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Abstract

In this paper, we first prove that the local time associated with symmetric α-stable processes is of
bounded p-variation for any p > 2

α−1 partly based on Barlow’s estimation of the modulus of the local

time of such processes. The fact that the local time is of bounded p-variation for any p > 2
α−1 enables us

to define the integral of the local time


∞

−∞
▽α−1

−
f (x)dx Lx

t as a Young integral for less smooth functions

being of bounded q-variation with 1 ≤ q < 2
3−α

. When q ≥
2

3−α
, Young’s integration theory is no longer

applicable. However, rough path theory is useful in this case. The main purpose of this paper is to establish
a rough path theory for the integration with respect to the local times of symmetric α-stable processes for

2
3−α

≤ q < 4.
c⃝ 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Itô [14] developed the integration theory with respect to Brownian motion and the chain rule
for Brownian motion known as Itô’s formula. We first recall Itô’s formula developed in 1944 as
follows.
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(Itô’s Theorem (1944)) Let f : R → R be a function of the class C2 and B = {Bt , Ft : 0 ≤

t < ∞} be any Brownian motion on (Ω , Ft ), then

f (Bt ) = f (B0) +

 t

0
f ′(Bs)d Bs +

1
2

 t

0
f ′′(Bs)ds.

For Itô’s formula, the contribution lies in defining the stochastic integral


f ′(Bs)d Bs . An
integral


Xd Z can be defined as a Stieltjes integral pathwise when the integrator Z is of finite

variation and the integrand X is continuous. However, Brownian motion is not of bounded
variation a.s. and when the integrator is of infinite variation, there did not exist an integration
theory in place to use before Itô dealt with this issue.

Despite a huge success, Itô’s original formula has its own limitations as it applies for Brownian
motion and for functions with twice differentiability only. This hinders the applicability of
Itô’s formula. On one hand, one often encounters the need to define the stochastic integral
for a wide class of stochastic processes besides Brownian motion. Doob [9] emphasized the
martingale property of Itô’s integral. Subsequently, Doob proposed a general martingale integral
after discovering the key role of the martingale property of Brownian motion in defining Itô’s
integral. In order to build the theory, he needed to decompose the square of an L2-martingale.
This was done latter in [26]. Based on [26], Kunita and Watanabe in [16] defined an integral
provided the integrand is previsible for the case the integrator is a square integrable martingale.
They generalized Itô’s formula to continuous martingales only and proved the above Itô’s formula
is still valid if ds is replaced by d⟨X⟩s (see Section 2, [16]) and generalized Itô’s formula to
discontinuous martingales (see Section 5, [16]). Meanwhile, Meyer [27] extended Itô’s formula
to local martingales of which the concept was introduced in [15]. Meyer [28] further extended
Itô’s formula to semimartingales.

On the other hand, one also encounters the restriction of using Itô’s formula in the cases when
the function is not C2 in the space variable. The first result in this direction is the Itô–Tanaka’s
formula derived in [32] for f (x) = |x | with the help of the local time. The concept of local time
was first introduced in Lévy [18]. It has been indeed the wellspring of much of the extensions of
Itô’s formula for functions not being C2 in the space variable. Wang [33] extended Itô’s formula
to a time independent convex function which is being absolutely continuous with its first order
derivative being of bounded variation. Bouleau and Yor [7] made a further extension to absolutely
continuous functions with locally bounded first order derivative. The idea to extend Itô’s formula
to less smooth functions of Feng and Zhao in their papers [11–13] is to establish a Young’s
integration theory and a rough path integration theory for local time. Young [35] showed that the
pathwise integral


Xd Z makes sense if X is of finite p-variation and Z is of finite q-variation

where 1
p +

1
q > 1, together with the condition that X and Z have no common discontinuities.

The theory of rough paths was developed by Lyons and his co-authors in a series of papers
(see, e.g. [5,8,19,20,22,21,23]). Rough path theory removed the restriction of 1

p +
1
q > 1, hence

applicable to even rougher paths.

The purpose of this paper is to establish the integral


∞

−∞
▽α−1

− f (x)dx Lx
t for symmetric α

stable processes as a Young integral as well as a rough path integral.

The rest of the paper is organized as follows. In Section 2 we recall some results from
the Young’s integration theory and establish a Young integral of local time. In Section 3 we
recall some results from the rough path theory and establish a rough path integral of local
time.
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2. The Young integral

We first recall the definition of the bounded p-variation (see e.g. [35,23]).

Definition 2.1. A function f : [x ′, x ′′
] → R is of bounded p-variation if

sup
E

m
i=1

| f (xi ) − f (xi−1)|
p < ∞ (2.1)

where E := {x ′
= x0 < x1 < · · · < xm = x ′′

} is an arbitrary partition of [x ′, x ′′
]. Here p ≥ 1 is

a fixed real number.

We present Young’s integration theorem from [35] in the following.

Theorem 2.2 (Young Integral). Consider a function f of finite p-variation and a function g
of finite q-variation where p, q > 0, 1

p +
1
q > 1, such that f (x) and g(x) have no common

discontinuities, then x ′′

x ′

f (x)dg(x) = lim
m(E)→0

m
i=1

f (ξi )

g(xi ) − g(xi−1)


(2.2)

is well defined. Here ξi ∈ [xi−1, xi ], m(E) = sup1≤i≤m(xi − xi−1).

We also recall the integration of a sequence of functions which is also due to Young (see [35]).

Theorem 2.3 (Term by Term Integration). Let { fn} be a sequence of functions of finite
p-variation converging densely to a function f of finite p-variation uniformly at each point
of a set A. Let {gn} be a sequence of functions of finite q-variation converging densely, and at
x ′, x ′′ to a function g of finite q-variation uniformly at each point of a set B. Suppose further that
p, q > 0, 1

p +
1
q > 1, and that A includes the discontinuities of g, B those of f , A∪ B represents

all points of (x ′, x ′′). Then as n → ∞ x ′′

x ′

fndgn →

 x ′′

x ′

f dg. (2.3)

2.1. Fractional derivative and fractional Laplacian

We first recall the definition of the αth right fractional integral of a function g from [29]. The
left fractional integral is defined similarly. The Riemann’s definition of fractional integral for a
suitable function g is

a I α
x g(x) =

1
Γ (α)

 x

a
(x − u)α−1g(u)du, (2.4)

for almost all x with −∞ ≤ a < x < ∞ and Re(α) > 0, where α is a complex number in
general and Re denotes its real part. For a = 0, this is a Riemann–Liouville fractional integral

0 I α
x g(x) =

1
Γ (α)

 x

0
(x − u)α−1g(u)du, Re(α) > 0. (2.5)
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A sufficient condition that ensures the convergence of integral (2.5) is that g( 1
x ) = O(x1−η),

η > 0. Functions with the above property are sometimes called functions of the Riemann class.
For instance, constants are of Riemann class as well as functions such as xm, with m > −1. For
a = −∞, this is the Liouville fractional integral

−∞ I α
x g(x) =

1
Γ (α)

 x

−∞

(x − u)α−1g(u)du, Re(α) > 0. (2.6)

A sufficient condition that ensures the converges of integral (2.6) is that g(−x) = O(x−α−η),

η > 0, x → ∞. Functions with the above property are sometimes called functions of the Liou-
ville class. For example, functions such as xm , with m < −α < 0 are of the Liouville class. The
fractional integral operator satisfy the semigroup property, namely

a I α
x (a I β

x ) = a I α+β
x , Re(α, β) > 0.

