we only observe at discrete
times ti the process (Yt )t≥0. In both cases, we assume that discrete times are equally spaced and
denote ∆n = ti − ti−1 the step size, so ti = i∆n . We denote (Yi∆n , X i∆n ) the observation of the
bidimensional process (Yt , X t )t≥0 at time ti for the first case, and (Yi∆n ) the observation of the
process (Yt )t≥0 for the second case. Our purpose is to estimate θ from the complete and partial
observations. As for notation, in the sequel we use an upper index C (resp. P) for the case of
complete (resp. partial) observations. The asymptotic behavior of the two estimators is studied
for a step size ∆n such that ∆n → 0, as n → ∞, n∆n → ∞ and n∆2

n → 0.
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3.2. A contrast estimator for complete observations

When (Yt ) and (X t ) are both observed at discrete times (i∆n), we can consider the classical
two-dimensional Euler–Maruyama approximation (Y(i+1)∆n ,

X(i+1)∆n ) of (Y(i+1)∆n , X(i+1)∆n )

which isY(i+1)∆nX(i+1)∆n


=

Yi∆nX i∆n


+ ∆n

 X i∆n

b(Yi∆n ,
X i∆n )


+


∆nΣ


η1

i
η2

i


, (9)

Σ =


0 0
0 a(Yi∆n ,

X i∆n )


with (η1

i , η
2
i ) independent identically distributed centered Gaussian vector.

The two-dimensional Euler contrast cannot be used directly to estimate parameters θ because
Σ is not invertible. To circle this problem, [15] considers an Itô–Taylor expansion of higher order,
by adding the first non-zero noise term arising in the first coordinate. This yields to an invertible
covariance matrix for some hypoelliptic models, which may be complex to calculate.

On the contrary, our estimation approach remains based on the Euler scheme. As said
previously, it cannot be used directly. However, as we focus on parameter estimation of drift and
volatility functions of the second coordinate which is observed in this subsection, we propose
to consider a contrast based on the Euler–Maruyama approximation of this second equation.
Dependence between successive terms (X i∆n ) are described in the following Proposition:

Proposition 1. Set G n
i = Gi∆n . We have

X(i+1)∆n − X i∆n − ∆nb(Yi∆n , X i∆n ) = a(Yi∆n , X i∆n )ηi,n + εC
i,n

where ηi,n is such that E(η2k+1
i,n |G n

i ) = 0 and E(η2k
i,n|G n

i ) = (2k)!/(2kk!)∆k
n for k ≥ 0; εC

i,n is

such that E(|εC
i,n| |G n

i ) ≤ c∆3/2
n (1+|Yi∆n |+|X i∆n |) and E(|εC

i,n|
k
|G n

i ) ≤ c∆k/2+1
n (1+|Yi∆n |

k
+

|X i∆n |
k) for k ≥ 2.

This leads to the definition of the following estimation contrast

LC
n (θ) =

n−1
i=0


(X(i+1)∆n − X i∆n − ∆nbµ(Yi∆n , X i∆n ))

2

∆na2
σ (Yi∆n , X i∆n )

+ log(a2
σ (Yi∆n , X i∆n ))


(10)

which is an extension of the classical Euler contrast for unidimensional SDE (see [10]) when
drift bµ and volatility aσ depend on both Y and X . We define the minimum contrast estimator
θ̂C

n for complete observations as

θ̂C
n = arg min

θ∈Θ
LC

n (θ).

3.3. A contrast estimator for partial observations

Contrast (10) cannot be used in the second case of observations, as (X i∆n ) is not observed. In
the context of integrated diffusion, [8] proposes to approximate X i∆n by increments of (Yt ). We
study the behavior of the process of increments in Proposition 2. The basic idea which consists
in replacing directly X i∆n by Y i,n in contrast (10) leads to a biased estimator (see [8], for the
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case where (X t ) satisfies an autonomous diffusion). This is due to the dependence between two
successive terms of the rate process Y i,n (Proposition 3). The estimation contrast for partial
observation must be corrected to take into account this correlation.

Now, we present more precisely these ideas. First, we introduce the increment or rate process

Y i,n =
Y(i+1)∆n − Yi∆n

∆n
. (11)

Model (3) implies

Y i,n =
1

∆n

 (i+1)∆n

i∆n

Xsds.

Thus, when ∆n is small, Y i,n is close to X i∆n . More precisely, we have:

Proposition 2. Assume (A1)–(A2). We have

Y i,n − X i∆n = ∆1/2
n a(Yi∆n , X i∆n )ξ

′

i,n + ei,n

where there exists a constant c such that |E(ei,n|G n
i ) ≤ c∆n(1 + |X i∆n | + |Yi∆n |) and

|E(e2
i,n|G n

i ) ≤ c∆2
n(1 + |X i∆n |

4
+ |Yi∆n |

4).
Furthermore, if k is a real number ≥1, then for all i, n, we have

E
Y i,n − X i∆n

k |G n
i


≤ c∆k/2

n (1 + |X i∆n |
k
+ |Yi∆n |

k).

The link between two successive terms of the non-Markovian rate process Y i,n is studied in the
following Proposition.

Proposition 3. Assume (A1)–(A2). Then

Y i+1,n − Y i,n − ∆nb(Yi∆n , Y i,n) = ∆1/2
n a(Yi∆n , X i∆n )Ui,n + εP

i,n

where Ui,n = ξi,n + ξ ′

i+1,n with

ξi,n =
1

∆3/2
n

 (i+1)∆n

i∆n

(s − i∆n)d Bs for i, n ≥ 0

ξ ′

i+1,n =
1

∆3/2
n

 (i+2)∆n

(i+1)∆n

((i + 1)∆n − s)d Bs for i ≥ −1, n ≥ 0.

If k is a real number ≥1, then for all i, n

E
Y i+1,n − Y i,n

k |G n
i


≤ c∆k/2

n (1 + |X(i+1)∆n |
k
+ |Y(i+1)∆n |

k).

Moreover there exist constants c such that

E(εP
i,n|G n

i ) ≤ c∆2
n(1 + |X(i+1)∆n |

3
+ |Y(i+1)∆n |

3)

E((εP
i,n)2

|G n
i ) ≤ c∆2

n(1 + |X(i+1)∆n |
4
+ |Y(i+1)∆n |

4)

E((εP
i,n)4

|G n
i ) ≤ c∆4

n(1 + |X(i+1)∆n |
8
+ |Y(i+1)∆n |

8)

E(εP
i,nUi,n|G n

i ) ≤ c∆3/2
n (1 + |X(i+1)∆n |

2
+ |Y(i+1)∆n |

2).
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Remark that Proposition 3 implies that for any function f of the two variables Yt and X t ,
f (Yi∆n , X i∆n ) and Y i+1,n −Y i,n −∆nb(Yi∆n , Y i,n) have a correlation of order ∆1/2

n . Moreover
the variance of Ui,n is 2/3∆n , while the variance of ηi,n in Proposition 1 is 1. Gloter [8] proposes
a correction of the contrast by weighting the first sum in (10) by a factor 3/2. We extend this
contrast to the case of drift and volatility functions depending on both processes (X t ) and (Yt ).
Thus we consider the following contrast

L P
n (θ) =

n−2
i=1


3
2


Y i+1,n − Y i,n − ∆nbµ(Y(i−1)∆n , Y i−1,n)

2
∆na2

σ (Y(i−1)∆n , Y i−1,n)

+ log(a2
σ (Y(i−1)∆n , Y i−1,n))


. (12)

Remark that as (Y i,n) is not Markovian, we introduce a shift in the index of the drift and the
diffusion functions to avoid a correlation term of order ∆1/2

n between (Y i+1,n − Y i,n) and
functionals f (Yi∆n , Y i,n).

We define the minimum contrast estimator for partial observations θ̂ P
n as

θ̂ P
n = arg min

θ∈Θ
L P

n (θ).

3.4. Main results

To simplify notations and proofs, we restrict to one-dimensional parameters µ and σ . This
could easily be extended to multidimensional parameters (see Remark 5 of [8]). Simulations
(Section 6) illustrate this extension.

In this paper, we prove the consistency and asymptotic normality of both estimators under the
following identifiability assumption

aσ (y, x) = aσ0(y, x) dν0(y, x) almost everywhere implies σ = σ0

bµ(y, x) = bµ0(y, x) dν0(y, x) almost everywhere implies µ = µ0.

Classically, the consistency of the estimator θ̂n requires ∆n → 0.

Theorem 1. Under assumptions (A1)–(A4), the estimators θ̂C
n and θ̂ P

n are consistent:

θ̂C
n

P
−−−→
n→∞

θ0, and θ̂ P
n

P
−−−→
n→∞

θ0.

The asymptotic distribution requires the additional condition n∆2
n → 0. The rate of convergence

is different for µ̂n and σ 2
n . The drift term is estimated with rate (n∆n)1/2 and the diffusion term

is estimated with rate n1/2.

Theorem 2. Set assumptions (A1)–(A4), n∆2
n −−−→

n→∞
0. In the complete observations case,√

n∆n

µ̂C

n − µ0

,
√

n
σ 2

n
C

− σ 2
0


converges in distribution to

N

0,


ν0


(∂µb)2(·, ·)

a2(·, ·)

−1
⊗ N


0, 2


ν0


(∂σ 2a2)2(·, ·)

a4(·, ·)

−1
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and in the partial observations case,
√

n∆n

µ̂P

n − µ0

,
√

n
σ 2

n
P

− σ 2
0


converges in

distribution to

N

0,


ν0


(∂µb)2(·, ·)

a2(·, ·)

−1
⊗ N


0,

9
4


ν0


(∂σ 2a2)2(·, ·)

a4(·, ·)

−1
.

