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Abstract

We describe all random sets that satisfy the radial conformal restriction property, therefore providing the
analogue in the radial case of results of Lawler, Schramm and Werner in the chordal case.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

The present paper is a write-up of the “radial” counterpart of some of the results derived in
the “chordal” setting in the paper [6] by Lawler, Schramm and Werner. The goal is to describe
the laws of all random sets that satisfy a certain radial conformal restriction property.

Let us describe without further ado this property, and the main result of the present paper:
Consider the unit disc U and we fix a boundary point 1 and an interior point the origin. We will
study closed random subsets K of U such that:

• K is connected, C \ K is connected, K ∩ ∂U = {1}, 0 ∈ K .
• For any closed subset A of U such that A = U ∩ A, U \ A is simply connected, contains the

origin and has 1 on the boundary, the law of ΦA(K ) conditioned on (K ∩ A = ∅) is equal to
law of K where ΦA is the conformal map from U \ A onto U that preserves 1 and the origin
(see Fig. 1).
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Fig. 1. ΦA is the conformal map from U \ A onto U that preserves 0 and 1. Conditioned on (K ∩ A = ∅), ΦA(K ) has
the same law as K .

The law of such a set K is called a radial restriction measure, by analogy with the chordal
restriction measures defined in [6].

The main result of the present paper is the following classification and description of all radial
restriction measures.

Theorem 1. 1. (Characterization). A radial restriction measure is fully characterized by a pair
of real numbers (α, β) such that

P

K ∩ A = ∅


= |Φ′

A(0)|αΦ′

A(1)β

where A is any closed subset of U such that A = U ∩ A, U \ A is simply connected, contains
the origin and has 1 on the boundary, and ΦA is the conformal map from U \ A onto U that
preserves 0 and 1. We denote the corresponding radial restriction measure by P (α, β).

2. (Existence). The measure P (α, β) exists if and only if

β ≥
5
8
, α ≤ ξ(β) =

1
48


(


24β + 1 − 1)2
− 4


.

We shall give an explicit construction of the measures P (α, β) for all these admissible values
of α and β. The function ξ(β) is (as could be expected) the so-called disconnection exponent
associated with the half-plane exponent β (see [7,3–5]).

It is worth observing that |Φ′

A(0)| ≥ 1 and that Φ′

A(1) ≤ 1. In Theorem 1, we see that the
value of β is necessarily positive (and that therefore Φ′

A(1)β ≤ 1), but the value of α can be neg-
ative or positive (as long as α ≤ ξ(β)), so that |Φ′

A(0)|α can be greater than one (but of course,
the product |Φ′

A(0)|αΦ′

A(1)β cannot be greater than one which is guaranteed by the condition
α ≤ ξ(β)).

This theorem is the counterpart of the classification of chordal restriction measures in [6] that
we shall recall in the next section. It is worth noticing already that while the class of chordal
conformal restriction measures was parametrized by a single parameter β ≥ 5/8, the class of
radial restriction samples is somewhat larger as it involves the additional parameter α. This can
be rather easily explained by the fact that the radial restriction property is in a sense weaker than
the chordal one. It involves an invariance property of the probability distribution under the action
of the semi-group of conformal transformations that preserve both an inner point and a boundary
point of the disc. In the chordal case, the semi-group of transformations were those maps that
preserve two given boundary points (which is a larger family). Another way to see this is that
the chordal restriction samples in the upper half-plane are scale-invariant, while the radial ones
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are not. However, and this will be apparent in the latter part of the proof of Theorem 1, chordal
restriction samples of parameter β can be viewed as limits of radial ones with parameters (α, β)

(for all admissible α’s), in the same way as chordal SLE can be viewed as the limit of radial SLE
when the inner point converges to the boundary of the domain.

These results have been discussed and mentioned before, at least partially, in e-mail ex-
changes, lectures and discussions by a number of mathematicians, including of course Lawler,
Schramm and Werner, and also Dubédat or Gruzberg. In fact, Ref. [31] in the paper [6] written in
2003 by Lawler, Schramm and Werner is precisely a paper “in preparation” with the very same
title as the present one. I wish to hereby thank Greg Lawler and Wendelin Werner for letting me
write up the present paper and work out the details of the proofs.

2. Preliminaries

We now briefly recall some background material that will be needed in our proofs, concerning
chordal or radial SLE and their SLEκ(ρ) variants, Brownian loop-soups as well as chordal
restriction measures. When K is a subset of C and x ∈ C, we denote x + K as the set
{x + z : z ∈ K } and x K as the set {xz : z ∈ K }.

2.1. Chordal Loewner chains and SLE

Suppose (Wt , t ≥ 0) is a real-valued continuous function. For each z ∈ H, define gt (z) as the
solution to the chordal Loewner ODE:

∂t gt (z) =
2

gt (z) − Wt
, g0(z) = z.

Write τ(z) = sup{t ≥ 0 : infs∈[0,t] |gs(z) − Ws | > 0} and Kt = {z ∈ H : τ(z) ≤ t}. Then gt
is the unique conformal map from H \ Kt onto H such that |gt (z) − z| → 0 as z → ∞. And
(gt , t ≥ 0) is called the chordal Loewner chain generated by the driving function (Wt , t ≥ 0). In
fact, we have (gt (z) − z)z → 2t as z → ∞.

SLE curves are introduced by Oded Schramm as candidates of scaling limits of discrete
statistical physics models (see [13]). A chordal SLEκ is defined by the random family of chordal
conformal maps gt when W =

√
κ B where B is a standard one-dimensional Brownian motion.

It is proved that there exists a.s. a continuous curve η such that for each t ≥ 0, H \ Kt is the
unbounded connected component of H \ η([0, t]) (see [12]).

Chordal SLEκ(ρ) processes are variants of SLEκ process. For simplicity, we will here only
describe the SLEκ(ρ) processes with just one additional force point: It is the measure on the
random family of conformal maps gt generated by chordal Loewner chain with Wt replaced by
the solution to the system of SDEs:

dWt =
√

κd Bt +
ρ

Wt − Vt
dt;

dVt =
2

Vt − Wt
dt, V0 = x ≠ 0, (Wt − Vt )/(W0 − V0) ≥ 0.

When κ > 0, ρ > −2, there is a pathwise unique solution to the above SDEs. The force
point is repelling when ρ is positive while it is attracting when ρ is negative. There exists a.s. a
continuous curve η in H from 0 to ∞ associated to the SLEκ(ρ) process (see [9]).

