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Abstract
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ses for Markov chains on a finite configuration space in some asymptotic regime. By comparing restricted
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c⃝ 2015 Elsevier B.V. All rights reserved.

MSC: 82C26; 60J27; 60J75; 60J45

Keywords: Metastability; Restricted ensemble; Quasi-stationary measure; Soft measures; Exponential law; Spectral gap;
Mixing time; Potential theory

✩ Supported by GDRE 224 GREFI-MEFI, by the European Research Council through the Advanced Grant PTRELSS
228032, and by the FIRB Project RBFR10N90W (MIUR, Italy). A. Bianchi acknowledges the University of Padua
that provided partial financial support through the Project Stochastic Processes and Applications to Complex Systems
(CPDA123182).

∗ Corresponding author.
E-mail addresses: bianchi@math.unipd.it (A. Bianchi), alexandre.gaudilliere@math.cnrs.fr (A. Gaudillière).

http://dx.doi.org/10.1016/j.spa.2015.11.015
0304-4149/ c⃝ 2015 Elsevier B.V. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.spa.2015.11.015&domain=pdf
http://www.elsevier.com/locate/spa
http://dx.doi.org/10.1016/j.spa.2015.11.015
http://www.elsevier.com/locate/spa
mailto:bianchi@math.unipd.it
mailto:alexandre.gaudilliere@math.cnrs.fr
http://dx.doi.org/10.1016/j.spa.2015.11.015


A. Bianchi, A. Gaudillière / Stochastic Processes and their Applications 126 (2016) 1622–1680 1623

1. Metastability after Lebowitz and Penrose

1.1. Phenomenology and modelization

Lebowitz and Penrose characterized metastable thermodynamic states by the following
properties [41]:

(a) only one thermodynamic phase is present,
(b) a system that starts in this state is likely to take a long time to get out,
(c) once the system has gotten out, it is unlikely to return.

We can think, for example, about freezing fog made of small droplets in which only one phase is
present (liquid phase) that remains for a long time in such a state (until collision with ground or
trees, forming then hard rime) and that once frozen will typically not return to liquid state before
pressure or temperature has changed.

To model such a state they considered in [41] a deterministic dynamics with equilibrium mea-
sureµ. First, they associated with the metastable phase a subset R of the configuration space, and
described this metastable state by the restricted ensemble µR = µ(·|R). Second, they proved
that the escape rate from R of the system started in µR is maximal at time t = 0, and that this
initial escape rate is very small. Last, they used standard methods of equilibrium statistical me-
chanics to deal with (c). As an estimate of the returning probability to the metastable state they
used the fraction of members of the equilibrium ensemble that have configurations in R and they
noted [41, Section 8]:

This amounts to assuming that a system whose dynamical state has just left R is no more
likely to return to it than one whose dynamical state was never anywhere near R. The
validity of this assumption, at least in the short run, is dubious, but at least it provides us
with some indication of what to expect.

In this paper we want to give a different model for the same phenomenology that overcomes
the last difficulty. We will work with stochastic processes rather than deterministic dynamics,
but the Lebowitz–Penrose modelization will be our guideline. We will try to recover this
phenomenology under simple and practical hypotheses only. Since the study of metastability has
been considerably enriched after the Lebowitz and Penrose work, we want also to incorporate in
our modelling as much as possible of what was previously achieved. We will then make a brief
and partial review of these achievements. Our goals and starting ideas will depend on this review
but not our proofs, since we want to make this paper as self-contained as possible. Our model
and results are presented in Section 2. Examples of applications are given in Section 7.

1.2. A partial review

Since the Lebowitz and Penrose paper, an enormous amount of work has been done to describe
the metastability phenomenon. In particular Cassandro, Galves, Olivieri and Vares introduced
the path-wise approach, which focused, in the context of stochastic processes, on time averages
associated with an asymptotic exponential law [19]. This was further developed by the pioneering
works of Neves and Schonmann who studied the typical paths for stochastic Ising model in a
given volume in the low temperature regime [37,38]. This work was then extended to higher
dimensions, infinite-volume and fixed-temperature regimes, locally conservative dynamics and
probabilistic cellular automata [23,7,43,28,21,20].
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As developed in [40], a crucial role was played by large deviation tools inherited from
Wentzell and Freidlin in their reduction procedure from continuous stochastic processes to finite-
configuration-space Markov chains with exponentially small transition rates [25]. This is espe-
cially true for very-low-temperature regimes, but the same kind of reduction procedure made it
possible to deal in various cases with large-volume rather than low-temperature limits (see [34]
for the Curie–Weiss model under random magnetic field, see [40] for further examples).

Then, using potential-theoretic rather than large deviation tools, Bovier, Eckhoff, Gayrard and
Klein developed a set of general techniques to compute sharp asymptotics of the expected value
of asymptotic exponential laws associated with the metastability phenomenon, and revisited
(after [47,45]) the relation between spectrum of the generator of the stochastic dynamics and
metastability [14,15,17]. This allowed, for example, to go beyond logarithmic asymptotics for
stochastic Ising models in the low-temperature regime [18,12] and to prove the first rigorous
results in the fully conservative case [13], to deal with metastability for the random hopping-time
dynamics associated with the Random Energy Model [6], to make a detailed analysis of Sinai’s
random walk spectrum [16], and to extend the study of the disordered Curie–Weiss model to
the case of continuous magnetic field distribution [9,10]. We refer to [11] for a comprehensive
account of this approach.

We then reached an essentially complete comprehension of the metastability phenomenon in
at least two classes of models: very low temperature dynamics in finite fixed volumes and large
volume or continuous-configuration space dynamics that can be reduced via a Wentzell–Freidlin
procedure to the previous case. Of course, specific and often nontrivial computations have to
be made for each specific model, but there exists a general approach to the problem that is
developed in [40] and, as far as the potential-theoretic part is concerned, [14,15,17] together
with [3,5] that bridges between potential theory and typical path description by reinforcing and
generalizing the results of [44] (and it is worth noting that [3], after [2,4], contemplates also
the case of polynomially small rather than only exponentially small transition probabilities). For
both classes of models, like one-dimensional metastable systems as considered in [16] or [8], a
recurrence property for a very localized subset of the configuration space (single configurations
identified to metastable states in the first case, small neighbourhoods of the dynamics attractors
in the second case) plays an important role.

Beyond these two classes of models there are many limit cases, special cases, and partial
results. For example, in [6] we are far from a finite-fixed-volume situation but single configura-
tions can still be identified with metastable states and have still enough mass at equilibrium for
potential-theoretic or renewal techniques to work. This is not the case in [13], where potential-
theoretic tools give only expected values of some hitting times when the system is started from
some specific harmonic measures that are very different from what one would expect to be a
“metastable state” (here, like in the sequel and following Lebowitz and Penrose, we mean a
whole measure when referring to a metastable “state” and not to a single configuration of the
configuration space). Any kind of exponential law is presently also lacking in this case. The same
difficulty is faced in [9], but it is overcome in [10] by means of a specific coupling argument that
gives point-wise estimates and opens the way to the exponential law. We also note that [5] devel-
ops some general martingale ideas to deal with the same issues within the framework built from
[2,3]. In fact, though working with a different setup, we share some of the leading ideas devel-
oped in [5], which uses some of the key objects that we introduced through this work. Such ideas
also inspired [24] where the non-reversible situation is contemplated. Finally, the beautiful paper
by Schonmann and Shlosman [43] achieves the tour de force of using essentially equilibrium sta-
tistical mechanics computations to deal with the dynamical problem of metastability. In this case
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also the exponential law is lacking as well as sharp estimates on the relaxation time, and even
the simple formulation of such properties is not completely obvious in this fixed-temperature and
vanishing-magnetic-field regime.

1.3. Starting ideas

In the present paper we want to elaborate some tools to describe the metastability phenomenon
beyond the case of a dynamics with a recurrence property for a very localized subset of the
configuration space. We will focus on exponential laws and sharp asymptotics of their expected
values. We note that the exponential law itself suggests some kind of recurrence property. If it
is not a recurrence property for a very localized subset, it has to be in some sense a recurrence
property to a whole “spread measure”. And this measure should coincide with our metastable
state. Now, following Lebowitz and Penrose, if we associate the metastable state with some
subset R of the configuration space X , then, considering property (b), we have at least two
candidates to describe our metastable state: one is the restricted ensemble µR = µ(·|R), the
other is the quasi-stationary distribution

µ∗

R = lim
t→+∞

PµR(X (t) ∈ ·|τX \R > t) (1.1)

where X (t) is the configuration of the system at time t and τX \R is the exit time of R (we will
be more precise in the next section). Notice that Eq. (1.1) provides the stationarity of µ∗

R for the
process conditioned to not having exit R,

Pµ∗

R


X (t) ∈ ·|τX \R > t


= µ∗

R, (1.2)

and thus explains the name of quasi-stationary distributions.
The main advantage of µR is that µR is often an explicit measure one can compute with,

while µ∗

R is only implicitly defined. The main advantage of µ∗

R is that the exit law of R for
the system started in µ∗

R is an exponential law. Our first results will then start, as in [1], with
a comparison between µR and µ∗

R . We will give simple and practical hypotheses to ensure that
they are close in some sense, then we will be able to prove some kind of recurrence property
for µ∗

R . In doing so we will also answer some problems left open in [1] (see our comment
after formula (2.31)). All this will be done in the simplest possible setup: considering a Markov
process on a finite configuration space in some asymptotic regime (including the possibility of
sending to infinity the cardinality of the configuration space).

In the present work we will essentially build on the ideas of four different papers: [41] for
the formulation of the problem, [19] for the focus on exponential laws, [14] for the introduction
of potential-theoretic techniques in the metastability field to get sharp estimates on some mean
hitting times, and Miclo’s work [36] where some concepts of local equilibrium, and “hitting
times” of such equilibriums, are introduced. As far as this last paper is concerned, it will only
work as a source of inspiration: we will not require a full spectrum knowledge, and we will
not introduce any notion of dependence of a local equilibrium on the initial condition. Finally,
we note that the idea of considering quasi-stationary measures as metastable states was already
contemplated in [30]. Even though some of our results echo some of [30], we were not able
to make any clear comparison, essentially because of the much more analytical point of view
of [30] and the many hypotheses introduced in the results of [30]. We note that [30] deals
with a much more general setup than ours since the authors consider non-reversible Markov
processes on a continuous configuration space, while we look at reversible Markov processes
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on finite configuration space. However, the reason why we assume reversibility is to be able to
use potential-theoretic results to get sharp estimates on mean times via variational principles, a
question that is not considered in [30].

1.4. Two new objects

In this section we provide a brief explanation on the two main new objects of this paper, that
we will progressively describe in the sequel: (κ, λ)-capacities and soft-measures. To understand
their meaning, beyond their definitions, we can start from the main formula introduced in the
context of metastable dynamics by [14]. Given a reversible and irreducible Markov process
X : t → X (t) ∈ X , and for any two disjoint and non-empty subsets A and B of X , it holds

EνA [τB] =
µ(VA,B)

C(A, B)
, (1.3)

where νA is the so-called harmonic measure on A (which actually depends also on B), τB
is the hitting time of B, µ(VA,B) is the mean value, w.r.t. the equilibrium measure µ, of the
“equilibrium potential” between A and B, and C(A, B) is the capacity between A and B. This
formula had in particular two crucial advantages. First, it allowed to describe the metastability
phenomenon essentially only through the computation of mean hitting times. Second, the most
relevant part in the right-hand side is the capacity appearing in the denominator, which has the key
property of satisfying two variational principles which, in turn, can be used to get sharp estimates
just by using test functions to obtain upper bounds and test flows to obtain lower bounds. Using
this formula one has however to cope with three interlinked difficulties, which, depending on the
considered model, can or cannot be easily overcome:

(i) the choice of the family of sets A and B can be delicate;
(ii) there is in general no variational principle to help in estimating the mean potential in the

numerator of the right-hand side;
(iii) the harmonic measure νA is in general very different from the natural measures associated

with metastability, say µR or µ∗

R.

Let us rapidly explain these three points. Formula (1.3) is by its very nature associated with
the Markov process stopped at time τB . Our previous discussion explains why it will not be
sufficient just to choose B = X \ R. Thus, in general, one has to consider a family of sets B
that are “deep inside X \ R”, and for a symmetric reason, the family of sets A should be chosen
“deep inside R” too. But then, the deeper these chosen sets are, the harder turns the estimation
of the mean potential. Moreover, while µR and µ∗

R are usually concentrated deep inside R (and
A), the harmonic measure νA of formula (1.3) has support on the border of A. In general, this
makes the comparison between the Markov process started from νA and the system started from
a “metastable equilibrium” complicated. We point out that this last difficulty is actually the exact
counterpart in A of the fact that (1.3) deals with a Markov process stopped in B (this possibly
not obvious fact can be well understood by looking at the proof of (1.3)).

The two objects that we introduce in this work, are partially intended to deal with these
difficulties. The (κ, λ)-capacities are capacities computed in an extended network that is
associated with a Markov process stopped at rate λ in B and for which κ plays a symmetrical
role in A (just like, when discussing (1.3), we noted that the fact that νA was concentrated on
the border of A was the counterpart of the fact that (1.3) was dealing with a process stopped in
B). We will then be able to build on (1.3) with a Markov process that can penetrate B. This will
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allow to simply choose B = X \ R, rather than a family of subsets of X \ R, and to compute
the “mean transition times” from metastable to stable states by estimating the (κ, λ)-capacities.
Symmetrically, the parameter κ will be used to deal with measures that are concentrated deep
inside A = R. In addition, the parameter λ will be used to interpolate between the restricted
ensemble µR (at λ = 0) and the quasi-stationary measure µ∗

R (at λ = +∞). These interpolating
measures will be our soft-measures; they are the quasi-stationary measures of the trace on R
of the process killed outside R at rate λ. In some sense, they are intended to keep the idea of
characterizing metastability through the computation of mean hitting times, for which we can
benefit of the classical potential theory and of its variational principles. Though formula (1.3)
will be used in our proofs, we will derive new (asymptotic) equations expressing these mean
hitting times in terms of quantities that satisfy two-sided variational principles only, and do not
involve mean potentials.

Finally, we stress that the difficulties arising when using (1.3) to describe a metastable
dynamics will not magically disappear by using soft-measures or (κ, λ)-capacities instead of
standard capacities. They are actually deferred into the estimation of the local relaxation times,
called γ−1

R and γ−1
X \R in the sequel. However, in doing so, we can benefit from the huge

mathematical literature dealing with the computation of rates of convergence to equilibrium.
In this paper we will also prove a new Poincaré inequality, adding one more tool in this respect.
And at this point, we should stress that the hypotheses that these local relaxation times should
satisfy in order to apply our results, do not require sharp estimates. Rough estimates will be
enough to find large windows in which choosing our parameters κ and λ to obtain, through the
use of variational principles, sharp estimates on the global relaxation time (γ−1 in the sequel).

2. Model and results

2.1. Quasi-stationary measure and restricted ensemble

We consider a continuous-time Markov process X on a finite set X with generator defined by

L f (x) =


y∈X

p(x, y)( f (y)− f (x)) (2.1)

for x in X and f : X → R, and where p is such that
y

p(x, y) = 1. (2.2)

Since X is finite, any generator can be written like in (2.1) up to time rescaling. We assume that
X is irreducible and reversible with respect to some probability measure µ, we denote by ⟨·, ·⟩

the scalar product in ℓ2(µ), by ∥ · ∥ the associated 2-norm, by D the Dirichlet form defined by

D( f ) = ⟨ f,−L f ⟩ =
1
2


x,y∈X

c(x, y) [ f (x)− f (y)]2 (2.3)

where each conductance c(x, y) is equal to

c(x, y) = µ(x)p(x, y), (2.4)

and by γ the spectral gap

γ = min
Varµ( f )≠0

D( f )

Varµ( f )
. (2.5)
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For R ⊂ X we define in each x ∈ R the escape probability (or rate)

eR(x) =


y∉R

p(x, y) (2.6)

and we denote by X R the reflected process (or restricted process) with generator given by

LR f (x) =


y∈R

pR(x, y)( f (y)− f (x)) (2.7)

for x in R and f : R → R, and where, for all x , y in R,

pR(x, y) =


p(x, y) if x ≠ y,
p(x, x)+ eR(x) if x = y.

(2.8)

We will only consider subsets R such that both X R and X X \R are irreducible and we note that
X R inherits from X the reversibility property with respect to the restricted ensemble

µR = µ(·|R). (2.9)

We identify ℓ2(µR) with the subset of ℓ2(µ) of functions f : X → R such that f |X \R ≡ 0
and we denote by ⟨·, ·⟩R, ∥ · ∥R, DR, cR(x, y) and γR the associated scalar product, 2-norm,
Dirichlet form, conductances for x , y in R and spectral gap.

We denote by p∗

R the sub-Markovian kernel on R such that, for all x , y in R,

p∗

R(x, y) = p(x, y). (2.10)

We know from [22] and the Perron–Frobenius theorem that there exists φ∗

R > 0 such that 1−φ∗

R
is the spectral radius of p∗

R and that there is a unique quasi-stationary measure µ∗

R such that
µ∗

R p∗

R = (1−φ∗

R)µ
∗

R. In addition we have, for all x , y in R and t ≥ 0, with τX \R the exit time
from R, i.e., the hitting time of X \ R,

lim
t→+∞

Px (X (t) = y|τX \R > t) = µ∗

R(y), (2.11)

Pµ∗

R
(τX \R > t) = e−φ∗

R t , (2.12)

µ∗

R(eR) = φ∗

R. (2.13)

The limit in (2.11) is called a Yaglom limit after Yaglom showed the existence of such limits in
the case of branching processes [48]. In our context of finite state spaces, the existence of such
a limit, that does not depend on the starting point x , simply follows from the Perron–Frobenius
theorem. In Sections 2.3 and 6 these properties will be rederived in a slightly more general
context.