Theorem 2 is an extension of several results. We first comment the complete observations case.
When (X t ) is an autonomous diffusion, [10] proves that the asymptotic distribution is

N

0,


νX,0


(∂µb)2(·)

a2(·)

−1
⊗ N


0, 2


νX,0


(∂σ 2a2)2(·)

a4(·)

−1
where the limit distribution νX,0 is the stationary distribution of the diffusion (X t ) itself. In
that case, observations of (Yt ) are not used. When (X t ) is not autonomous and the diffusion is
bidimensional, this result can be generalized if the volatility matrix Σ is non-degenerate. The
asymptotic variance is then based on ν0, the stationary distribution of the vector (Yt , X t ). When
the volatility matrix is degenerate as in model (3), the first assertion of Theorem 2 shows that
reducing the contrast to the Euler approximation of the second coordinate yields to asymptotic
normality of θ̂n , the asymptotic variance involving the stationary distribution of the vector
(Yt , X t ). This is a major difference with respect to the case of an autonomous diffusion for
(X t ).

For the partial observations case, when (X t ) is autonomous, [8] proves that replacing X i∆n

by Y i,n underestimates the asymptotic variance, as a consequence of Proposition 3. As in the
complete observation case, when (X t ) is autonomous, the asymptotic variance is based on the
stationary distribution νX,0. In model (3) where the diffusion is not autonomous, second assertion
of Theorem 2 shows that the invariant measure of (Yt , X t ) is required in the asymptotic variance.

The estimation of µ is asymptotically efficient since ν0


(∂µb)2(·,·)

a2(·,·)


is the Fisher information

of the continuous time model. This is not the case for σ 2 as its asymptotic variance is increased
with a factor 9/16 instead of 1/2 for directly observed diffusion [10].

Proofs of Theorems 1 and 2 are given in Section 5. They are based on properties of functionals
of (Yi∆n , X i∆n ) and (Yi∆n , Y i,n), which are studied in Section 4.

4. Functionals of (Yi∆n, X i∆n) and (Yi∆n, Y i,n)

Contrast properties rely on convergence results for functionals appearing in the contrast
functions. These functionals are of different types: functional mean, variation and quadratic
variation of X i∆n and Y i,n . We consider for the complete observations case, for a measurable
function f , the three functionals:

νC
n ( f ) =

1
n

n−1
i=0

f (Yi∆n , X i∆n , θ),

I
C
n ( f ) =

1
n∆n

n−1
i=0

f (Yi∆n , X i∆n , θ)(X(i+1)∆n − X i∆n − ∆nb(Yi∆n , X i∆n ))

Q
C
n ( f ) =

1
n∆n

n−1
i=0

f (Yi∆n , X i∆n , θ)(X(i+1)∆n − X i∆n )
2
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and for the partial observations case, the three functionals

νP
n ( f ) =

1
n

n−1
i=0

f (Yi∆n , Y i,n, θ)

I
P
n ( f ) =

1
n∆n

n−2
i=1

f (Y(i−1)∆n , Y i−1,n, θ)(Y i+1,n − Y i − ∆nb(Y(i−1)∆n , Y i−1,n))

Q
P
n ( f ) =

1
n∆n

n−2
i=1

f (Y(i−1)∆n , Y i−1,n, θ)

Y i+1,n − Y i

2
.

Note that in I
P
n ( f ) and Q

P
n ( f ), we introduce shifted processes Y(i−1)∆n and Y i−1,n in the

function f as a consequence of the remark following Proposition 3. Consequently, the drift term

b(Y(i−1)∆n , Y i−1,n) in I
P
n ( f ) and in the contrast L P

n are also shifted so that, when the square
quantity in L P

n is developed, functionals to be studied have the proper index. Asymptotic study
of these functionals is difficult because it involves (Yi∆n , Y i,n) instead of the original Markovian
process (Yi∆n , X i∆n ).

We first study the uniform convergence of these functionals, then their convergence in
distribution. In the following, we assume that f belongs to the class F introduced in Assumption
(A1).

4.1. Uniform convergence

The first result concerns the empirical mean of the discretized process (X i∆n )i≥0 and the rate
process (Y i,n)i≥1. The limits involve the stationary distribution ν0 of the vector (Yt , X t ). Proofs
are given in the Appendix. They are essentially based on Propositions 2 and 3 and generalize the
proofs of [8] to a non-autonomous diffusion (X t ).

Proposition 4. Under assumptions (A1)–(A4), we have uniformly in θ

νC
n ( f )

P
−−−→
n→∞

ν0( f ), νP
n ( f )

P
−−−→
n→∞

ν0( f ).

We see that replacing X i∆n by Y i,n in the partial observations case does not change the limit.

The next result concerns the functionals I
C
n and I

P
n which involve the variations of the processes

(X i∆n )i≤0 and (Y i,n)i≤0, respectively.

Theorem 3. Under assumptions (A1)–(A4), we have uniformly in θ

I
C
n ( f )

P
−−−→
n→∞

0, I
P
n ( f )

P
−−−→
n→∞

0. (13)

The limit is the same for the complete and partial functionals. This is due to the introduction

of the lag in the definition of I
P
n ( f ): f (Y(i−1)∆n , Y i−1,n, θ) and b(Y(i−1)∆n , Y i−1,n) instead of

f (Yi∆n , Y i,n, θ) and b(Yi∆n , Y i,n). This enables us to avoid correlation terms of order ∆1/2
n .

When no lag is introduced, the limit is not 0, see for instance [8].
The last result deals with the quadratic variations of (X i∆n )i≥0 and (Y i,n)i≥1.
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Theorem 4. Under assumptions (A1)–(A4), we have uniformly in θ

Q
C
n ( f (·, ·, θ))

P
−−−→
n→∞

ν0( f (·, ·, θ)a2(·, ·))

Q
P
n ( f (·, ·, θ))

P
−−−→
n→∞

2
3
ν0( f (·, ·, θ)a2(·, ·)).

Theorem 4 is an extension of various results. It implies several comments which have already
been partially addressed in Section 3.4. We first comment the complete observations case. When
(X t ) is an autonomous diffusion, [10] proves that for a function f : R × Θ → R

1
n∆n

n−1
i=0

f (X i∆n , θ)

X(i+1)∆n − X i∆n

2 P
−−−→
n→∞

νX,0( f (·, θ)a2(·))

where the limit distribution νX,0 is the stationary distribution of the diffusion (X t ) itself. When
the diffusion is two-dimensional and the volatility matrix Σ is non-degenerate, the limit is then
ν0( f (·, ·, θ)ΣΣ ′(·, ·)) where ν0 is the stationary distribution of the vector (Yt , X t ). When the
volatility matrix is degenerate as in model (3), the first assertion of Theorem 4 shows that the
problem is reduced to the Euler approximation of the second equation of the system with the
limit involving the stationary distribution of the vector (Yt , X t ).

For the partial observations case, when (X t ) is autonomous, [8] proves that replacing X i∆n by
Y i,n modifies the result by underestimating νX,0( f (·, θ)a2(·)). In the case of model (3) where the
diffusion is not autonomous, the second assertion of Theorem 4 shows that the invariant measure
of (Yt , X t ) is required.

4.2. Convergence in distribution of functionals of the process

In this section, we study some central limit theorems for the functionals I
C
n , I

P
n and Q

C
n , Q

P
n .

As I
C
n and I

P
n converge in probability to 0 (Theorem 3), they also satisfy a central limit theorems

as follows:

Theorem 5. Under assumptions (A1)–(A4) and n∆2
n −−−→

n→∞
0, we have


n∆n I

C
n ( f )

D
−−−→
n→∞

N (0, ν0( f 2a2))
n∆n I

P
n ( f )

D
−−−→
n→∞

N (0, ν0( f 2a2)).

The condition n∆2
n −−−→

n→∞
0 is classical (see [4]). This condition imposes that the discretization

step decreases to zero fast enough to ensure that the contribution of the error terms tends to 0

as n → ∞. The lag introduced in the definition of I
P
n makes the result very similar for both

complete and partial observations case.

We now present a central limit theorem for Q
P
n and Q

C
n . Theorem 4 shows that Q

P
n

underestimates ν0( f (·, ·, θ)a2(·, ·)). The correction factor 2/3 is thus required in the associated
central limit theorem:
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Theorem 6. Under assumptions (A1)–(A4) and n∆2
n −−−→

n→∞
0, we have

√
n


Q
C
n ( f ) − νC

n ( f a2)
 D

−−−→
n→∞

N (0, ν0( f 2a4))

√
n


Q

P
n ( f ) −

2
3
νP

n ( f a2)


D

−−−→
n→∞

N (0, ν0( f 2a4)).

In the partial observations case, when we replace X i∆n by Y i,n , the asymptotic variance increases
due to the factor 3/2. This can also be compared to the results of [8] when the diffusion (X t ) is
autonomous.

5. Proofs of main results

In this section, asymptotic properties of estimators θ̂C
n and θ̂ P

n are proved.

5.1. Proof of Theorem 1

We follow the proof of [11]. We have to show that, uniformly in θ ,

1
n

LC
n (θ)

P
−−−→
n→∞

ν0


a2
σ0

(y, x)

a2
σ (y, x)

+ log a2
σ (y, x)


(14)

1
n

L P
n (θ)

P
−−−→
n→∞

ν0


a2
σ0

(y, x)

a2
σ (y, x)

+ log a2
σ (y, x)


. (15)

This ensures the convergence of σ̂ 2
n to σ 2

0 for both cases. Then, if we prove that

1
n∆n

(LC
n (µ, σ ) − LC

n (µ0, σ ))
P

−−−→
n→∞

ν0


(bµ(y, x) − bµ0(y, x))2

a2
σ (y, x)


(16)

1
n∆n

(L P
n (µ, σ ) − L P

n (µ0, σ ))
P

−−−→
n→∞

3
2
ν0


(bµ(y, x) − bµ0(y, x))2

a2
σ (y, x)


(17)

this ensures the convergence of µ̂n to µ0 for both cases. We start by proving (14)–(15). In the
complete observations case, we have

1
n

LC
n (θ) = Q

C
n (a−2

σ (·, ·)) + νC
n (log a2

σ (·, ·)) − 2∆n I
C
n (a−2

σ (·, ·)bµ(·, ·))

+∆nνC
n (a−2

σ (·, ·)(b2
µ(·, ·) − 2bµ(·, ·)bµ0(·, ·))).