In the limit when x → 0+ (respectively 0−), the process has a limit that is scale-invariant
in distribution. This enables to define the corresponding SLEκ(ρ) (referred to as SLER

κ (ρ) or
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SLEL
κ (ρ) to indicate if the force-point is to the right or to the left of the driving point) from a

boundary point of a simply connected domain to another by conformal invariance, just as for
ordinary SLEκ .

2.2. Chordal restriction samples

We now recall briefly some facts from [6]. Consider the upper half plane H and we fix two
boundary points 0 and ∞. A (two-sided) chordal restriction sample is a closed random subset of
H such that

• K is connected, C \ K is simply connected, K ∩ R = {0}, and K is unbounded.
• For any closed subset A of H such that A = H ∩ A, H \ A is simply connected, A is bounded

and 0 ∉ A, the law of ΨA(K ) conditioned on (K ∩ A = ∅) is equal to the law of K where ΨA
is any given conformal map from H \ A onto H that preserves 0 and ∞.

Note that this second property in the case where A = ∅ shows that the law of K is scale-invariant
(i.e. that K and λK have the same distribution for any fixed positive λ). It is proved that the
chordal restriction measures form a one-parameter family (Qβ), such that for all A as before,

Qβ


K ∩ A = ∅


= Ψ ′

A(0)β

where ΨA is the conformal map from H\ A onto H that preserves 0 and ΨA(z)/z → 1 as z → ∞

(see [6]). In that paper, it is proved that the chordal conformal restriction measure Qβ exists if
and only if β ≥ 5/8.

We would like to make the following remarks that will be relevant for the present paper:

1. Chordal restriction samples can be defined in any simply connected domain H ≠ C by
conformal invariance (using the fact that their law in H is scale-invariant: K and λK have the
same law for any fixed positive constant λ). For instance, if H is such a simply connected
domain and z, w are two different boundary points, the chordal restriction sample in H
connecting z and w is the image of chordal restriction sample in H under any given conformal
map φ from H onto H that sends the pair (0, ∞) to (z, w).

2. In the proof of the construction of these (two-sided) chordal restriction samples, an important
role is played by the related “right-sided chordal restriction samples”, that we shall also use
at some point in the present paper. These are a closed random subset K of H such that
• K is connected, C \ K is connected, K ∩ R = (−∞, 0].
• For any closed subset A of H such that A = H ∩ A, H\A is simply connected, A is bounded

and A ∩ R ⊂ (0, ∞), the law of ΨA(K ) conditioned on (K ∩ A = ∅) is equal to the law of
K where ΨA is any conformal map from H \ A onto H that preserves 0 and ∞.

It is clear that the domain to the left of the right boundary of chordal restriction sample
is a right-sided restriction sample. Precisely, suppose K is the closure of the union of the
domains between R− and the right boundary of a (two-sided) chordal restriction sample, then
K is a right-sided restriction sample. In fact, there exists a one-parameter family Q+

β such
that

Q+

β


K ∩ A = ∅


= Ψ ′

A(0)β

where ΨA is the conformal map from H \ A onto H that preserves 0 and ΨA(z)/z → 1 as
z → ∞. Q+

β exists if and only if β ≥ 0. We usually ignore the trivial case β = 0 where
K = R−.
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One example of right-sided restriction sample is given by SLEL
8/3(ρ): Let η be such a

process in H from 0 to ∞. Let K be the closure of the union of domains between η and
R−. Then K is a right-sided restriction sample with exponent β = (ρ + 2)(3ρ + 10)/32.
Conversely, let K be a right-sided restriction sample with exponent β > 0, then the right
boundary of K is an SLEL

8/3(ρ) process with

ρ = ρ(β) =
2
3
(


24β + 1 − 1) − 2. (2.1)

3. We have just seen the right boundary of a two-sided restriction sample is an SLEL
8/3(ρ)

process. It is also possible to describe the conditional law of the left boundary given the right
boundary: Denote Lr as the domain between R− and the right boundary of K . Then, given
this right boundary, the conditional law of the left boundary of K is an SLER

8/3(ρ − 2) from 0
to ∞ in Lr (see [15]). In fact, we shall construct our radial restriction samples using the radial
analogue of this recipe.

4. Let C(K ) be the cut point set of K i.e. the set of points x in K such that K \ {x} is not
connected. Note that C(K ) is the intersection of the right and left boundaries of K . It turns out
that the right and left boundaries of K can be coupled with a Gaussian Free Field as two flow
lines, which enables to prove (see [11, Theorem 1.5]) that the Hausdorff dimension of C(K )

is almost surely equal to (25 − u2)/12 where u =
√

24β + 1 − 1, when 5/8 ≤ β ≤ 35/24,
whereas C(K ) = ∅ almost surely when β > 35/24.

5. It is possible to describe the half-plane Brownian non-intersection exponents ξ̃ in terms of
restriction measures. For instance, consider two independent chordal restriction samples K1
and K2 with exponent β1, β2 respectively. One can derive that, conditioned on (K1 ∩ K2 = ∅)

(viewed as the limit of K1 ∩ (x + K2) ∩ B(0, R) = ∅ as x → 0, R → ∞), the “inside” of
K1 ∪ K2 has the same law as a chordal restriction sample of exponent ξ̃ (β1, β2).

6. It is possible to use restriction samples in order to describe the law of SLEκ(ρ) processes
as SLEκ processes conditioned not to intersect a chordal restriction sample. For details, see
[15, Equations (9), (10)].

2.3. Brownian loop soup

We now briefly recall some results from [8]. It is well known that Brownian motion in C is
conformally invariant. Let us now define for all t ≥ 0, the law µt (z, z) of the two-dimensional
Brownian bridge of time-length t that starts and ends at t and define

µloop
=


C


∞

0
dz

dt

t
µt (z, z)

where dz is the Lebesgue measure in C that we view as a measure on unrooted loops modulo
time-reparametrization (see [8]). Then, µloop inherits a striking conformal invariance property.
More precisely, if for any subset D ⊂ C, one defines the Brownian loop measure µ

loop
D in D as

the restriction of µloop to the set of loops contained in D, then it is shown in [8]:

• For two domains D′
⊂ D, µ

loop
D restricted to the loops contained in D′ is the same as µ

loop
D′

(this is a trivial consequence of the definition of these measures).
• For two simply connected domains D1, D2, let Φ be a conformal map from D1 onto D2, then

the image of µ
loop
D1

under Φ has the same law as µ
loop
D2

(this non-trivial fact is inherited from
the conformal invariance of planar Brownian motion).
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From these two properties, if we denote µ0
U as µ

loop
U restricted to the loops surrounding the

origin, then it is further noted in [16] that

µ0
U(γ ⊄ U ) = log Φ′(0) (2.2)

where U is any simply connected subset of U that contains the origin and Φ is the conformal
map from U onto U that preserves the origin and Φ′(0) > 0.