The right fractional derivative operator and left fractional derivative operator are defined in
terms of the right fractional integral operator and left fractional integral operator in the following
manner

a▽α
x =

dn

dxn


a I n−α

x


, Re(α) > 0, n = ⌊Re(α)⌋ + 1, (2.7)

and

x▽
α
a = (−1)n dn

dxn


x I n−α

a


, Re(α) > 0, n = ⌊Re(α)⌋ + 1. (2.8)

Next, we recall the definition of the Riesz fractional derivative in the following

Definition 2.4 (See e.g. [30]). The Riesz fractional derivative for 0 < α < 2 and for −∞ < x <

∞ is defined as ▽αg(x) = −cα(−∞▽α
x + x▽α

∞)g(x), where

cα =
1

2 cos


πα
2

 , α ≠ 1,

−∞▽α
x g(x) =

1
Γ (n − α)

dn

dxn

 x

−∞

g(u)

(x − u)α+1−n
du,

x▽
α
∞g(x) = (−1)n 1

Γ (n − α)

dn

dxn


∞

x

g(u)

(u − x)α+1−n
du,

where n = ⌊Re(α)⌋ + 1.
For a function g satisfying the integrability condition

R

|g(y)|

(1 + |y|)1+α
dy < ∞, (2.9)

we define as in [6] that

△

α
2
ϵ g(x) = A(1, −α)


|y−x |>ϵ

g(y) − g(x)

|y − x |1+α
dy, (2.10)

and

△
α
2 g(x) = A(1, −α)P.V .


R

g(y) − g(x)

|y − x |1+α
dy := lim

ϵ→0+
△

α
2
ϵ g(x), (2.11)
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whenever the limit exists. Here “P.V”. stands for the“principal value”. The above limit exists and
is finite if g is of class C2 in a neighborhood of x and satisfies condition (2.9); in this case

△
α
2 g(x) = A(1, −α)


R

g(y) − g(x) − ▽g(x).(y − x)1{|y−x |<ϵ}

|y − x |1+α
dy

for any ϵ > 0, where A(1, −α) =
α2α−1Γ ( α+1

2 )

π
1
2 Γ (1−

α
2 )

. Here △
α
2 , is the fractional power of the Laplace

operator −(−△)
α
2 . The Fractional Laplacian is the infinitesimal generator of α stable process

(see e.g. [17]). The Fractional Laplacian is usually defined by its Fourier transform (cf. [31]):
F ((−△)

α
2 g)(ξ) = |ξ |

α F (g)(ξ), its proof can be found in [17]. Hence, −(−△)
α
2 g(ξ) =

−F −1

|ξ |

α F (g)(ξ)


. The definition we used in (2.11) coincides with the usual Fractional

Laplacian defined by its Fourier transform (see [1]).
By the Fourier transform method, one could show that the following relation holds (cf. [10]):

−(−△)
α
2 g(x) = ▽αg(x).

2.2. p-variation of local time of symmetric stable process

We present the exact modulus of local time of stable processes from [4] in the following
theorem. Recall its characteristic function is given by

χ(θ) = |θ |
α

+ ih|θ |
αsgn(θ),

where |h| ≤ tan(απ/2). We define its local time as Lx
t .

Theorem 2.5. For a symmetric stable process of index α > 1, its local time satisfies

lim
δ↓0

sup
|a−b|<δ

a,b∈I
0≤s≤t

|La
s − Lb

s |

|b − a|
α−1

2


log


1
|b−a|

1/2 =
2cα

1/2

(1 + h2)1/2


sup
x∈I

Lx
t

1/2

, (2.12)

for all intervals I ⊆ R and all t > 0 a.s., where

cα =
2
π


∞

0
(1 − cos y)y−αdy =

1
π

Γ (2 − α)

α − 1
sin

(2 − α)π

2
. (2.13)

Barlow [4] gave a necessary and sufficient condition for the joint continuity of the local time,
and the exact modulus for a fairly wide class of Lévy processes.

Let [a, b] be any finite interval. By its dyadic decompositions we mean partitions {an
0 < an

1 <

· · · < an
2n } of [a, b], where

an
k = a +

k

2n (b − a), k = 0, 1, . . . , 2n,

and n ∈ N.

Proposition 2.6. The family of local times Lx
t of α-stable processes with α ∈ (1, 2) is of bounded

p-variation in x for any t ≥ 0, and any p > 2
α−1 almost surely.
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Proof. First from Theorem 2.5, we know that for almost all ω ∈ Ω , there exists a δ∗(ω) > 0
such that when 0 < |b − a| < δ∗(ω), we have the following

|Ls
a

− Ls
b
|
p

≤

b − a


(α−1)p

2


log


1
|b − a|

 p
2 2p+1cα

p
2

1 + h2
 p

2


sup
x∈I

Lx
t

 p
2

. (2.14)

We can construct a dyadic decomposition which fully covers the interval [a, b]. Furthermore, by
Proposition 4.1.1 from [23] (set i = 1, γ = p − 1), for any partition {al} of [a, b], we have

sup
D


l

|Lal+1
t − Lal

t |
p

≤ C


p, γ
 ∞

n=1

nγ
2n

k=1

Lan
k

t − L
an

k−1
t

p

, (2.15)

where C


p, γ


is a constant depending on p and γ . Notice the right hand side of (2.15) does not
depend on partition D.

We can choose an n0 big enough such that |b−a|

2n ≤ δ∗(ω) for any n ≥ n0. By substituting
(2.14) into (2.15), it follows that

∞
n=1

nγ
2n

k=1

Lan
k

t − L
an

k−1
t

p

≤

n0−1
n=1

nγ
2n

k=1

Lan
k

t − L
an

k−1
t

p

+

∞
n=n0

nγ
2n

k=1

an
k − an

k−1


(α−1)p

2


log


1
|an

k − an
k−1|

 p
2 2p+1cα

p
2

1 + h2
 p

2


sup
x∈I

Lx
t

 p
2

.

In [3], Barlow showed that
sup
x∈I

Lx
t

 p
2

< ∞, a.s. (2.16)

Now, we consider the term

∞
n=n0

nγ
2n

k=1

an
k − an

k−1


(α−1)p

2


log


1
|an

k − an
k−1|

 p
2

where an
k =

k
2n (b − a) + a, k = 0, 1, . . . , 2n , then it is not difficult to see that

∞
n=n0

nγ
2n

k=1

an
k − an

k−1


(α−1)p

2


log


1
|an

k − an
k−1|

 p
2

=

∞
n=n0

nγ
2n

k=1

an
k − an

k−1


(α−1)p

4 +
1
2
an

k − an
k−1


(α−1)p

4 −
1
2


log


1
|an

k − an
k−1|

 p
2

≤ β1

∞
n=n0

nγ


b − a

2n

 (α−1)p
4 −

1
2

< ∞,

where β1 is a constant depends only on p. It turns out for any interval [a, b] ⊂ R

sup
D


m

|Lam+1
t − Lam

t |
p < ∞.
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As La
t (ω) has a compact support in a for each ω, say [−N , N ] contains its support. We still

denote its partition by D := D−N ,N = {−N = x0 < x1 < · · · < xt = N } and attain that

sup
D


l

|Lal+1
t − Lal

t |
p < ∞. � (2.17)

2.3. The Young integral with respect to local time

We start with functions which are smooth, then proceed to functions which are less smooth.
The following works for sufficiently smooth functions, unless we explicitly say otherwise. Itô’s
formula for Lévy process in general (cf. [2]) is given by

g(X t ) = g(X0) +

 t

0
▽g(Xs)d Xs +

1
2
σ 2
 t

0
△g(Xs)ds

+

 t

0


R


g(Xs− + y) − g(Xs−)


1{|y|≥1}N (dy, ds)

+

 t

0


R


g(Xs− + y) − g(Xs−)


1{|y|<1} Ñ (dy, ds)

+

 t

0


R


g(Xs− + y) − g(Xs−) − y▽g(Xs−)


1{|y|<1}ν(dy)ds, (2.18)

where Ñ (dy, ds) is the compensated Poisson measure defined as the difference of Poisson point
measure N (dy, ds) and its intensity measure ν(dy)ds. And, the Lévy measure of stable process
ν(dx) is

ν(dx) = C |x |
−α−1dx,

where C is a constant. The last term of the above Itô’s formula can be further simplified by using
the definition of fractional Laplacian as

R\{0}


g(Xs− + y) − g(Xs−) − y▽g(Xs−)


1{|y|<1}ν(dy)

= C


R\{0}

g(Xs− + y) − g(Xs−) − y▽g(Xs−)1|y|<1

|y|α+1 dy

− C


|y|≥1

g(Xs− + y) − g(Xs−)

|y|α+1 dy

= Cα △
α
2 g(Xs−) −


|y|≥1

[g(Xs− + y) − g(Xs−)]ν(dy)

for every g ∈ C2
b(R), where Cα =

Cπ
1
2 Γ (1−

2
α
)

α2α−1Γ ( 1+α
2 )

.