Using Proposition 4, Theorems 3 and 4, we easily prove (14). In the partial observations case,
we have

1
n

L P
n (θ) =

3
2

Q
P
n (a−2

σ (·, ·)) + νP
n (log a2

σ (·, ·)) − 3∆n I
P
n (a−2

σ (·, ·)bµ(·, ·))

+
3
2
∆nνP

n (a−2
σ (·, ·)(b2

µ(·, ·) − 2bµ(·, ·)bµ0(·, ·))).
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Using Proposition 4, Theorems 3 and 4, we easily prove (15). For the proof of (16), we have

1
n∆n


LC

n (µ, σ ) − LC
n (µ0, σ )


= 2I

C
n


bµ0

a2
σ

(·, ·) −
bµ

a2
σ

(·, ·)


+ νC

n


bµ(·, ·) − bµ0(·, ·)

2
a2
σ (·, ·)


.

We conclude with Proposition 4 and Theorem 3. For the proof of (17), we write

1
n∆n


L P

n (µ, σ ) − L P
n (µ0, σ )


= 3I

P
n


bµ0

a2
σ

(·, ·) −
bµ

a2
σ

(·, ·)


+

3
2
νP

n


bµ(·, ·) − bµ0(·, ·)

2
a2
σ (·, ·)


.

We conclude with Proposition 4 and Theorem 3.

5.2. Proof of Theorem 2

The scheme of the proof is the same for both complete and partial observations cases. Let
θ̂n and Ln(θ) denote the estimator and contrast either for complete or partial observations. A
Taylor’s formula around θ̂n yields: Dn =

 1
0 Cn(θ0 + u(θ̂n − θ0)du En) where

Dn =


−(


n∆n)−1∂µLn(θ0)

−(
√

n)−1∂σ Ln(θ0)


, En =


n∆n


µ̂n − µ0


√

n
σ 2

n − σ 2
0

  ,

Cn(θ) =


1

n∆n
∂2
µ2 Ln(θ)

1

n
√

∆n
∂2
σµ Ln(θ)

1

n
√

∆n
∂2
µσ Ln(θ)

1
n

∂2
σ 2 Ln(θ)

 .

Let now detail the two cases. In the complete observations case, we have

1
√

n∆n
∂µLC

n (θ0) = −2


n∆n I
C
n


∂µbµ0(·, ·)

a2
σ0

(·, ·)


1

√
n
∂σ 2 LC

n (θ0) = −
√

n


Q

C
n


∂σ 2(a2

σ0
(·, ·))

a4
σ0

(·, ·)


− νC

n


∂σ 2(a2

σ0
(·, ·))

a2
σ0

(·, ·)


+ oP(1).

By Theorems 5 and 6, this yields

DC
n

D
−−−→
n→∞

N

0,


4ν0


(∂µbµ0)

2(·, ·)

a2
σ0

(·, ·)


0

0 2ν0


(∂σ 2a2

σ0
)2(·, ·)

a4
σ0

(·, ·)



 .

The proof of the convergence in distribution of En follows from the consistency of θ̂C
n and if we

prove the uniform (with respect to θ ) convergence in probability of C C
n (θ). To prove the uniform
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convergence, we differentiate twice LC
n . Proposition 4 and Theorem 3 show that C C

n (θ) converges
uniformly in θ in probability to C C (θ) where

C C (θ) =


C C

11(θ) 0
0 C C

22(θ)



C C
11(θ) = 2ν0


(∂µbµ)2(·, ·)

a2
σ (·, ·)

+

∂2
µ2bµ

a2
σ

(·, ·)(bµ(·, ·) − bµ0(·, ·))



C C
22(θ) = ν0


(∂σ 2a2

σ )2(·, ·)


2a2

σ0
(·, ·)

a6
σ (·, ·)

−
1

a4
σ0

(·, ·)



+ ν0


∂2
σ 2a2

σ (·, ·)


1

a2
σ (·, ·)

−
a2
σ0

(·, ·)

a4
σ (·, ·)


.

Hence the result for the complete observations case. In the partial observations case, we have

1
√

n∆n
∂µL P

n (θ0) = −3


n∆n I
P
n


∂µbµ0(·, ·)

a2
σ0

(·, ·)


1

√
n
∂σ 2 L P

n (θ0) = −
3
2

√
n


Q

P
n


∂σ 2a2

σ0
(·, ·)

a4
σ0

(·, ·)


−

2
3
νP

n


∂σ 2a2

σ0
(·, ·)

a2
σ0

(·, ·)


+ oP(1).

By Theorems 5 and 6, this yields

D P
n

D
−−−→
n→∞

N

0,


9ν0


(∂µbµ0)

2(·, ·)

a2
σ0

(·, ·)


0

0
9
4
ν0


(∂σ 2a2

σ0
)2(·, ·)

a4
σ0

(·, ·)



 .

Proof of the convergence in distribution of En follows from the consistency of θ̂ P
n and the uniform

(with respect to θ ) convergence in probability of C P
n (θ). To prove the uniform convergence, we

differentiate twice L P
n . Proposition 4 and Theorem 3 show that C P

n (θ) converges uniformly in θ

in probability to C P (θ) where

C P (θ) =


C P

11(θ) 0
0 C P

22(θ)



C P
11(θ) = 3ν0


(∂µbµ)2(·, ·)

a2
σ (·, ·)

+

∂2
µ2bµ

a2
σ

(·, ·)(bµ(·, ·) − bµ0(·, ·))



C P
22(θ) = ν0


(∂σ 2a2

σ )2(·, ·)


2a2

σ0
(·, ·)

a6
σ (·, ·)

−
1

a4
σ0

(·, ·)



+ ν0


∂2
σ 2a2

σ (·, ·)


1

a2
σ (·, ·)

−
a2
σ0

(·, ·)

a4
σ (·, ·)


.

Hence the result. �
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6. Simulation study

We consider three models of simulation, which are those proposed by [15]. Their general
form is given as the Langevin system (5) where FD is some (possibly non-linear) force
function parameterized by D. Model I corresponds to a simple linear stochastic growth with
γ = 0, FD ≡ 0. Model II corresponds to a linear oscillator subject to noise and damping with
γ > 0, FD(y) ≡

D
2 y2. Model III is a non-linear oscillator subject to noise and damping with

γ > 0, FD(y) ≡ −Σ n
j=1 j−1 D j (cos y) j . Stability conditions for these models have been detailed

in Section 2.

6.1. Model I: stochastic growth

We consider the following simple model
dYt = X t dt
d X t = σ0d Bt .

(18)

The process has one unknown parameter, σ0, that describes the size of the fluctuations. Model
(18) has a matricial form dUt = AUt dt + Γd Bt where Ut = (Yt , X t )

t and

A =


0 1
0 0


, Γ =


0 0
0 σ0


.

This model has an explicit solution Ut = eA(t−t0)U0 +
 t

t0
eA(t−s)Γd Bs . Given the fact that

eAt
= I + At for this simple model, the process (Ut ) is Gaussian with expectation vector and

covariance matrix

E(Ut |U0) =


1 t
0 1


U0, Var(Ut |U0) = σ 2

0 Σt = σ 2
0


t3/3 t2/2
t2/2 t


.

The covariance matrix Σt is invertible. Note that the process (Ut ) has no stationary probability
distribution. It is usual to consider the Lebesgue measure, which is not a probability measure,
as its invariant measure. Although the theory developed in this paper has to be extended to the
existence of an invariant measure which is not a probability measure, this is beyond the scope
of this paper. Nevertheless, this example illustrates that estimators have good properties in that
case. An exact discrete sampling scheme can be deduced from the exact distribution of (Ut )

Y(i+1)∆n

X(i+1)∆n


=


Yi∆n + ∆n X i∆n

X i∆n


+ σ0Σ

1/2
∆n


ε
(1)

i∆n

ε
(2)

i∆n


. (19)

As the exact distribution is available and easily computable, the estimation of σ can be obtained
from the exact likelihood when complete observations are available. The exact maximum
likelihood estimator (MLE) is thus

σMLE
=

1
2n

n−1
i=0

(U(i+1)∆n − eA∆n Ui∆n )
′(Σ∆n )

−1(U(i+1)∆n − eA∆n Ui∆n ).

The fact that the MLE is explicit is very specific to this simple model. It is also interesting to
study the two contrast estimators, which are defined for more general models. The estimator for
the complete observations case is equal to
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Fig. 1. Model I: stochastic growth. Estimator densities of parameter σ computed on 1000 simulated datasets for three
designs ∆n = 0.1, n = 100 (a), ∆n = 0.1, n = 1000 (b) and ∆n = 0.01, n = 1000 (c). True value of σ is 1 (vertical
line). Three estimators are compared: MLE (dotted line), complete observations contrast estimatorσC (plain line), partial
observations contrast estimatorσ P (bold line).

σC
=

1
∆nn

n−1
i=0

(X(i+1)∆n − X i∆n )
2.

When partial observations are available, the estimator is

σ P
=

3
2

1
∆n(n − 2)

n−2
i=1

(Y i+1,n − Y i,n)2.

The behavior of these three estimators are compared on simulated data. Three designs (∆n, n)
of simulations are considered: ∆n = 0.1, n = 100;∆n = 0.1, n = 1000 and ∆n = 0.01, n =

1000. A thousand of datasets are simulated for each design with the exact discrete scheme (19),
the true parameter value σ0 = 1 and U0 = (1, 1)′. The three estimators are computed on each
dataset. Kernel estimations of the density of these estimators are represented in Fig. 1. The three
estimators are unbiased for the three designs. Their variances are small and decrease when n
increases, whatever the value of ∆n . The maximum likelihood estimator σMLE has a smaller
variance than the two contrast estimators σC and σ P , whatever the values of n and ∆n . This
is expected as the MLE is based on the exact distribution of the diffusion, while σC and σ P

are based on Euler approximation. The two contrast estimators behave very similarly. Empirical
means and standard deviations of the three estimators for the three designs are presented in
Table 1. Means and standard deviations obtained by Pokern et al. [15] on the same example
are also reported. With complete observations, the MLE and the contrast estimator have similar
estimate means and are unbiased. The standard deviations of σC are three times larger than forσMLE. With partial observations, the contrast estimatorσ P has similar mean than the one of [15],
but twice greater standard deviations.