For c > 0, let (γ j , j ∈ J ) be a Poisson point process with intensity cµ0
U, then, from Eq. (2.2),

we have that

P

γ j ⊂ U, ∀ j ∈ J


= exp


−cµ0

U(γ ⊄ U )


= Φ′(0)−c

where U is any simply connected subset of U that contains the origin and Φ is the conformal
map from U onto U that preserves the origin and Φ′(0) > 0.

2.4. Radial Loewner chains and SLE

Suppose (Wt , t ≥ 0) is a real-valued continuous function. For each z ∈ U, define gt (z) as the
solution to the radial Loewner ODE:

∂t gt (z) = gt (z)
eiWt + gt (z)

eiWt − gt (z)
, g0(z) = z.

Write τ(z) = sup{t ≥ 0 : infs∈[0,t] |gs(z) − eiWs | > 0} and Kt = {z ∈ U : τ(z) ≤ t}. Then gt is
the unique conformal map from U\ Kt onto U such that gt (0) = 0, g′

t (0) > 0. And (gt , t ≥ 0) is
called the radial Loewner chain generated by the driving function (Wt , t ≥ 0). In fact, we have
g′

t (0) = et .
Before introducing the radial SLE, let us first define some special Loewner chains that will

be of use later on. We want to define a radial Loewner curve η such that, for any t > 0, the
future part of the curve η([t, ∞)) under gt is exactly η up to a rotation of the disc. Precisely, fix
θ ∈ (0, 2π), define the driving function W θ

t = θ − t cot θ
2 . Let (gt , t ≥ 0) be the radial Loewner

chain generated by W θ . And define ft (·) = gt (·)/gt (1). Then there exists a continuous curve ηθ

started from eiθ and ended at the origin such that gt is the conformal map from U \ ηθ ([0, t])
and gt (0) = 0, g′

t (0) = et . From the radial Loewner ODE, we have that gt (1) = ei(Wt −θ), and
ft (η

θ (t)) = eiθ . Further, for any t, s > 0, ft (η
θ ([t, t + s])) = ηθ ([0, s]). We call ηθ as perfect

radial curve started from eiθ . Note that

| f ′
t (0)| = et , f ′

t (1) = exp


−
t

1 − cos θ


. (2.3)

A radial SLEκ is defined by the random family of radial conformal maps gt when W =
√

κ B
where B is a standard one-dimensional Brownian motion. It is proved that there exists a.s. a
continuous curve η such that for each t ≥ 0, U \ Kt is the connected component of U \ η([0, t])
containing the origin (this is due to the absolute continuity relation between radial and chordal
SLEs and the corresponding results for chordal SLEs).

Let us briefly focus on radial SLE8/3. Let η be an SLE8/3 in U from 1 to the origin. It is known
(see [2, Section 6.5]) that

P

η ∩ A = ∅


= |Φ′

A(0)|5/48Φ′

A(1)5/8 (2.4)
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where A is any closed subset of U such that A = U ∩ A, U \ A is simply connected, contains
the origin and has 1 on the boundary; ΦA is the conformal map from U \ A onto U that preserves
the origin and the boundary point 1. This result follows from a standard martingale computa-
tion for radial SLE8/3. This will ensure that the measure that we will call P(5/48, 5/8) does
exist.

We will also make use of a radial version of SLEκ(ρ) processes. For simplicity, let us just
define the radial SLEκ(ρ) process with only one force point. It is the measure on the random
family of conformal maps gt generated by radial Loewner chain with Wt replaced by the solution
to the system of SDEs:

dWt =
√

κd Bt +
ρ

2
cot


Wt − Vt

2


dt;

dVt = − cot


Wt − Vt

2


dt, V0 = x ∈ (0, 2π).

(2.5)

When κ > 0, ρ > −2, there is a pathwise unique solution to the above SDEs. And there exists
a.s. a continuous curve η in U from 1 to 0 associated to the radial SLEκ(ρ) process [14,17,10].
Note that, in the radial case, a right force point ei x with x ∈ (0, 2π) can also be viewed as a
left force point ei(2π−x). Thus, in contrast with the chordal case, we do not use the terminology
of “left” and “right” force point for the radial case. Let x → 0+ (resp. x → 2π−), the process
has a limit and we call this limit process as radial SLEκ(ρ) in U from 1 to 0 with force point 1+

(resp. 1−). It is worthwhile to point out that the perfect curve started from eiθ can also be viewed
as radial SLE0(−2) process with W0 = θ, V0 = 0.

3. Characterization

The present section will be devoted to the proof of the characterization part of our main
theorem.

Let A r be the set of all closed A ⊂ U such that A = A ∩ U, U \ A is simply connected,
contains the origin and has 1 on the boundary. For any A ∈ A r , define ΦA as the conformal
map from U \ A onto U such that preserves 1 and the origin. We usually call log |Φ′

A(0)| as the
capacity of A in U seen from the origin. Generally, for any domain U ⊂ C, a closed subset
A ⊂ U , and a point z ∈ U \ A, the capacity of A in U seen from z is log Φ′(z) where Φ is the
conformal map from the connected component of U \ A that contains z onto U and is normalized
at z : Φ(z) = 0,Φ′(z) > 0.

Let Ω be the collection of closed subsets K of U such that K is connected, C\ K is connected
and 1 ∈ K , 0 ∈ K . Endow Ω with the σ -field generated by the family of events of the type
{K ∈ Ω : K ∩ A = ∅} where A ∈ A r (note that this σ -field coincides with the σ -field generated
by Hausdorff metric on Ω , this is similar to the chordal case). It is clear that this family of events
is closed under finite intersection, so that, just as in the chordal case, we know that:

Lemma 2. If P and P′ are two probability measures on Ω such that P

K ∩A = ∅


= P′


K ∩A =

∅


for all A ∈ A r , then P = P′.

Note that we endow A r with Hausdorff metric, and recall that K ∩ ∂U = {1}, thus function
A → P[K ∩ A = ∅] is continuous on A r . We will implicitly use this fact later in the paper.