Then, one can derive the following Itô’s formula for stable processes from (2.18) based on
the fact that σ = 0 for stable processes which are pure jump processes and the definition of the
compensated Poisson measure

g(X t ) = g(X0) +

 t

0
▽g(Xs)d Xs +

 t

0


R\{0}


g(Xs− + y) − g(Xs−)


Ñ (dy, ds)

+ Cα

 t

0
△

α
2 g(Xs−)ds. (2.19)
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By the occupation times formula, one can show that t

0
▽αg(Xs−)ds =


∞

−∞

▽αg(x)Lx
t dx =


∞

−∞

Lx
t dx


▽α−1g(x)


. (2.20)

Note the last integral


∞

−∞
Lx

t dx

▽α−1g(x)


can be defined without the need to assume that

g ∈ C2. In fact, if ▽α−1g(x) is of finite q-variation (1≤q < 2
3−α

), then the integral


∞

−∞
▽α−1g(x)

dx Lx
t is well defined as a Young integral. Similar to [11], we have the following remark.

Remark 2.7. If ▽α−1g(x) is a C1 function, then


∞

−∞
▽α−1g(x)dx Lx

t exists as a Riemann
integral and we have

∞

−∞

▽α−1g(x)dx Lx
t = −


∞

−∞

Lx
t dx


▽α−1g(x)


. (2.21)

In fact, since L t . has a compact support for each t , one can always add some points in the
partition to make Lx1

t = 0 and Lxm
t = 0. Then, we can show that

∞

−∞

▽α−1g(x)dx Lx
t = lim

m(D)→0

m
j=1

▽α−1g(x j−1)

L

x j
t − L

x j−1
t


= lim

m(D)→0

 m
j=1

▽α−1g(x j−1)L
x j
t −

m−1
j=0

▽α−1g(x j )L
x j
t



= − lim
m(D)→0

m
j=1


▽α−1g(x j ) − ▽α−1g(x j−1)


L

x j
t

= −


∞

−∞

Lx
t dx


▽α−1g(x)


. (2.22)

In the following, we will consider the integral for less smooth functions. For this, we define a
mollifier

ρ(x) =


ce

1
(x−1)2−1 , if x ∈ (0, 2),

0, otherwise.
(2.23)

Here c is chosen so that
 2

0 ρ(x)dx = 1. Take ρn(x) = nρ(nx) as the mollifier which will be
used to smoothen less smooth functions.

In this paper, we extend Itô’s formula for less smooth function f : R → R which is absolutely
continuous. Such function f has a (α − 1)th fractional derivative which is assumed to be left
continuous and is of finite q variation, where 1 ≤ q < 4. And, we denote the left limit of this
(α − 1)th fractional derivative of f as ▽α−1

− f (x).

Theorem 2.8. Let f : R → R be an absolutely continuous, locally bounded function, have
the (α − 1)th fractional derivative which is left continuous and of finite q-variation, where
1 ≤ q < 2

3−α
. Define fn(x) =


∞

−∞
ρn(x − y) f (y)dy with n ≥ 1. Then

∞

−∞

▽α−1 fn(x)dx Lx
t →


∞

−∞

▽α−1
− f (x)dx Lx

t , as n → ∞. (2.24)
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Proof. Note that fn(x) can be rewritten as

fn(x) =

 2

0
ρ(z) f


x −

z

n


dz, n ≥ 1,

and note it is smooth. In particular

▽α−1 fn(x) =

 2

0
ρ(z)▽α−1 f


x −

z

n


dz, n ≥ 1. (2.25)

To see this, one can use Fubini’s theorem and the absolutely continuity property of the function
f to get

−∞▽α−1
x fn(x) =

1
Γ (2 − α)

d

dx

 x

−∞

fn(t)

(x − t)α−1 dt


=

1
Γ (2 − α)

d

dx


∞

0

fn(x − t)

tα−1 dt


=

1
Γ (2 − α)


∞

0

f ′
n(x − t)

tα−1 dt


=

1
Γ (2 − α)

 x

−∞

(x − t)1−α

 2

0
ρ(z) f ′


t −

z

n


dzdt



=
1

Γ (2 − α)

 2

0
ρ(z)

 x

−∞

f ′

t −

z
n


(x − t)α−1 dtdz



=
1

Γ (2 − α)

 2

0
ρ(z)

d

dx

 x

−∞

f

t −

z
n


(x − t)α−1 dt


dz



=

 2

0
ρ(z)−∞▽α−1

x f


x −
z

n


dz. (2.26)

Similarly, we can derive x▽α−1
∞ fn(x) =

 2
0 ρ(z)x▽α−1

∞ f (x −
z
n )dz. Hence, we have proved

(2.25).
Similar to [36], for any partition D := {−N = x0 < x1 < · · · < xr = N }, there is an

increasing function w such that▽α−1 f (xl+1) − ▽α−1 f (xl)
 ≤


w(xl+1) − w(xl)

 1
q , xl , xl+1 ∈ D,

where w(x) is the total q-variation of ▽α−1 f (x) in the interval [−N − 2, x].
Then, by Jensen’s inequality, we obtain

sup
D

r
l=1

▽α−1 fn(xl) − ▽α−1 fn(xl−1)
q

= sup
D

r
l=1


 2

0
ρ(z)


▽α−1 f


xl −

z

n


− ▽α−1 f


xl−1 −

z

n


dz


q

≤ M1 sup
D

r
l=1

 2

0

▽α−1 f


xl −
z

n


− ▽α−1 f


xl−1 −

z

n

q dz


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≤ M1

 2

0
sup

D

r
l=1

▽α−1 f


xl −
z

n


− ▽α−1 f


xl−1 −

z

n

q dz

≤ M1

 2

0


w


N −
z

n


− w


−N −

z

n


dz, (2.27)

where M1 is a constant. In addition, as we have

w


N −
z

n


− w


−N −

z

n


≤ w(N ), (2.28)

it follows that

sup
D

r
l=1

▽α−1 fn(xl) − ▽α−1 fn(xl−1)
q ≤ 2M1w(N ) < ∞. (2.29)

This implies that ▽α−1 fn(x) is of bounded q-variation in x uniformly in n. Moreover, by
Lebesgue’s dominated convergence theorem and (2.27), we have that

▽α−1 fn(x) → ▽α−1
− f (x) as n → ∞. (2.30)

Now the theorem follows from Theorem 2.3 immediately. �

We present the Itô’s formula for stable processes defined in terms of Young integral in the
following theorem.

Theorem 2.9. Let X = (X t )t≥0 be a symmetric α-stable process, 1 < α < 2, and f : R → R be
an absolutely continuous, locally bounded function that has (α −1)th fractional order derivative
▽α−1

− f (x). Assume that ▽α−1
− f (x) is locally bounded, and of bounded q-variation, where

1 ≤ q < 2
3−α

. Then we have the following Itô’s formula

f (X t ) = f (X0) +

 t

0
▽− f (Xs)d Xs

+

 t

0


R


f (Xs− + y) − f (Xs−)


Ñ (dy, ds)

− Cα


∞

−∞

▽α−1
− f (x)dx Lx

t , (2.31)

where Cα =
π

1
2 Γ (1−

2
α
)

α2α−1Γ ( 1+α
2 )

.