6.2. Model II: harmonic oscillator

We consider a harmonic oscillator that is driven by a white noise forcing:
dYt = X t dt
d X t = (−D0Yt − γ0 X t )dt + σ0d Bt

(20)
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Table 1
Model I: stochastic growth. True value is σ = 1. Mean and standard error of estimators of parameter σ computed on
1000 simulated datasets for three designs ∆n = 0.1, n = 100,∆n = 0.1, n = 1000 and ∆n = 0.01, n = 1000.
Four estimators are compared: MLE with complete observations, complete observations contrast estimator σC , partial
observations contrast estimatorσ P and Gibbs estimates obtained by Pokern et al. [15] with partial observations.

Observations Estimator Design
∆n = 0.1 ∆n = 0.1 ∆n = 0.01
n = 100 n = 1000 n = 1000

Complete σMLE 0.999 (0.050) 1.000 (0.015) 1.000 (0.016)
Complete σC 0.998 (0.142) 1.001 (0.044) 1.000 (0.044)
Partial σ P 1.005 (0.158) 1.002 (0.048) 1.001 (0.046)
Partial Pokern et al. 0.993 (0.077) 0.999 (0.024) 1.000 (0.024)

with γ0 > 0 and D0 > 0. The process has three unknown parameters (D0, γ0, σ0). Model (20)
has a matricial form dUt = AUt dt + Γd Bt where Ut = (Yt , X t )

t ,

A =


0 1

−D0 −γ0


, Γ =


0 0
0 σ0


.

The stationary distribution of (Ut ) is Gaussian with zero mean and an explicit variance matrix [5]

Var(Ut ) = ΣU =
1

−2tr(A)det(A)
det(A)ΓΓ ′

+ (A − tr(A)I2)ΓΓ ′(A − tr(A)I2)
′

where tr(A) and det(A) are the trace and the determinant of A.
The estimator for the complete observations case is defined as

θC
= arg min

θ


n−1
i=0


X(i+1)∆n − X i∆n + ∆n(DYi∆n + γ X i∆n )

2
∆nσ 2 + n log σ 2


.

When only partial observations (Yi∆n ) are available, the contrast is

θ P
= arg min

θ


3
2

n−2
i=1


Y i+1,n − Y i,n + ∆n(DY(i−1)∆n + γ Y i−1,n)

2
∆nσ 2

+ (n − 2) log σ 2


.

The behavior of these two estimators is compared on simulated data. Three designs (∆n, n) of
simulations are considered: ∆n = 0.1, n = 1000;∆n = 0.1, n = 100 and ∆n = 0.01, n =

1000. A thousand of datasets are simulated for each design with the exact stationary distribution,
the true parameter values D0 = 4, γ0 = 0.5 and σ0 = 1 and U0 = (1, 0)′. The two estimatorsθC

andθ P are computed on each dataset. Empirical mean and standard deviations of the estimators
are reported on Table 2 (simultaneous estimation of the three parameters). Results obtained by
Pokern et al. [15] when estimating only σ P are reported in Table 2. In their paper, the authors
do not detail their results for drift parameters when using the Gibbs loop, which corresponds
to a simultaneous estimation. So we only report results for σ . Parameter σ is estimated with
very small bias whatever the design and the kind of observations. The bias of σ is slightly less
than the one of [15]. Its standard deviation decreases with n. The drift parameters D and γ are
estimated with bias for the two first designs. The bias decrease when n = 1000,∆n = 0.01. This



A. Samson, M. Thieullen / Stochastic Processes and their Applications 122 (2012) 2521–2552 2539

Table 2
Model II: harmonic growth, estimation of the three parameters D, γ, σ . Mean and standard error of parameter estimators
D, γ and σ computed on 1000 simulated datasets for three designs ∆n = 0.1, n = 100 (a), ∆n = 0.1, n = 1000 (b)
and ∆n = 0.01, n = 1000 (c). Three estimators are compared: complete observations contrast estimator θC , partial
observations contrast estimatorθ P and Gibbs estimator obtained by Pokern et al. [15] with partial observations.

Estimator True value Design
∆n = 0.1 ∆n = 0.1 ∆n = 0.01
n = 100 n = 1000 n = 1000

σC 1 0.980 (0.069) 0.974 (0.021) 0.996 (0.021)σ P 0.946 (0.074) 0.956 (0.021) 0.994 (0.023)

Pokern et al. 1.154 (0.074) 1.114 (0.025) 1.016 (0.013)DC 4 3.567 (0.489) 3.488 (0.187) 4.034 (0.642)D P 3.588 (0.494) 3.501 (0.188) 4.032 (0.644)γ C 0.5 1.022 (0.098) 1.086 (0.271) 0.678 (0.326)γ P 1.285 (0.275) 1.215 (0.096) 0.699 (0.330)

is corroborated by the theoretical results, as the asymptotic conditions are not the same for drift
and volatility parameter estimation. The bias is very small for D but still remains for γ when
n = 1000,∆n = 0.01. The bias for drift parameters obtained with partial observations are larger
than with complete observations. For example, with n = 100,∆n = 0.1, the mean estimated
value for parameter D is 3.588 with partial observations and 3.567 for complete observations, to
be compared to the true value 4. When n increases and ∆n decreases, this difference decreases
and the bias is small.

6.3. Model III: trigonometric oscillator

We consider the dynamics of a particle moving in a trigonometric potential (see [15]). The
model is

dYt = X t dt

d X t =


−γ0 X t −

c
j=1

D0, j sin(Yt ) cos j−1(Yt )


dt + σ0d Bt

(21)

with parameters θ = (γ0, D0 j , j = 1, . . . , c, σ0). This system is non-linear. No explicit closed
form expression for the solution is known.

The estimator for the complete observations case is defined as

θC
= arg min

θ

n log σ2
+

n−1
i=0


X(i+1)∆n − Xi∆n + ∆n


γ Xi∆n +

c
j=1

D j sin(Yi∆n ) cos j−1(Yi∆n )

2

∆nσ2

 .

When only partial observations (Yi∆n ) are available, the estimator is

θ P
= arg min

θ

(n − 2) log σ2
+

3
2

n−2
i=1


Y i+1,n − Y i,n + ∆n


γ Y i−1,n +

c
j=1

D j sin(Y(i−1)∆n ) cos j−1(Y(i−1)∆n )

2

∆nσ2


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Table 3
Model III: trigonometric growth, estimation of the five parameters D1, D2, D3, γ, σ . Mean and standard error of
parameter estimators D, γ and σ computed on 1000 simulated datasets for four designs ∆n = 0.1, n = 100,∆n =

0.1, n = 1000,∆n = 0.01, n = 1000 and ∆n = 0.01, n = 10, 000. Two estimators are compared: complete
observations contrast estimatorθC and partial observations contrast estimatorθ P .

Estimator True value Design
∆n = 0.1 ∆n = 0.1 ∆n = 0.01 ∆n = 0.01
n = 100 n = 1000 n = 1000 n = 10, 000

σC 0.7 0.886 (0.110) 0.861 (0.032) 0.713 (0.019) 0.714 (0.006)σ P 1.012 (0.118) 1.021 (0.034) 0.873 (0.024) 0.784 (0.008)D1
C 1 0.987 (0.414) 1.003 (0.125) 1.043 (0.381) 1.010 (0.111)D1
P 1.002 (0.378) 1.002 (0.116) 1.036 (0.378) 1.005 (0.110)D2
C

−8 −8.221 (1.451) −8.020 (0.367) −8.082 (1.878) −8.042 (0.498)D2
P

−7.340 (1.382) −7.251 (0.339) −8.019 (1.859) −7.998 (0.495)D3
C 8 8.271 (2.424) 8.001 (0.597) 7.722 (3.589) 8.010 (0.764)D3
P 7.068 (2.235) 7.007 (0.565) 7.641 (3.559) 7.964 (0.758)γ C 0.5 0.638 (0.290) 0.524 (0.074) 0.671 (0.384) 0.522 (0.099)γ P 0.889 (0.304) 0.763 (0.074) 0.701 (0.384) 0.548 (0.100)

The behavior of these estimators is compared on simulated data. Four designs (∆n, n) of
simulations are considered: ∆n = 0.1, n = 100; ∆n = 0.1, n = 1000;∆n = 0.01, n = 1000
and ∆n = 0.01, n = 10, 000. A thousand of datasets are simulated for each design with the
exact stationary distribution and the true parameter values proposed by Pokern et al. [15] D01 =

1, D02 = −8, D03 = 8, γ0 = 0.5 and σ0 = 0.7 and U0 = (1, 1)′. The two estimators θC andθ P are computed on each dataset. Simultaneous estimation of the five parameters is performed.
Empirical mean and standard deviations of the estimators are reported on Table 3. Pokern
et al. [15]’s results are presented as figures and are not reported here. Bias and standard deviations
of drift and volatility parameters decrease when n increases and ∆n decreases. For example, for
σ with complete observations, the mean estimated value is 0.886 when n = 100,∆n = 0.1 and
0.714 when n = 1000,∆n = 0.01, to be compared to the true value 0.7. For γ with complete
observations, the mean estimated values is 0.638 when n = 100, ∆n = 0.1 and 0.522 when
n = 1000, ∆n = 0.01, to be compared to the true value 0.5. Estimators obtained from partial
observations have greater bias than those obtained from complete observations. For example,
when n = 100,∆n = 0.1, for σ with complete observations, the mean estimated value for σ is
0.886 with complete observations and 1.012 with partial observations, to be compared to the true
value 0.7.