Our first result states that if 1/φ∗

R, the mean exit time for the system started in µ∗

R, is large
with respect to 1/γR, the relaxation time of the reflected process, then the quasi-stationary
measure µ∗

R is close to the restricted ensemble µR. This is similar to Lemma 10 (b) in [1].
More precisely, for all x in R, let us define

ε∗R =
φ∗

R
γR

(2.14)

h∗

R(x) =
µ∗

R(x)

µR(x)
(2.15)
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and notice that h∗

R is a right eigenvector of p∗

R with eigenvalue 1 − φ∗

R. We prove the
following.

Proposition 2.1. If ε∗R < 1, then

VarµR(h
∗

R) = ∥h∗

R − 1R∥
2
R ≤

ε∗R
1 − ε∗R

. (2.16)

Proof. See Section 3.1. �

Remark. When proving that ε∗R goes to 0 in some asymptotic regime (for example when the
cardinality of the configuration space goes to infinity like in [19], when some parameter of the
dynamics goes to 0 like the temperature in [37] or when both happen like in [27]) one has to give
upper bounds on φ∗

R and lower bounds on γR. φ∗

R satisfies a variational principle through which
one can get such upper bounds using suitable test functions. In particular, since one can often
easily compute with µR, and eR is often explicit, one can usually estimate

φR = µR(eR) (2.17)

and then bound φ∗

R with φR. In some cases, for example in the low-temperature regime, this
estimate will already be good enough. More generally and precisely, we have the following
lemma, that we prove in Section 3.2.

Lemma 2.2. φ∗

R = min f ≠0
f|X \R =0

D( f )
∥ f ∥2 ≤

1
EµR [τX \R] ≤ φR.

Lower bounds on γR can be more difficult to obtain. However we note, first, that rough lower
bounds will often be sufficient to our ends, second, that the new Poincaré inequality we will
prove in this paper (Theorem 2.10) can be used to this purpose (see Section 7.2).

As a consequence of this first result we can control the convergence rate of the Yaglom limit in
(2.11). We note that, by the reversibility of X with respect to µ, p∗

R is a self-adjoint operator on
ℓ2(µR) and has real eigenvalues. By the Perron–Frobenius theorem, this implies the existence of
a spectral gap γ ∗

R > 0 equal to the difference between the first and the second largest eigenvalue
of p∗

R.

Proposition 2.3. If ε∗R < 1
3 , then

1
γ ∗

R
≤

1
γR


1 − ε∗R
1 − 3ε∗R


. (2.18)

Proof. See Section 3.3. �

Remark. Since, after the static study made in [29], we intend to apply our results to the dynam-
ical study of the cavity algorithm introduced in [31], for which finite-volume effects are of first
importance, we need to give asymptotics with quantitative control of corrective terms. This pro-
duces quite long formulas and to simplify the reading we put between curly brackets any terms
that go to 1 in a suitable asymptotic regime.

Then we set

ζ ∗

R = min
x∈R

µR(x)h
∗

R
2
(x) = min

x∈R
µ∗

R(x)h
∗

R(x), (2.19)
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which is the mass of the smallest atom of the measureµR biased by h∗

R
2, and define, if ε∗R < 1/3

and for any δ ∈]0, 1[,

T ∗

δ,R =
1
γR


ln

2
δ(1 − δ)ζ ∗

R


1 +


ε∗R

1 − ε∗R


1 − ε∗R

1 − 3ε∗R


(2.20)

to get point-wise mixing estimates for Yaglom limits.

Theorem 2.4 (Mixing Towards Quasi-Stationary Measure). If ε∗R < 1/3, then for all x, y ∈ R
and δ ∈]0, 1[,Px (X (t) = y | τX \R > t)

µ∗

R(y)
− 1

 < δ as soon as t > T ∗

δ,R. (2.21)

Proof. See Section 3.4. �

Remark. In words, this says that either the system leaves R before time T ∗

δ,R, or it is described
after that time by µ∗

R in the strongest possible sense. This theorem is useful only if one can
provide upper bounds on T ∗

δ,R. Bounding T ∗

δ,R depends on the control we have on ε∗R and on
this new parameter ζ ∗

R. As far as the latter is concerned, we note that it only appears in the
formula through its logarithm. Crude or very crude estimates of ζ ∗

R will then often be sufficient.
One has for example the following lemma.

Lemma 2.5. (i) With ζR = minx∈R µR(x) and αR = maxx∈R eR(x), it holds

ln
1
ζ ∗

R
≤ ln

4
ζR

+
αR
γR


ln

4ε∗R
(1 − ε∗R)ζR


+

, (2.22)

where the brackets [·]+ stand for the positive part.
(ii) If p(x, x) > 0 for all x ∈ R, then

ln
1
ζ ∗

R
≤ ln

1

min
x∈R

µ∗

R
2(x)

≤ 2∆R DR, (2.23)

where

∆R = max{− ln pR(x, y) : pR(x, y) > 0, ∀x, y ∈ R}

DR = min{k ≥ 0 : pk
R(x, y) > 0, ∀x, y ∈ R}.

Proof. See Appendix A. �

Also, since h∗

R is superharmonic on R with respect to L (see Appendix A), it reaches its
minimum on the internal border of R,

∂−R = {x ∈ R : ∃y ∉ R, p(x, y) > 0} . (2.24)

Then we always have

ζ ∗

R ≥


min
x∈R

µR(x)


min

x∈∂−R
h∗

R(x)

2

, (2.25)
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and in the special case when ∂−R reduces to a singleton, this gives, by (2.13) and (2.17),

ζ ∗

R ≥ min
x∈R

µR(x)


φ∗

R
φR

2

. (2.26)

Bounding ζ ∗

R from below essentially reduces in this case to giving a lower bound on φ∗

R , which
is one of the main goals of this paper (see Theorem 2.9).

We will make a special choice for the parameter δ in (2.20): we define

T ∗

R = T ∗

ε∗R,R. (2.27)

We then have

φ∗

R T ∗

R ≤ ε∗R


ln

3
ε∗Rζ

∗

R


1 +


ε∗R

1 − ε∗R


1 − ε∗R

1 − 3ε∗R


(2.28)

as soon as ε∗R < 1/3. We will sometimes refer in the sequel to the regime φ∗

R T ∗

R ≪ 1. Eq. (2.28)
provides a sufficient and practical condition for being in such a regime. We close this section with
a first asymptotic exponential law in this particular regime.

Theorem 2.6 (Asymptotic Exit Law). For any probability measure ν on R, define πR(ν) =

Pν(τX \R < T ∗

R). If ε∗R < 1/3, then, for all t ≥ φ∗

R T ∗

R,
Pν

τX \R >

t

φ∗

R


≤ (1 − πR(ν))e

−t


eφ
∗

R T ∗

R(1 + ε∗R)


Pν

τX \R >

t

φ∗

R


≥ (1 − πR(ν))e

−t


eφ
∗

R T ∗

R(1 − ε∗R)

.

Proof. See Section 4.1. �

Remark. The theorem gives more than an asymptotic exponential exit law. It says that, provided
πR(ν) converges to some limit and in the regime φ∗

R T ∗

R ≪ 1, the normalized mean exit time
φ∗

RτX \R converges in law to a convex combination between a Dirac mass in 0 and an exponential
law with mean 1.

As an example of an application we can consider the case of the restricted ensemble.

Lemma 2.7. It holds

πR(µR) = PµR(τX \R ≤ T ∗

R) ≤
1
2


ε∗R

1 − ε∗R
+ φ∗

R T ∗

R. (2.29)

Proof. See Section 4.2. �

This shows an asymptotic exponential exit law in the regime φ∗

R T ∗

R ≪ 1 for the system
started in the restricted ensemble.

Another consequence of Theorem 2.6 is that, in the regime φ∗

R T ∗

R ≪ 1, µ∗

R asymptotically
maximizes the mean exit time on the set of all possible starting measures. This can be seen in a
different way by following [1]. Consider, for any t > 0 the natural coupling up to time t ∧ τX \R
between X started from a measure ν and a process that starts from X (0), follows the law of the
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reflected process up to time t , and then the same law as the original process. This last process
cannot escape from R before X and we get,

Eν

τX \R


≤ t +


1 +

e−γR t

ζR


EµR


τX \R


, (2.30)

with, as previously, ζR = minx∈R µR(x). Using Lemma 2.2 and optimizing in t one gets

Eν

τX \R


≤

1
φ∗

R


1 + ε∗R + ε∗R ln

1
ε∗RζR


. (2.31)

We already mentioned that φ∗

R can be estimated from above by using test functions in a
variational principle (see Lemma 2.2). One of the questions raised in [1] is that of upper bounds
on mean exit times, i.e., that of lower bounds for φ∗

R. This is the question we will now address.

2.2. (κ, λ)-capacities, mean exit times and a new Poincaré inequality

In this section we introduce a new object which extends the notion of capacity between
sets. For any κ, λ > 0 and A, B ⊂ X , we first extend the electrical network (X , c), with
c(x, y) = µ(x)p(x, y) = µ(y)p(y, x) for all distinct x, y ∈ X , into a larger electrical network
(X̃ , c̃) by attaching a dangling edge (a, ā)with conductance κµ(a) to each a ∈ A and a dangling
edge (b, b̄) with conductance λµ(b) to each b ∈ B (this extension is related with some Markov
chain modification considered in [35]. More precisely, we add |A| + |B| nodes and edges to the
network by setting

X̃ = X ∪ {ā : a ∈ A} ∪ {b̄ : b ∈ B}

and, for all distinct x̃, ỹ ∈ X̃ we define

c̃(x̃, ỹ) =


c(x, y) if (x̃, ỹ) = (x, y) ∈ X × X
κµ(a) if (x̃, ỹ) = (a, ā) for some a ∈ A
λµ(b) if (x̃, ỹ) = (b, b̄) for some b ∈ B
0 otherwise.

(2.32)

This extended network is naturally associated with a family of “two level Markov processes” that
evolve like X in X , “go down” from A and B in X to Ā and B̄ at rate κ and λ respectively, and
“go up” from Ā and B̄ to A and B in X at some rates tuning the equilibrium measure of such
processes in X̃ . (We will use in the proof of our results this liberty in choosing the rates of this
family of processes associated with this unique extended electrical network.)

Definition 2.8. The (κ, λ)-capacity, Cλ
κ (A, B), is defined as the capacity between the sets Ā and

B̄ in the electrical network (X̃ , c̃), and then is given, according to Dirichlet principle, by

Cλ
κ (A, B) = min

f̃ :X̃ →R

1
2


x̃,ỹ∈X̃

c̃(x̃, ỹ)[ f̃ (x̃)− f̃ (ỹ)]2
; f̃| Ā

= 1, f̃|B̄
= 0


= min

f :X →R
D( f )+ κ


a∈A

µ(a)[ f (a)− 1]
2
+ λ


b∈B

µ(b)[ f (b)− 0]
2

= min
f :X →R

D( f )+ κµ(A)EµA


( f|A − 1)2


+ λµ(B)EµB


( f|B − 0)2


. (2.33)
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Remarks. (i) Since all the points of Ā and B̄ are at potential 1 and 0 respectively in formula
(2.33), they are electrically equivalent and we could have defined the (κ, λ)-capacity
between A and B by adding just two nodes to the electrical network (X , c). However, our
definition with dangling edges will be more useful in the sequel.

(ii) A (κ, λ)-capacity is in some sense easy to estimate since it satisfies a two-sided variational
principle. On one hand, by definition, it is the infimum of some functional, and any test
function will provide an upper bound. On the other hand it is the supremum of another
functional on flows from Ā to B̄, which are antisymmetric functions of oriented edges with
null divergence in X , i.e., on functions ψ̃ : X̃ × X̃ → R such that for all x ∈ X̃ \ ( Ā ∪ B̄),
divx ψ̃ =


x̃∈X̃ ψ̃(x, x̃) = 0. This is Thomson’s principle that goes back to [46, Chapter 1,

Appendix A] (see also lecture notes [26] for a more modern presentation or textbook [39]
for the proof of an almost equivalent result). Letting

D̃(ψ̃) =
1
2


x̃,ỹ∈X̃

ψ̃(x̃, ỹ)2

c̃(x̃, ỹ)
,

be the energy dissipated by the flow ψ̃ in the network (X̃ , c̃), and Ψ̃1( Ā, B̄) the set of unitary
flows from Ā to B̄, that is, the set of flows ψ̃ from Ā to B̄ such that

ā∈ Ā

divāψ̃ =


ā∈ Ā


x̃∈X̃

ψ̃(ā, x̃) = 1 = −


b̄∈B̄

divb̄ψ̃ = −


b̄∈B̄


x̃∈X̃

ψ̃(b̄, x̃), (2.34)

we have

Cλ
κ (A, B) = max

ψ̃∈Ψ̃1( Ā,B̄)
D̃(ψ̃)−1. (2.35)

If A ∩ B = ∅ this gives

Cλ
κ (A, B) = max

ψ∈Ψ1(A,B)


D(ψ)+


a∈A

(divaψ)
2

κµ(a)
+


b∈B

(divbψ)
2

λµ(b)

−1

= max
ψ∈Ψ1(A,B)


D(ψ)+

1
κµ(A)

EµA


divψ
µA

2


+
1

λµ(B)
EµB


divψ
µB

2
−1

, (2.36)

where Ψ1(A, B) is the set of unitary flows ψ from A to B and

D(ψ) =
1
2


x,y∈X

ψ(x, y)2

c(x, y)
.

Then, any test flow provides a lower bound on Cλ
κ (A, B).

(iii) We know [39,26] that the infimum and supremum in (2.33) and (2.36), are realized,
respectively, by the equilibrium potential V λ

κ = P(·)(ℓ−1
A (σκ) < ℓ−1

B (σλ)), where ℓ−1
A and

ℓ−1
B are the right continuous inverses of the local times in A and B, while σκ and σλ are

independent exponential times with rates κ and λ, and by its associated normalized current

−
c∇V λ

κ

Cλ
κ (A, B)

: (x, y) ∈ X × X −→
c(x, y)

Cλ
κ (A, B)

(V λ
κ (x)− V λ

κ (y)). (2.37)

We will say more on such quantities in the next section.



1634 A. Bianchi, A. Gaudillière / Stochastic Processes and their Applications 126 (2016) 1622–1680

(iv) The previous definitions and observations extend to the case when κ and λ are equal to
+∞. In that case we identify Ā with A in the extended network if κ = +∞, or B̄ with
B if λ = +∞, and we drop the infinite upper or lower index in the notation, so that,
for example, Cκ(A, B) = C∞

κ (A, B). However, when κ and λ are both equal to +∞, to
avoid any ambiguity we need to require that A ∩ B = ∅. In that case the notation becomes
C(A, B) = C∞

∞(A, B) and we recover indeed the usual notion of capacity.

We then get sharp asymptotics on mean exit times for the system started in the quasi-stationary
measure.

Theorem 2.9 (Mean Exit Time Estimates). For all κ > 0, it holds

Cκ(R,X \ R)
µ(R)


1 − ε∗R −

κ

γR


≤ φ∗

R ≤
Cκ(R,X \ R)

µ(R)


1 −

Cκ(R,X \ R)
κµ(R)

−2

.

(2.38)

Proof. See Section 5. �

Remarks. (i) In the regime ε∗R ≪ 1, one can choose κ such that φ∗

R ≪ κ ≪ γR and infer, by

the lower bound in (2.38), that κ ≫
Cκ (R,X \R)

µ(R)
. In turn, this yields an asymptotical matching

upper bound.
(ii) Both bounds are in some sense easy to estimate since capacities satisfy a two-sided vari-

ational principle. Moreover, compared with the formula for mean exit time provided by
potential-theoretic techniques (see, e.g., [14]), the above inequalities require no residual av-
erage potential estimates. (Such estimates, as well as some harmonic measures will only play
a role in the proof of the theorem.)

Our (κ, λ)-capacities provide also spectral gap estimates and a new general Poincaré
inequality. For κ, λ > 0 and A, B ⊂ X we set

φλκ (A, B) =
Cλ
κ (A, B)

µ(A)µ(B)
= φκλ (B, A). (2.39)

Theorem 2.10 (Relaxation Time Estimates). For all κ, λ > 0 and any R ⊂ X such that X R and
X X \R are both irreducible Markov processes,

1
γ

≥
1

φλκ (R,X \ R)


1 −

Cκ(R,X \ R)
κµ(R)

−
Cλ(R,X \ R)
λµ(X \ R)

2

1
γ

≤
1

φλκ (R,X \ R)


1 + max


κ + φλκ (R,X \ R)

γR
,
λ+ φλκ (R,X \ R)

γX \R


.

(2.40)

Proof. See Section 5. �

Remarks. (i) Without loss of generality, we can assume µ(R) ≤ µ(X \ R) so that, by (2.39),
φλκ ≤ 2Cλ

κ (R,X \ R)/µ(R). Then, as a consequence of the previous theorem and of the
monotonicity in κ and λ of (κ, λ)-capacities, we get matching bounds on 1/γ in the regime
ε∗R + ε∗X \R + φ∗

R/γX \R ≪ 1. One can indeed choose κ such that φ∗

R ≪ κ ≪ γR, just as
for Theorem 2.9 (Remark i)), and λ such that φ∗

R, φ
∗

X \R ≪ λ ≪ γX \R. In addition and like
previously, all the relevant quantities can be estimated by two-sided variational principles.
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(ii) The lower bound is a generalization of the classical isoperimetrical estimate that is recovered
for κ = λ = +∞.

(iii) The upper bound is a new Poincaré inequality. This inequality, or an easy-to-derive version
when one divides the configuration space into more than two subsets, echoes Poincaré
inequalities given in [32]. We are not able to compare in full generality our result with
that of [32] but we note that because of the presence of some global parameter called γ
in [32] one gets generally in our metastable situation an extra factor 1/min(γR, γX \R) by
applying the results of [32].

(iv) The proof of this upper bound, when considering more than two subsets, extends verbatim
to obtain the following result.

Lemma 2.11. If R1, R2, . . . ,Rm form a partition of X for which each of the restricted
processes X Ri is irreducible, if κ1, κ2, . . . , κm are positive real numbers and if we write γi

for γRi and φ(i, j) = C
κ j
κi (Ri ,R j )/(µ(Ri )µ(R j )), then

1
γ

≤


1
2


i≠ j

1
φ(i, j)

1 +

max
i

1
γi


1 +


j≠i

κi
φ(i, j)


1
2


i≠ j

1
φ(i, j)

 . (2.41)

2.3. Soft measures, local thermalization, transition and mixing times

We address now the difficulty raised by Lebowitz and Penrose. Whatever the measure we
choose to describe our metastable state, restricted ensemble or quasi-stationary measure, it is
associated with some subset R of the configuration space. Then there is an ambiguity when one
looks at property (b): what is “getting out” of the metastable state? One is tempted to say that it
corresponds in our model to the exit from R. But doing so we are very unlikely to modelize in
any satisfactory way property (c): we can expect that “on the edge”, when the system just exited
R, it has probabilities of the same order to “proceed forward” and thermalize in X \ R and to go
“backward” and thermalize in R. Thus we would like to define what would be a “true escape”
from R. Theorem 2.4 suggests an answer in the regime φ∗

X \R T ∗

X \R ≪ 1. We could define the
true escape as the first excursion of length T ∗

X \R inside X \ R. Since time randomization is
almost always a good idea, we are led to consider a random timer, which is independent of the
dynamics and has exponential distribution in order to keep the Markovianity of the process. The
timer starts when the dynamics exits R, but if it does not ring before returning to R, the excursion
to X \ R is ignored in the sense that it is not considered a “true escape” from R. A “true escape”
happens only when the timer rings during one of the excursion outside R. This will lead to an
extension of the concept of quasi-stationary distribution that interpolate between µ∗

R and µR
and we will see (Theorem 2.19 below) that the system will actually be close to equilibrium the
first time when the timer will ring during an excursion outside R: it will have truly escaped from
metastability.