Proof. Define a smooth function fn as in Theorem 2.8. We apply Itô’s formula (2.19) for stable
process to the smooth function fn . Then when we take the limit as n → ∞, the convergence of
all terms except the fractional Laplacian term is clear. For the fractional Laplacian term, we use
the occupation times formula, Remark 2.7 and Eq. (2.24), to obtain that t

0
△

α
2 fn(Xs−)ds = −


∞

−∞

▽α−1 fn(x)dx Lx
t → −


∞

−∞

▽α−1
− f (x)dx Lx

t . � (2.32)
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3. Local time as rough path

For a function g is of bounded q-variation for 1 ≤ q < 2
3−α

and local time is of bounded

p-variation (p > 2
α−1 ), one can find a real number p > 2

α−1 such that 1
p +

1
q > 1, hence

∞

−∞
g(x)dx Lx

t can be defined as a Young integral. But when q ≥
2

3−α
, the condition 1

p +
1
q > 1

is not satisfied, hence one can no longer use Young integral to define


∞

−∞
g(x)dx Lx

t . Moreover,
Lx

t d Lx
t cannot be defined as a Young integral as pointed out in [12,13]. However, the rough

path integration theory can provide a way to overcome this obstacle. In the rest of the paper,
we deal with the case where 3

2 < α < 2 and 2
3−α

≤ q < 4. For this, one needs to treat
Zx := (Lx

t , g(x)) as a process of variable x in R2. In this case, Zx is of bounded q̂-variation in
x , where q̂ = max{p, q} with p ∈ ( 2

α−1 , 4).
In the following, we will first construct a continuous and bounded path Z(m) from Z on a

certain time interval. The smooth rough path Z(m) is thus built by taking its iterated integrals
with respect to Z(m). The final stage is to show the existence of the geometric rough path
Z = (1, Z1, Z2, Z3) associated with Z ..

In order to show the existence of the geometric rough path Z, we need to prove that the space
of rough path we have defined is complete under the θ -variation distance which was pointed out
in Lemma 3.3.3 in [23]

dθ (X, Y ) = max
1≤i≤[θ ]

di,θ (X i , Y i ) = max
1≤i≤[θ ]

sup
D


l

|X i
xl−1,xl

− Y i
xl−1,xl

|
θ
i

 i
θ

. (3.1)

Therefore, the strategy consists of verifying that the smooth rough path Z(m) is a Cauchy
sequence in the θ -variation metric dθ on C0,θ (∆, T ([θ ])(R2)).

We recall the following lemma from [25].

Lemma 3.1. Let X = {X (t), t ∈ R+} be a real-valued symmetric stable process of index
1 < α ≤ 2 and {Lx

t , (t, x) ∈ R+ × R} be the local time of X. Then, for all x, y ∈ R, and
integers m ≥ 1,

∥Lx
t − L y

t ∥2m ≤ C(α, m)t
α−1
2α |x − y|

α−1
2 , (3.2)

where C(α, m) is constant depending on α and m.

We obtain that for any p > 2
α−1 , the following relation as a special case of Lemma 3.1

E |Lb
t − La

t |
p

≤ c|b − a|
(α−1)p

2 , (3.3)

with a constant c > 0. This means that Lx
t satisfies the Hölder condition with exponent α−1

2 . A
control function w is a non-negative continuous function on the simplex ∆ := {(a, b) : x ′

≤ a <

b ≤ x ′′
} with values in [0, ∞) such that w(a, a) = 0. It is super-additive, namely

w(a, b) + w(b, c) ≤ w(a, c), (3.4)

for any (a, b), (b, c) ∈ ∆. In the case when g(x) is of bounded q-variation, one has a control w
such that

|g(b) − g(a)|q ≤ w(a, b), (3.5)
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for any (a, b) ∈ ∆. It is clear that w1(a, b) := w(a, b)+ (b −a) is also a control of g. For h =
1
q̂

and θ > q̂ , one can verify that

|g(b) − g(a)|θ ≤ w1(a, b)hθ (3.6)

for any (a, b) ∈ ∆ and hθ > 1. Hence, there exists a constant c such that

E |Zb − Za |
θ

≤ cw1(a, b)hθ , ∀(a, b) ∈ ∆. (3.7)

Following the idea in [12], one could define a continuous and bounded variation path Z(m)

on [x ′, x ′′
] for any m ∈ N by

Z(m)x := Zxm
l−1

+
w1(x) − w1(xm

l−1)

w1(xm
l ) − w1(xm

l−1)
∆m

l Z , (3.8)

where xm
l−1 ≤ x < xm

l with l = 1, . . . , 2m , and ∆m
l Z = Zxm

l
− Zxm

l−1
. Take a partition

Dm := {x ′
= xm

0 < xm
1 < · · · < xm

2m = x ′′
} of [x ′, x ′′

] such that

w1(xm
l ) − w1(xm

l−1) =
1

2m w1(x ′, x ′′), (3.9)

where w1(x) := w1(x ′, x). In addition, by the superadditivity of the control function w1, it is
clear that

w1(xm
l−1, xm

l ) ≤ w1(xm
l ) − w1(xm

l−1) =
1

2m w1(x ′, x ′′).

The smooth rough path Z(m) associated with Z(m) is constructed by taking its iterated path
integrals. That is

Z(m)
j
a,b =


a<x1<···<x j <b

d Z(m)x1 ⊗ · · · ⊗ d Z(m)x j (3.10)

for any (a, b) ∈ ∆, where j = 0, 1, 2, 3.
We will need the slightly modified version of Proposition 4.1.1 from [23].

Proposition 3.2. Let Z ∈ C0(∆, T (N )(V )) be a multiplicative functional with a fixed running
time interval, say [0, 1]. Then for any 1 ≤ i ≤ N , θ satisfying θ/ i > 1, and any γ > θ/ i − 1,
there exists a constant Ci (θ, γ ) depending only on θ, γ , and i , such that

sup
D


l

|Z i
xl−1,xl

|
θ/ i

≤ Ci (θ, γ )

∞
n=1

nγ
2n

k=1

i
j=1

|Z j
xn

k−1,x
n
k
|
θ/j , (3.11)

where supD runs over all finite partitions D of [0, 1], and xk
n satisfies Eq. (3.9).

The aim of the remaining part of this section is to prove that {Z(m)}m∈N converges to a geometric
rough path Z in the θ -variation topology.

3.1. First level path

We first consider the convergence of the first level path Z(m)1
a,b.
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Proposition 3.3. Let (Zx ) be a continuous path and hθ ≥ 1, Z(m) be defined as above. Then
for all n ∈ N

m →

2n
k=1

|Z(m)1
xn

k−1,x
n
k
|
θ (3.12)

is increasing. Hence,

sup
m

2n
k=1

|Z(m)1
xn

k−1,x
n
k
|
θ

= lim
m→∞

2n
k=1

|Z(m)1
xn

k−1,x
n
k
|
θ . (3.13)

Proof. By (3.8) and (3.10), we can derive for n ≤ m

Z(m)1
xn

k−1,x
n
k

= ∆n
k Z , k = 1, . . . , 2n .

On the other hand, if n > m, it is possible to find a unique integer 1 ≤ l ≤ 2m satisfying

xm
l−1 ≤ xn

k−1 < xn
k < xm

l . (3.14)

Based on (3.8) and (3.10), one can get

Z(m)xn
j
= Zxm

l−1
+

w1(xn
j ) − w1(xm

l−1)

w1(xm
l ) − w1(xm

l−1)
∆m

l Z , j = k − 1, k. (3.15)

It turns out that

Z(m)1
xn

k−1,x
n
k

= Z(m)xn
k

− Z(m)xn
k−1

= 2m−n∆m
l Z , ∀n > m. (3.16)

For n > m, from the inequality (3.14), we can compute the range for the integer k for a given
integer l. That is 2n−m(l − 1) + 1 ≤ k < 2n−ml. In other words, there are 2n−m points of the
form of {xn

k }2n−m (l−1)+1≤k<2n−m l embedded inside [xm
l−1, xm

l ). Therefore, for n > m,

2n
k=1

|Z(m)1
xn

k−1,x
n
k
|
θ

=


1
2n

θ−1

(2m)θ−1
2m
l=1

|∆m
l Z |

θ . (3.17)

It is interesting to notice that

∆m
l Z = ∆m+1

2l Z + ∆m+1
2l−1 Z ,

which gives

(2m)θ−1
2m
l=1

|∆m
l Z |

θ
= (2m+1)θ−1

2m
l=1


1
2

θ−1

|∆m+1
2l Z + ∆m+1

2l−1 Z |
θ

≤ (2m+1)θ−1
2m
l=1


|∆m+1

2l Z |
θ

+ |∆m+1
2l−1 Z |

θ



= (2m+1)θ−1
2m+1
l=1

|∆m+1
l Z |

θ . (3.18)

This proves the claim. �
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As a consequence of Proposition 3.3, one can show that Z(m)1
x ′,x ′′ on any finite interval have

finite θ -variations uniformly in m using a similar method in the proof of Proposition 4.3.1 in [23].