It will be useful to use our perfect radial curves. The following fact is the analogue of the fact
derived through [6, Equation (3.1)]:
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Fig. 2. Conditioned on (K ∩ ηθ ([0, t]) = ∅), ft (K ) has the same law as K .

Lemma 3. Fix θ ∈ (0, 2π) and let ηθ be the perfect radial curve started from eiθ . Let K be a
radial restriction sample, then there exists ν(θ) ∈ (0, ∞) such that, for all t ≥ 0,

P

K ∩ ηθ ([0, t]) = ∅


= exp(−ν(θ)t).

Proof (See Fig. 2). Recall that ft is the conformal map from U \ ηθ ([0, t]) onto U such that
ft (0) = 0, | f ′

t (0)| = et , ft (η
θ (t)) = eiθ and we also have that ft (η

θ ([t, t + s])) = ηθ ([0, s]) for
any t, s > 0. Then, for any t, s > 0, by the property of radial restriction sample, we have that

P

K ∩ ηθ ([0, t + s]) = ∅ | K ∩ ηθ ([0, t]) = ∅


= P


K ∩ ft (η

θ ([t, t + s])) = ∅


= P

K ∩ ηθ ([0, s]) = ∅


.

Thus, for any t, s > 0, we have

P

K ∩ ηθ ([0, t + s]) = ∅


= P


K ∩ ηθ ([0, t]) = ∅


× P


K ∩ ηθ ([0, s]) = ∅


.

Together with the fact that the function t → P[K ∩ ηθ ([0, t]) = ∅] is continuous, we have that

P

K ∩ ηθ ([0, t])


= exp(−ν(θ)t)

for some ν(θ) ∈ [0, ∞]. If ν(θ) = ∞, then K ∩ ηθ ([0, t]) ≠ ∅ a.s., for all t > 0. However
∩t>0 ηθ ([0, t]) = {eiθ

} and eiθ
∉ K . This rules out the possibility of ν(θ) = ∞. If ν(θ) = 0,

then K ∩ ηθ ([0, ∞]) = ∅ a.s. This is also impossible since 0 ∈ K and ηθ ends at the origin. �

We would like to note at this point that in the chordal case, the analogous quantity was
obviously constant because of scale-invariance of the chordal restriction measures in the upper
half-plane. In the present radial case, this is not going to be the case. In particular, care will be
needed to show that θ → ν(θ) is continuously differentiable.

We are now ready to prove the first part of Theorem 1 that we now state as a proposition:

Proposition 4. For any radial restriction sample K , there exist α, β ∈ R such that

P

K ∩ A = ∅


= |Φ′

A(0)|αΦ′

A(1)β for all A ∈ A r .

Note that Lemma 2 conversely shows that for any α and β, there exists at most one law (for
K ) that satisfies this property. When it exists, we call it P(α, β). An example is provided by radial
SLE8/3 (see Eq. (2.4)) that corresponds to P(5/48, 5/8).
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The first part of the proof of the proposition will be devoted to show that θ → ν(θ) is a
continuously differentiable function. Once this will have been established, it will be possible to
use “commutation relation ideas” inspired by the formal calculations in [6] and by Dubédat’s
paper [1].

In order to prove this proposition, it will in fact be a little easier to work in the upper half
plane instead of the unit disc. Consider the conformal map ϕ0(z) = i(1 − z)/(1 + z) which maps
U onto H and sends 1 to 0, 0 to i . A radial restriction sample in H (with specified points 0 and i)
is just the image of radial restriction sample in U under the conformal map ϕ0. For x ∈ C, r > 0,
we denote B(x, r) as the disc centered at x with radius r .

Fix x ∈ R \ {0}, let 0 < ε < |x |. Then

gx,ε(z) := z +
ε2

z − x

is a conformal map from H \ B(x, ε) onto H. Define

fx,ε(z) = b
gx,ε(z) − c

b2 + (c − a)(gx,ε(z) − a)

where a = ℜ(gx,ε(i)), b = ℑ(gx,ε(i)), c = gx,ε(0). Then fx,ε is the conformal map from
H \ B(x, ε) onto H that preserves 0 and i .

We use the notation f . g to express that f/g is bounded by universal constant, f & g to
express g . f , and f ≍ g to express f . g and f & g.

Lemma 5. Let K be a radial restriction sample in H. For any x ∈ R \ {0}, the following limit
exists

lim
ε→0

1

ε2 P

K ∩ B(x, ε) ≠ ∅


.

We denote the limit as λ(x), we have further that λ(x) ∈ (0, ∞).

Proof. Fix x ∈ (0, ∞) and let θ ∈ (0, π) such that x = sin θ/(1 + cos θ). Let ηx be the
perfect radial curve in H started from x and ended at i which is the image of the perfect radial
curve in U started from eiθ and ended at the origin under the conformal map ϕ0. For ε > 0,
define N (ε) = ⌈ε−2

⌉. And ϕ1 = · · · = ϕN = fx,ε. Let Φε = ϕN (ε) ◦ · · · ◦ ϕ1. Note that
Φε is a conformal map from H := ϕ−1

1 ◦ · · · ◦ ϕ−1
N (ε)(H) onto H that preserves i and 0. Define

Aε(x) = H \ H (see Fig. 3). Then we have that,

Aε(x) → ηx ([0, tx ]) as ε → 0

where tx = (1 + cos θ)2 by direct computation of the capacity of Aε(x) in H seen from i . And
the convergence is under Hausdorff metric. Furthermore, we have that,

Aε(x) ⊃ ηx ([0, tx ]).

In fact, this is true when |x | is large where ηx is very close to vertical line. And this fact does not
depend on the location of x .

Define pε(x) = P

K ∩ B(x, ε) ≠ ∅


. On the one hand, from conformal restriction property,

we know that

P

K ∩ Aε(x) = ∅


= (1 − pε(x))N (ε).
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Fig. 3. Aε(x) converges to ηx ([0, tx ]) in Hausdorff metric.

On the other hand, we know that

P

K ∩ Aε(x) = ∅


→ P


K ∩ ηx ([0, tx ]) = ∅


= exp(−ν(θ)tx ) as ε → 0.

Compare these two relations, we have that

lim
ε→0

N (ε) log(1 − pε(x)) = −ν(θ)(1 + cos θ)2.

This completes the proof. And we further know that

λ


sin θ

1 + cos θ


= ν(θ)(1 + cos θ)2. � (3.1)

Lemmas 6–8 show the regularities of the function λ. To make the proofs easier to follow, we
summarize the notations and the basic properties here.

pε(x) := P[K ∩ B(x, ε) ≠ ∅]

λ(x) := − log P[K ∩ ηx ([0, tx ]) = ∅]

λε(x) := − log P[K ∩ Aε(x) = ∅] = −N (ε) log(1 − pε(x)).