For any A ⊂ X we call

ℓA(t) =

 t

0
1A(X (s))ds (2.42)
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the local time spent in A up to time t and we denote by ℓ−1
A the right-continuous inverse of ℓA:

ℓ−1
A (t) = inf{s ≥ 0 : ℓA(s) > t}. (2.43)

Recall that the process X can be seen as the process updated, according to its discrete version
with transition probability matrix p, at each ring of a Poissonian clock with intensity 1. Let us
then call τ the first ringing time. For σλ an exponential time with mean 1/λ that is independent
from X , we define for all x and y in R

p∗

R,λ(x, y) = Px

X (τ+

R) = y, ℓX \R(τ
+

R) ≤ σλ


(2.44)

with τ+

R the return time in R after the first clock ring, i.e., τ+

R = τ + τR ◦ θτ with θ the usual
shift operator. We also define, for all x in R,

eR,λ(x) = Px (ℓX \R(τ
+

R) > σλ) = 1 −


y∈R

p∗

R,λ(x, y) (2.45)

and for all x and y in R

pR,λ(x, y) =


p∗

R,λ(x, y) if x ≠ y,
p∗

R,λ(x, x)+ eR,λ(x) if x = y.
(2.46)

The Markov process X R,λ on R with generator defined by

LR,λ f (x) =


y∈R

pR,λ(x, y)( f (y)− f (x)) (2.47)

is reversible with respect to µR and has spectral gap

γR,λ = min
VarµR ( f )≠0

DR,λ( f )

VarµR( f )
(2.48)

where

DR,λ( f ) =
1
2


x,y

cR,λ(x, y)( f (x)− f (y))2 (2.49)

with

cR,λ(x, y) = µR(x)pR,λ(x, y) = pR,λ(y, x)µR(y). (2.50)

In addition we define

T := ℓ−1
X \R(σλ) (2.51)

τX \R,λ = ℓR(ℓ
−1
X \R(σλ)). (2.52)

We will refer to τX \R,λ as the transition time, since, for suitable choices of λ, this is the
time spent by the process in R before “truly escaping” from R, as seen by formula (2.65) in
Theorem 2.19 below.

Remark. While T is the global time such that the time spent in X \ R, during possibly many
excursions, is equal to σλ, the time τX \R,λ is the local time on R associated to T . On one hand, it
may thus look natural to address the study towards the characterization of the global time T . On
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the other hand, the transition time τX \R,λ is a natural generalization of the exit time τX \R, given
in such a way that when the time τX \R,λ is reached, not only the dynamics has exited R but it
has also spent in X \ R a time equal to σλ. With a little effort, we will then derive for τX \R,λ

similar results to those we have obtained for τX \R, and in particular its asymptotic exponential
law (see Theorem 2.17). At this point one may then think to derive information on T by the
identity

T = σλ + τX \R,λ,

but since the random variables σλ and τX \R,λ are not independent, this representation of T is
not immediately useful. However, we will show that for a suitable range of λ the global time T
and the local time τX \R,λ are asymptotically of the same order, which is also the order of the
relaxation time (see Theorem 2.19 and remark below).

We know by the Perron–Frobenius theorem that the spectral radius of p∗

R,λ
is a simple positive

eigenvalue that is smaller than or equal to 1 and has left and right eigenvectors with positive
coordinates. We call it 1 − φ∗

R,λ
and denote by µ∗

R,λ
the unique associated left eigenvector that

is also a probability measure on R. We then have the following lemma.

Lemma 2.12. It holds

(i) φ∗

R,λ
= µ∗

R,λ
(eR,λ);

(ii) Pµ∗

R,λ
(τX \R,λ > t) = e−tφ∗

R,λ , ∀t ≥ 0;

(iii) limt→∞ Px (X ◦ ℓ−1
R (t) = y | τX \R,λ > t) = µ∗

R,λ
(y), ∀x, y ∈ R.

Proof. See Section 6.1. �

We say that µ∗

R,λ
is a quasi-stationary measure associated with a soft barrier, or a soft quasi-

stationary measure, or, more simply, a soft measure. Indeed, µ∗

R,λ
is the limiting distribution of

the process conditioned to survival when it is killed at rate λ outside R. So, the hardest quasi-
stationary measure associated with R, corresponding to λ = +∞, is the quasi-stationary measure
µ∗

R, while the softest measure, corresponding to λ = 0, is the restricted ensemble µR (φ∗

R,0 = 0
and µ∗

R,0 is the equilibrium measure associated with p∗

R,0 = pR,0, which is reversible with
respect to µR). More precisely we have the following.

Lemma 2.13. The function λ ∈ [0,+∞] → µ∗

R,λ
∈ ℓ2(µ∗

R) is a continuous interpolation
between the restricted ensemble µR and the quasi-stationary distribution µ∗

R. In particular, for
any λ0 ∈ [0,+∞] and y ∈ R, we have

lim
λ→λ0

µ∗

R,λ(y) = µ∗

R,λ0
(y) (2.53)

and for all x ∈ R it holds the limit commutation property

lim
λ→λ0

lim
t→∞

Px (X ◦ ℓ−1
R (t) = y | τX \R,λ > t)

= lim
t→∞

lim
λ→λ0

Px (X ◦ ℓ−1
R (t) = y | τX \R,λ > t). (2.54)

Proof. See Section 6.2. �
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Analogously to what was done in the case λ = +∞ we set ε∗R,λ
= φ∗

R,λ
/γR,λ, h∗

R,λ
=

µ∗

R,λ
/µR and we call γ ∗

R,λ
the gap between the largest and the second eigenvalue of p∗

R,λ
(since p∗

R,λ
is self-adjoint with respect to ⟨·, ·⟩R it has only real eigenvalues). We also define

φR,λ = µR(eR,λ).

Proposition 2.14. The parameters γR,λ, φ∗

R,λ
, ε∗R,λ

and φR,λ depend continuously on λ. In
addition, when λ decreases to 0, so do φ∗

R,λ
, ε∗R,λ

and φR,λ, while γR,λ increases.

Proof. See Section 6.3. �

The proofs of Section 3 carry over this more general setup, and we get, by defining the
analogous T ∗

δ,R,λ
and αR,λ (while ζR , which is associated with µR rather than µ∗

R, has no
“λ-extension”), the following theorem.

Theorem 2.15 (Mixing Towards Soft Measures). For all λ ≥ 0, φ∗

R,λ
≤ φ∗

R, γR,λ ≥ γR and
ε∗R,λ

≤ ε∗R, Proposition 2.1, Proposition 2.3, Theorem 2.4 and Lemma 2.5 hold with an extra

index λ and writing X ◦ ℓ−1
R instead of X.

Remark. By continuity and monotonicity, the hypotheses ε∗R,λ
< 1 and ε∗R,λ

< 1/3 are always
satisfied for λ small enough.

We are now ready to deal with local thermalization: we will identify a “short” time scale on
which, for any given starting point, the system will relax towards a mixture of “local equilibria”
that are our quasi-stationary measures with soften barriers.

For a given κ ≥ 0, let σκ be an exponential time with mean 1/κ which is independent from
X and from σλ. We think to σk as to the random time which enters in the construction of soft
measures over X \ R, in the same way the random time σλ entered in the construction of soft
measure over R. We define inductively, for κ, λ ≥ 0, the stopping times τi for i ≥ 0:

τ0 = 0, (2.55)

τ1 = ℓ−1
R (σκ) ∧ ℓ−1

X \R(σλ), (2.56)

τi+1 = τi + τ1 ◦ θτi . (2.57)

Then for δ ∈ (0, 1) we call i0 the smallest i ≥ 1 such that one of the two following conditions
holds,

(i) X (τi ) ∈ R and ℓR(τi )− ℓR(τi−1) > T ∗

δ,R,λ, (2.58)

(ii) X (τi ) ∉ R and ℓX \R(τi )− ℓX \R(τi−1) > T ∗

δ,X \R,κ , (2.59)

and we set τδ = τi0 .

Theorem 2.16 (Local Thermalization). For any δ ∈ (0, 1) and any probability measure ν on X ,
if ε∗R,λ

< 1/3 and ε∗X \R,κ
< 1/3, then

max


max
x∈R

Pν(X (τδ) = x | X (τδ) ∈ R)

µ∗

R,λ
(x)

− 1

 , max
x∈X \R

Pν(X (τδ) = x | X (τδ) ∉ R)

µ∗

X \R,κ
(x)

− 1



< δ.

(2.60)
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Moreover if ξ = max


eκT ∗

δ,R,λ − 1, eλT ∗

δ,X \R,κ − 1

< 1, it holds

Pν

τδ > t


1
κ

+
1
λ


≤ e−t


1

1 − ξ


. (2.61)

Proof. See Section 6.4. �

Remark. For κ and λ small enough, we have ε∗R,λ
< 1/3 and ε∗X \R,λ

< 1/3. Then, when κ and
λ decrease to 0, we have non-increasing upper bounds on T ∗

δ,R,λ
and T ∗

δ,X \R,κ
. As a consequence,

the condition ξ < 1 will always be satisfied for κ and λ small enough and the theorem says that
starting from any configuration the system is close to a random mixture of two states (µ∗

R,λ
and

µ∗

X \R,κ
, close to µR and µX \R respectively) after a time of order T ∗

δ,R,λ
+ T ∗

δ,X \R,κ
.

As previously we make special choices for the parameter δ and we set

T ∗

R,λ = T ∗

ε∗R,λ
,R,λ and T ∗

X \R,κ = T ∗

ε∗X \R,κ
,X \R,κ . (2.62)

We then have, as soon as ε∗R,λ
< 1/3,

φ∗

R,λT ∗

R,λ ≤ ε∗R,λ


ln

3
ε∗R,λ

ζ ∗

R,λ


1 +


ε∗R,λ

1 − ε∗R,λ


1 − ε∗R,λ

1 − 3ε∗R,λ


. (2.63)

Now the proofs of Section 4 carry over this more general setup and we get asymptotic
exponential laws for the transition time τX \R,λ.

Theorem 2.17 (Asymptotic Transition Law). For all λ ≥ 0, Theorem 2.6, Lemma 2.7 and
inequality (2.31) hold with an extra index λ.

We can also give sharp estimates on the mean transition time and asymptotics of the mixing
time.

Theorem 2.18 (Mean Transition Time Estimates). For all κ, λ > 0, setting φλκ = φλκ (R,X \ R)
(recall (2.39)), it holds

φ∗

R,λ ≥
Cλ
κ (R,X \ R)
µ(R)


1 − µ(R)− 2φ∗

R,λ
/λ

1 − µ(R)


1 − max


κ + φλκ

γR
,
λ+ φλκ

γX \R


,

φ∗

R,λ ≤
Cλ
κ (R,X \ R)
µ(R)


1 + ε∗R,λ + ε∗R,λ ln

1
ε∗R,λ

ζR
+
φ∗

R,λ

κ


.

(2.64)

Proof. See Section 6.5. �

Remarks. (i) In the regime ε∗R + ε∗X \R + φ∗

R/γX \R ≪ 1 and assuming µ(R) ≤ µ(X \ R)
one can choose κ and λ in such a way that φ∗

R ≪ κ ≪ γR and φ∗

R, φ
∗

X \R ≪ λ ≪ γX \R,
and then we get matching bounds provided ε∗R,λ

≪ ln(1/ζR). Once again, all the relevant
quantities can be estimated via a two-sided variational principle.

(ii) This logarithmic term in the upper bound looks spurious. An upper bound without such a
term should hold but we were not able to derive it.
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Theorem 2.19 (Mixing Time Asymptotics). For κ, λ > 0 and any x ∈ X , we define T =

ℓ−1
X \R(σλ) and νx = Px (X (T ) = ·). Then, if ε∗X \R,κ

< 1/3

∥νx − µX \R∥T V ≤
1
2
ε∗X \R,κ + λT ∗

X \R,κ , (2.65)

∥νx − µ∥T V ≤ µ(R)+

 ε∗X \R,κ

1 − ε∗X \R,κ

+ λT ∗

X \R,κ . (2.66)

In addition, if

η = µ(R)+ 2


 ε∗X \R,κ

1 − ε∗X \R,κ

+ λT ∗

X \R,κ

 <
1
2
, (2.67)

then, with

tmix = inf
t≥0


max
x∈X

∥Px (X (t) = ·)− µ∥TV ≤
1
2


η +

1
2


, (2.68)

we have

tmix ≤
2

φ∗

R,λ


1
2 − µ(R)

 1 + ε∗R,λ + ε∗R,λ ln
1

ε∗R,λ
ζR

+
φ∗

R,λ

λ


. (2.69)

Proof. See Section 6.6. �

Remark. The theorem makes sense in the regime ε∗R + ε∗X \R + φ∗

R/γX \R ≪ 1. One can then
choose λ such that φ∗

R,λ
≪ λ ≪ γX \R,κ . If λT ∗

X \R,κ
≪ 1 then (1 + 2η)/4 can be made as close

as (1+2µ(R))/4 < 1/2 as we want. If ε∗R,λ
ln(1/ζR) ≪ 1, then the theorem provides the correct

order for the mixing time, since the spectral gap goes like φ∗

R,λ
/µ(X \ R) and µ(X \ R) ≥ 1/2.

Let us finally summarize our results. To have a mathematical model of the metastability phe-
nomenon described by properties (a)–(c), we first consider a reversible Markov process on a
finite state space X , and a subset R of X such that µ(R) < µ(X \ R), with µ the equilibrium
measure of the process. We then describe metastable states by soft measures associated with
R in the regime ε∗R + ε∗X \R + φ∗

R/γX \R ≪ 1. In this regime all soft measures are close to
the restricted ensemble (Theorem 2.15). If we choose κ and λ such that φ∗

R ≪ κ ≪ γR and
φ∗

R, φ
∗

X \R ≪ λ ≪ γX \R then we can show

(i) local thermalization towards the soft measure µR,λ or µX \R,κ starting from any configura-
tion in X and on a short time scale 1

κ
+

1
λ

(Theorem 2.16),

(ii) exponential asymptotic transition time on a long time scale 1
φ∗

R,λ
∼

µ(R)

Cλκ (R,X \R)
(Theo-

rems 2.17 and 2.18),
(iii) return time to metastable state on a still longer time scale 1

φ∗

X \R,κ
∼

µ(X \R)

Cλκ (R,X \R)
(Theo-

rem 2.18 applied to X \ R in place of R).

In addition relaxation and mixing times are of the same order as the mean transition time
(Theorems 2.10 and 2.19) – in particular the relaxation time has the same exact asymptotic up to
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a factor µ(X \ R) – while exit times are on long, but generally shorter, time scale (Theorem 2.9).
And we note once again, that all relevant quantities can be estimated via two-sided variational
principles.

3. Analysis in ℓ2(µR)

3.1. Proof of Proposition 2.1

We recall that the reflected process X R is reversible w.r.t. µR with spectral gap γR. In par-
ticular, for any function f ∈ ℓ2(µR), we have the Poincaré inequality VarµR( f ) ≤

1
γR

DR( f ),
where DR( f ) is the Dirichlet form of f given by

DR( f ) = ⟨ f,−LR f ⟩µ =


x,y∈R

µR(x) f (x)(δx (y)− pR(x, y)) f (y). (3.1)

Applying the Poincaré inequality to h∗

R, and exploiting the definition of pR and p∗

R, we get

VarµR(h
∗

R) ≤
1
γR

DR(h
∗

R) =
1
γR


x,y∈R

µR(x)h
∗

R(x) (δx (y)− pR(x, y)) h∗

R(y)

=
1
γR

µR(h
∗

R
2
)−


x,y∈R

µ∗

R(x)pR(x, y)h∗

R(y)


=

1
γR

µR(h
∗

R
2
)−


x,y∈R

µ∗

R(x)(p(x, y)+ δx (y)eR(x))h
∗

R(y)


≤

1
γR

µR(h
∗

R
2
)−


x,y∈R

µ∗

R(x)p
∗

R(x, y)h∗

R(y)

 . (3.2)

From the last line, using that µ∗

R is a left eigenvector of p∗

R with eigenvalue (1 − φ∗

R) and that
µ∗

R(h
∗

R) = µR(h∗

R
2), we get

VarµR(h
∗

R) ≤
φ∗

R
γR

µR(h
∗

R
2
) =

φ∗

R
γR


VarµR(h

∗

R)+ 1

. (3.3)

Finally, rearranging the terms in the above inequality and from the hypothesis ε∗R =
φ∗

R
γR

< 1,
we obtain the required upper bound.