Proposition 3.4. For a continuous path Zx satisfying (3.7) and hθ > 1. Then Z(m)1
x ′,x ′′ have

finite θ variation uniformly in m.

We present the convergence result of the first level path in the next theorem. Let Z1
a,b =

Zb − Za . By (3.7), one can show that E |Z1
a,b|

θ
≤ cw1(a, b)hθ . In particular, E |Z1

xn
k−1,x

n
k
|
θ

≤

cw1(xn
k−1, xn

k )hθ
≤ c

 1
2n

hθ w1(x ′, x ′′)hθ .

Theorem 3.5. For hθ > 1, if a continuous path Zx satisfying the inequality (3.7), then we have

∞
m=1

sup
D


l

|Z(m)1
xl−1,xl

− Z1
xl−1,xl

|
θ

 1
θ

< ∞ a.s. (3.19)

In particular, Z(m)1
a,b converges to Z1

a,b in the θ -variation distance almost surely for any
(a, b) ∈ ∆.

Proof. For n ≤ m, we have Z(m)1
xn

k−1,x
n
k

= Z1
xn

k−1,x
n
k
, while if n > m then

|Z(m)1
xn

k−1,x
n
k

− Z1
xn

k−1,x
n
k
|
θ

≤ 2θ−1


|Z(m)1
xn

k−1,x
n
k
|
θ

+ |Z1
xn

k−1,x
n
k
|
θ


.

By (3.7) and Proposition 3.2, we have

E
∞

m=1

sup
D


l

|Z(m)1
xl−1,xl

− Z1
xl−1,xl

|
θ

 1
θ

≤ C(θ, γ )

∞
m=1


E

∞
n=m+1

nγ
2n

k=1

|Z(m)1
xn

k−1,x
n
k

− Z1
xn

k−1,x
n
k
|
θ

 1
θ

≤ C
∞

m=1


E

∞
n=m+1

nγ
2n

k=1

|Z(m)1
xn

k−1,x
n
k
|
θ

+ |Z1
xn

k−1,x
n
k
|
θ

 1
θ

≤ C
∞

m=1

 ∞
n=m+1

nγ


1
2n

hθ−1

w1(x ′, x ′′)hθ

 1
θ

≤ C
∞

m=1


1

2m

 hθ−1
2θ

∞
n=m+1

n
γ
θ


1
2n

 hθ−1
2θ

≤ C
∞

m=1


1

2m

 hθ−1
2θ

< ∞, (3.20)

for hθ > 1, where C is a generic constant depending on θ, h, w1(x ′, x ′′) and c in (3.7). This
completes the proof. �
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3.2. Second level path

Next, we consider the convergence of second level path Z2
a,b. From [23], for n ≥ m,

Z(m)N
xn

k−1,x
n
k

=
1
N !

2N (m−n)

∆m

l Z
⊗N (3.21)

for all level paths with N = 1, 2, . . . . For the second level path, we take N = 2. In the case of
n < m,

Z(m)2
xn

k−1,x
n
k

=
1
2
∆n

k Z ⊗ ∆n
k Z

+
1
2

2m−nk
l=2m−n(k−1)+1

l
r=2m−n(k−1)+1


∆m

r Z ⊗ ∆m
l Z − ∆m

l Z ⊗ ∆m
r Z


, (3.22)

therefore,

Z(m + 1)2
xn

k−1,x
n
k

− Z(m)2
xn

k−1,x
n
k

=
1
2

2m−nk
l=2m−n(k−1)+1


∆m+1

2l−1 Z ⊗ ∆m+1
2l Z − ∆m+1

2l Z ⊗ ∆m+1
2l−1 Z


, (3.23)

where k = 1, . . . , 2n .
We first give the result for the second level path Z(m)2

a,b when n ≥ m.

Proposition 3.6. For a continuous path Zx which satisfies (3.7) with hθ > 1, then for n ≥ m

2n
k=1

E

Z(m + 1)2
xn

k−1,x
n
k

− Z(m)2
xn

k−1,x
n
k

 θ
2

≤ C


1

2n+m

 hθ−1
2

, (3.24)

where C is a generic constant that depends on θ, h, w1(x ′, x ′′), and c in (3.7).

Proof. For n ≥ m, it follows from (3.21)

2n
k=1

E

Z(m + 1)2
xn

k−1,x
n
k

− Z(m)2
xn

k−1,x
n
k

 θ
2

=

2m+1
l=1


xm+1

l−1 ≤xn
k−1<xm+1

l

E

1222(m+1−n)

∆m+1

l Z
⊗2

−
1
2

22(m−n)

∆m

l Z
⊗2

 θ
2

=

2m+1
l=1

2n−m−1 E

1222(m+1−n)

∆m+1

l Z
⊗2

−
1
2

22(m−n)

∆m

l Z
⊗2

 θ
2

≤ C


2m

2n

θ 2m+1
l=1

2n−m−1


1
2m

hθ

w1(x ′, x ′′)hθ

≤ C


2m

2n

θ−hθ 1
2n

hθ−1
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≤ C


2m

2n

θ−hθ 1
2n

 hθ−1
2


1
2m

 hθ−1
2

≤ C


1

2m+n

 hθ−1
2

, (3.25)

where C is a generic constant depending on θ, h, w1(x ′, x ′′), and c in (3.7). �

The proof of the above result in the case when n < m is more involved as suggested by
(3.23). In order to establish the convergence of the second level paths, it is crucial to estimate

i E(Lxi+1
t − Lxi

t )(L
x j+1
t − L

x j
t ), and to obtain the correct order in terms of the increments

x j+1−x j as suggested in [12]. This point will be made clear through the proof of the convergence
of the second level path.

First, define

σ 2(h) = E

Lx+h

t − Lx
t

2 (3.26)

and a covariance matrix

ρi, j (D) = E

Lxi

t − Lxi−1
t


L

x j
t − L

x j−1
t


,

where D = {xi }i is a partition of a given interval. By (3.26), using the same elementary algebraic
manipulation, one can deduce that for i < j

ρi, j = −
1
2


σ 2(x j−1 − xi−1) − σ 2(x j−1 − xi )


+

1
2


σ 2(x j − xi−1) − σ 2(x j − xi )


. (3.27)

It was proved in [24] that
i

ρi, j (D)
 ≤

1
2
σ 2(x j − x j−1) (3.28)

for the Gaussian case which is purely based on the concavity and monotonicity of σ 2. As the
function | · |

α−1 for 3
2 < α < 2 is both concave and monotone, therefore, the inequality (3.28) is

also applicable for the local time of stable process. Hence, by (3.3) and (3.28), it follows that
i

ρi, j (D)
 ≤

1
2
σ 2(x j − x j−1) ≤ C1|x j − x j−1|

α−1 (3.29)

where C1 is a constant related to the constant c in (3.3). Now we are in the position to prove the
following proposition

Proposition 3.7. Let 2
3−α

≤ q < 3, 2 ≤ θ < 3. Then for n < m

E
Z(m + 1)2

xn
k−1,x

n
k

− Z(m)2
xn

k−1,x
n
k

 θ
2 ≤ C


1
2n

 θ
4


1
2m

 2h+α−2
4 θ

, (3.30)

where C is a generic constant depends on θ, h, w1(x ′, x ′′), C1 and c in (3.7).
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Proof. First, by (3.23), we have