(3.2)

Let F x (resp. F x
ε ) be the conformal map from H \ ηx ([0, tx ]) (resp. H \ Aε(x)) onto H that

preserves i and 0. Fix a compact interval I ⊂ (−∞, 0) ∪ (0, ∞).
We know that

Aε(x) ⊃ ηx ([0, tx ]), and Aε(x) → ηx ([0, tx ]) as ε → 0.

Thus λε(x) and pε(x)/ε2 converge to λ(x) as ε goes to zero. Since x → ηx ([0, tx ]) is continuous
in Hausdorff metric, we also know that λ is a continuous function.

Lemma 6. The functions λε(·) converges to λ(·) uniformly over I . Furthermore, for x ∈ I ,

pε(x) ≍ ε2 (3.3)

where the constants in ≍ only depend on I .

Proof. For x ∈ I, ε > 0, we have that

exp(−λ(x)) − exp(−λε(x)) = P[K ∩ ηx ([0, tx ]) = ∅] − P[K ∩ Aε(x) = ∅]

= P[K ∩ ηx ([0, tx ]) = ∅, K ∩ Aε(x) ≠ ∅]

= exp(−λ(x))P[K ∩ F x (Aε(x)) ≠ ∅]. (3.4)
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Now we will argue that the set F x (Aε(x)) is uniformly small. The conformal map F x is Lipschitz
when it is bounded away from the tip of ηx ([0, tx ]), whereas it is 1/2-Hölder at the tip of
ηx ([0, tx ]). However, the semi-disc at the tip of Aε(x) also has radius of order ε2, i.e. the radii
of the N (ε) semi-discs in Aε(x) decrease gradually and the last one has radius bounded by a
universal constant times ε2. (This fact is implicitly used later in the paper.) Thus, there exist
compact interval J and constant C depending on I such that F x (Aε(x)) can be covered by J Cε

which is Cε-neighborhood of J . Then

|1 − exp(λ(x) − λε(x))| ≤ P[K ∩ J Cε
≠ ∅]

where P[K ∩ J Cε
≠ ∅] converges to zero as ε goes to zero. This completes the proof of uniform

convergence.
Eq. (3.3) can then be derived by combining the uniform convergence, the relation between

λε(x) and pε(x) in Eq. (3.2), and the continuity of λ. �

Lemma 7. For any x, y ∈ I , and ε > 0, δ > 0, we have

|λε(x) − λδ(x)| . |δ − ε| (3.5)

|λε(x) − λε(y)| . |x − y| (3.6)

where the constant in . only depends on I . In particular, we have

|λ(x) − λ(y)| . |x − y|

where the constant in . only depends on I . Thus, λ is almost everywhere differentiable, i.e. λ is
differentiable except on a Lebesgue measure zero set.

Proof. We will show Eq. (3.5) and then Eq. (3.6) can be proved similarly.
Suppose δ > ε > 0. Recall that F x

ε is the conformal map from H \ Aε(x) onto H that fixes i
and 0. Then we have that

exp(−λε(x)) − exp(−λδ(x)) = P[K ∩ Aε(x) = ∅] − P[K ∩ Aδ(x) = ∅]

= P[K ∩ Aε(x) = ∅, K ∩ Aδ(x) ≠ ∅]

= exp(−λε(x))P[K ∩ F x
ε (Aδ(x)) ≠ ∅].

There exists a constant C depending only on I such that F x
ε (Aδ(x)) can be covered by ⌈C/|δ−ε|⌉

balls of radius C |δ − ε|. Combining with Eq. (3.3), we have that

P[K ∩ F x
ε (Aδ(x)) ≠ ∅] . |δ − ε|.

This completes the proof. �

Lemma 8. For any x, y ∈ I and ε > 0, we have

| (λε(x) − λ(x)) − (λε(y) − λ(y)) | . |x − y|ε

where the constant in . only depends on I .

Proof. In Eq. (3.4), we already see that

1 − exp(λ(x) − λε(x)) = P[K ∩ F x (Aε(x)) ≠ ∅],

1 − exp(λ(y) − λε(y)) = P[K ∩ F y(Aε(y)) ≠ ∅].



H. Wu / Stochastic Processes and their Applications 125 (2015) 552–570 563

Thus

exp(λ(y) − λε(y)) − exp(λ(x) − λε(x))

= P[K ∩ F x (Aε(x)) ≠ ∅] − P[K ∩ F y(Aε(y)) ≠ ∅]

= P[K ∩ F x (Aε(x)) ≠ ∅, K ∩ F y(Aε(y)) = ∅]

− P[K ∩ F x (Aε(x)) = ∅, K ∩ F y(Aε(y)) ≠ ∅].

There exists constant C depending only on I such that the set F y(Aε(y)) \ F x (Aε(x)) can be
covered by ⌈C |x − y|/ε⌉ balls of radius Cε. Together with Eq. (3.3), we have that

P[K ∩ F x (Aε(x)) = ∅, K ∩ F y(Aε(y)) ≠ ∅] . |x − y|ε.

Thus

| exp(λ(y) − λε(y)) − exp(λ(x) − λε(x))| . |x − y|ε

which completes the proof. �

Fix x, y ∈ R \ {0}, define

F(x, y) = lim
ε→0

1

ε2 ( fx,ε(y) − y), G(x, y) = lim
ε→0

1

ε2 ( f ′
x,ε(y) − 1).

By direct computation, we have that

F(x, y) =
1 + x2

+ y2
+ xy

x(1 + x2)
+

1
y − x

, G(x, y) =
x + 2y

x(1 + x2)
−

1

(y − x)2 . (3.7)

Lemma 9. The function λ defined in Lemma 5 is differentiable in x ∈ (−∞, 0) ∪ (0, ∞) and
satisfies the following commutation relation: for any x, y ∈ R \ {0},

λ′(y)F(x, y) + 2λ(y)G(x, y) = λ′(x)F(y, x) + 2λ(x)G(y, x). (3.8)

Proof. From Lemma 7, λ is locally Lipschitz continuous in R \ {0}, it is differentiable almost
everywhere, and there exists an integrable function ω such that, λ′(x) = ω(x) at the point x at
which λ is differentiable, and, for any x > y > 0 (or y < x < 0),

λ(x) − λ(y) =

 x

y
ω(u)du.