3.2. Proof of Lemma 2.2

Let us denote by L∗

R the sub-Markovian generator associated to the kernel p∗

R. For any
function f ∈ ℓ2(µR), this is defined as

(L
∗

R f )(x) = − f (x)+


y∈R

p∗

R(x, y) f (y), (3.4)

and we have the following useful lemma:
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Lemma 3.1. For all f ∈ ℓ2(µR), it holds

DR( f ) ≤
D( f )

µ(R)
= ⟨ f,−L

∗

R f ⟩R. (3.5)

Proof of Lemma 3.1. For all x, y ∈ R with x ≠ y, pR(x, y) = p(x, y). Then we have

DR( f ) =
1
2


x,y∈R

µR(x)pR(x, y) [ f (x)− f (y)]2

=
1
2


x,y∈R

µR(x)p(x, y) [ f (x)− f (y)]2 , (3.6)

since only the terms in x ≠ y matter in this sum. Thus, extending the sum to all x, y ∈ X ,

DR( f ) ≤
1
2


x,y∈X

µR(x)p(x, y) [ f (x)− f (y)]2
≤

D( f )

µ(R)
, (3.7)

and this provides the stated upper bound.
To prove the equality, we recall that the space ℓ2(µR) is identified with the subset of functions

f ∈ ℓ2(µ) with f|X \R ≡ 0. Since, for all x, y ∈ R, it holds that µR(x) = µ(x)/µ(R) and
p∗

R(x, y) = p(x, y), we have

D( f )

µ(R)
=

1
µ(R)


x,y∈X

µ(x) f (x) (δx (y)− p(x, y)) f (y)

=


x,y∈R

µR(x) f (x)

δx (y)− p∗

R(x, y)


f (y)

= ⟨ f,−L
∗

R f ⟩R, (3.8)

which concludes the proof. �

We can now proceed with the proof of Lemma 2.2. Since 1 − φ∗

R is the largest eigenvalue of
p∗

R, we have

φ∗

R = min
f :R→R

f ≠0

⟨ f,−L∗

R f ⟩R
⟨ f, f ⟩R

, (3.9)

then the equality in Lemma 2.2 is a consequence of Lemma 3.1. Taking f = 1R as test function
in (3.9), we get

φ∗

R ≤


x∈R

µR(x)

1 −


y∈R

p∗

R(x, y)


=


x∈R

µR(x)

1 −


y∈R

p(x, y)


=


x∈R

µR(x)eR(x) = φR, (3.10)

and it remains to prove that EµR


τX \R


lies between 1/φR and 1/φ∗

R.
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Since, for any k ∈ N, (1 − φ∗

R)
k is the largest eigenvalue of (p∗

R)
k , the same argument gives

1 − (1 − φ∗

R)
k

≤


x∈R

µR(x)

1 −


y∈R


p∗

R
k
(x, y)

 (3.11)

namely,

(1 − φ∗

R)
k

≥


x∈R

µR(x)

y∈R


p∗

R
k
(x, y). (3.12)

By summing on k ≥ 0 and with X̂ the discrete time version of X , such that X follows X̂ at each
ring of a Poissonian clock of intensity 1, we have, with obvious notation,

1
φ∗

R
=


k≥0

(1 − φ∗

R)
k

≥


k≥1

PµR(τ̂X \R ≥ k)

= EµR [τX \R] ≥ PµR(τ̂X \R = 1) =
1
φR

. (3.13)

3.3. Proof of Proposition 2.3

The second smallest eigenvalue of the sub-Markovian generator L∗

R, φ∗

R + γ ∗

R, satisfies the
variational formula

φ∗

R + γ ∗

R = min


⟨ f,−L∗

R f ⟩R
⟨ f, f ⟩R

: f ≠ 0, ⟨ f, h∗

R⟩R = 0



= min

⟨ f,−L

∗

R f ⟩R : ⟨ f, h∗

R⟩R = 0, ⟨ f, f ⟩R = 1

. (3.14)

Let f be a function on R that realizes the minimum in the above definition, with ⟨ f, f ⟩R = 1.
Since ⟨ f, h∗

R⟩R = 0, we have

⟨ f, h∗

R − 1R⟩R = −⟨ f,1R⟩R = −µR( f )

and then, by the Cauchy–Schwarz inequality together with Proposition 2.1,

µ2
R( f ) ≤ ∥ f ∥

2
R · ∥h∗

R − 1R∥
2
R ≤

ε∗R
1 − ε∗R

. (3.15)

Now, writing the orthogonal decomposition f = µR( f )+ g, with µR(g) = 0, we have

1 = ∥ f ∥
2
R = µ2

R( f )+ ∥g∥
2
R

and thus, from (3.15),

∥g∥
2
R = 1 − µ2

R( f ) ≥ 1 −
ε∗R

1 − ε∗R
=

1 − 2ε∗R
1 − ε∗R

.

Using g as a test function in

γR = min


DR(h)

∥h∥
2
R

: h ≠ 0, µR(h) = 0


, (3.16)
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we get

γR ≤
1 − ε∗R
1 − 2ε∗R

DR(g) =
1 − ε∗R

1 − 2ε∗R
DR( f ). (3.17)

From Lemma 3.1, and using that f was chosen in order to have ⟨ f,−L∗

R f ⟩R = φ∗

R + γ ∗

R, we
get

γR ≤
1 − ε∗R
1 − 2ε∗R

⟨ f,−L
∗

R f ⟩R =
1 − ε∗R
1 − 2ε∗R

(φ∗

R + γ ∗

R). (3.18)

Setting φ∗

R = ε∗RγR and rearranging the terms in the last inequality, we get
1 − 3ε∗R + ε∗R

2

1 − 2ε∗R


γR ≤


1 − ε∗R

1 − 2ε∗R


γ ∗

R,

which, under the hypothesis ε∗R < 1/3, implies

1
γ ∗

R
≤

1
γR


1 − ε∗R

1 − 3ε∗R


.

3.4. Proof of Theorem 2.4

The proof is based on a classical trick to control mixing times with relaxation times. For any
probability measure ν on R, any f : R → R such that µ∗

R( f ) ≠ 0 and any s, t ≥ 0, one can
check that

Eν[ f (X (s + t))1{τX \R>s+t}] − µ∗

R( f )Pν(τX \R > s + t)

=


y∈R


Pν(X (s) = y, τX \R > s)− Pν(τX \R > s)µ∗

R(y)


×

Ey[ f (X (t))1{τX \R>t}] − Py(τX \R > t)µ∗

R( f )

. (3.19)

Indeed, one can rewrite the right-hand side of the above equality as the sum of four terms, two of
which coincide with the two terms in the left-hand side by the Markov property, while the other
two terms cancel using the quasi-stationarity property, i.e.

Eµ∗

R


f (X (t)) | τX \R > t


= µ∗

R( f ). (3.20)

As a consequence, by the Cauchy–Schwarz inequality one getsEν[ f (X (s + t))1{τX \R>t}] − µ∗

R( f )Pν(τX \R > s + t)


≤

Pν(X (s) = ·, τX \R > s)

µR(·)
− Pν(τX \R > s)h∗

R(·)


R

×
E(·)[ f (X (t))1{τX \R>t}] − P(·)(τX \R > t)µ∗

R( f )


R . (3.21)

We now estimate these two factors. Noting that

Pν(X (s) = ·, τX \R > s) = νesL∗

R(·) and E(·)[ f (X (t))1{τX \R>t}] = et L∗

R f (·),



A. Bianchi, A. Gaudillière / Stochastic Processes and their Applications 126 (2016) 1622–1680 1645

and diagonalizing the self-adjoint operator L∗

R in an orthonormal basis, one getsPν(X (s) = ·, τX \R > s)

µR(·)
−

 ν

µR


R

h∗

R
∥h∗

R∥R
cos θν e−φ∗

R s


2

R

≤

 ν

µR

2

R

sin2 θνe−2s(φ∗

R+γ ∗

R), (3.22)

with θν ∈ [0, π/2[ such that ∥
ν
µR

∥R ∥h∗

R∥R cos θν = ⟨
ν
µR
, h∗

R⟩ = ν(h∗

R), andE(·)[ f (X (t))1{τX \R>t}] − ∥ f ∥R

h∗

R
∥h∗

R∥R
cos θ f e−φ∗

R t
2

R

≤ ∥ f ∥
2
R sin2 θ f e−2t (φ∗

R+γ ∗

R) (3.23)

with θ f ∈ [0, π] \ {π/2} such that ∥ f ∥R ∥h∗

R∥R cos θ f = ⟨ f, h∗

R⟩ = µ∗

R( f ).
Moreover, since

Pν(τX \R > s) = µR

Pν(X (s) = ·, τX \R > s)

µR(·)


,

by the Cauchy–Schwarz inequality and using (3.22) we getPν(τX \R > s)−

 ν

µR


R

cos θν
∥h∗

R∥R
e−φ∗

R s


=

µR


Pν(X (s) = ·, τX \R > s)

µR(·)
−

 ν

µR


R

h∗

R
∥h∗

R∥R
cos θν e−φ∗

R s


≤


1R,

Pν(X (s) = ·, τX \R > s)

µR(·)
−

 ν

µR


R

h∗

R
∥h∗

R∥R
cos θν e−φ∗

R s




R

≤

 ν

µR


R

sin θνe−s(φ∗

R+γ ∗

R). (3.24)

Using inequalities (3.22) and (3.24), we finally getPν(X (s) = ·, τX \R > s)

µR(·)
− Pν(τX \R > s)h∗

R(·)


R

≤

Pν(X (s) = ·, τX \R > s)

µR(·)
−

 ν

µR


R

h∗

R
∥h∗

R∥R
cos θν e−φ∗

R s


R

+




Pν(τX \R > s)−

 ν

µR


R

cos θν
∥h∗

R∥R
e−φ∗

R s


h∗

R


R

≤

 ν

µR


R

(1 + ∥h∗

R∥R) sin θν e−s(φ∗

R+γ ∗

R) (3.25)

which provides an estimate of the first factor in (3.21).
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To what concerns the second factor, noting that

P(·)(τX \R > t) = E(·)[1R(X (t))1{τX \R>t}]

and that, from the definition of cos θ f applied to f = 1R,

cos θ1R =
1

∥h∗

R∥R
and sin2 θ1R =

∥h∗

R∥
2
R − 1

∥h∗

R∥2
R

=
VarµR(h

∗

R)

∥h∗

R∥2
R

,

from inequality (3.23) we getP(·)(τX \R > t)−
h∗

R
∥h∗

R∥2
R

e−φ∗

R t


2

≤
VarµR(h

∗

R)

∥h∗

R∥2
R

e−2t (φ∗

R+γ ∗

R). (3.26)

Then, from inequalities (3.23) and (3.26),E(·)[ f (X (t))1{τX \R>t}] − P(·)(τX \R > t)µ∗

R( f )


R

≤

E(·)[ f (X (t))1{τX \R>t}] − ∥ f ∥R

h∗

R
∥h∗

R∥R
cos θ f e−φ∗

R t


R

+

P(·)(τX \R > t)∥ f ∥R ∥h∗

R ∥R cos θ f − ∥ f ∥R

h∗

R
∥h∗

R∥R
cos θ f e−φ∗

R t


R

≤ ∥ f ∥R sin θ f e−t (φ∗

R+γ ∗

R)
+ ∥ f ∥R ∥h∗

R∥R


VarµR(h

∗

R)

∥h∗

R∥R
cos θ f e−t (φ∗

R+γ ∗

R)

=


∥ f ∥R sin θ f +

µ∗

R( f )


VarµR(h
∗

R)

∥h∗

R∥R


e−t (φ∗

R+γ ∗

R) (3.27)

which provides an estimate of the second factor in (3.21).
Inserting (3.25) and (3.27) in (3.21), we then obtainEν[ f (X (s + t))1{τX \R>t}] − µ∗

R( f )Pν(τX \R > s + t)


≤

 ν

µR


R

(1 + ∥h∗

R∥R) sin θν

×


∥ f ∥R sin θ f +

µ∗

R( f )


VarµR(h
∗

R)

∥h∗

R∥R


e−(s+t)(φ∗

R+γ ∗

R). (3.28)

To conclude our proof we will make two more steps. First notice that from (3.24) one also
gets that, for any t ≥ 0,

Pν(τX \R > t) ≥

 ν

µR


R


cos θν

∥h∗

R∥R
e−tφ∗

R − sin θν e−t (φ∗

R+γ ∗

R)


.

In particular, as soon as the following condition is verified

sin θν e−t (φ∗

R+γ ∗

R)
≤ δ

cos θν
∥h∗

R∥R
e−φ∗

R t , (3.29)

that is

∥h∗

R∥R tan θν e−φ∗

R t
≤ δ, (3.30)
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it holds

Pν(τX \R > t) ≥ (1 − δ)

 ν

µR


R

cos θν
∥h∗

R∥R
e−φ∗

R t . (3.31)

Now, dividing both terms of (3.28) by µ∗

R( f )Pν(τX \R > s + t), we reach an inequality that
controls the Yaglom limit and that, provided condition (3.30) holds and then using the last
inequality, reads asEν[ f (X (t)) | τX \R > t]

µ∗

R( f )
− 1

 ≤
1 + ∥h∗

R∥R

1 − δ
tan θν


tan θ f +


VarµR(h

∗

R)


e−γ ∗

R t .

(3.32)

As a final step we apply this inequality to ν = δx and f = δy . For this choice of ν and f , and by
definition of θν and θ f , one has

tan θν ≤
1

cos θν
=

∥h∗

R∥R
µR(x)h∗

R(x)
and tan θ f ≤

1
cos θ f

=
∥h∗

R∥R
µR(y)h∗

R(y)
.

Thus, from (3.32), we obtain that under condition (3.30)Px

(X (t) = y) | τX \R > t


µ∗

R(y)
− 1


≤ e−γ ∗

R t (1 + ∥h∗

R∥R)∥h∗

R∥
2
R

(1 − δ)

µR(x)h∗

R(x)


1

µR(y)h∗

R(y)
+


VarµR(h

∗

R)

∥h∗

R∥R



≤ e−γ ∗

R t 1
1 − δ


1 +


1 +

ε∗R
1 − ε∗R


1 +

ε∗R
1 − ε∗R


1
ζ ∗

R


1
ζ ∗

R
+


ε∗R

1 − ε∗R


,

(3.33)

where in the second line we used that ∥h∗

R∥R ≥ 1, the estimate given in Proposition 2.1, and we
introduced the quantity ζ ∗

R defined in (2.19).
The right-hand side of the last inequality is smaller than δ as soon as

t ≥
1
γ ∗

R


ln

2
δ(1 − δ)ζ ∗

R
+ ln


1
2

+
1
2


1 +

ε∗R
1 − ε∗R



×


1 +

ε∗R
1 − ε∗R


1 +


ζ ∗

Rε
∗

R
1 − ε∗R


, (3.34)

which also implies (3.30).
Finally, from the hypothesis ε∗R < 1/3, from the concavity of the logarithm and of the square

root function, and using that ζ ∗

R ≤ 1, then δ(1 − δ) ≤ 1/4 and ln 8 ≥ 1 + 5/(4
√

2), after some
computation one obtains that the condition (3.34) is implied by the stronger condition

t ≥
1
γ ∗

R


ln

2
δ(1 − δ)ζ ∗

R


1 +


ε∗R

1 − ε∗R


, (3.35)

which, in turn, follows from t > T ∗

δ,R by using Proposition 2.3.
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4. Around the exponential law

4.1. Proof of Theorem 2.6

We write

Pν

τX \R >

t

φ∗

R


= πR(ν)Pν


τX \R >

t

φ∗

R
| τX \R < T ∗

R


+ (1 − πR(ν))Pν


τX \R >

t

φ∗

R
| τX \R > T ∗

R


.

If t ≥ φ∗

R T ∗

R, the first term in the r.h.s equals zero and we get

Pν

τX \R >

t

φ∗

R


= (1 − πR(ν))Pν


τX \R >

t

φ∗

R
| τX \R > T ∗

R


.

By Theorem 2.4, we also havePν

τX \R >

t

φ∗

R
| τX \R > T ∗

R


− e

−φ∗

R


t
φ∗

R
−T ∗

R

 ≤ ε∗Re
−φ∗

R


t
φ∗

R
−T ∗

R


,

which together with the previous equality completes the proof.

4.2. Proof of Lemma 2.7

On the one hand we have

Pµ∗

R
(τX \R ≤ T ∗

R) = 1 − e−φ∗

R T ∗

R ≤ φ∗

R T ∗

R. (4.1)

On the other hand, denoting by dT V (µ, ν) the total variation distance between µ and ν, from the
ℓ2(µR) estimate given in Proposition 2.1, together with the Cauchy–Schwarz inequality, we get

dT V (µR, µ
∗

R) =
1
2


x∈R

µR(x)− µ∗

R(x)
 =

1
2


x∈R

µR(x)
1 − h∗

R(x)


≤
1
2

VarµR(hR)
1/2

≤
1
2


ε∗R

1 − ε∗R
. (4.2)

We then derive the desired result by using an optimal coupling.

5. Working with (κ, λ)-capacities

5.1. Proof of the upper bound in Theorem 2.9

Let X̃ denote the continuous-time Markov chain on X̃ defined, for κ̃ > 0, by the generator

(L̃ f )(x̃) =

κ̃( f (x)− f (x̄)) if x̃ = x̄ ∈ R̄
(L f )(x)+ κ( f (x̄)− f (x)) if x̃ = x ∈ R
(L f )(x) if x̃ = x ∈ X \ R.

(5.1)
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This is a reversible process with respect to a measure µ̃ defined as

µ̃(x̃) =

µ(x) if x̃ = x ∈ X
κ

κ̃
µ(x) if x̃ = x̄ ∈ R̄.

(5.2)

Note that µ̃ is not a probability measure. Let us denote by ν̃R̄ the harmonic measure on R̄
associated with X \ R, i.e., the probability measure on R̄ defined by

ν̃R̄(x̄) =
−µ̃(x̄)(L̃Ṽκ)(x̄)

Cκ(R,X \ R)
(5.3)

and with

Ṽκ(x̃) =


Vκ(x) = Px (σκ < τX \R) if x̃ = x ∈ R
1 if x̃ = x̄ ∈ R̄
0 if x̃ = x ∈ X \ R.

With obvious notation, we then have

Eν̃R̄
[τ̃X \R] =

µ̃(Ṽκ)

Cκ(R,X \ R)
. (5.4)

Such kind of formula was introduced into the study of metastability in [14]. We refer to lecture
notes [26] for a derivation.

Now setting ν(x) = ν̃R̄(x̄) for all x ∈ R, we can write

Eν̃R̄
[τ̃X \R] =

1
κ̃

+ Eν[τX \R] + Eν[τX \R] · κ ·
1
κ̃

=
1
κ̃

+ Eν[τX \R]


1 +

κ

κ̃


,

where the first of the three summands stands for the mean time to go from R̄ to R, the second
one for the mean time spent when moving inside R before reaching X \ R, and the last one for
the mean time spent moving back and forth between R and R̄. From (5.2) we also have

µ̃(Ṽκ)

Cκ(R,X \ R)
=

µ(Vκ)+


x̄∈R̄
µ̃(x̄)

Cκ(R,X \ R)
=
µ(Vκ)+

κ
κ̃
µ(R)

Cκ(R,X \ R)
.