7. Discussion

We consider two cases of observations (partial and complete) of a hypoelliptic two-
dimensional diffusion, with non-autonomous equations. The contrast estimators are based on
Euler approximations of the second coordinate. We prove their consistency and give their
asymptotic distribution. The case of complete observations leads to efficient estimator. On the
contrary, in the case of partial observations, our estimator is not efficient. This extends the results
of [8] to non-autonomous diffusion.

We compare our estimators to [15]’s estimator. Pokern et al. [15] limit their study to linear
drift and constant diffusion coefficient. Their estimator is based on a hybrid Gibbs sampler in a
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Bayesian framework. Their algorithm may be time consuming. Our estimator has the advantage
to be simple to compute. For example, on the three examples considered in the simulation study,
which are the same than those handled by Pokern et al. [15], our estimators are explicit and thus
computed in less than one second.

Only second-order hypoelliptic systems have been considered in this paper. The estimation
method proposed by Pokern et al. [15] works for larger order. The extension of our approach to
these higher order hypoelliptic systems would require higher order approximation schemes, as
Runge–Kutta schemes.

Although Model (1) involves a function g in the first coordinate, we reduce to the case
dYt = X t for the definition of the contrast functions as explained in Section 2. Our estimation
procedure could be used to estimate parameters of function g. Numerical study of such models
would be explored in future works. This could have great usefulness to consider more complex
models and real data.

Acknowledgment

This work was supported by Agence Nationale de la Recherche through the project MANDy
ANR-09-BLAN-0008-01.

Appendix. Proofs

Proposition A of [7] can be extended to drift and volatility depending both on y and x :

Proposition 5. Let f ∈ C 1. If ∃c, ∀y, x such that | f ′
y(y, x)|+ | f ′

x (y, x)| ≤ c(1+|y|+ |x |) then,
for all integer k ≥ 1, we have

E


sup

t∈[i∆n ,(i+1)∆n [

 f (Yt , X t ) − f (Yi∆n , X i∆n )
k |G n

i


≤ c∆k/2

n (1 + |Yi∆n |
k
+ |X i∆n |

k).

Proof. With start with f (y, x) = x . Let δi,n = supt∈[i∆n ,(i+1)∆n [ |X t − X i∆n |. Using the
Burkholder inequality, we get

E(δk
i,n|G n

i ) ≤ c E

 (i+1)∆n

i∆n

|b(Yt , X t )|dt

k G n
i


+ c E

 (i+1)∆n

i∆n

|a2(Yt , X t )|dt

k/2 G n
i

 .

Using Assumptions (A2), we get

E(δk
i,n|G n

i ) ≤ c ∆k
nE


sup

t∈[i∆n ,(i+1)∆n [

|bk(Yt , X t )∥G n
i



+ c ∆k/2
n E


sup

t∈[i∆n ,(i+1)∆n [

|ak(Yt , X t )∥G n
i


+ c ∆k/2

n (1 + |Yi∆n |
k
+ |X i∆n |

k).
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Now for a general f , we study f (Yt , X t ) − f (Yi∆n , X i∆n ) = f (Yt , X t ) − f (Yi∆n , X t ) +

f (Yi∆n , X t ) − f (Yi∆n , X i∆n ). We have

E


sup

t∈[i∆n ,(i+1)∆n [

 f (Yt , X t ) − f (Yi∆n , X i∆n )
k |G n

i



≤ 2k−1E


sup

t∈[i∆n ,(i+1)∆n [

 f (Yt , X t ) − f (Yi∆n , X t )
k |G n

i



+ 2k−1E


sup

t∈[i∆n ,(i+1)∆n [

 f (Yi∆n , X t ) − f (Yi∆n , X i∆n )
k |G n

i


.

We first study f (Yt , X t ) − f (Yi∆n , X t ). Burkholder inequality yields

E


sup

t∈[i∆n ,(i+1)∆n [

 f (Yt , X t ) − f (Yi∆n , X t )
k |G n

i


≤ c ∆k/2

n (1 + |Yi∆n |
k
+ |X i∆n |

k).

We then study f (Yi∆n , X t ) − f (Yi∆n , X i∆n ). Burkholder inequality yields the result. �

Proof of Proposition 1. We have

X(i+1)∆n − X i∆n − ∆nb(Yi∆n , X i∆n ) = a(Yi∆n , X i∆n )ηi,n + αin + βin

where ηi,n =
 (i+1)∆n

i∆n
d Bs , αi,n =

 (i+1)∆n
i∆n

(a(Ys, Xs) − a(Yi∆n , X i∆n ))d Bs and βi,n = (i+1)∆n
i∆n

(b(Ys, Xs) − b(Yi∆n , X i∆n ))ds. Properties of ηi,n are directly deduced from properties

of the Brownian motion. Let εC
i,n = αi,n + βi,n . Assumptions (A1)–(A2) lead to |E(βi,n|G n

i )| ≤

c∆3/2
n (1+|Yi∆n |+|X i∆n |). Proposition 5 provides E(|βi,n|

k
|G n

i ) ≤ c∆k/2
n (1+|Yi∆n |

k
+|X i∆n |

k)

for k ≥ 2. Burkholder inequality gives E(|αi,n |
k
|G n

i ) ≤ c∆k
n(1 + |Yi∆n |

k
+ |X i∆n |

k) for
k ≥ 2. �

Proof of Proposition 2. We have Y i,n − X i∆n =
1

∆n

 (i+1)∆n
i∆n

(Xv − X i∆n )dv and Xv −

X i∆n =
 v

i∆n
b(Ys, Xs)ds +

 v

i∆n
a(Ys, Xs)d Bs . By the Fubini theorem, we get Y i,n − X i∆n =

∆1/2
n a(Yi∆n , X i∆n )ξ

′

i,n + ei,n where ei,n = αi,n + βi,n and

αi,n =
1

∆n

 (i+1)∆n

i∆n


a(Yv, Xv) − a(Yi∆n , X i∆n )


((i + 1)∆n − v)d Bv

βi,n =
1

∆n

 (i+1)∆n

i∆n

 v

i∆n

b(Ys, Xs)dsdv.

By Assumption (A1), we get |βi,n| ≤ c∆n(1+sups∈[i∆n ,(i+1)∆n [(|Ys |+|Xs |)). As E(αi,n|G n
i ) =

0, we get |E(ei,n|G n
i )| ≤ c∆n(1 + |X i∆n | + |Yi∆n |). By Assumption (A2), for all k ≥ 0, we get

E

|βi,n|

k
|G n

i


≤ c∆k

n(1+|Yi∆n |
k
+|X i∆n |

k). For k ≥ 2, applying the Burkholder–Davis–Gundy
and the Jensen inequalities yields:

E
αk

i,n

 |G n
i


≤ c

 (i+1)∆n

i∆n

E

|a(Ys, Xs) − a(Yi∆n , X i∆n )|

k
|G n

i


ds.
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By Proposition 5 and Assumption (A1), we get E
αk

i,n

 ≤ c∆k/2+1
n (1 + |Yi∆n |

k
+ |X i∆n |

k).

Finally, we get |E(e2
i,n|G n

i )| ≤ c∆2
n(1 + |X i∆n |

2
+ |Yi∆n |

2). Using Proposition 5, we have

E


sup

s∈[i∆n ,(i+1)∆n [

|Xs − X i∆n |
k
|G n

i


≤ ∆k/2

n (1 + |Yi∆n |
k
+ |X i∆n |

k)

thus we directly deduce

E
Y i,n − X i∆n

k |G n
i


= E

 1
∆n

 (i+1)∆n

i∆n

(Xs − X i∆n )ds


k
G n

i


≤ ∆k/2

n (1 + |Yi∆n |
k
+ |X i∆n |

k). �

Proof of Proposition 3. We have

Y i+1,n − Y i,n =
1

∆n

 (i+1)∆n

i∆n

 s+∆n

s
a(Yv, Xv)d Bvds  

Ai

+
1

∆n

 (i+1)∆n

i∆n

 s+∆n

s
b(Yv, Xv)dvds  

Bi

.

By Fubini theorem, we have

Ai =

 (i+1)∆n

i∆n

a(Yv, Xv)(v − i∆n)d Bv +

 (i+2)∆n

(i+1)∆n

a(Yv, Xv)((i + 2)∆n − v)d Bv

Bi =

 (i+1)∆n

i∆n

b(Yv, Xv)(v − i∆n)dv +

 (i+2)∆n

(i+1)∆n

b(Yv, Xv)((i + 2)∆n − v)dv.

We can rewrite Ai as Ai = a(Yi∆n , X i∆n )∆
3/2
n (ξi,n + ξ ′

i+1,n) + ai,n + a′

i+1,n where

ai,n =
 (i+1)∆n

i∆n


a(Yv, Xv) − a(Yi∆n , X i∆n )


(v − i∆n)d Bv and a′

i+1,n =
 (i+2)∆n
(i+1)∆n


a(Yv, Xv)

− a(Yi∆n , X i∆n )

((i + 2)∆n − v)d Bv . Similarly,

Bi = b(Yi∆n , X i∆n )∆
2
n + bi,n + b′

i+1,n

where bi,n =
 (i+1)∆n

i∆n
(b(Yv, Xv) − b(Yi∆n , Y i,n))(v − i∆n)d Bv and b′

i+1,n =
 (i+2)∆n
(i+1)∆n

(b(Yv, Xv) − b(Yi∆n , Y i,n))((i + 2)∆n − v)d Bv . Therefore, this yields

Y i+1,n − Y i,n − ∆nb(Yi∆n , Y i,n) = a(Yi∆n , X i∆n )∆
1/2
n (ξi,n + ξ ′

i+1,n) + εP
i,n

with εP
i,n =

ai,n
∆n

+
a′

i+1,n
∆n

+
bi,n
∆n

+
b′

i+1,n
∆n

.
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◦ Let us prove |E(εP
i,n|G n

i )| ≤ c∆2
n(1 + |X(i+1)∆n |

3
+ |Y(i+1)∆n |

3). We have E(ai,n|G n
i ) =

E(a′

i+1,n|G n
i ) = 0 and

E


bi,n

∆n

G n
i


=

1
∆n

 (i+1)∆n

i∆n

(v − i∆n)E(b(Yv, Xv) − b(Yi∆n , X i∆n )|G n
i )dv

+
1

∆n

 (i+1)∆n

i∆n

(v − i∆n)E(b(Yi∆n , X i∆n ) − b(Yi∆n , Y i,n)|G n
i )dv.