E
Z(m + 1)2

xn
k−1,x

n
k

− Z(m)2
xn

k−1,x
n
k

2
=

1
4

E

 2m−nk
l=2m−n(k−1)+1


∆m+1

2l−1 Z ⊗ ∆m+1
2l Z − ∆m+1

2l Z ⊗ ∆m+1
2l−1 Z

2

=
1
4

2
i, j=1,i≠ j


E


l


∆m+1

2l−1 Z i∆m+1
2l Z j

− ∆m+1
2l Z i∆m+1

2l−1 Z j 2
+ 2E


r<l


∆m+1

2l−1 Z i∆m+1
2l Z j

− ∆m+1
2l Z i∆m+1

2l−1 Z j 
×

∆m+1

2r−1 Z i∆m+1
2r Z j

− ∆m+1
2r Z i∆m+1

2r−1 Z j 
=

1
4


l

E


∆m+1

2l−1Lx
t ∆

m+1
2l g(x)

2
− 2∆m+1

2l−1Lx
t ∆

m+1
2l g(x)∆m+1

2l Lx
t ∆

m+1
2l−1g(x)

+

∆m+1

2l Lx
t ∆

m+1
2l−1g(x)

2
+

1
4


l

E


∆m+1

2l−1g(x)∆m+1
2l Lx

t

2
− 2∆m+1

2l−1g(x)∆m+1
2l Lx

t ∆
m+1
2l g(x)∆m+1

2l−1Lx
t

+

∆m+1

2l g(x)∆m+1
2l−1Lx

t

2
+

1
2


r<l


E

∆m+1

2l−1Lx
t ∆

m+1
2r−1Lx

t


∆m+1

2l g(x)∆m+1
2r g(x)


+ E


∆m+1

2l Lx
t ∆

m+1
2r Lx

t


∆m+1

2l−1g(x)∆m+1
2r−1g(x)


−

1
2


r<l


E

∆m+1

2l Lx
t ∆

m+1
2r−1Lx

t


∆m+1

2l−1g(x)∆m+1
2r g(x)


+ E


∆m+1

2l−1Lx
t ∆

m+1
2r Lx

t


∆m+1

2l g(x)∆m+1
2r−1g(x)


−

1
2


r<l


∆m+1

2l g(x)∆m+1
2r−1g(x)


E

∆m+1

2l−1Lx
t ∆

m+1
2r Lx

t


+

∆m+1

2l−1g(x)∆m+1
2r g(x)


E

∆m+1

2l Lx
t ∆

m+1
2r−1Lx

t


+

1
2


r<l


∆m+1

2l−1g(x)∆m+1
2r−1g(x)


E

∆m+1

2l Lx
t ∆

m+1
2r Lx

t


+

∆m+1

2l g(x)∆m+1
2r g(x)


E

∆m+1

2l−1Lx
t ∆

m+1
2r−1Lx

t


.

We estimate the following term using (3.29)
r<l

∆m+1
2l g(x)∆m+1

2r g(x)

E

∆m+1

2l−1Lx
t ∆

m+1
2r−1Lx

t


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=

2m−nk
l=2m−n(k−1)+1

∆m+1
2l g(x)

 l−1
r=1

∆m+1
2r g(x)

E∆m+1
2l−1Lx

t ∆
m+1
2r−1Lx

t


≤

2m−nk
l=2m−n(k−1)+1

C


1

2m+1

h

ω1(x ′, x ′′)h

×

l−1
r=1


1

2m+1

h

ω1(x ′, x ′′)h E

|∆m+1

2l−1Lx
t ∆

m+1
2r−1Lx

t |


≤ C


l


1

2m+1

2h 
r

E

|∆m+1

2l−1Lx
t ∆

m+1
2r−1Lx

t |


≤ C


l


1

2m+1

2h

|xm+1
2l−1 − xm+1

2l−2|
α−1

≤ C


2m−n


1

2m+1

2h+α−1

= C


1
2n


1

2m

2h+α−2
. (3.31)

The other terms can be estimated similarly. It then follows from Jensen’s inequality that

E
Z(m + 1)2

xn
k−1,x

n
k

− Z(m)2
xn

k−1,x
n
k

 θ
2 ≤


E
Z(m + 1)2

xn
k−1,x

n
k

− Z(m)2
xn

k−1,x
n
k

2 θ
4

≤ C


1
2n

 θ
4


1
2m

 2h+α−2
4 θ

. � (3.32)

By Propositions 3.6 and 3.7, we showed the convergence of the second level path. The
convergence result is presented in the next theorem. As θ > max{p, q}, where p > 2

α−1 and

q ≥
2

3−α
is the variation of the local time associated with the symmetric stable process and

of the function g respectively, together with the fact that 2
3−α

< 2
α−1 holds as long as α < 2,

therefore, the smallest possible value that α can take must satisfy α > 2
θ

+ 1. As θ can be chosen
very close to 3, hence, the smallest possible value of α that we can take for the second level path
is α > 5

3 . This means for any α ∈ ( 5
3 , 2), there exists a θ ∈ (2, 3) such that α > 2

θ
+ 1.

Theorem 3.8. Let 5
3 < α < 2, 2

3−α
≤ q < 3. Then for a continuous path Zx satisfying (3.7),

there exists a unique Z2 on the simplex △ taking values in R2
⊗ R2 such that

sup
D


l

Z(m)2
xl−1,xl

− Z2
xl−1,xl

 θ
2

 2
θ

→ 0, (3.33)

both almost surely and in L1(Ω , F , P) as m → ∞, for some θ such that 4
2h+α−1 < θ < 3.

Proof. By Proposition 4.1.2 in [23], we have

E sup
D


l

Z(m + 1)2
xl−1,xl

− Z(m)2
xl−1,xl

 θ
2



Q. Wang, H. Zhao / Stochastic Processes and their Applications ( ) – 19

≤ C(θ, γ )E

 ∞
n=1

nγ
2n

k=1

Z(m + 1)1
xn

k−1,x
n
k

− Z(m)1
xn

k−1,x
n
k

θ 1
2

×

 ∞
n=1

nγ
2n

k=1

Z(m + 1)1
xn

k−1,x
n
k

θ +
Z(m)1

xn
k−1,x

n
k

θ 1
2

+ C(θ, γ )E
∞

n=1

nγ
2n

k=1

Z(m + 1)2
xn

k−1,x
n
k

− Z(m)2
xn

k−1,x
n
k

 θ
2

:= A + B. (3.34)

We have proved the convergence of the first level path in Theorem 3.5. The result from
Theorem 3.5 is used to estimate the part A, that is

A ≤ C


E

∞
n=1

nγ
2n

k=1

Z(m + 1)1
xn

k−1,x
n
k

− Z1
xn

k−1,x
n
k

θ +
Z(m)1

xn
k−1,x

n
k

− Z1
xn

k−1,x
n
k

θ 1
2

×


E

∞
n=1

nγ
2n

k=1

Z(m + 1)1
xn

k−1,x
n
k

θ +
Z(m)1

xn
k−1,x

n
k

θ 1
2

≤ C


1

2m

 hθ−1
4
 ∞

n=1

nγ


1
2n

hθ−1 1
2


≤ C


1

2m

 hθ−1
4

. (3.35)

For 5
3 < α < 2 and h > 1

3 , we can choose θ satisfies 4
2h+α−1 < θ < 3. Therefore, 2h+α−2

4 θ

> 1 −
θ
4 . Hence, we can choose an ϵ such that 1 −

θ
4 < ϵ < 2h+α−2

4 θ . Then by Propositions 3.6
and 3.7, it follows that

B ≤ C
∞

n=m
nγ


1

2m+n

 hθ−1
2

+ C
m−1
n=1

nγ


1
2n

 θ
4 −1 1

2m

 2h+α−2
4 θ

≤ C


1

2m

 hθ−1
2

+

m−1
n=1

nγ


1
2n

 θ
4 −1+ϵ 1

2m

 2h+α−2
4 θ−ϵ

≤ C


1

2m

 hθ−1
2

+


1

2m

 2h+α−2
4 θ−ϵ

.