Inserting the above equalities in (5.4) and multiplying by κ̃ , we then get

1 + Eν[τX \R](κ̃ + κ) =
κ̃µ(Vκ)+ κµ(R)

Cκ(R,X \ R)
. (5.5)

Note that µ(R), µ(Vκ), Cκ(R,X \ R) and Eν[τX \R] do not depend on κ̃ . Then, in the limit of
a vanishing κ̃ , it holds

1 + κEν[τX \R] =
κµ(R)

Cκ(R,X \ R)
. (5.6)

This already provides, by (2.31), an upper bound on φ∗

R.
To get the more practical upper bound stated in (2.38), let first note that dividing (5.5) by κ̃ ,

and then sending κ̃ to +∞, we get

Eν[τX \R] =
µ(Vκ)

Cκ(R,X \ R)
. (5.7)
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Together with (5.6), this implies µ(Vκ )
Cκ (R,X \R)

=
µ(R)

Cκ (R,X \R)
−

1
κ

or equivalently

Lemma 5.1.

µR(Vκ) = 1 −
Cκ(R,X \ R)

κµ(R)
. (5.8)

We now exploit the variational principle for φ∗

R provided by Lemma 2.2 and take Vκ as test
function. Noting that Ṽκ is the equilibrium potential of the electrical network on X̃ defined in
(2.32), from (2.33) we get

D(Vκ(x)) ≤ Cκ(R,X \ R). (5.9)

By the Jensen inequality and (5.8),

∥Vκ∥
2

= µ(R)

x∈R

µR(x)Px (σκ < τX \R)
2

≥ µ(R)µR(Vκ)
2

= µ(R)


1 −
Cκ(R,X \ R)

κµ(R)

2

. (5.10)

Finally inserting these inequalities in the variational principle for φ∗

R, we get the stated upper
bound.

5.2. Proof of the upper bound in Theorem 2.10

For any f ∈ ℓ2(µ), we have

Varµ( f ) = µ(Varµ( f |1R))+ Varµ(µ( f |1R))

= µ(R)VarµR( f|R)+ µ(X \ R)VarµX \R( f|X \R)

+µ(R)µ(X \ R)

µR( f|R)− µX \R( f|X \R)

2
. (5.11)

Now, using the test function

f̃ =
f − µX \R( f|X \R)

µR( f|R)− µX \R( f|X \R)

in the definition (2.33) of (κ, λ)-capacity, we get

Cλ
κ (R,X \ R) ≤ D( f̃ )+ κµ(R)VarµR( f̃|R)+ λµ(X \ R)VarµX \R( f̃|X \R)

=

µR( f|R)− µX \R( f|X \R)

−2

×


D( f )+ κµ(R)VarµR( f|R)+ λµ(X \ R)VarµX \R( f|X \R)

,

which provides an upper bound on

µR( f|R)− µX \R( f|X \R)

2. Applying that bound in
Eq. (5.11), and from the definition of φλκ (A, B), we get

Varµ( f ) ≤ µ(R)VarµR( f|R)+ µ(X \ R)VarµX \R( f|X \R)

+


D( f )+ κµ(R)VarµR( f|R)+ λµ(X \ R)VarµX \R( f|X \R)

φλκ (R,X \ R)−1
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≤
D( f )

φλκ (R,X \ R)
+
µ(R)DR( f|R)

γR


1 +

κ

φλκ (R,X \ R)


+
µ(X \ R)DX \R( f|X \R)

γX \R


1 +

λ

φλκ (R,X \ R)


≤

D( f )

φλκ (R,X \ R)


1 + max


φλκ (R,X \ R)+ κ

γR
;
φλκ (R,X \ R)+ λ

γX \R


, (5.12)

where in the last step we used that

D( f ) ≤ µ(R)DR( f|R)+ µ(X \ R)DX \R( f|X \R).

The upper bound in (2.40) follows directly.

5.3. Proof of the lower bound of Theorem 2.9

From inequality (5.12) applied to f = h∗

R and λ = +∞, and since h∗

R|X \R
= 0, we get

Varµ(h∗

R) ≤ µ(R)VarµR(h
∗

R)+
D(h∗

R)

Cκ(R,X \ R)
µ(R)(1 − µ(R))


1 +

κ

γR


. (5.13)

On the other hand, by (5.11),

Varµ(h∗

R) = µ(R)VarµR(h
∗

R)+ µ(R)(1 − µ(R)).

Inserting this formula in (5.13), the term µ(R)VarµR(h
∗

R) becomes zero and then, dividing by
µ(R)(1 − µ(R)), we have

1 ≤
D(h∗

R)

Cκ(R,X \ R)


1 +

κ

γR


, (5.14)

or equivalently

Cκ(R,X \ R)


1 +
κ

γR

−1

≤ D(h∗

R). (5.15)

Now, dividing by µ(R)∥h∗

R∥
2
R and using that, by Proposition 2.1, ∥h∗

R∥
2
R = VarµR(h

∗

R)+ 1 ≤

1/(1 − ε∗R), we get

Cκ(R,X \ R)
µ(R)


1 − ε∗R
1 +

κ
γR


≤

Cκ(R,X \ R)
µ(R)∥h∗

R∥
2
R


1 +

κ

γR

−1

≤
D(h∗

R)

∥h∗

R∥
2
Rµ(R)

= φ∗

R,

(5.16)

where the last equality comes from Lemma 3.1 and the fact that

⟨h∗

R,−L
∗

Rh∗

R⟩R = φ∗

R.

Finally, using the convexity of the function x →
1

1+x , we obtain

Cκ(R,X \ R)
µ(R)


1 − ε∗R −

κ

γR


≤ φ∗

R, (5.17)

which concludes the proof of the lower bound in (2.38).



1652 A. Bianchi, A. Gaudillière / Stochastic Processes and their Applications 126 (2016) 1622–1680

5.4. Proof of the lower bound in Theorem 2.10

We use the test function V λ
κ , for which we know that (see (2.33))

D(V λ
κ )+ κµ(R)EµR


V λ
κ |R

− 1
2


+ λµ(X \ R)EµX \R


V λ
κ |X \R

− 0
2


= Cλ
κ (R,X \ R)

so that

D(V λ
κ ) ≤ Cλ

κ (R,X \ R). (5.18)

We then look for a lower bound on Varµ(V λ
κ ). From (5.11) we have

Varµ(V λ
κ ) ≥ µ(R)µ(X \ R)


µR(V

λ
κ |R

)− µX \R(V
λ
κ |X \R

)
2
,

thus we need to estimate µR(V λ
κ |R

) and µX \R(V λ
κ |X \R

).
By the monotonicity in λ, for all x ∈ R we get

V λ
κ (x) = Px (ℓ

−1
R (σκ)) < ℓ−1

X \R(σλ) ≥ Px (σκ < τX \R) = Vκ(x),

which implies, together with Lemma 5.1,

µR(V
λ
κ |R

) ≥ 1 −
Cκ(R,X \ R)

κµ(R)
.

In the same way we have

µX \R(V
λ
κ |X \R

) ≤
Cλ(R,X \ R)
λµ(X \ R)

.

Altogether, we finally get

γ ≤
D(V λ

κ )

Varµ(V λ
κ )

≤
Cλ
κ (R,X \ R)

µ(R)µ(X \ R)


1 −

Cκ(R,X \ R)
κµ(R)

−
Cλ(R,X \ R)
λµ(X \ R)

−2

. (5.19)

6. Working with soft measures

6.1. Proof of Lemma 2.12

If λ = 0 the first statement holds trivially since, in that case, φ∗

R,λ
= 0 = µ∗

R,λ
(eR,λ). If

λ > 0, we can write

Pµ∗

R,λ
(τX \R,λ ≤ t) =


k≥1

Pµ∗

R,λ
(NR(t) ≥ k)(1 − φ∗

R,λ)
k−1µ∗

R,λ(eR,λ),

where NR(t) is the number of clock rings inside R for the Poissonian clock associated to X .
Taking the limit as t → ∞ in the above equation, we get that

1 = µ∗

R,λ(eR,λ)/φ
∗

R,λ,

which provides identity (i).
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Let us now define the operator L∗

R,λ
on ℓ2(µR) as

(L
∗

R,λ f )(x) = − f (x)+


y∈R

p∗

R,λ(x, y) f (y) ∀x ∈ R, f ∈ ℓ2(µR) (6.1)

and notice that, for any probability measure ν on X , it holds

Eν


f (X ◦ ℓ−1
R (t))1{τX \R,λ>t}


= ν


et L∗

R,λ f

. (6.2)

The exponential law given in (ii) follows from the above identity applied to ν = µ∗

R,λ
and

f = 1R.
Finally, since 1 − φ∗

R,λ
is a simple eigenvalue equal to the spectral radius of p∗

R,λ
, for any

x, y ∈ R and in the large t regime, we have

Px (X ◦ ℓ−1
R (t) = y, τX \R,λ > t) ∼ cxµ

∗

R,λ(y)e
−tφ∗

R,λ , (6.3)

where cxµ
∗

R,λ
is the canonical projection of δx on the one-dimensional eigenspace associated

with µ∗

R,λ
(cx is strictly positive as a consequence of the positivity of µ∗

R,λ
). From (6.3), and

taking the limit when t goes to infinity, it follows

lim
t→∞

Px (X ◦ ℓ−1
R (t) = y | τX \R,λ > t) = µ∗

R,λ(y).

6.2. Proof of Lemma 2.13

The result is once again a consequence of the Perron–Frobenius theorem. Let χλ(y) denote
the characteristic polynomial of L∗

R,λ
, which can be written as χλ(y) = (y + φ∗

R,λ
)a(y). If

a(y) = (y + φ∗

R,λ
)q(y) + a(−φ∗

R,λ
) is the Euclidean division of a(y) by (y − φ∗

R,λ
), we have

the Bézout identity

1
a(−φ∗

R,λ
)
a(y)−

1
a(−φ∗

R,λ
)
q(y)(y + φ∗

R,λ) = 1. (6.4)

In particular, for any x ∈ R, 1
a(−φ∗

R,λ
)
δx a(L∗

R,λ
) = cxµ

∗

R,λ
is the canonical projection of δx on

the eigenspace associated to µ∗

R,λ
, and since cx > 0 as previously noticed, we have

µ∗

R,λ =
δx a(L∗

R,λ
)

y∈R
δx a(L∗

R,λ
)1{y}

. (6.5)

Since a(y) =
χλ(y)

(y+φ∗

R,λ
)
, the above equation expresses the map λ → µ∗

R,λ
as a composition of

continuous functions of λ.

6.3. Proof of Proposition 2.14

As far as φR,λ is concerned, continuity and monotonicity follow from continuity and
monotonicity of eR,λ(x) for any x ∈ R. We then consider the other parameters. The continuity
follows from the continuity of the eigenvalues as root of the characteristic polynomial. To prove
the monotonicity, we notice that when λ decreases to zero, p∗

R,λ
(x, y) grows for all x and y in
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R as well as cR,λ(x, y) for any distinct x, y ∈ R. From the variational characterization of φ∗

R,λ
,

i.e.

φ∗

R,λ = min

⟨ f,−L

∗

R,λ f ⟩R : ⟨ f, f ⟩R = 1, f > 0


(6.6)

= min
⟨ f, f ⟩R=1

f>0


x,y∈R

µR(x) f (x)

 f (x)−


y∈R

p∗

R,λ(x, y) f (y)

 (6.7)

where the restriction f > 0 comes from the fact that, by the Perron–Frobenius theorem, the right
eigenvector has positive coordinates, we see that φ∗

R,λ
is decreasing in λ. Similarly, using

γR,λ = min

1
2


x,y∈R

cR,λ(x, y)( f (x)− f (y))2 : VarµR( f ) = 1

 , (6.8)

we see that γR,λ is increasing in λ. As a consequence ε∗R,λ
is decreasing in λ, and we have

ε∗R,0 =
φ∗

R,0

γR,0
=
µ∗

R,0(eR,0)

γR,0
= 0. (6.9)

6.4. Proof of Theorem 2.16

Proof of (2.60): We first write

Pν(X (τδ) = x | X (τδ) ∈ R) =
1

Pν(X (τδ) ∈ R)

i≥0


xi ∈X

Pν(i0 > i, X (τi ) = xi )

× Pxi (X ◦ ℓ−1
R (σκ) = x, ℓ−1

R (σκ) < ℓ−1
X \R(σλ), σκ > T ∗

δ,R,λ). (6.10)

Now, conditioning on σκ and setting Pσκxi = Pxi (· | σκ), we get

Pν(X (τδ) = x | X (τδ) ∈ R) =
1

Pν(X (τδ) ∈ R)

i≥0


xi ∈X

Pν(i0 > i, X (τi ) = xi )

× E

Pσκxi

(X ◦ ℓ−1
R (σκ) = x, ℓ−1

R (σκ) < ℓ−1
X \R(σλ), σκ > T ∗

δ,R,λ)


=
1

Pν(X (τδ) ∈ R)

i≥0


xi ∈X

Pν(i0 > i, X (τi ) = xi )

× E

1{σκ>T ∗

δ,R,λ
}Pσκxi

(X ◦ ℓ−1
R (σκ) = x | σκ < τX \R,λ)Pσκxi

(σκ < τX \R,λ)

, (6.11)

where the second equality comes from the independence between X , σκ and σλ. Since

Pν(X (τδ) ∈ R) =


i≥0


xi ∈X

Pν(i0 > i, X (τi ) = xi )E

1{σκ>T ∗

δ,R,λ
}Pσκxi

(σκ < τX \R,λ)

,

(6.12)
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from (6.11) we get

Pν(X (τδ) = x | X (τδ) ∈ R)
µ∗

R,λ
(x)

− 1

=
1

Pν(X (τδ) ∈ R)

i≥0


xi ∈X

Pν(i0 > i, X (τi ) = xi )

× E


1{σκ>T ∗

δ,R,λ
}Pσκxi

(σκ < τX \R,λ)

×


Pσκxi (X ◦ ℓ−1

R (σκ) = x | σκ < τX \R,λ)

µ∗

R,λ
(x)

− 1


. (6.13)

An analogous expression can be found for Pν (X (τδ)=x |X (τδ)∈X \R)

µ∗

X \R,κ
(x) − 1. The result then follows

from Theorem 2.15, and in particular from the equivalent of Theorem 2.4.
To prove inequality (2.61), we first state the following lemma.

Lemma 6.1. Let T > 0 and {σi : i ≥ 1} be a sequence of independent exponential random
variables of rate κ such that eκT

− 1 < 1. If N = min{i ≥ 1 : σi > T }, then

P


N

i=1

σi >
t

κ


≤

e−t

1 − (eκT − 1)
. (6.14)

Proof of Lemma 6.1. Using the property of the exponential distribution, we have

P


N

i=1

σi >
t

κ


=


n≥1

P(N = n)P


n

j=1

σi >
t

κ

 σ1 < T, . . . , σn−1 < T, σn > T



≤


n≥1

P(N = n)P

σn >

t

κ
− (n − 1)T

 σn > T


=


n≥1

P(N = n)P

σn >

t

κ
− nT


=


n≥1

(1 − e−κT )n−1e−κT e−t+nκT

= e−t

n≥1

(eκT
− 1)n−1

=
e−t

1 − (eκT − 1)
, (6.15)

which concludes the proof. �

Coming back to the proof of Theorem 2.16, we first notice that if τδ > t ( 1
κ

+
1
λ
), then

ℓR(τδ) >
t
κ

or ℓX \R(τδ) >
t
λ

. As a consequence, defining

AR = {κℓR(τδ) ∨ λℓX \R(τδ) = κℓR(τδ) > t}

AX \R = {κℓR(τδ) ∨ λℓX \R(τδ) = λℓX \R(τδ) > t}
(6.16)
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so that P(AR)+ P(AX \R) ≤ 1, we have

Pν

τδ > t


1
κ

+
1
λ


= Pν


τδ > t


1
κ

+
1
λ


| AR


Pν(AR)

+ Pν

τδ > t


1
κ

+
1
λ


|AX \R


Pν(AX \R).

Using the independence between σκ , σλ and X , together with the previous lemma, we finally get

Pν

τδ > t


1
κ

+
1
λ


≤ e−t


1

1 − ξ

 
Pν(AR)+ Pν(AX \R)


≤ e−t


1

1 − ξ


.

6.5. Proof of Theorem 2.18

To prove the upper bound we consider the extended electrical network associated with
Cλ
κ (A, B) and follow the first steps of the proof of the upper bound in Theorem 2.9 (see Sec-

tion 5.1). We then reach, for some probability measure ν on R, to

1 + κEν[τX \R,λ] =
κµ(R)

Cλ
κ (R,X \ R)

(6.17)

instead of Eq. (5.6). Using then, from Theorem 2.17, the analogous of Eq. (2.31), we obtain

1 +
κ

φ∗

R,λ


1 + ε∗R,λ + ε∗R,λ ln

1
ε∗R,λ

ζR


≥

κµ(R)
Cλ
κ (R,X \ R)

, (6.18)

or

1
φ∗

R,λ


1 + ε∗R,λ + ε∗R,λ ln

1
ε∗R,λ

ζR
+
φ∗

R,λ

κ


≥

µ(R)
Cλ
κ (R,X \ R)

, (6.19)

which gives the desired upper bound on φ∗

R,λ
.

The proof of the lower bound will be similar to the proof of the lower bound of Theorem 2.9,
where we used a partial Poincaré inequality to control the mean exit time from R. The difference
here is that we will have to work on the whole space X and not only on R. Since µ∗

R,λ
is

concentrated on R, we will first compare its associated exit time τX \R,λ with the exit time of
another quasi-stationary measure, µ̃∗

X , that spreads on the whole space X . Then we will control
φ̃∗

X , the escape rate from X , with the spectral gap estimated in Theorem 2.10.

Let µ̃∗

X be the quasi-stationary measure on X associated with the Markovian process X̃ on
X̃ = X ∪ X \ R with generator L̃ defined, for some λ̃ > 0, by

(L̃ f )(x̃) =


(L f )(x) if x̃ = x ∈ R
(L f )(x)+ λ( f (x̄)− f (x)) if x̃ = x ∈ X \ R
λ̃( f (x̃)− f (x)) if x̃ = x̄ ∈ X \ R.

(6.20)
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The associated escape rate φ̃∗

X is, with obvious notation and for any probability measure ν on X ,
the rate of exponential decay of Pν(τ̃X \R > t) when t goes to infinity. Since

Pµ∗

R,λ


τ̃X \R > t


≥ Pµ∗

R,λ


ℓR


τ̃X \R


> t


= Pµ∗

R,λ


τX \R,λ > t


= e−φ∗

R,λ
t
, (6.21)

we have φ∗

R,λ
≥ φ̃∗

X .