By Itô’s formula, Assumptions (A1)–(A2) and Proposition 5, we get

sup
v∈[i∆n ,(i+1)∆n [

E b(Yv, Xv) − b(Yi∆n , X i∆n )|G n
i

 ≤ ∆nc(1 + |Yi∆n |
2
+ |X i∆n |

2).

By Taylor’s formula of order two, there exists Z ∈ (Y i,n, X i∆n ) such that

b(Yi∆n , Y i,n) − b(Yi∆n , X i∆n ) = b′
x (Yi∆n , X i∆n )(Y i,n − X i∆n )

+
1
2

b′′

x2(Yi∆n , Z)(Y i,n − X i∆n )
2.

Using the Cauchy–Schwartz inequality, we getE b(Yi∆n , Y i,n) − b(Yi∆n , X i∆n )|G n
i

 ≤ c∆n(1 + |Yi∆n |
2
+ |X i∆n |

2).

Hence

sup
v∈[i∆n ,(i+1)∆n [

E b(Yv, Xv) − b(Yi∆n , Y i,n)|G n
i

 ≤ ∆nc(1 + |Yi∆n |
2
+ |X i∆n |

2)

and
E  bi,n

∆n
|G n

i

 ≤ ∆2
nc(1 + |Yi∆n |

2
+ |X i∆n |

2). Similarly,

E b′

i+1,n
∆n

|G n
i

 ≤ ∆2
nc(1 +

|Y(i+1)∆n |
2
+ |X(i+1)∆n |

2) and the bound on |E(εP
i,n|G n

i )| is proved.

◦ We now bound |E((εP
i,n)2

|G n
i )| and |E((εP

i,n)4
|G n

i )|. Using the Cauchy–Schwarz inequality,
it is sufficient to bound |E((εP

i,n)4
|G n

i )|. By Assumption (A2) and Proposition 5, we

obtain E
 bi,n

∆n

4 |G n
i


≤ ∆4

nc(1 + |Yi∆n |
4

+ |X i∆n |
4) and similarly E

 b′

i+1,n
∆n

4 |G n
i


≤

∆4
nc(1 + |Y(i+1)∆n |

4
+ |X(i+1)∆n |

4). We have to bound E
 ai,n

∆n

4 |G n
i


. Using the

Burkholder–Davis–Gundy inequality, Proposition 5 and Assumption (A2), we get

E

ai,n

∆n

4
G n

i


≤

c

∆4
n
E

 (i+1)∆n

i∆n


a(Yv, Xv) − a(Yi∆n , X i∆n )

4 dv

×

 (i+1)∆n

i∆n


(v − i∆n)4dv


|G n

i


≤ c∆4

n(1 + |Yi∆n |
4
+ |X i∆n |

4).

Similarly, we obtain E

 a′

i+1,n
∆n

4 |G n
i


≤ c∆4

n(1+|Y 4
(i+1)∆n

|+|X(i+1)∆n |
4). This completes the

proof for the bound of |E(ε4
i,n|G n

i )|.
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◦ We now proof |E(εi,nUi,n|G n
i )| ≤ c∆3/2

n (1 + |X i∆n |
2

+ |Yi∆n |
2). From the definitions of

(ai,n, a′

i+1,n, bi,n, b′

i+1,n), we can prove the following inequalities

|E(ai,nξi,n|G n
i )| ≤ ∆5/2

n c(1 + |Yi∆n | + |X i∆n |), |E(a′

i+1,nξi,n|G n
i )| = 0

|E(bi,nξi,n|G n
i )| ≤ ∆5/2

n c(1 + |Yi∆n | + |X i∆n |),

|E(b′

i+1,nξi,n|G n
i )| ≤ ∆5/2

n c(1 + |Y(i+1)∆n | + |X(i+1)∆n |).

Hence the results for |E(εi,nUi,n|G n
i )|.

◦ Proposition 5 yields

E


sup

s∈[i∆n ,(i+2)∆n [

|Xs − X i∆n |
k


≤ c∆k/2

n (1 + |Y(i+1)∆n |
k
+ |X(i+1)∆n |

k)

which provides

E
Y i+1,n − Y i,n

k |G n
i


≤ c∆k/2

n (1 + |Y(i+1)∆n |
k
+ |X(i+1)∆n |

k). �

Proof of Proposition 4. The first assertion in the complete observations case is based on the
convergence of the Euler scheme [1]. For partial observations case, Taylor’s expansion ensures
that there exists s ∈ (Y i,n, X i∆n ) such that

f (Yi∆n , Y i,n, θ) = f (Yi∆n , X i∆n , θ) + f ′
x (Yi∆n , Xs, θ)(Y i,n − X i∆n ).

Thus we deduce that E(sup | f (Yi∆n , Y i,n, θ) − f (Yi∆n , X i∆n , θ)||G n
i ) ≤ c∆1/2

n (1 + |X i∆n |

+ |Yi∆n |). Hence, the L1 convergence of sup 1
n

n
i=0 | f (Yi∆n , Y i,n, θ) − f (Yi∆n , X i∆n , θ)| is

proved. The results yields by applying Proposition 2. �

Proof of Theorem 3. The scheme of the proof is the same for both complete and partial observa-
tions cases, but the arguments are simpler for the complete observations case. We only detail the
second case. Set Ĩ P

n ( f ) =
1

n∆n

n−2
i=0 f (Y(i−1)∆n , Y i−1,n, θ)


Y i+1,n − Y i − ∆nb(Yi∆n , Y i,n)


.

We can write

I
P
n ( f ) = Ĩ P

n ( f ) +
1

n∆n

n−1
i=1

∆n f (Y(i−1)∆n , Y i−1,n, θ)(b(Yi∆n , Y i )

− b(Y(i−1)∆n , Y i−1,n))

we first study the convergence of Ĩ P
n ( f ) and then we deduce the result for I

P
n ( f ).

We have Ĩ P
n ( f ) =

1
n∆n

n−1
i=0 Zi,n(θ) with Zi,n(θ) = f (Y(i−1)∆n , Y i−1,n, θ) (Y i+1,n − Y i

− ∆nb(Yi∆n , Y i,n)). The random variable Y i,n is G n
i+1-measurable and Zi,n(θ) is G n

i+2-

measurable. We split Ĩ P
n ( f ) into the sum of three terms

Ĩ P
n ( f ) =

1
n∆n


n−1
i=0

Z3i,n(θ) +

n−1
i=0

Z3i+1,n(θ) +

n−1
i=0

Z3i+2,n(θ)


.

To prove (13), it is enough to show that 1
n∆n

n−1
i=0 Z3i,n(θ)

P
−−−→
n→∞

0 uniformly in θ , in

probability (the proof for the convergence of 1
n∆n

n−1
i=0 Z3i+1,n(θ) and 1

n∆n

n−1
i=0 Z3i+2,n(θ) is
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analogous). Using Proposition 3, we set Zi,n(θ) = z(2)
i,n (θ) + z(2)

i,n (θ) with

z(1)
i,n (θ) = f (Y(i−1)∆n , Y i−1,n, θ)∆1/2

n a(Yi∆n , X i∆n )Ui,n

z(2)
i,n (θ) = f (Y(i−1)∆n , Y i−1,n, θ)εP

i,n .

To prove 1
n∆n

n−1
i=0 z( j)

3i,n(θ)
P

−−−→
n→∞

0 for j = 1, 2, we use Lemma A2 of [8]. It is thus enough
to prove

1
n∆n

n−1
i=0

E(z( j)
3i,n(θ)|G n

3i )
P

−−−→
n→∞

0

1

n2∆2
n

n−1
i=0

E((z( j)
3i,n(θ))2

|G n
3i )

P
−−−→
n→∞

0.

As Y 3i−1,n is G n
3i measurable and E(U3i,n|G n

3i ) = 0, we have E(z(1)
i,n (θ)|G n

3i ) = 0. Using

E(U 2
3i,n|G n

3i ) = 2/6, we get

E((z(1)
3i,n(θ))2

|G n
3i ) =

2
6
∆n f 2(Y(3i−1)∆n , Y 3i−1,n, θ)a2(Y3i∆n , X3i∆n ).

Assumptions (A1)–(A2) yields 1
n2∆2

n

n−1
i=0 E((z(1)

3i,n(θ))2
|G n

3i )
P

−−−→
n→∞

0. For z(2)
3i,n(θ), using

Proposition 3, we get E(z(1)
3i,n(θ)|G n

3i ) ≤ c f (Y(3i−1)∆n , Y 3i−1,n, θ)∆2
n(1 + |Y(3i−1)∆n |

3
+

|X(3i−1)∆n |
3) and thus 1

n∆n

n−1
i=0 E(z(2)

3i,n(θ)|G n
3i )

P
−−−→
n→∞

0.

Similarly, we have E((z(2)
3i,n(θ))2

|G n
3i ) ≤ c f 2(Y3i∆n , Y 3i,n, θ)∆2

n(1 + |Y3i∆n |
4

+ |X3i∆n |
4)

and thus 1
n2∆2

n

n−1
i=0 E((z(2)

3i,n(θ))2
|G n

3i )
P

−−−→
n→∞

0. This gives the convergence in probability of

Ĩ P
n ( f ) for all θ .

To obtain uniformity with respect to θ , we use the Proposition 1 of [8]. It is enough to show

supn∈N E


supθ |∂θ Ĩ P
n ( f )|


< ∞. We have

∂θ Ĩ P
n ( f ) =

1
n∆n

n−1
i=1

∂θ f (Y(i−1)∆n , Y i−1,n, θ)

∆1/2

n a(Yi∆n , X i∆n )Ui,n + εi,n


.