Consider two points x, y at which λ is differentiable. Let ε > 0, δ > 0.

P[K ∩ B(x, ε) ≠ ∅, K ∩ B(y, δ) ≠ ∅]

= P[K ∩ B(x, ε) = ∅, K ∩ B(y, δ) = ∅] − 1 + pε(x) + pδ(y)

= P

K ∩ B(x, ε) = ∅


× P


K ∩ fx,ε(B(y, δ)) = ∅


− 1 + pε(x) + pδ(y)

= pδ(y) − P

K ∩ fx,ε(B(y, δ)) ≠ ∅


(1 − pε(x)).

Divide by ε2δ2 and take the limit, we have that

lim
ε→0

lim
δ→0

1

ε2δ2 P[K ∩ B(x, ε) ≠ ∅, K ∩ B(y, δ) ≠ ∅]

= lim
ε→0

lim
δ→0

1

ε2δ2


pδ(y) − P


K ∩ fx,ε(B(y, δ)) ≠ ∅


(1 − pε(x))


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= lim
ε→0

1

ε2


λ(y) − λ( fx,ε(y))| f ′

x,ε(y)|2(1 − pε(x))


= λ(x)λ(y) − λ′(y)F(x, y) − 2λ(y)G(x, y).

Lemma 10 guarantees that we are allowed to exchange the order of the limits, i.e.

lim
ε→0

lim
δ→0

1

ε2δ2 P[K ∩ B(x, ε) ≠ ∅, K ∩ B(y, δ) ≠ ∅]

= lim
δ→0

lim
ε→0

1

ε2δ2 P[K ∩ B(x, ε) ≠ ∅, K ∩ B(y, δ) ≠ ∅].

Then, by the symmetry, we get Eq. (3.8) for the points x, y at which λ is differentiable.
Fix y in Eq. (3.8), we have

λ′(x) = (λ′(y)F(x, y) + 2λ(y)G(x, y) − 2λ(x)G(y, x))/F(y, x).

The right side is continuous in x ∈ R \ {0, y}. Thus we can extend ω to R \ {0, y} by the right
side. Then it is clear that ω is a continuous function in R \ {0} and in particular, this implies
that λ is differentiable everywhere in R \ {0} and the derivative satisfies Eq. (3.8) for any points
x, y ∈ R \ {0}. �

Lemma 10. Fix two compact intervals I, J ⊂ (−∞, 0) ∪ (0, ∞). Suppose that x ∈ I, y ∈ J
and that λ is differentiable at y, then we have that

P[K ∩ B(x, ε) ≠ ∅, K ∩ B(y, δ) ≠ ∅]

− ε2δ2 λ(x)λ(y) − λ′(y)F(x, y) − 2λ(y)G(x, y)


= o(ε2δ2).

Proof. Set ỹ = fx,ε(y) and δ̃ = f ′
x,ε(y)δ. Clearly

ỹ = y + ε2 F(x, y) + o(ε2), δ̃ = δ(1 + ε2G(x, y)) + o(ε2δ). (3.9)

Note that

P[K ∩ B(x, ε) ≠ ∅, K ∩ B(y, δ) ≠ ∅]

= pδ(y) − P[K ∩ fx,ε(B(y, δ)) ≠ ∅] + pε(x)P[K ∩ fx,ε(B(y, δ)) ≠ ∅].

The conclusion can be derived by combining the following four relations.

pδ(y) − pδ̃(y) + 2ε2δ2λ(y)G(x, y) = o(ε2δ2) (3.10)

pδ̃(y) − pδ̃(ỹ) + ε2δ2λ′(y)F(x, y) = o(ε2δ2) (3.11)

pδ̃(ỹ) − P[K ∩ fx,ε(B(y, δ)) ≠ ∅] = o(ε2δ2) (3.12)

pε(x)pδ̃(ỹ) − ε2δ2λ(x)λ(y) = o(ε2δ2). (3.13)

We will show Eqs. (3.10)–(3.13) one by one.
Eq. (3.10) is equivalent to the following

λδ(y) − λδ̃(y)(1 + 2ε2G(x, y)) + 2ε2λ(y)G(x, y) = o(ε2).

Note that

λδ(y) − λδ̃(y)(1 + 2ε2G(x, y)) + 2ε2λ(y)G(x, y)

= λδ(y) − λδ̃(y) + 2ε2G(x, y)(λ(y) − λδ̃(y))

= λδ(y) − λδ̃(y) + o(ε2).
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By Eq. (3.5), we have that

λδ(y) − λδ̃(y) = O(|δ − δ̃|) = O(ε2δ) = o(ε2).

This completes the proof of Eq. (3.10).
Eq. (3.11) is equivalent to the following

(λδ̃(y) − λδ̃(ỹ))(1 + 2ε2G(x, y)) + ε2λ′(y)F(x, y) = o(ε2).

Note that

(λδ̃(y) − λδ̃(ỹ))(1 + 2ε2G(x, y)) + ε2λ′(y)F(x, y)

= λδ̃(y) − λδ̃(ỹ) + ε2λ′(y)F(x, y) + o(ε2)

=

λδ̃(y) − λ(y) − λδ̃(ỹ) + λ(ỹ)


+ λ(y) − λ(ỹ) + ε2λ′(y)F(x, y) + o(ε2)

=

λδ̃(y) − λ(y) − λδ̃(ỹ) + λ(ỹ)


+

λ(y) − λ(ỹ) + λ′(y)(ỹ − y)


+ o(ε2).

By Lemma 8, we have that

λδ̃(y) − λ(y) − λδ̃(ỹ) + λ(ỹ) = O(|y − ỹ|δ̃) = o(ε2).

Since λ is differentiable at y, we have that

λ(y) − λ(ỹ) + λ′(y)(ỹ − y) = o(ε2).

These complete the proof of Eq. (3.11)
For Eq. (3.12), we have that

pδ̃(ỹ) − P[K ∩ fx,ε(B(y, δ)) ≠ ∅] = P[K ∩ B(ỹ, δ̃) ≠ ∅] − P[K ∩ fx,ε(B(y, δ)) ≠ ∅]

= P[K ∩ B(ỹ, δ̃) ≠ ∅, K ∩ fx,ε(B(y, δ)) = ∅]

− P[K ∩ B(ỹ, δ̃) = ∅, K ∩ fx,ε(B(y, δ)) ≠ ∅].

Note that

P[K ∩ B(ỹ, δ̃) = ∅, K ∩ fx,ε(B(y, δ)) ≠ ∅] ≤ P[K ∩ f ỹ,δ̃( fx,ε(B(y, δ))) ≠ ∅].