We then have to estimate φ̃∗

X and we do so by comparison with the spectral gap. By Lemma 3.1
applied with R = X and the correct normalizations, and taking, with obvious notation, f = h̃∗

X ,
which is indeed the minimizer in the variational principle satisfied by φ̃∗

X , we have

φ̃∗

X ≥
D(h̃∗

X )

∥h̃∗

X ∥2
=

∥h̃∗

X ∥
2
− 1

∥h̃∗

X ∥2

D(h̃∗

X )

Varµ(h̃∗

X )
≥


1 −

1

∥h̃∗

X ∥2


γ. (6.22)

Now,

∥h̃∗

X ∥
2

≥


x∈R

µ(x)


µ̃∗

X (x)

µ(x)

2

= µ(R)

x∈R

µR(x)


µ̃∗

X (x)

µ(x)

2

≥ µ(R)


x∈R
µR(x)

µ̃∗

X (x)

µ(x)

2

=
1

µ(R)

µ̃∗

X (R)
2
. (6.23)

Since the escape from X occurs at rate λ in each point of X \R and there are no direct connections
between R and X \ R, one has

µ̃∗

X (X \ R) · λ = φ̃∗

X ≤ φ∗

R,λ (6.24)

or

µ̃∗

X (R) ≥


1 −

φ∗

R,λ

λ


. (6.25)

From φ∗

R,λ
≥ φ̃∗

X , (6.22), Theorem 2.10 and (6.23) we obtain

φ∗

R,λ ≥

1 −
µ(R)

1 −
φ∗

R,λ

λ

2

 Cλ
κ (R,X \ R)

µ(R)(1 − µ(R))

 1

1 + max

κ+φλκ
γR

,
λ+φλκ
γX \R


 . (6.26)

Developing the square, dropping a few terms and using the convexity of x → 1/(1 + x), this
implies

φ∗

R,λ ≥
Cλ
κ (R,X \ R)
µ(R)


1 − µ(R)− 2φ∗

R,λ
/λ

1 − µ(R)


1 − max


κ + φλκ

γR
,
λ+ φλκ

γX \R
,


,

(6.27)

which is the desired result.
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6.6. Proof of Theorem 2.19

By Theorem 2.15, for all x in X ,

max
y∈R


Px


X (T ) = y

σλ > T ∗

X \R,κ


µ∗

X \R,κ
(y)

− 1

 ≤ ε∗X \R,κ . (6.28)

Then

∥νx − µ∗

X \R,κ∥TV ≤
1
2
ε∗X \R,κ + P


σλ < T ∗

X \R,κ


=

1
2
ε∗X \R,κ + 1 − e−λT ∗

X \R,κ

≤
1
2
ε∗X \R,κ + λT ∗

X \R,κ . (6.29)

Also

∥µ∗

X \R,κ − µX \R∥TV ≤
1
2

 ε∗X \R
1 − ε∗X \R

, (6.30)

∥µX \R − µ∥TV = µ(R), (6.31)

and the upper on ∥νx − µ∥T V follows from the triangular inequality.
Now, for all t > 0,

∥Px (X (t) = ·)− µ∥TV ≤ ∥νx − µ∥TV + Px (T > t) (6.32)

and to prove our mixing time estimate, it is sufficient to show

Px (T > t) ≤
1
2


1
2

+ η


− µ(R)−

 ε∗X \R
1 − ε∗X \R

− λT ∗

X \R,0 =
1
4

−
µ(R)

2
(6.33)

for

t ≥
2

1
2 − µ(R)


φ∗

R,λ


1 + ε∗R,λ + ε∗R,λ ln

1
ε∗R,λ

ζR
+
φ∗

R,λ

λ


. (6.34)

To obtain such an estimate we give an upper bound on the mean value of T and use Markov
inequality. With T ′

= σλ ∧ τR, we have, using (2.31) adapted to soft measures,

Ex [T ] ≤ E[σλ] + Ex


EX (T ′)


τR,λ

 X (T ′) ∈ R


≤
1
λ

+
1

φ∗

R,λ


1 + ε∗R,λ + ε∗R,λ ln

1
ε∗R,λ

ζR



=
1

φ∗

R,λ


1 + ε∗R,λ + ε∗R,λ ln

1
ε∗R,λ

ζR
+
φ∗

R,λ

λ


, (6.35)

so that (6.34) implies (6.33).
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7. Two examples

In this section we want to illustrate the analysis method of Section 2 with reference to toy
models. We will recover known results for the Glauber dynamics of the Curie–Weiss model and
give sharp asymptotics of its relaxation time, we will also study a variation on the so-called
“n-dog” theme considered in [42] that illustrates the variety of scenarios one can encounter in
proving our basic hypothesis on ε∗R or controlling T ∗

R.

7.1. Metastable behaviour of the Curie–Weiss model

7.1.1. Model, dynamics and one-dimensional representation
Les us consider the Curie–Weiss model which is a mean-field spin system described by N

spin variables, σ = (σ1, . . . , σN ) ∈ X = {−1, 1}
N , with Hamiltonian

HN ,h(σ ) = −
1

2N

N
i, j=1

σiσ j − h
N

i=1

σi , (7.1)

where h > 0 is called the external field. The corresponding Gibbs probability measure on X is

µN ,h,β(σ ) =
e−βH(σ )

Z N ,h,β
, (7.2)

where β > 0 is the inverse of the temperature, and Z N ,h,β =

σ∈X e−βHN ,h(σ ) is the normaliz-

ing factor called the partition function. To make the notation simpler, we set H(σ ) ≡ HN ,h(σ ),
µ(σ) ≡ µN ,h,β(σ ) and Z ≡ Z N ,h,β .

For every N ∈ N, and setting [−1, 1]N := {−1,−1 +
2
N , . . . , 1}, let us define the total

magnetization, m N : X → [−1, 1]N , as

m N (σ ) ≡
1
N

N
i=1

σi . (7.3)

Notice that it allows rewriting the Hamiltonian as a function of a one-dimensional parameter, i.e.

H(σ ) = Nu(m N (σ )), (7.4)

with u(m) = −
m2

2 − hm, for m ∈ [−1, 1]. For simplicity, in the sequel we will identify
functions defined on the discrete set [−1, 1]N with functions defined on [−1, 1] by setting
f (m) ≡ f ([2Nm]/2N ).

For m ∈ [−1, 1], let us consider the functions

fN (m) = −
1
βN

ln


σ :m N (σ )=m

e−βH(σ ) (7.5)

f (m) = lim
N→∞

fN (m). (7.6)

A standard computation shows that

fN (m) = u(m)−
1
β

s(m)+
1
βN

ln

 (1 − m)2πN

2
(1 + o(1))


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= f (m)+
1
βN

ln

 (1 − m)2πN

2
(1 + o(1))

 , (7.7)

where s(m) = −


1+m

2 ln 1+m
2 +

1−m
2 ln 1−m

2


is the entropy of Bernoulli random variables.

Moreover, the critical points of the function f (m) satisfy the equation

m = tanh(β(m + h)) (7.8)

and one gets, for β > 1 and 0 < h <

β−1
β

+
1
β

ln
√
β +

√
β − 1


, that the graph of f (m) is

given by a double-well with two minima m− < 0 < m+ and a maximum m0 < 0.

We then consider the time evolution of this system provided by a heat-bath Glauber dynamics.
This is a Markov chain on X , denoted by X = (X (t))t≥0, defined through the following
(normalized) rates

p(σ, σ i ) =
1
N

e−βH(σ i )

e−βH(σ ) + e−βH(σ i )
, for i = 1, . . . , N

p(σ, σ ) = 1 −

N
i=1

p(σ, σ i )

p(σ, σ ′) = 0, elsewhere

(7.9)

where σ i denotes the configuration obtained from σ by a spin-flip at the site i . An easy check
shows that X is reversible w.r.t. µ.

It turns out that the induced dynamics on the space [−1, 1]N , X̄(t) := m N (X (t)), is also
Markovian with transition rates

p̄


m,m ±

2
N


=


1 ∓ m

2


1 + tanh(β∆±)

2


p̄(m,m) = 1 − p


m,m +

2
N


− p


m,m −

2
N


p̄(m,m′) = 0, elsewhere,

(7.10)

where ∆± := ±m ± h +
1
N . Moreover, an easy check shows that the induced dynamics is

reversible w.r.t. the probability measure µ̄ on [−1,+1]N , given by

µ̄(m) :=
e−βN fN (m)

Z N
=


σ :m N (σ )=m

µ(σ), (7.11)

where fN was defined in (7.7). When parameterized by m, the evolution of our system can
be viewed as a one-dimensional random walk driven by a double-well potential. We thus con-
sider the metastable region R ⊂ X and the corresponding one-dimensional projection R̄ ⊂

[−1,+1]N :

R := {σ ∈ X : m N (σ ) ≤ m0} ; R̄ := {m ∈ [−1, 1]N : m ≤ m0} . (7.12)
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7.1.2. Verifying hypotheses: first part
In order to apply our Theorem 2.6 (and the related inequality (2.31)), we first have to verify

the hypotheses and in particular provide a suitable upper bound on ε∗R =
φ∗

R
γR

and on ζ ∗

R.
By Lemma 2.2 we get

φ∗

R ≤ φR = µR(eR) ≤ µR(∂−R) =
µ̄(m0)

µ(R)
≤ exp(−βNΓ )(1 + o(1)), (7.13)

where in the last inequality we set Γ := f (m0) − f (m−) and used (7.7). The hypothesis on
ε∗R then follows immediately by applying the (N log N )−1 lower bound on γR that was derived
in [33] by a very precise computation. Since we just need a rough control of this quantity, that
will be then compared to φ∗

R, we provide here a new simpler argument that yields a bound of
order N−3/2.

We first notice that the dynamics defined by (7.9) can be compared to a random walk on
the hypercube. This suggests that a simple way to control the spectral gap is by mixing time
estimates. To this aim we consider the dynamics reflected in R, X R = (X R(t))t≥0, and the
related mixing time,

τmix,R


1
4


= inf

t≥0


max
σ∈R

∥Pσ (X R(t) = · )− µR∥T V ≤
1
4


. (7.14)

In what follows we will denote by c(β) a constant depending on β but independent of N ,
whose particular value may change from line to line. With the above notation it holds the
following:

Proposition 7.1.

τmix,R


1
4


≤ c(β)N

3
2 . (7.15)

Proof. The idea of the proof is based on coupling techniques, and we thus define the following
coupling:

(a) We consider two independent dynamics XσR and XηR, with initial states σ, η ∈ R, and let
them run independently until they reach the same magnetization.

(b) We then run an analogous coupling to that defined in [33], where the only difference here
is the reflection on R. This coupling is defined for initial states σ, σ ′

∈ R with m N (σ ) =

m N (σ
′), and is defined in such a way so as to keep the magnetizations coupled along the

dynamics.

Let Tσ,η denote the coupling time for the global coupled dynamics (XσR(t), XηR(t)), that is

Tσ,η = inf{t ≥ 0 : XσR(t) = XηR(t)}. (7.16)

To provide an estimate on τmix,R(
1
4 ), it is then enough to find t such that

max
σ,η∈R

P(Tσ,η > t) ≤
1
4
. (7.17)

The coupling time Tσ,η can be controlled by first estimating the time to couple the magnetiza-
tions, and then the coupling time of the dynamics starting in configurations with equal magneti-
zation.
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Formally, let (Xm
R̄(t), Xm′

R̄ (t)) be the induced coupled dynamics with initial states m,m′
∈ R̄,

and define

T̄m,m′ = inf{t ≥ 0 : Xm
R̄(t) = Xm′

R̄ (t)}. (7.18)

Then, for any σ, η ∈ R,

P(Tσ,η > t) ≤ P

 max
m,m′∈R̄

T̄m,m′ + max
σ,σ ′∈R:

m N (σ )=m N (σ
′)

Tσ,σ ′ > t


≤ max

m,m′∈R̄
P


T̄m,m′ >
t

2


+ max

σ,σ ′∈R:

m N (σ )=m N (σ
′)

P


Tσ,σ ′ >
t

2


. (7.19)

Following the same argument of [33] (see Lemma 2.9 and its proof ) it is easy to prove that,
for any σ, σ ′

∈ R such that m N (σ ) = m N (σ
′),

P(Tσ,σ ′ > c(β)N log N ) ≤
1
N

(7.20)

for a constant c(β) depending on β but not in N .
To control the time T̄m,m′ , let τm denote the stopping time in m for X R̄. With some abuse of

notation, let Em denote the average over the dynamics X R̄ with initial state m ∈ R̄ and define

T := max
m∈R̄

Em(τm−
) = max


E−1(τm−

); Em0(τm−
)


(7.21)

where the second equality is due to an obvious geometric fact. Then the following lemmas hold.

Lemma 7.2. With the above notation, it holds

T ≤ c(β)N
3
2 . (7.22)

Lemma 7.3. For all t ≥ 40T , it holds

max
m,m′∈R̄

P(Tm,m′ > t) = P(T−1,m0 > t) ≤
1
2
. (7.23)

Before proving the above lemmas, let us conclude the proof of Proposition 7.1.

By inequalities (7.19)–(7.20) and Lemma 7.3, it follows that if t = max{240T, N
3
2 }, N ≥ 8,

and for any σ, η ∈ R,

P(Tσ,η > t) ≤ P(T̄−1,m0 > 120T )+ max
σ,σ ′∈R:

m N (σ )=m N (σ
′)

P(Tσ,σ ′ > N
3
2 )

≤
1
8

+
1
N

≤
1
4
. (7.24)

By Lemma 7.2 the above inequality holds whenever t > c(β)N
3
2 and the statement of the propo-

sition follows. �

We now come back to the proofs of the two lemmas.
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Proof of Lemma 7.2. Since X R̄ is a one-dimensional dynamics, for any two states x, y ∈ R̄ we
have the formula

Ex (τy) =
µ̄(Vx,y)

C(x, y)
(7.25)

where Vx,y and C(x, y) are, respectively, the equilibrium potential and the capacity between x
and y. Moreover, if x < y, we have

Vx,y(m) = Pm(τx < τy) =


1 if m ≤ x
0 if m ≥ y
C(x, y)

C(m, y)
if x < m < y,

(7.26)

C(x, y)−1
=

(y−x) N
2 −1

k=0


c̄


x +

2k

N
, x +

2(k + 1)
N

−1

, (7.27)

with c̄(x, y) = µ̄(x) p̄(x, y). Analogous formulas hold when x > y.

Remark. Since we are considering the dynamics reflecting in R̄, the classical version for the
mean exit time would be Ex (τy) =

µ̄R̄(Vx,y)

CR̄(x,y) rather than Eq. (7.25), where CR̄(x, y) is the
capacity defined through conductances c̄(x, y) = µ̄R̄(x) p̄R̄(x, y). However, it is easy to verify
that for points x, y ∈ R̄ the two formulas are equivalent.

In Appendix B we will show that, if there are no local maxima of fN in [x, y],

C(x, y)−1
≤ c(β)

√
N Z N max

z∈{x,y}

eβN fN (z). (7.28)

Putting together (7.25)–(7.28), and since f (y) > f (m−) for any y ∈ [−1,m−), we get

E−1(τm−
) =

(m−+1) N
2 −1

j=0

µ̄R


−1 +

2 j

N


C


−1 +

2 j

N
,m−

−1

≤ c(β)N
3
2 . (7.29)

Analogous computations can be done for Em0(τm−
), providing the same estimate. This concludes

the proof of the lemma. �

Proof of Lemma 7.3. The first identity of (7.23) is obvious, due to the geometry of the problem.
We then focus on the two dynamics X−1

R̄ and Xm0

R̄ , and define recursively the stopping times
sk, τk and s′

k , for k ≥ 1:

s1 := inf
t≥0

{X−1
R̄ (t) = m−}

τk := inf
t≥sk

{Xm0

R̄ (t) = m−}

sk+1 := inf
t≥τk

{X−1
R̄ (t) = m−}

s′

k := sup
t≤τk

{X−1
R̄ (t) = m−}.

(7.30)

Letting τ(t) denote the first clock ring after time t , we can define the event

A := {∃k ≤ 2 : s′

k = τk or X−1
R̄ (s′

k + τ(s′

k)) > m−}. (7.31)
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Notice that, since s′

k is the time of the last visit in m− of the dynamics X−1
R̄ before τk , and because

−1 < m− < m0, the occurrence of the event {X−1
R̄ (s′

k + τ(s′

k)) > m−} implies that T−1,m0 < τk .
In particular, we have A ∪ {τ2 ≤ t} ⊂ {T−1,m0 ≤ t} and then

P(T−1,m0 > t) ≤ P(Ac)+ P(τ2 > t). (7.32)

From the definition (7.10) of rates p̄, and using that 1−m−

2 >
1+m−

2 together with the properties
of the hyperbolic tangent, one can show that

p̄


m−,m− −

2
N


≤ p̄


m−,m− +

2
N


⇐⇒ p̄


m−,m− −

2
N


≤

1
2
(1 − p̄(m−,m−)). (7.33)

Thus

P(Ac) ≤ P(X−1
R̄ (s′

k + τ(s′

k)) < m−, for k = 1, 2)

≤


P


X−1
R̄ (t + τ(t)) = m− −

2
N

|X−1
R̄ (t) = m−, X−1

R̄ (t + τ(t)) ≠ m−

2

=

 p̄


m−,m− −
2
N


1 − p̄(m−,m−)

2

≤
1
4
. (7.34)

In order to estimate P(τ2 > t), we divide the interval [0, t] in k = ⌊
t

8T ⌋ subintervals of length
8T , where T was defined in (7.21). The event {τ2 > t} is then included in the event that, in at
least k − 2 subintervals, at most one of the process has arrivals in m−. On each interval, this
happens with probability bounded above by

P−1(τm−
> 8T )+ Pm0(τm−

> 8T ) ≤
1

8T
(E−1(τm−

)+ Em0(τm−
)) ≤

1
4
, (7.35)

by Markov’s inequality, and then

P(τ2 > t) ≤


k − 2

k


1
4

k−2

≤ 2−k+3. (7.36)

The statement follows taking t ≥ 40T , so that k ≥ 5 and P(τ2 > t) ≤
1
4 , and finally, from (7.32)

and the previous estimates,

P(T−1,m0 > t) ≤
1
2
. � (7.37)

Coming back to the hypotheses on ε∗R, from the well known inequality γ−1
R ≤ τmix,R(

1
4 ), and

by (7.13) and (7.15), we obtain

ε∗R =
φ∗

R
γR

≤ c(β)N
3
2 exp (−βNΓ ) (1 + o(1)), (7.38)

which goes to 0 for any N large enough, and thus satisfies the hypothesis of our main theorems.
Moreover, from Lemma 2.5 and the trivial bounds ∆R ≥ N and DR ≥ c(β), we get

ζ ∗

R ≥ e−∆R DR ≥ e−Nc(β). (7.39)
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By inequality (2.28) and the previous estimates, this implies that for N large enough the condition
φ∗

R · T ∗

R ≪ 1 is satisfied.