Hence, we proved the convergence of the term B. With the above observation and the fact that
hθ > 1, it is clear that

E sup
D


l

Z(m + 1)2
xl−1,xl

− Z(m)2
xl−1,xl

 θ
2 ≤ C


1

2m

 hθ−1
2

+


1

2m

 2h+α−2
4 θ−ϵ

.

If we sum up for all m as we did in Theorem 3.5, one can show that

Z(m)2


m∈N ∈ (R2)⊗2 is

a Cauchy sequence in θ -variation distance. In other words, it has a limit as m → ∞, denote it by
Z2

∈ (R2)⊗2. By Lemma 3.3.3 in [23], we can conclude that Z2 is also finite under θ -variation
distance. Thus, we have proved the theorem. �



20 Q. Wang, H. Zhao / Stochastic Processes and their Applications ( ) –

As local time Lx
t has a compact support for each ω and t , so the integral of local time in R can

be defined. We take [x ′, x ′′
] which contains the support of Lx

t . By Chen’s identity, one can see
that for any (a, b) ∈ ∆,

Z2
a,b = lim

m(D[a,b])→0

r−1
i=0

(Z2
xi−1,xi

+ Z1
a,xi

⊗ Z1
xi−1,xi

). (3.36)

In particular, similar to the proof in [13], we have

(Z2
a,b)2,1 = lim

m(D[a,b])→0

r−1
i=0

((Z2
xi−1,xi

)2,1 + (Z1
a,xi

⊗ Z1
xi−1,xi

)2,1)

= lim
m(D[a,b])→0

r−1
i=0

(Z2
xi−1,xi

)2,1 + (g(xi ) − g(a))(Lxi
t − Lxi−1

t ). (3.37)

Here (Z2
xi−1,xi

)2,1 denotes the lower-left element of the 2 × 2 matrix Z2
xi−1,xi

. Hence, the
following

lim
m(D[a,b])→0

r−1
i=0

((Z2
xi−1,xi

)2,1 + g(xi )(Lxi
t − Lxi−1

t ))

= lim
m(D[a,b])→0

r−1
i=0

(Z2
xi−1,xi

)2,1 + (g(xi ) − g(a))(Lxi
t − Lxi−1

t )

+ g(a)(Lb
t − La

t ) (3.38)

holds. Therefore, we have the following corollary.

Corollary 3.9. Under the same conditions of the previous theorem, then for (a, b) ∈ ∆, b

a
Lx

t d Lx
t = lim

m(D[a,b])→0

r−1
i=0

((Z2
xi−1,xi

)1,1 + Lxi
t (Lxi

t − Lxi−1
t )). (3.39)

Moreover, if g is a continuous function with bounded q-variation, q ≥
2

3−α
, then we have b

a
g(x)d Lx

t = lim
m(D[a,b])→0

r−1
i=0

((Z2
xi−1,xi

)2,1 + g(xi )(Lxi
t − Lxi−1

t )). (3.40)

3.3. Convergence of rough path integrals for the second level path

In this section, we will prove the convergence of the second level path in the θ -variation
topology.

Proposition 3.10. Let 5
3 < α < 2, 2

3−α
≤ q < 3, one can choose a θ such that 4

2h+α−1 < θ < 3.
Moreover, let Z j (x) := (Lx

t , g j (x)), Z(x) := (Lx
t , g(x)), where g j (·), g(·) are both continuous

and of bounded q-variation. Suppose g j (x) → g(x) as j → ∞ uniformly and the control
function w j (x, y) of g j converges to the control function w(x, y) of g as j → ∞ uniformly.
Then the geometric rough path Z j (·) associated with Z j (·) converges to the geometric rough
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path Z(·) associated with Z(·) a.s. in the θ -variation topology as j → ∞. In particular,
∞

−∞
g j (x)d Lx

t →


∞

−∞
g(x)d Lx

t a.s. as j → ∞.

Proof. For each j , one can obtain the geometric rough path Z j (·) associated with Z j (·), and
also the smooth rough path Z j (m) in the same way as Z(m). Here the Z j is defined as Z j =

(1, Z1
j , Z2

j ). Similarly, we have Z j (m) = (1, Z1
j (m), Z2

j (m)). First, we prove the convergence of

Z1
j → Z1 in the θ -variation topology and in the uniform topology. To see this, we consider for

any finite interval [x ′, x ′′
] in R. As local time Lx

t has a compact support in x a.s., so the following
proof can be extended to R. To prove that Z1

j → Z1 as j → ∞ in the d2,θ topology, note first

d2,θ (Z1
j , Z1) ≤ d2,θ (Z1

j , Z1
j (m)) + d2,θ (Z1

j (m), Z1(m)) + d2,θ (Z1(m), Z1). (3.41)

From (3.20), we know that d2,θ (Z1(m), Z1) → 0 as m → ∞ and d2,θ (Z1
j , Z1

j (m)) → 0 as

m → ∞ uniformly in j . Thus there exists an integer m0 such that d2,θ (Z1(m0), Z1) < ϵ
3 and

d2,θ (Z1
j , Z1

j (m0)) < ϵ
3 . Consider Z1

j (m0) and Z1(m0), which are bounded variation processes

and Z1
j (m0)(x) → Z1(m0)(x) as j → ∞ uniformly in x . Moreover,

E sup
D


l

Z1
j (m0)(xl) − Z1(m0)(xl)


−


Z1

j (m0)(xl−1) − Z1(m0)(xl−1)

2 (3.42)

exists and bounded uniformly in j . Thus, by Fatou’s Lemma, we have

lim sup
j→∞

E sup
D


l

Z1
j (m0)(xl) − Z1(m0)(xl)


−


Z1

j (m0)(xl−1) − Z1(m0)(xl−1)

2

≤ E lim
j→∞

sup
D[a,b]


l

Z1
j (m0)(xl) − Z1(m0)(xl)


−


Z1

j (m0)(xl−1) − Z1(m0)(xl−1)

2

= E sup
D[a,b]


l

lim
j→∞

Z1
j (m0)(xl) − Z1(m0)(xl)


−


Z1

j (m0)(xl−1) − Z1(m0)(xl−1)

2
= 0.

The exchange of lim j→∞ and supD is due to the fact that

lim
j→∞


l

Z1
j (m0)(xl) − Z1(m0)(xl)


−


Z1

j (m0)(xl−1) − Z1(m0)(xl−1)

2 = 0

uniformly with the partition D[a,b]. Thus, we revisit (3.41) and apply m = m0 to conclude there
exists J0 such that when j ≥ J0

d2,θ


Z1

j , Z1


< ϵ.

Thus,

lim sup
j→∞

E sup
D


l

Z1
j (m0)(xl) − Z1(m0)(xl)


−


Z1

j (m0)(xl−1) − Z1(m0)(xl−1)

2
= 0.
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For the convergence of Z2
j → Z2, similarly, we have

d2,θ (Z2
j , Z2) ≤ d2,θ (Z2

j , Z2
j (m)) + d2,θ (Z2

j (m), Z2(m)) + d2,θ (Z2(m), Z2). (3.43)

The convergence of the last term of (3.43) as m → ∞ is clear from Theorem 3.8. From the
proofs of Propositions 3.6, 3.7, and Theorem 3.8, one can show the convergence of the first term
of (3.43) uniformly in j as m → ∞. That is to say, for any given ϵ > 0, one can find a N
such that for m ≥ N , d2,θ (Z2

j , Z2
j (m)) < ϵ

3 for all j , and d2,θ (Z2(m), Z2) < ϵ
3 . In particular,

the above inequality also holds if we replace m by N . For a fixed partition of [x ′, x ′′
] and this

N , one can show by the same method as in the proof of d2,θ (Z1
j (m0), Z1(m0)) as j → ∞ that

d2,θ (Z2
j (N ), Z2(N )) < ϵ

3 by the bounded variation property of the smooth rough path. This

can be seen as Z2
j (N ) and Z2(N ) are just tensor product of bounded variation paths Z j (N ) and

Z(N ). Thus Z2
j (N )(x) also converge to Z2(N )(x) uniformly in x . By using a similar method as

in the proof d2,θ (Z1
j (m), Z1(m)) → 0 as j → ∞, we can prove that d2,θ (Z2

j (N ), Z2(N )) → 0

as j → ∞ so there exists an integer J > 0 such that j ≥ J , d2,θ (Z2
j (N ), Z2(N )) < ϵ

3 . Hence,

for j ≥ J , it follows from (3.43) for m = N that d2,θ (Z2
j , Z2) ≤ ϵ. The first claim is asserted.