As E(Ui , n|G n
i ) = 0 and E(εi,n|G n

i ) ≤ c∆2
n(1 + |X i∆n |

3
+ |Yi∆n |

3), we have E
∂θ fθ (Y(i−1)∆n , Y i−1,n)


∆1/2

n a(Yi∆n , X i∆n )Ui,n + εi,n


|G n

i


≤ c∆n(1 + |X i∆n |

3
+ |Yi∆n |

3).

With Assumption (A2), it implies

E

∂θ f (Y(i−1)∆n , Y i−1,n, θ)


∆1/2

n a(Yi∆n , X i∆n )Ui,n + εi,n


|G n

i


≤ c∆n .

Hence, supn∈N E


supθ |∂ Ĩ P
n ( f )|


< ∞ and uniformity in θ follows. We can now deduce the

result for I
P
n ( f ). Taylor’s formula gives the existence of s1 and s2 such that

b(Yi∆n , Y i ) − b(Y(i−1)∆n , Y i−1,n) = b′
y(Ys1 , Y i )(Yi∆n − Y(i−1)∆n )

+ b′
x (Y(i−1)∆n , Xs2)(Y i − Y i−1,n).
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Assumptions (A1)–(A2), Cauchy–Schwarz inequality and Yi∆n − Y(i−1)∆n = ∆nY i−1,n imply

E
b(Yi∆n , Y i ) − b(Y(i−1)∆n , Y i−1,n)

 |G n
i


≤ c


E
∆nY i−1,n

2 |G n
i

1/2
+ E

Y i − Y i−1,n
2 |G n

i

1/2


(1 + |X i∆n | + |Yi∆n |)

≤ c∆1/2
n (1 + |X i∆n | + |Yi∆n |).

This implies

1
n∆n

n−1
i=1

∆n f (Y(i−1)∆n , Y i−1,n, θ)(b(Yi∆n , Y i ) − b(Y(i−1)∆n , Y i−1,n))
P

−−−→
n→∞

0.

Hence the result. �

Proof of Theorem 4. We only detail the partial observations case. We set Wi,n(θ) =

f (Y(i−1)∆n , Y i−1,n, θ)(Y i+1,n − Y i,n)2 such that Q
P
n ( f ) =

1
n∆n


Wi,n(θ). We split the sum

into the sum of three terms W3i,n , W3i+1,n and W3i+2,n . Given this partition, it is enough to show
that

(n∆n)−1
n−1
i=1

W3i,n(θ)
P

−−−→
n→∞

2
3
ν0( f (·, ·, θ)a2(·, ·)).

As the expression of Q
P
n is slightly different from [8], we are able to write W3i,n(θ) as the sum

of only three terms (instead four). Using Taylor’s formula, there exists Xs ∈ (Y 3i,n, X3i∆n ) such

that we can write W3i,n(θ) = w
(1)
3i,n(θ) + w

(2)
3i,n(θ) + w

(3)
3i,n(θ) with

w
(1)
3i,n(θ) = ∆na2(Y3i∆n , X3i∆n )U

2
3i,n f (Y(3i−1)∆n , Y 3i−1,n, θ)

w
(2)
3i,n(θ) = 2∆1/2

n U3i,na(Y3i∆n , X3i∆n ) f (Y(3i−1)∆n , Y 3i−1,n, θ)(ε3i,n

+∆nb(Y3i∆n , X3i∆n ) + ∆nb′
x (Y3i∆n , Xs)(Y 3i,n − X3i∆n ))

w
(3)
3i,n(θ) = (ε3i,n + ∆nb(Y3i∆n , X3i∆n ) + ∆nb′

x (Y3i∆n , Xs)(Y 3i,n − X3i∆n ))
2

× f (Y(3i−1)∆n , Y 3i−1,n, θ).

We set Q
(P j)
n (θ) = (n∆n)−1n−1

i=1 w
( j)
3i,n(θ), for j = 1, 2, 3. We start by studying Q

(P1)

n (θ).

Using E(U 2
3i,n|G n

3i ) = 2/3 and E(U 4
3i,n|G n

3i ) = 4/3 and the fact that Y 3i−1,n is G n
3i -measurable,

we obtain:

E(w
(1)
3i (θ)|G n

3i ) =
2∆n

3
a2(Y3i∆n , X3i∆n ) f (Y(3i−1)∆n , Y 3i−1,n, θ)

E((w
(1)
3i (θ))2

|G n
3i ) =

4∆2
n

3
a4(Y3i∆n , X3i∆n ) f (2Y(3i−1)∆n , Y 3i−1,n, θ).

Thus, applying Lemma A1 of [8], we get

(n∆n)−1
n−1
i=0

E(w
(1)
3i (θ)|G n

3i )
P

−−−→
n→∞

2
3
ν0( f (·, ·, θ)a2(·, ·))

and by Assumption (A2), we get E
E((w

(1)
3i (θ))2

|G n
3i )

 ≤ c∆2
n and therefore, (n∆n)−1n−1

i=0

E((w
(1)
3i (θ))2

|G n
3i )

P
−−−→
n→∞

0. By Lemma A2 of [8], we deduce Q
(P1)

n (θ)
P

−−−→
n→∞
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2
3ν0( f (·, ·, θ)a2(·, ·)) in probability. Using Proposition 3 and Lemma A2 of [8], we easily prove

that Q
(P2)

n (θ)
P

−−−→
n→∞

0 and Q
(P3)

n (θ)
P

−−−→
n→∞

0. The uniformity is obtained by bounding

sup
n∈N

(n∆n)−1
n−1
i=0

E


(Y i+1,n − Y i,n)2 sup
θ

∂θ f (Yi∆n , Y i,n, θ)
 < ∞

due to Proposition 1 of [8]. This is easily obtained using Proposition 2 and Assumption (A2). �

Proof of Theorem 5. We only detail the partial observations case. We have
n∆n I

P
n ( f ) =


n∆n Ĩ P

n ( f ) +
1

√
n∆n

×

n−1
i=2

f (Y(i−1)∆n , Y i−1,n, θ)∆n(b(Yi∆n , Y i ) − b(Y(i−1)∆n , Y i−1,n)).

We first study the distribution convergence of
√

n∆n Ĩ P
n ( f ) then we deduce the result for

√
n∆n I

P
n ( f ). Using the same notations as in Theorem 4, we set

√
n∆n Ĩ P

n ( f ) = N (1)
n + N (2)

n

with N (1)
n =

1
√

n

n−1
i=1 f (Y(i−1)∆n , Y (i−1)∆n , θ)a(Yi∆n , X i∆n )(ξi,n + ξ ′

i+1,n) and N (2)
n =

1
√

n∆n

n−1
i=1 f (Y(i−1)∆n , Y (i−1)∆n , θ)εin . First, we study N (1)

n . In order to use a martingale
central limit theorem, we reorder the terms

N (1)
n =

1
√

n
f (Y0, Y 0, θ)a(Y∆n , X∆n )ξ0,n +

1
√

n

n−1
i=2

s(1)
in

+
1

√
n

f (Y(n−2)∆n , Y (n−2)∆n , θ)a(Y(n−1)∆n , X(n−1)∆n )ξ
′
n,n (A.1)

with

s(1)
in = f (Y(i−1)∆n , Y (i−1)∆n , θ)a(Yi∆n , X i∆n )ξi,n

+ f (Y(i−2)∆n , Y (i−2)∆n , θ)a(Y(i−1)∆n , X(i−1)∆n )ξ
′

i,n .

We have E(s(1)
in |G n

i ) = 0 and we compute the conditional variance E[(s(1)
in )2

|G n
i ]:

E[(s(1)
in )2

|G n
i ] =

1
3
{ f 2(Y(i−1)∆n , Y (i−1)∆n , θ)a2(Yi∆n , X i∆n )

+ f (Y(i−1)∆n , Y (i−1)∆n , θ) f (Y(i−2)∆n , Y (i−2)∆n , θ)

× a(Yi∆n , X i∆n )a(Y(i−1)∆n , X(i−1)∆n )

+ f 2(Y(i−2)∆n , Y (i−2)∆n , θ)a2(Y(i−1)∆n , X(i−1)∆n )}.

We want to prove that 1
n

n−1
i=2 E[(s(1)

in )2
|G n

i ]
P

−−−→
n→∞

ν0( f 2a2). We first start with the term
1
n

n−1
i=2 f 2(Y(i−1)∆n , Y (i−1)∆n , θ)a2(Yi∆n , X i∆n ). By the ergodic theorem, we have

1
n

n−1
i=2

f 2(Y(i−1)∆n , X(i−1)∆n , θ)a2(Yi∆n , X i∆n )
P

−−−→
n→∞

ν0( f 2a2).

A Taylor development and the Cauchy–Schwarz inequality provide the convergence in L1 to-
wards 0 of supθ

1
n

n−1
i=2 | f 2(Y(i−1)∆n , Y (i−1)∆n , θ)a2(Yi∆n , X i∆n )− f 2(Y(i−1)∆n , X(i−1)∆n , θ)
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a2(Y i Dn, X i∆n )| using Assumptions (A1)–(A2). The terms f (Y(i−1)∆n , Y (i−1)∆n , θ)

f (Y(i−2)∆n , Y (i−2)∆n , θ)a(Yi∆n , X i∆n ) a(Y(i−1)∆n , X(i−1)∆n ) and f 2(Y(i−2)∆n , Y (i−2)∆n , θ)

a2(Y(i−1)∆n , X(i−1)∆n ) are similar.

We easily bound E[(s(1)
in )4

|G n
i ] and show that 1

n2

n−1
i=2 E[(s(1)

in )4
|G n

i ]
L1

−−−→
n→∞

0. By the

martingale central limit theorem, we deduce that 1
√

n

n−1
i=2 s(1)

in
D

−−−→
n→∞

N (0, ν0( f 2a2)). By

(A.1), we deduce N (1)
n

D
−−−→
n→∞

N (0, ν0( f 2a2)).