7.1.3. Asymptotic law of the exit time
Applying Theorem 2.6 and by the related inequality (2.31), we get that in the limit N → ∞

and for all distributions ν on R,
Eν(τX \R) ≤ φ∗

R
−1
(1 + o(1))

Eν(τX \R) ≥ (1 − πR(ν))φ
∗

R
−1
(1 + o(1))

(7.40)

and for all t > 0,

Pν(φ∗

RτX \R > t) = (1 − πR(ν))e
−t (1 + o(1)). (7.41)

In particular, for ν = µR,

EµR(τX \R) = φ∗

R
−1
(1 + o(1)) (7.42)

PµR(φ
∗

R · τX \R > t) = e−t (1 + o(1)), ∀t ≥ 0. (7.43)

The next step concerns the estimation of φ∗

R. By Theorem 2.9, assuming that N is large
enough to have ε∗R + φ∗

R · T ∗

R ≪ 1, and choosing k such that φ∗

R ≪ k ≪ γR, we have

φ∗

R =
Ck(R,X \ R)

µ(R)
. (7.44)

In order to estimate Ck(R,X \ R), we use its two variational characterizations, (2.33) and (2.36),
with suitable test functions. The one-dimensional nature of the model suggests that the capacities
of the dynamics over X could be well approximated by the analogous quantities computed for
the induced dynamics over [−1, 1]N . This has the advantage that the equilibrium potential of the
one-dimensional chain, namely the minimizer in (2.33) for k, λ = ∞, can be explicitly given.

Following this idea, to derive the upper bound we consider the test function V (σ ) :=

Vm−,m0(m N (σ )), where Vm−,m0 is the function defined in (7.26). In other words, V (σ ) is
the equilibrium potential associated to the one-dimensional chain, with boundary conditions
V (m−) = 1 and V (m0) = 0. Explicitly, for m ∈ [−1, 1]N ,

Vm−,m0(m) = Pm(τm−
< τm0) =


1 if m ≤ m−

0 if m ≥ m0

C(m−,m0)

C(m,m0)
otherwise,

(7.45)

where C(x, y)−1
=
(y−x) N

2 −1
k=0


c̄


x +
2k
N , x +

2(k+1)
N

−1
and c̄(x, y) = µ̄(x) p̄(x, y).

Then we have

Ck(R,X \ R) ≤ D(V )+ k

σ∈R

µ(σ)(V (σ )− 1)2

= C(m−,m0)+ k
m0

m=m−

e−βN fN (m)

Z N


C(m−,m0)

C(m−,m)

2

≤ C(m−,m0)+ kc(β)NC(m−,m0), (7.46)
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where the last inequality is due to (7.28) which is derived in Appendix B. Since k ≪ γR ≤

c(β)N−3/2, it holds

Ck(R,X \ R) ≤ C(m−,m0)(1 + o(1)). (7.47)

Similarly, for the lower bound on Ck(R,X \ R) we consider a unitary test flow ψ which
is constant on all couples (σ, σ ′) of given magnetization. Specifically we set ψ(σ, σ ′) :=

Ψ(m N (σ ),m N (σ
′)) and defineΨ


m,m +

2
N


=


S(m)

(1 − m)N

2

−1

∀ m ∈ [m−,m0]N ,

Ψ(m,m′) = 0 otherwise,

(7.48)

with S(m) = |{σ : m N (σ ) = m}|. With this definition, the flow Ψ is the unitary flow from m− to
m0 that realized the minimum in the Thompson principle for the one-dimensional chain. Inserting
the test flow in (2.36), we then have

Ck(R,X \ R)−1
≤ D(ψ)+

µ(R)
k

S(m−)
e−βNu(m−)

µ(R)Z N


Z N · e−βNu(m−)

S(m−)

2

=

m0
m=m−

Z N · eβN fN (m)

p̄


m,m +
2
N

 +
1
k

Z N · eβN fN (m−)

= C(m−,m0)+
1
k
µ(m−)

−1. (7.49)

Since k−1
≪ (φ∗

R)
−1

≤ µ(m−)Ck(R,X \ R)−1 (by (7.44)), we get

Ck(R,X \ R) ≥ C(m−,m0)(1 + o(1)). (7.50)

From (7.44) and with the above estimate, we then have

φ∗

R =
C(m−,m0)

µ(R)
(1 + o(1)). (7.51)

Finally, µ(R) and the capacity C(m−,m0) defined in (7.27) can be both evaluated for large N
(see Appendix B), providing the following asymptotic expressions:

C(m−,m0) =


(1 − m2

0)β| f ′′(m0)|

πN

e−βN f (m0)

Z N
(1 + o(1)) (7.52)

µ(R) =
e−βN f (m−)

Z N ·


β f ′′(m−)(1 − m2

−)

(1 + o(1)). (7.53)

Altogether, under the same hypotheses of before, we have

EµR(τX \R) =
πN · eβN ( f (m0)− f (m−))

β


| f ′′(m0)| f ′′(m−)(1 − m2

0)(1 − m2
−)

(1 + o(1)). (7.54)
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7.1.4. Verifying hypotheses: second part
To move to the second part of the analysis, which goes from Theorem 2.10 to Theorem 2.19,

we first have to estimate the quantities φ∗

X \R, γX \R and ε∗X \R related to the dynamics over
X \ R. As for φ∗

R, we can find easily a rough (but sufficient) upper bound over φ∗

X \R by
Lemma 2.2. By trivial estimates we get

φ∗

X \R ≤ φX \R = µX \R(eX \R) ≤ µX \R(∂+R)

=

µ̄


m0 +
2
N


µ(X \ R)

≤ exp(−βNΓ ′)(1 + o(1)), (7.55)

where in the last inequality we set Γ ′
:= f (m0 +

2
N )− f (m+) and used (7.7).

To get a lower bound over γX \R, as for γR we proceed by first estimating the mixing time of
the dynamics reflected in X \ R, X X \R = (X X \R(t))t≥0. With obvious notation, it holds the
following:

Proposition 7.4.

τmix,X \R


1
4


≤ c(β)N

3
2 . (7.56)

Proof. The proof is the same as for Proposition 7.1, and can write down just replacing R with
X \ R, the states −1,m− and m0 respectively with m+, −1 and m0 +

2
N and the time T defined

in (7.21) with

T ′
= max

m∈X \R
Em(τm+

) = max

E+1(τm+

); Em0+
2
N
(τm+

)

. �

As a consequence of (7.55) and Proposition 7.4, we obtain

ε∗X \R =

φ∗

X \R
γX \R

≤ c(β)N
3
2 exp


−βNΓ ′


(1 + o(1)), (7.57)

and also

φ∗

R
γX \R

≤ c(β)N
3
2 exp (−βNΓ ) (1 + o(1)), (7.58)

which are both ≪ 1 for any N large enough.

7.1.5. Relaxation, transition and mixing times
From inequalities (7.57) and (7.58), we can choose k, λ in Theorems 2.10–2.19, such that

φR ≪ k ≪ γR and φR + φX \R ≪ λ ≪ γX \R, and then get matching upper and lower
bound over on the relaxation time γ and the mean transition time. Explicitly, by Theorems 2.10,
2.17 and 2.18, it holds that in the limit N → ∞ and for k, λ such that φ∗

R ≪ k ≪ γR and
max{φ∗

R, φ
∗

X \R} ≪ λ ≪ γX \R,

(i)

γ−1
=
µ(R)µ(X \ R)
Cλ

k (R,X \ R)
(1 + o(1)). (7.59)
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(ii) For all distribution ν over R,
Eν(τX \R,λ) ≤ φ∗

R,λ
−1
(1 + o(1))

Eν(τX \R,λ) ≥ (1 − πR(ν))φ
∗

R,λ
−1
(1 + o(1))

(7.60)

and for all t > 0,

Pν(φ∗

R,λτX \R,λ > t) = (1 − πR(ν))e
−t (1 + o(1)). (7.61)

In particular, for ν = µR,

EµR(τX \R,λ) = φ∗

R,λ
−1
(1 + o(1)) (7.62)

PµR(φ
∗

R,λτX \R,λ > t) = e−t (1 + o(1)), ∀t ≥ 0. (7.63)

(iii)

φ∗

R,λ =
Cλ

k (R,X \ R)
µ(R)

(1 + o(1)). (7.64)

To provide quantitative estimates on the relaxation and transition time, it thus remains to
estimate the capacity Cλ

k (R,X \ R). As for Ck(R,X \ R), we make use of the variational
characterizations (2.33) and (2.36), with suitable test functions. The functions that we consider
are extensions of those defined for Ck(R,X \ R), in the sense that they are defined similarly but
on a bigger support.

Explicitly, let V (σ ) := Vm−,m+
(m N (σ )), with Vm−,m+

defined in (7.26). Plugging V into
(2.33), we obtain the upper bound

Cλ
k (R,X \ R) ≤ D(V )+ k


σ∈R

µ(σ)(V (σ )− 1)2 + λ


σ∈X \R
µ(σ)(V (σ ))2. (7.65)

Since V is defined as the equilibrium potential of the one-dimensional chain, with boundary
condition V (m−) = 1 and V (m+) = 0, we have that D(V ) = C(m−,m+). Using inequality

(7.28) and choosing k, λ ≪ γX \R ≤ c(β)N−
3
2 , the second and third terms of (7.65) are bounded

as

k

σ∈R

µ(σ)(V (σ )− 1)2 = k
m0

m=m−

e−βN fN (m)

Z N

 C(m−,m+)

C


m−,m −
2
N


2

≤ kc(β)N
3
2 (C(m−,m+))

2 Z N eβN fN (m0)

≤ c(β) (C(m−,m+))
2 Z N eβN fN (m0)

λ


σ∈X \R
µ(σ)(V (σ ))2 = λ

m+
m=m0

e−βN fN (m)

Z N


C(m−,m+)

C(m,m+)

2

≤ λc(β)N
3
2 (C(m−,m+))

2 Z N eβN fN (m0)

≤ c(β) (C(m−,m+))
2 Z N eβN fN (m0).
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In Appendix B, the capacity C(m−,m+) is evaluated for large N and the following formula
is obtained

C(m−,m+) =


(1 − m2

0)β| f ′′(m0)|

2πN

e−βN f (m0)

Z N
(1 + o(1)). (7.66)

This implies that the second and third terms above are o(C(m−,m+)) and then

Cλ
k (R,X \ R) ≤ C(m−,m+)(1 + o(1)). (7.67)

For the lower bound we consider a test unitary flow ψ(σ, σ ′) := Ψ(m N (σ ),m N (σ
′)) withΨ


m,m +

2
N


=


S(m)

(1 − m)N

2

−1

∀m ∈ [m−,m+]N ,

Ψ(m,m′) = 0 otherwise.

(7.68)

Inserting the test flow in (2.36), we then have

Cλ
k (R,X \ R)−1

≤ D(ψ)+
µ(R)

k
S(m−)

e−βNu(m−)

µ(R)Z N


Z N · e−βNu(m−)

S(m−)

2

+
µ(X \ R)

λ
S(m+)

e−βNu(m+)

µ(X \ R)Z N


Z N · e−βNu(m+)

S(m+)

2

=

m0
m=m−

Z N · eβN fN (m)

p̄(m,m +
2
N )

+
1
k

Z N · eβN fN (m−) +
1
λ

Z N · eβN fN (m+)

≤ C(m−,m+)
−1(1 + o(1)), (7.69)

where in the last step we used that k−1
≪ φ∗

R
−1

= µ(m−)C(m−,m0)
−1, λ−1

≪ φ∗

X \R
−1

=

µ(m+)C(m0,m+)
−1, and the fact that C(m−,m0),C(m0,m+) and C(m−,m+) are all of order

N−1e−βN f (m0) (see Appendix B). From (7.64) and with the above estimates, we then have

φ∗

R,λ =
C(m−,m+)

µ(R)
(1 + o(1)). (7.70)

Finally, if we choose λ so that λT ∗

X \R ≪ 1, for example λ ≪ N−5/2, then we can apply
Theorem 2.19 and get an upper bound on the mixing time of the same order of the transition and
relaxation times. Altogether, in the limit N → ∞ and for k, λ such that e−βNΓ

≪ k ≪ N−3/2

and e−βNΓ
≪ λ ≪ N−5/2, it holds

(i)

γ−1
= EµR(τX \R,λ)(1 + o(1))

=
2πN · eβN ( f (m0)− f (m−))

β


| f ′′(m0)| f ′′(m−)(1 − m2

0)(1 − m2
−)

(1 + o(1)). (7.71)

(ii)

τmix


1
4


≤ 4γ−1(1 + o(1)). (7.72)
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Fig. 1. A wasp without a head, and maybe misplaced wings.

Remark. Notice that in the Curie–Weiss model the mean exit time and the mean transition time
differ asymptotically only by a factor 2 (see Eqs. (7.54) and (7.71)). This is a slight difference
but one that clarifies the different rule of the exit time from the transition time. Notice also that
by the well-known bound τmix(

1
4 ) ≥ γ−1, the second result shows that the mixing time and the

relaxation time are of the same order, which is N · eβN ( f (m0)− f (m−)).

7.2. The wasp graph

Given three positive real numbers ra , rt and rw and a positive integer n, we set la = ⌊nra⌋,
lt = ⌊nrt⌋ and lw = ⌊nrw⌋. We then consider two cubic lattices with vertices indexed by {0, . . . ,
la}

3 and {0, . . . , lt }3, four copies of the square lattice with vertices indexed by {0, . . . , lw}
2 and

we attached them together by identifying some corners as in Fig. 1, forming then the “wasp
graph” with its four “wings” and its “abdomen” attached to its central “thorax”. We finally place
ourself in the regime n ≫ 1 and consider the random walk with constant fixed rate α between
nearest-neighbour, with α ≤ 1/6 to satisfy our hypothesis (2.2).

Without wings and with ra = rt = 1 our wasp would be the three-dimensional “n-dog”
of [42] and we would have a relaxation time and mixing time of order n3. We will reprove this
result by using our (κ, λ)-capacities, actually considering the same kind of flows as those used
in [42] but, as we will see, with some more flexibility in building such flows. We will also show
that, as one could expect, adding the wings will not change the spectral gap and mixing time
asymptotics. This is, in particular, to illustrate how one can recursively apply Theorem 2.10: γR
can be estimated by applying the theorem to the restricted dynamics itself. The last reason why
we introduced this toy model that combines two and three-dimensional graphs is that it illustrates
some limits of our result: while using the three-dimensional parts of our graph we will be able to
estimate easily the mixing time of our random walk and prove asymptotic exponential laws for
exit and transition times, the two-dimensional “wing pair restricted” random walk is associated
with a too slowly decreasing ε∗R to control more than the relaxation time: we are in the regime
ε∗R ≪ 1 but outside the regime φ∗

R T ∗

R ≪ 1.
To fix some notation, let us call Rt the cubic lattice {0, . . . , lt }3 and Ra this other cubic

lattice from which one corner is removed to have a partition of the vertices Xb = Rt ∪ Ra that
describe the wasp body obtained after remotion of the wings. In the same way we call R1, R2,
R3 and R4 the four square lattices from which one point has been removed to obtain a partition
of R = Rt ∪

4
i=1 Ri that is the front part of the wasp. We then have a partition of the whole

graph X = R ∪ Ra
Let us start with the study of the Xb-restricted random walk. We will write φ∗

t , γt and ε∗t
instead of φ∗

Rt
, γRt and ε∗Rt

. From Lemma 2.2 we have, with obvious notation, φ∗
t ≤ φt =

3α/(1 + lt )3. As far as γt is concerned we can use the following lemma.
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Lemma 7.5. For d ≥ 1, if γd is the spectral gap of the random walk on the d-dimensional lattice
{0, . . . , l}d with nearest-neighbour jump rate α, then

1
γd

≤
dl(l + 1)

2α/e
. (7.73)

In addition, if we call 0 the all 0 coordinate vertex and γ ′

d the spectral gap of restricted random
walk on {0, . . . , l}d

\ {0}, then

1
γ ′

d
≤

d(l + 1)2

2αd+1/e
. (7.74)

Proof. The estimate (7.73) is obtained by the standard coordinate by coordinate coupling for the
lazy version of the original random walk. The same coupling can be used for the random walk
on the graph with one removed corner to bring each coordinate of two lazy random walks at
distance 1 at most. Since one can then build another coupling making them meet in d steps at
most with probability αd at least, and start the coupling again from the beginning if they do not,
the mean meeting time of these lazy random walks is bounded from above by

1
αd


dl(l + 1)

2α
+ d


≤

d(l + 1)2

2αd+1 . (7.75)

Markov’s inequality makes then possible to bound the mixing time of the lazy walk, from which
one deduces (7.74) for the original walk. �

The first part of the lemma together with the previous estimate on φ∗
t gives then

ε∗t ≤
3lt (lt + 1)

2α/e
3α

(lt + 1)3
≤

9e

1 + lt
. (7.76)

To prove that l3
t is the correct order of the exit time from Rt we apply Theorem 2.9 to estimate

φ∗
t from below and then just have to build a unitary flow from Ra to Rt to estimate from below

a (κ, λ)-capacity with λ = +∞. We send a flow of strength 1 to the junction corner (this will
be modified when working with λ < +∞) and have to absorb it in Rt . Since we know the
probabilistic meaning of the optimal flow and κ has, heuristically, to be small enough to be
close to local equilibrium at absorption, we should absorb a fraction of order 1/(1 + lt )3 of
this unitary flow in each vertex of Rt . But we are not constrained to realize this exactly and
this is where we have some flexibility that helps in computation. Since we also know from the
electrical network picture that the optimal flow should in some sense be radially distributed, we
build our flow as the mean of a random simple flow with some spherical symmetry. Let us first
explain how to build a certain random path ξ . We begin by choosing a point Q with positive
coordinates in the origin centred euclidean ball of radius (1 + lt ) according to the normalized
Lebesgue measure. This point belongs to some unitary cube with integer coordinate corners and
we call Q′ the corner with the smallest coordinates. We then approximate the radius [0, Q] by
a coordinate non-decreasing path that starts from 0, is only made of edges along the unitary
cubes crossed by [0, Q], and ends in Q′. Such a path is in particular a shortest path on the lattice
that links 0 with Q′ and the fact that exists can be shown by recurrence on the dimension and
by using projections along coordinate axes. For such a random path ξ (since Q is random) we
define a flow ψξ by ψξ (x, y) = 1{(x,y)∈ξ} − 1{(y,x)∈ξ}. We finally use as test flow in Thomson’s
principle the associated mean flow, that is the flow ψ such that, for x and y nearest neighbours
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with ∥y∥2 > ∥x∥2, ψ(x, y) = P((x, y) ∈ ξ). Since the distance between these approximating
paths and their associated radius is smaller than