Set z = δeiθ for θ ∈ [0, π]. Since f ′′
x,ε(y) = O(ε2), we have that

fx,ε(y + z) = fx,ε(y) + f ′
x,ε(y)z + o(ε2δ).

Set ∆ = fx,ε(y + δ) − ỹ − δ̃. In fact, ∆ = o(ε2δ). There exists constant C depending only
on I, J such that the set f ỹ,δ̃( fx,ε(B(y, δ))) can be covered by ⌈Cδ/∆⌉ balls of radius C∆.
Together with Eq. (3.3), we have that

P[K ∩ f ỹ,δ̃( fx,ε(B(y, δ))) ≠ ∅] . δ∆ = o(ε2δ2)

which completes the proof of Eq. (3.12).
Eq. (3.13) is equivalent to the following

λε(x)λδ̃(ỹ) − λ(x)λ(y) = o(1)

which is clearly true. �

Lemma 11. There exist two constants c0, c2 ≥ 0 such that

λ(x) =
c0 + c2x2

x2(1 + x2)2 for x ∈ R \ {0}.
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Proof. From (3.8) and (3.7), we know that λ is smooth in (−∞, 0) ∪ (0, +∞). In (3.8), fix
x ∈ R \ {0}, and let y → x . Compare the coefficients of the two sides of the equation, we have
that

x2(1 + x2)2λ′′′(x) + 6x(1 + x2)(1 + 3x2)λ′′(x)

+ 6(1 + 12x2
+ 15x4)λ′(x) + 24x(2 + 5x2)λ(x) = 0. (3.14)

Set P(x) = x2(1 + x2)2λ(x), then (3.14) is equivalent to

P(x)′′′ = 0.

Together with the symmetry in λ, we know that, there exist constants c0, c1, c2 such that

λ(x) =
c0 + c1x + c2x2

x2(1 + x2)2 for x > 0; λ(x) =
c0 − c1x + c2x2

x2(1 + x2)2 for x < 0.

Take x > 0 > y, by (3.8), we have that c1 = 0. Since λ(x) > 0 for all x ∈ R \ {0}, we know that
c0 ≥ 0, c2 ≥ 0. �

Proof of Proposition 4. Consider a radial restriction sample K in U. Fix θ ∈ (0, π), let ν(θ)

be defined through Lemma 3. And let λ be defined through Lemma 5. From Lemma 11 and Eq.
(3.1), we have that

ν(θ) = −α +
β

1 − cos θ

where α = (c0 − c2)/4, β = c0/2. Recall Eq. (2.3), we have that

P

K ∩ ηθ ([0, t]) = ∅


= | f ′

t (0)|α f ′
t (1)β .

Then the conclusion can be derived by similar explanation as in [6, Proposition 3.3]. �

4. Admissible range of (α, β)

4.1. Description of P(α, β)’s when β ≥ 5/8

In order to complete the proof of our main theorem, it now remains to show for which values
of α and β the previous measure exists. Note now that from the properties of Poisson point
process of Brownian loops, we can deduce the following fact:

Lemma 12. If the radial restriction measure P(α0, β0) exists for some α0, β0 ∈ R, then for any
α < α0, P(α, β0) exists, and furthermore, almost surely for P(α, β0), the origin is not on the
boundary of K .

Proof. Let K0 be a closed set sampled according to P(α0, β0), and let (γ j , j ∈ J ) be an inde-
pendent Poisson Point Process with intensity (α0 − α)µ0

U. We view each loop γ j as the loop
with the domain that it surrounds. Then let K be the closure of the union of K0 and all loops in
(γ j , j ∈ J ). We have that, for any A ∈ A r ,

P

K ∩ A = ∅


= P


K0 ∩ A = ∅


× P


γ j ∩ A = ∅, ∀ j ∈ J


= |Φ′

A(0)|α0Φ′

A(1)β0 |Φ′

A(0)|α−α0 = |Φ′

A(0)|αΦ′

A(1)β0 .

It is clear that K has the law of P(α, β0) and the 0 ∉ ∂K . �
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Hence, we have the following result:

Corollary 13. Suppose that a radial restriction measure P(α0, β0) exists for some α0, β0 ∈ R,
and that for this measure, 0 ∈ ∂K almost surely. Then, P(α, β0) does exist if and only if α ≤ α0.

Proof. Suppose that P(α, β0) exists for some α > α0, and let K be a random set whose law is
P(α0, β0). Lemma 12 implies that almost surely, 0 ∉ ∂K , which is a contradiction. On the other
hand, Lemma 12 shows that P(α, β0) exists for all α < α0. �

In Eq. (2.4), we already know the existence of P(ξ(β), β) for β = 5/8. We will construct
P(ξ(β), β) for β > 5/8 in Proposition 15. Fix ρ > 0. Let (gt , t ≥ 0) be the radial Loewner
chain SLE8/3(ρ) generated by the driving function (Wt , t ≥ 0), and η be the corresponding
radial curve. Recall that W is the solution to the system of SDEs (2.5). To simplify notation, we
denote θt = (Wt − Vt )/2. For any A ∈ A r , let τA be the first time that η hits A. For any t < τA,
let ht be the conformal map from U \ gt (A) onto U such that ht (0) = 0, ht (eiWt ) = eiWt . Then
we have the following lemma.

Lemma 14.

Mt := |h′
t (0)|α × |h′

t (e
iWt )|

5
8 × |h′

t (e
iVt )|γ × Z

3
8 ρ

t (4.1)

is a local martingale where

Z t =
sin ϑt

sin θt
, ϑt =

1
2

arg(ht (e
iWt )/ht (e

iVt )),

α =
5

48
+

3
64

ρ(ρ + 4), γ =
1
32

ρ(3ρ + 4),

β =
5
8

+ γ +
3
8
ρ =

1
32

(ρ + 2)(3ρ + 10).

Note that α = ξ(β).

Proof. Define φt (z) = −i log ht (ei z) where log denotes the branch of the logarithm such that
−i log ht (eiWt ) = Wt . Then

|h′
t (e

iWt )| = φ′
t (Wt ), |h′

t (e
iVt )| = φ′

t (Vt ), ϑt = (φt (Wt ) − φt (Vt ))/2.