We now have to prove the convergence to 0 of N (2)
n . Using Proposition 3, we easily have the

convergence to 0 of 1
√

n∆n

n−1
i=1 E[ f (Y(i−1)∆n , Y (i−1)∆n , θ)εin|G n

i ] in probability. Similarly, we

obtain that 1
n∆n

n−1
i=1 E[ f 2(Y(i−1)∆n , Y (i−1)∆n , θ)ε2

in|G n
i ] converges to 0 in probability. Thus,

using Proposition 5, we get N (2)
n

P
−−−→
n→∞

0. This implies

1
n∆n

n−1
i=1

∆n f (Y(i−1)∆n , Y i−1,n, θ)(b(Yi∆n , Y i ) − b(Y(i−1)∆n , Y i−1,n))
P

−−−→
n→∞

0.

This gives the convergence in distribution of
√

n∆n Ĩ P
n ( f ). To deduce the results for

√
n∆n I

P
n ( f ), we remark that

b(Yi∆n , Y i ) − b(Y(i−1)∆n , Y i−1,n) = b(Yi∆n , Y i ) − b(Y(i−1)∆n , Y i )

+ b(Y(i−1)∆n , Y i ) − b(Y(i−1)∆n , Y i−1,n).

Taylor’s development gives

E[|b(Yi∆n , Y i,n) − b(Yi∆n , Y i−1,n)|G n
i ] ≤ c


∆n(1 + |X i∆n | + |Yi∆n |).

Using b(Yi∆n , Y i ) − b(Y(i−1)∆n , Y i ) =
 i∆n
(i−1)∆n

b′
y(Ys, Y i−1,n)(X(i−1)∆n +

 s
(i−1)∆n

b(Vu, Xu)

du +
 s
(i−1)∆n

a(Vu, Xu)d Bu)ds and the Burkholder inequality, this yields

E[|b(Yi∆n , Y i ) − b(Y(i−1)∆n , Y i )| |G n
i ] ≤ c


∆n(1 + |X i∆n | + |Yi∆n |).

Using Assumptions (A1)–(A4), we deduce the convergence to 0 in probability of
1

√
n∆n

n−1
i=2 f (Y(i−1)∆n , Y i−1,n, θ)∆n(b(Yi∆n , Y i ) − b(Y(i−1)∆n , Y i−1,n)). We deduce that

√
n∆n I

P
n ( f ) −

√
n∆n Ĩ P

n ( f ) = oP(1). �

Proof of Theorem 6. We only detail the partial observations case. We use the same notations as

in Theorem 4. Set Mn( f ) =
√

n


Q
P
n ( f ) −

2
3νn( f a2)


and β(y, x) = a2(y, x) f (y, x, θ). We

have

Mn( f ) =
√

n


1

n∆n

n−1
i=2


∆n f (Yi∆n , Y i , θ)a2(Yi∆n , X i∆n )U

2
i

+ f (Yi∆n , Y i , θ)(εP
i,n + ∆nb(Yi∆n , Y i ))

2

+ 2∆1/2
n f (Yi∆n , Y i , θ)a(Yi∆n , X i∆n )Ui (ε

P
i,n

+ ∆nb(Yi∆n , Y i ))


−

2
3n

n−1
i=2

f (Yi∆n , Y i , θ)a2(Yi∆n , Y i )


.
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By Taylor expansion, there exists Xv ∈ (X i∆n , Y i,n) such that

Mn( f ) =
√

n


1

n∆n

n−1
i=2


∆nβ(Yi∆n , X i∆n )


U 2

i −
2
3


+ f (Yi∆n , X i∆n , θ)(εP

i,n + ∆nb(Yi∆n , Y i ))
2

+ 2∆1/2
n f (Yi∆n , X i∆n , θ)a(Yi∆n , X i∆n )Ui (ε

P
i,n

+ ∆nb(Yi∆n , Y i ))(Y i+1,n − Y i,n)2(Y i,n − X i∆n ) f ′
x (Yi∆n , Xv, θ)


−

2
3n

n−1
i=2

(β(Yi∆n , Y i ) − β(Yi∆n , X i∆n ))


.

Thus Mn( f ) =
5

l=1 M
(l)
n with

M
(1)

n =
1

√
n

n−1
i=2

β(Yi∆n , X i∆n )


U 2

i −
2
3



M
(2)

n =
1

√
n∆n

n−1
i=2

2 f (Yi∆n , X i∆n , θ)a(Yi∆n , X i∆n )Ui (ε
P
i,n + ∆nb(Yi∆n , Y i ))

M
(3)

n =
1

√
n∆n

n−1
i=2

f (Yi∆n , X i∆n , θ)(εP
i,n + ∆nb(Yi∆n , Y i ))

2

M
(4)

n =
1

√
n∆n

n−1
i=2

(Y i+1,n − Y i,n)2(Y i,n − X i∆n ) f ′
x (Yi∆n , Xv, θ)

M
(5)

n =
2

3
√

n

n−1
i=2

(β(Yi∆n , Y i ) − β(Yi∆n , X i∆n )).

We first study the convergence of M
(1)

n . Reordering terms to obtain a triangular array of
martingale increments, we get

M
(1)

n =
1

√
n


n−1
i=2

sin +


ξ2

0,n −
1
3


β(Y0, X0) +


ξ ′2

n,n −
1
3


β(Y(n−1)∆n , X(n−1)∆n )

+ 2ξn−1,nξ ′
n,nβ(Y(n−1)∆n , X(n−1)∆n )



where sin =


ξ2

i,n −
1
3


β(Yi∆n , X i∆n ) +


ξ ′2

i,n −
1
3


β(Y(i−1)∆n , X(i−1)∆n ) + 2ξi−1,nξ ′

i,nβ

(Y(i−1)∆n , X(i−1)∆n ). But, sin is G n
i+1 measurable and centered conditionally to G n

i . Furthermore,
using the properties of (ξi,n, ξ ′

i,n), we deduce
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E(s2
in|G n

i ) =
2
9
β2(Yi∆n , X i∆n ) +

2
9
β2(Y(i−1)∆n , X(i−1)∆n )

+
4
3
ξ2

i−1,nβ2(Y(i−1)∆n , X(i−1)∆n )

+
1
9
β(Y(i−1)∆n , X(i−1)∆n )β(Yi∆n , X i∆n ).

To prove the convergence of M
(1)

n , it is sufficient to prove that

1
n

n−1
i=2

E

|s2

in| |G n
i

 P
−−−→
n→∞

ν0(β
2) and

1

n2

n−1
i=2

E

|s4

in| |G n
i

 P
−−−→
n→∞

0.

Indeed, applying Theorem 3.2 in [9], we get 1
√

n

n−1
i=2 sin

D
−−−→
n→∞

N (0, ν0(β
2)) and so does

M
(1)

n . By Lemma A2 of [8], we have 1
n

n−1
i=2 ξ2

i−1,nβ2(Y(i−1)∆n , X(i−1)∆n )
P

−−−→
n→∞

1/3ν0(β
2).

Thus, we deduce 1
n

n−1
i=2 E


|s2

in| |G n
i

 P
−−−→
n→∞

ν0(β
2). The bound on β4 yields the

convergence of 1
n2

n−1
i=2 E


|s4

in| |G n
i


.

We have to prove M
(l)
n

P
−−−→
n→∞

0 for l = 2, . . . , 5. This holds true using that n∆2
n → 0 and the

hypothesis (A1) for M
(5)

n . �

References

[1] V. Bally, D. Talay, The law of the Euler scheme for stochastic differential equations I, convergence rate of the
distribution function, Probab. Theory Related Fields 104 (1996) 43–60.

[2] S. Ditlevsen, M. Sørensen, Inference for observations of integrated diffusion processes, Scand. J. Stat. 31 (2004)
417–429.

[3] B. Favetto, A. Samson, Parameter estimation for a bidimensional partially observed Ornstein–Uhlenbeck process
with biological application, Scand. J. Stat. 37 (2010) 200–220.

[4] D. Florens-Zmirou, Approximate discrete-time schemes for statistics of diffusion processes, Statistics 20 (1989)
547–557.

[5] C. Gardiner, Handbook of Stochastic Methods, Springer Verlag, New York, 1985.
[6] V. Genon-Catalot, J. Jacod, On the estimation of the diffusion coefficient for multi-dimensional diffusion processes,
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Marne-La-Vallée, 2005.
[13] J. Mattingly, A.M. Stuart, D. Higham, Ergodicity for sdes and approximations: locally lipschitz vector fields and

degenerate noise, Stochastic Process. Appl. 101 (2002) 185–232.
[14] D. Nualart, The Malliavin calculus and related topics, in: Probability and its Applications (New York), second ed.,

Springer-Verlag, Berlin, 2006.
[15] Y. Pokern, A. Stuart, P. Wiberg, Parameter estimation for partially observed hypoelliptic diffusions, J. Roy. Stat.

Soc. B 71 (2009) 49–73.



2552 A. Samson, M. Thieullen / Stochastic Processes and their Applications 122 (2012) 2521–2552

[16] B.L.S. Prakasa Rao, Statistical inference from sampled data for stochastic processes, in: Statistical Inference From
Stochastic Processes (Ithaca, NY, 1987), in: Contemp. Math., vol. 80, Amer. Math. Soc., Providence, RI, 1988,
pp. 249–284.

[17] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, in: Grundlehren der Mathematischen
Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 293, Springer-Verlag, Berlin, 1991.

[18] N. Yoshida, Estimation for diffusion processes from discrete observation, J. Multivariate Anal. 41 (1992) 220–242.


	A contrast estimator for completely or partially observed hypoelliptic diffusion
	Introduction
	Hypoelliptic system and assumptions
	The model
	Assumptions

	Estimators and their properties
	Observations
	A contrast estimator for complete observations
	A contrast estimator for partial observations
	Main results

	Functionals of  (YiΔn, XiΔn)  and  (YiΔn, Yi, n) 
	Uniform convergence
	Convergence in distribution of functionals of the process

	Proofs of main results
	Proof of Theorem 1
	Proof of Theorem 2

	Simulation study
	Model I: stochastic growth
	Model II: harmonic oscillator
	Model III: trigonometric oscillator

	Discussion
	Acknowledgment
	Proofs
	References