√
3, the chosen point has to be in cone of half

angle α, with sinα =
√

3/∥y∥2 for y to be used in the approximating path. It follows that

ψ(x, y) ≤
1

1
8

4π(1+lt )3
3

2π
3
(1 + lt )

3(1 − cosα) = 4


1 −


1 −

3

∥y∥
2
2


≤

12

∥y∥2
∞

. (7.77)

Also, for all x ∈ Rt , we have divxΨ = P(Q′
= x) and

EµRt


divΨ
µRt

2


=


x∈Rt

1

(1 + lt )3
(1 + lt )

6P2 Q′
= x


=


x∈Rt

(1 + lt )
3 Vol(C(x) ∩ B1/8)

2
1
8

4
3π(1 + lt )3

2 (7.78)

where C(x) is the unitary cube with x as smallest coordinate corner, B1/8 is the positive
coordinate part of the ball of radius (1 + lt ) and Vol stands for the Lebesgue measure. It follows
that

EµRt


divΨ
µRt

2


≤


x∈Rt

1

(1 + lt )3
Vol(C(x) ∩ B1/8)

1
8

4
3π
2 =

6
π
. (7.79)

Thomson’s principle gives then, with µb the uniform measure on Xb, κ > 0 and Cκ,b(Rt , Ra)

the κ-capacity between Rt and Ra that is computed relatively to the restricted random walk in
Xb,

µb (Rt )

Cκ,b (Rt ,Ra)

≤
(1 + lt )3

α
+

lt −1
k=0

3
(1 + lt )3

α


3(1 + k)2 − 3(1 + k)+ 1

 144

(1 + k)4
+

1
κ

1
8

6
π

≤
(1 + lt )3

α


1 + 432


k≥1

3

k2


+

6
κπ

≤ 2161
(1 + lt )3

α
+

6
κπ
. (7.80)

Choosing 1/κ ≪ n3 this shows that l3
t = ⌊rt n⌋

3 is the correct order for the exit time.
To estimate transition and relaxation time with the same tools, we have to estimate (κ, λ)-

capacities with finite λ. Using not only randomly chosen sinks but randomly chosen sources
also, we can define a mean flow as previously to prove, with obvious notation,

µb (Rt ) µb (Ra)

Cλ
κ,b (Rt ,Ra)

≤ µb (Ra)

lt −1
k=0

3
(1 + lt )3

α


3(1 + k)2 − 3(1 + k)+ 1

 144

(1 + k)4

+µb (Rt )

la−1
k=0

3
(1 + la)3

α


3(1 + k)2 − 3(1 + k)+ 1

 144

(1 + k)4
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+µb (Ra)
6
κπ

+ µb (Rt )
6
λπ

≤ 2160

µb (Ra)

(1 + lt )3

α
+ µb (Rt )

(1 + la)3

α


+

6
κπ

+
6
λπ
,

(7.81)

to get, by choosing also 1/λ ≪ n3,

µb (Rt ) µb (Ra)

Cλ
κ,b (Rt ,Ra)

≤ 2160
2r3

t r3
a

r3
t + r3

a

n3

α
+ o(n3). (7.82)

By Theorem 2.10, using (7.74) and choosing κ, λ ≪ 1/n2, this gives an upper bound on
the relaxation time with the same asymptotics. Theorem 2.18 also provides a similar upper
bound on the mean transition time. Going to lower bounds on 1/γb = 1/γXb and 1/φ∗

t,λ
one could estimate (κ, λ)-capacities through Dirichlet principle, but it is better to recall that
µb(Rt )/Cλ

κ,b(Rt ,Ra) ≥ (1 − ϵ)/φ∗
t,λ for any ϵ and large enough n and 1/φ∗

t,λ ≥ 1/φ∗
t ≥

(1 + lt )3/(3α).

As far as exponential asymptotic laws and mixing time asymptotics are concerned, our results
depend on our ability, with obvious notation, to control ζ ∗

t and show that ε∗t ln(1/ζ ∗
t ) goes to zero

and ensure φ∗
t T ∗

t ≪ 1. This cannot be achieved by using Lemma 2.5, since ε∗t /γt = φ∗
t /γ

2
t ≫ 1

and ε∗t Dt is of order 1. (Estimates provided by (2.23) and (2.22) would actually be enough in
dimension four and five respectively.) We are, however, in the special case where (2.26) holds
and proves, since φ∗

t and φt are of the same order, that ε∗t ln(1/ζ ∗
t ) ≪ 1. This proves local

thermalization on time scale n2 ln n and exponential asymptotic laws immediately follow. This
also proves that the mixing time goes like n3 as soon as rt ≠ ra .

We prove now that these asymptotics on relaxation, transition, exit and mixing times are still
valid on the full wasp graph, wings included. To do so we note that our previous flow used to
estimate (κ, λ)-capacities between Rt and Ra in Xb can still be used to estimate (κ, λ)-capacities
between R (wings included) and Ra in the full space X . The key point now is to control γR. If
our wasp had only one wing R1, we could have use Theorem 2.10 directly on R = R1∪(R\R1).
We will use instead Lemma 2.11 and, anyway, will have to estimate (κ, λ)-capacities between
R1 and Rt and compare it with γ1 = γR1 and γt = γRt .

Let us start by estimating φ∗

1 = φ∗

R1
. In this two-dimensional case the easy bound φ∗

1 ≤ φ1

is not a good one. We then use the variational principle satisfied by φ∗

1 (see Lemma 2.2) with
the same kind of test function we would have use to estimate Cκ(R1,Rt ). With V (x) =

(ln(∥x∥∞))/(1 + ln l1) for x ∈ R1, we have, with obvious notation,

D1(V ) =

l1−1
k=0

2(k + 1)
α

(1 + l1)2


ln(k + 2)− ln(k + 1)

1 + ln l1

2

≤
2α

(1 + ln l1)2 (1 + l1)2

l1−1
k=0

1
k + 1

≤
2α

(1 + ln l1)2 (1 + l1)2
(1 + ln l1) =

2α

(1 + ln l1) (1 + l1)2
. (7.83)
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We also have

µ1(V
2) =

l1
k=0

(2k + 1)
1

(1 + l1)2
ln2(1 + k)

(1 + ln l1)2

≥
1

(1 + l1)2(1 + ln l1)2

 1+l1

1
(2x − 1) ln2 x dx

≥
1
3

for l1 ≥ 20. (7.84)

Since V|∂−Rt ≡ 0 it follows that φ∗

1 ≤ 6α/((1 + l1)2(1 + ln l1)) for l1 ≥ 20, and ε∗1 decreases at
least like 1/ ln l1.

To see that we have found the right order for φ∗

1 we estimate the κ-capacity between R1
and Rt by using the same kind of flow as previously. For nearest neighbours x and y with
∥y∥2 > ∥x∥2 such a flowψ satisfies, with sinα ≤

√
2/∥y∥2 and α ≤ π/4, so that sinα ≥ α/

√
2

ψ(x, y) ≤
1

1
4πl2

1

αl2
1 ≤

4
π

√
2

√
2

∥y∥2
≤

8
π∥y∥∞

. (7.85)

Thomson principle then gives

µR(R1)

Cκ(R1,Rt )
≤
(1 + l1)2

α
+

l1−1
k=0

2(2k + 1)
(1 + l1)2

α


8

π(k + 1)

2

+
1
κ

1
1
4π

≤
(1 + l1)2

α


1 +

256

π2

l1−1
k=0

1
k + 1


+

4
κπ

≤
(1 + l1)2

α
(1 + 26(1 + ln l1))+

4
κπ
, (7.86)

which proves, choosing 1/κ ≪ n2 ln n that 1/φ∗

1 is of order n2 ln n.
Combining these two- and three-dimensional flows we get, denoting by Cλ

κ,R(·, ·) the (κ, λ)-
capacity that is computed relatively to the random walk restricted in R.

µR(R1)µR(Rt )

Cλ
κ,R (R1,Rt )

≤ 26µR(Rt )
(1 + l1)2(1 + ln l1)

α
+ 2160µR(R1)

(1 + lt )3

α

+µR(Rt )
4
κπ

+ µR(R1)
π

6λ
. (7.87)

With 1/κ ≪ n2 ln n as previously and 1/λ ≪ n3, since µR(Rt ) is of order 1 and µR(R1) is of
order 1/n, this leads to

µR(R1)µR(Rt )

Cλ
κ,R (R1,Rt )

≤ 26c2
1

n2 ln n

α
+ O(n2) (7.88)

and, choosing also 1/κ, 1/λ ≫ n2, one has in the same way, using the previous test function V
in Dirichlet principle,

µR(R1)µR(Rt )

Cλ
κ,R (R1,Rt )

≥
1
2

c2
1

n2 ln n

α
+ O(n2). (7.89)
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From Lemma 2.11, (7.73) and (7.74) it follows that 1/γR = o(n3) and the results obtained for
the wasp without wings hold with the wings also.

We note however that when applying the previous two-dimensional computation to the
random walk restricted to a pair of wings, we obtain similarly a good spectral gap control but we
are not able to show the asymptotic exponential law or derive mixing time estimates, since, in
this case T ∗

R1
and 1/φ∗

1 are of the same order.

Appendix A. Estimating ζ ∗

R

A.1. Crude and very crude estimates

We prove here Lemma 2.5.

Proof of (i). One has, for all x in R and t > 0,

µ∗

R(x) = Pµ∗

R


X (t) = x

τX \R > t


≥ Pµ∗

R


X (t) = x, τX \R > t


. (A.1)

By the natural coupling between X and X R up to time τX \R and stochastic domination of τX \R
by an exponential random variable with parameter αR that is independent from X R , it follows

µ∗

R(x) ≥ Pµ∗

R
(X R(t) = x) e−αR t . (A.2)

By Cauchy–Schwarz inequality, Proposition 2.1, and the standard trick to control ℓ∞(µR) norms
with ℓ2(µR) norms (the same we used in the proof of Theorem 2.4) we get

µ∗

R(x) ≥


1 − e−γR t


ε∗R

(1 − ε∗R)µR(x)


e−αR tµR(x). (A.3)

To make this bound useful, we notice that the term inside the bracket is larger than or equal to
1/2 if

t ≥ t0 :=
1

2γR
ln


4ε∗R
(1 − ε∗R)µR(x)


.

If t0 > 0 for all x ∈ R, that is if
4ε∗R

(1−ε∗R)ζR
> 1, then we can plug in its value in (A.3) and get, by

definition of ζ ∗

R,

ζ ∗

R ≥ min
x∈R

µR(x)

4


4ε∗R

(1 − ε∗R)µR(x)

−
2αR
γR

≥
ζR
4


4ε∗R

(1 − ε∗R)ζR

−
2αR
γR

. (A.4)

On the other hand, if
4ε∗R

(1−ε∗R)ζR
≤ 1, we can just take the value t = 0 in (A.3) and get

ζ ∗

R ≥ min
x∈R


1 −


ε∗R

(1 − ε∗R)µR(x)

2

µR(x) ≥
ζR
4
. (A.5)

Taking the logarithm of 1/ζ ∗

R and putting things together, we obtain the stated inequality.

Proof of (ii). The first inequality is obvious from the definition of ζ ∗

R. Let X̂ denote the discrete
version of X like in Section 3.2 and let N (t) be the number of rings up to time t . Then, for z ∈ R,
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we have

µ∗

R(z) = lim
t→∞

Px (X (t) = z | τX \R > t)

= lim
t→∞


k≥0

Px (X̂(k) = z | τ̂X \R > k)P(N (t) = k)

≥ lim
t→∞


k≥0

Px (X̂(k + DR) = z | τ̂X \R > k + DR)P(N (t) = k + DR)

= lim
t→∞


k≥0


y∈R

Px (X̂(k) = y | τ̂X \R > k)Py(X̂(DR) = z | τ̂X \R > DR)

× P(N (t) = k + DR), (A.6)

where we used the notation τ̂X \R for the hitting time of the chain X̂ on X \ R. Since for all
y ∈ R we have

Py(X̂(DR) = z | τ̂X \R > DR) ≥ Py(X̂(DR) = z, τ̂X \R > DR) ≥ e−∆R DR ,

we get

µ∗

R(z) ≥ e−∆R DR lim
t→∞


k≥0


y∈R

Px (X̂(k) = y | τ̂X \R > k)P(N (t) = k + DR)

= e−∆R DR lim
t→∞

P(N (t) ≥ DR) = e−∆R DR . (A.7)

A.2. Superharmonicity of h∗

R

To prove that h∗

R is a super-harmonic function, notice that, for all x ∈ R,

(Lh∗

R)(x) = −h∗

R(x)+


y∈X

p(x, y)h∗

R(y)

= −h∗

R(x)+


y∈R

p(x, y)
µ∗

R(y)

µR(y)

= −h∗

R(x)+


y∈R

p∗

R(x, y)
µ∗

R(y)

µR(y)

= −h∗

R(x)+


y∈R

p∗

R(y, x)
µ∗

R(y)

µR(x)

= −φ∗

Rh∗

R(x) ≤ 0, (A.8)

where in the last two lines we used the reversibility of p∗

R w.r.t. µR and that µ∗

R p∗

R =

(1 − φ∗

R)µ
∗

R.

Appendix B. Computation of relevant quantities in the Curie–Weiss model

Here we provide some accurate estimates over relevant quantities in the characterization of
the metastable behaviour for the Curie–Weiss model.
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B.1. Measure of the metastable set

Here we prove formula (7.53) which provides the asymptotic expression of µ(R). By
definition on µ and R and using (7.7), we have

Z N · µ̄(R) =

(m0−m−)
N
2

k=(−1−m−)
N
2

e
−βN fN


m−+

2k
N



=


2
N

1
π(1 − m2

−)

(m0−m−)
N
2

k=(−1−m−)
N
2

e
−βN f


m−+

2k
N


(1 + o(1))

=


2
N

1
π(1 − m2

−)

e−βN f (m−)


N

2
3




k=−


N

2
3

 e
−
βN f ′′(m−)

2


2k
N

2

(1 + o(1)) (B.1)

where in the last step we use Taylor approximation and observe that
|k|≥


N

2
3

 e
−
βN f ′′(m−)

2


2k
N

2

≤ Ne−c(β)N
1
3
.

Approximating the sum in (B.1) with an integral, we finally get

Z N · µ̄(R) =
1

π(1 − m2
−)

e−βN f (m−)


R

e−β f ′′(m−)x2
dx(1 + o(1))

=
1

β f ′′(m−)(1 − m2
−)

e−βN f (m−)(1 + o(1)). (B.2)

B.2. Capacities between points in the macroscopic scale

Here we provide an asymptotic expression for the capacity between points in the one-
dimensional dynamics with transition rates (7.10), that is the dynamics induced on [−1, 1]N
by the Curie–Weiss heat-bath dynamics.

As recalled in Section 7.1, for points x < y ∈ [−1, 1]N it holds

C(x, y)−1
=

(y−x) N
2 −1

k=0


c̄


x +

2k

N
, x +

2(k + 1)
N

−1

,

with c̄(x, y) = µ̄(x) p̄(x, y). In the following, we will first provide an asymptotic approximation
for C(x, y)−1 when m0 ∉ [x, y], and then compute the asymptotic formulas of C(m−,m0)

−1,
C(m0,m+)

−1 and C(m−,m0)
−1.

If m0 ∉ [x, y], we can assume w.l.o.g. that f (x) > f (z) for all z ∈ (x, y). Bounding below
the rates p̄ with a positive constant c(β) and from (7.7), we get

C(x, y)−1
≤ c(β)

√
N Z N

(y−x) N
2 −1

k=0

e
βN f


x+

2k
N


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≤ c(β)
√

N Z N eβN f (x)
(y−x) N

2 −1
k=0

e−β| f ′(ξk )|2k

≤ c(β)
√

N Z N eβN f (x), (B.3)

where in the second line we used f (x +
2k
N ) − f (x) = −| f (ξk)|

2k
N for some ξk ∈ (x, x +

2k
N )

and that there exists a constant c > 0 such that | f (ξk)| > c uniformly in k. If instead
f (y) > f (z) for all z ∈ (x, y), then is enough to switch x and y and run the argument above, as
C(x, y) = C(y, x). Altogether, this provides inequality (7.28).

To compute C(m−,m0), we first notice that, since m0 is a critical point of f , we can write

tanh

β∆±


x +

2k

N


= ± tanh(β(m0 + h))(1 + o(1)) = ±m0(1 + o(1))

and then get the approximation p̄(x ±
2k
N , x ±

2(k+1)
N ) =

(1−m2
0)

4 (1 + o(1)). Proceeding as for the
computation of µ̄(R), we have

C(m−,m0)
−1

=
4

(1 − m2
0)

Z N

(m0−m−)
N
2 −1

k=0

e
βN fN


m0−

2k
N


(1 + o(1))

= 2


2Nπ

(1 − m2
0)

Z N eβN f (m0)


N

2
3



k=0

e
−

−βN | f ′′(m0)|
2


2k
N

2

(1 + o(1))

= 2N


π

(1 − m2
0)

Z N eβN f (m0)


+∞

0
e−β| f ′′(m0)|x2

dx (1 + o(1))

=
πN

(1 − m2
0)β| f ′′(m0)|

Z N eβN f (m0)(1 + o(1)). (B.4)

This provides formula (7.52).
Similarly we can compute C(m0,m+)

−1 and C(m−,m+)
−1. In the first case we let the sum

over k of (B.4) run from (m0 − m+)
N
2 to 0, and then get the same result as for C(m−,m0)

−1.
When computing C(m−,m+)

−1, we let the sum over k run from (m0−m+)
N
2 to (m0−m−)

N
2 −1.

We then approximate the sum by an integral over all R that finally produces an extra factor of 2
with respect to (B.4). This yields formula (7.66).
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