To simplify the notations, we set X1 = φ′
t (Wt ), X2 = φ′′

t (Wt ), Y1 = φ′
t (Vt ). By Itô’s formula,

we have that

dφt (Wt ) =


8/3X1d Bt +


−

5
3

X2 +
ρ

2
X1 cot θt


dt,

dφt (Vt ) = −X2
1 cot ϑt dt,

dφ′
t (Wt ) =


8/3X2d Bt +


ρ

2
X2 cot θt +

X2
2

2X1
+

X1 − X3
1

6


dt,

dφ′
t (Vt ) =


−

1
2

X2
1Y1

1

sin2 ϑt
+

1
2

Y1
1

sin2 θt


dt,

dθt =

√
8/3
2

d Bt +
ρ + 2

4
cot θt dt,

dϑt =

√
8/3
2

X1d Bt +


−

5
6

X2 +
1
2

X2
1 cot ϑt +

ρ

4
X1 cot θt


dt.
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Fig. 4. ηR is a radial SLE8/3(ρ) in U from 1 to 0. Conditioned on ηR , ηL is a chordal SLER
8/3(ρ − 2) in U \ ηR([0, ∞])

from 1 to 0. K is the closure of the union of domains between the two curves.

And note that

|h′
t (0)|α = |Φ′

A(0)|α exp


α

 t

0
ds|h′

s(e
iWs )|2 − t


.

So that

d Mt =

√
8/3
16

Mt


10

X2

X1
+ 3ρ(X1 cot ϑt − cot θt )


d Bt . �

Proposition 15. For β > 5/8, let ρ =
2
3 (

√
24β + 1 − 1)− 2 > 0. Let ηR be a radial SLE8/3(ρ)

in U from 1 to 0 with force point 1−. Given ηR , let ηL be an independent chordal SLER
8/3(ρ − 2)

in U \ ηR([0, ∞]) from 1− to 0 . Define K as the closure of the union of the domains between
ηR and ηL . Then the law of K is P(ξ(β), β) (that therefore exists) and under this probability
measure, 0 ∈ ∂K almost surely.

Hence, this proves that for β ≥ 5/8, P(α, β) exists if and only if α ≤ ξ(β).

Proof (See Fig. 4). Let (gt , t ≥ 0) be the radial Loewner chain for ηR . For any A ∈ A , let τA be
the first time that ηR hits A. For any t < τA, define ht as the conformal map from U \ gt (A) onto
U such that ht (0) = 0, ht (eiWt ) = eiWt . Define the local martingale M as in Eq. (4.1). When
ρ > 0, Mt is positive and bounded by 1. Thus it is a real martingale. Note that

M0 = |Φ′

A(0)|ξ(β)Φ′

A(1)β .

If τA < ∞, then there exists a sequence tn → τA, such that limn Mtn = 0.
If τA = ∞, then there exists a sequence tn → ∞, such that (see [15, Section 5.2])

|h′
tn (0)| → 1, |h′

tn (e
iWtn )| → 1, Z tn → 1,

|h′
tn (e

iVtn )|γ → P

K ∩ A = ∅ | ηR.

Thus, almost surely,

lim
t→τA

Mt = P

K ∩ A = ∅ | ηR1τA=∞.
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As a result

P

K ∩ A = ∅


= E(MτA ) = M0. �

4.2. Why can β not be smaller than 5/8?

It remains to show that if P(α, β) exists, then β ≥ 5/8. In the following we assume that
P(α, β) exists. We are going to show how to use this radial measure to construct a chordal re-
striction measure of exponent β, which will then imply that β cannot be smaller than 5/8.

Let X be the collection of compact subsets K of U such that K is connected and C \ K is
connected. Let A be the collection of compact subset A of U such that A = U ∩ A, U \ A
is simply connected. Endow X with the σ -field generated by the events C (A) := (K ∈ X :

K ∩ A = ∅) for A ∈ A . This σ -field coincides with the σ -field generated by Hausdorff metric
on X . In particular, X is compact since U is compact.

Let K be a radial restriction sample of law P(α, β). For any ε > 0, define the probability
measure µε on X by

µε(C (A)) = P


fε(K ) ∩ A = ∅


where A ∈ A such that +1 ∉ A, −1 ∉ A and fε is the conformal map from U onto itself such
that fε(0) = −1 + ε, fε(1) = 1.

Since X is compact, the sequence (µε, ε > 0) is tight, thus there exists a subsequence
(µεk , k ∈ N) such that εk → 0 and µεk converges weakly to some probability measure µ on
X . There two observations:

• For any A ∈ A such that +1 ∉ A, −1 ∉ A,

µε(C (A)) = |Φ′
ε(−1 + ε)|αΦ′

ε(1)β → Ψ ′

A(1)β as ε → 0 (4.2)

where Φε is the conformal map from U \ A onto U that preserves −1 + ε and +1, ΨA is the
conformal map from U \ A onto U that preserves ±1 and Ψ ′

A(−1) = 1.
• For any A ∈ A such that +1 ∉ A, −1 ∉ A and δ > 0, define Aδ

o as the open δ-neighborhood
of A and Aδ

i = U \ (U \ A)δo. Note that Aδ
o is open, Aδ

i is closed, C (Aδ
o) is closed and C (Aδ

i )

is open. Thus

µ(C (Aδ
i ) \ C (Aδ

o)) ≤ lim
k

µεk (C (Aδ
i ) \ C (Aδ

o)).

From Eq. (4.2), we know that there exists g(δ) goes to zero as δ goes to zero and is independent
of ε such that

µεk (C (Aδ
i ) \ C (Aδ

o)) = µεk (C (Aδ
i )) − µεk (C (Aδ

o)) ≤ g(δ).

Thus we have that

µ(C (Aδ
i ) \ C (Aδ

o)) ≤ g(δ). (4.3)

From Eqs. (4.2) and (4.3), we have that

µ(C (A)) = Ψ ′

A(1)β

for any A ∈ A such that ±1 ∉ A and ΨA is the conformal map from U\ A onto U that preserves
±1 and Ψ ′

A(−1) = 1. Thus µ is the chordal restriction measure of exponent β, thus β ≥ 5/8.
This concludes the proof of our main theorem.
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4.3. Concluding remarks

We would just like to note that all the enumerated results on chordal restriction samples that
we have briefly recalled in Section 2.2 do have a radial restriction counterpart: The dimension
of cut-points is the same (and given by β only), the boundaries of radial restriction sample
P(ξ(β), β) are radial SLE8/3(ρ) processes, the full-plane Brownian intersection exponents
describe the law of radial restriction samples conditioned not to intersect, etc. We leave the
precise statements and detailed proofs to the interested reader.
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