By the definition of


∞

−∞
g j (x)d Lx

t , one can conclude the second claim. �

Proposition 3.10 is also true for g being of bounded q-variation ( 2
3−α

≤ q < 3) but not being
continuous. For the discontinuous case, we use the method from [34] by adding a fictitious space
interval during which linear segments remove the discontinuity, also bear in mind that a function
with bounded q-variation has at most countable jumps.

Definition 3.11. Let g(x) is càdlàg in x of finite q-variation and set G(x) := (g(x), L t (x)). Let
δ > 0, for each n ≥ 1, let xn be the point of the nth largest jump of g. Define a map

τδ : [x ′, x ′′
] →


x ′, x ′′

+ δ

∞
n=1

|h(xn)|q


in the following way

τδ(x) = x + δ

∞
n=1

|h(xn)|q1xn≤x (x),

where h(xn) := G(xn) − G(xn−).
The map τδ : [x ′, x ′′

] → [x ′, τδ(x ′′)] extends the space interval into one where we define the
continuous path Gδ(y) from a càdlàg path G by

Gδ(y) =


G(x), if y = τδ(x);
G(xn−) + (y − τδ(xn−))h(xn)δ−1

|h(xn)|−q , if y ∈ [τδ(xn−), τδ(xn)).

Notice that L t,δ(y) := L t,δ(τδ(x)) = Lx
t as Lx

t is continuous. Let g(x) be a càdlàg path with
bounded q-variation ( 2

3−α
≤ q < 3), we define x ′′

x ′

Lx
t dg(x) =

 x ′′

x ′

Lx
t dgc(x) +


r

Lxr
t (h(xr ) − h(xr−)), (3.44)

where the discontinuous g is decomposed into its continuous part gc and its jump part h.
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Theorem 3.12. Let g(x) be a càdlàg path with bounded q-variation ( 2
3−α

≤ q < 3). Then x ′′

x ′

Lx
t dg(x) =

 τδ(x ′′)

x ′

L t,δ(y)dgδ(y). (3.45)

Proof. The right hand side of (3.45) is a rough path as defined in the previous section. As local

time is continuous, hence the integral
 x ′′

x ′ Lx
t dgc(x) is a rough path can be defined as in the

previous section. For the integral associated with the jump part, we need the method pointed out
before the theorem. At each discontinuous point xr , xr

xr −

Lx
t dg(x) = L t (xr )(g(xr ) − g(xr−)) = L t (xr )(h(xr ) − h(xr−)).

By Definition 3.11, we have that

L t (xr )(g(xr ) − g(xr−)) = L t,δ(τδ(xr−))(gδ(τδ(xr )) − gδ(τδ(xr−))).

Hence, it follows that
r

L t (xr )(g(xr ) − g(xr−)) =


r

L t,δ(τδ(xr−))(gδ(τδ(xr )) − gδ(τδ(xr−))). (3.46)

From Corollary 3.9, we know that the right hand side of (3.46) alone is not well defined, but
together with


r ((Z)2

1,2) it is well defined. In this case, we need to check that
r

((Zδ)
2
τδ(xr −),τδ(xr )

)1,2 = 0

in order to have (3.46) to be well defined. From Corollary 3.9 and the continuity of local time,
we obtain that

r
((Zδ)

2
τδ(xr −),τδ(xr )

)1,2 =


r

 τδ(xr )

τδ(xr −)

(L t,δ(y) − L t,δ(τδ(xr−)))dgδ(y) = 0,

where Zδ(y) := (L t,δ(y), gδ(y)). Therefore, we have
r

 xr

xr −

Lx
t dh(x) =


r

 τδ(xr )

τδ(xr −)

Lδ
t (y)dgδ(y) =


r

 τδ(xr )

τδ(xr −)

Lδ
t (y)dhδ(y).

As the continuous part gc is the same as gδ on the space interval where g is continuous
and gc does not contribute on the interval where the function jump. Similarly, where g is
jump discontinuous, we denote as h, does not contribute on the interval where the function is
continuous, hence x ′′

x ′

Lx
t dg(x) =

 x ′′

x ′

Lx
t dgc(x) +

 x ′′

x ′

Lx
t dh(x)

=

 τδ(x ′′)

x ′

L t,δ(y)dgc
δ (y) +

 τδ(x ′′)

x ′

L t,δ(y)dhδ(y)

=

 τδ(x ′′)

x ′

L t,δ(y)dgδ(y).

This completes the proof. �
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The convergence for discontinuous functions can be proved by applying the method in the
above theorem and Proposition 3.10 to (h − g)(x). Note the function hδ is piecewise linear for
fixed δ > 0. It is certainly of bounded q-variation with a control function wδ . If hδ j is a sequence
of bounded q-variation functions with control function wδ j such that hδ j → hδ and wδ j → wδ

as j → ∞ uniformly. Then, we have τδ(x ′′)

x ′

L t,δ(y)dhδ j (y) →

 τδ(x ′′)

x ′

L t,δ(y)dhδ(y)

as j → ∞. Hence, we have the following proposition.

Proposition 3.13. Let α ∈ ( 5
3 , 2), 2

3−α
≤ q < 3, θ be chosen such that 4

2h+α−1 < θ < 3.
Consider h, the jump part of the function g and assume there is a sequence of continuous
functions h j → h as j → ∞. Let h jδ and hδ be defined in the same way as Gδ(y). Let hδ j
be a sequence of continuous function satisfying hδ j → hδ as j → ∞ together with their control
functions and

∞

−∞

Lδ
t (y)dh jδ(y) =


∞

−∞

Lδ
t (y)dhδ j (y). (3.47)

Then as j → ∞
∞

−∞

Lx
t dh j (x) →


∞

−∞

Lx
t dh(x).

Proof. By Theorem 3.12, integration by parts formula and assumption (3.47), one can see that
∞

−∞

h j (x)d Lx
t =


∞

−∞

h jδ(y)d Lδ
t (y)

= −


∞

−∞

Lδ
t (y)dh jδ(y)

= −


∞

−∞

Lδ
t (y)dhδ j (y).

By the assumption that hδ j → hδ as j → ∞ together with their control functions, then by
Proposition 3.10 we have


∞

−∞
Lδ

t (y)dhδ j (y) →


∞

−∞
Lδ

t (y)dhδ(y). By using Theorem 3.12, we
have that


∞

−∞
Lδ

t (y)dhδ(y) =


∞

−∞
Lx

t dh(x). Hence, the result of the proposition follows. �

Corollary 3.14. Let α ∈ ( 5
3 , 2), 2

3−α
≤ q < 3, θ be chosen such that 4

2h+α−1 < θ < 3.
Moreover, let Z j (x) := (Lx

t , g j (x)), Z(x) := (Lx
t , g(x)), where g j (.), g(.) are both of bounded

q-variation, and g j is continuous and g is càdlàg with decomposition g = gc + h, where gc
is the continuous part of g and h is the jump part of g. Suppose g j = gcj + h j with control
function wcj and whj such that gcj → gc and wcj → wc uniformly, h j satisfying conditions
in Proposition 3.13. Then we have

∞

−∞

g j (x)d Lx
t →


∞

−∞

g(x)d Lx
t a.s. as j → ∞.

Proof. The corollary follows from Theorem 3.12 and Proposition 3.13. �
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3.4. Third level rough path

The θ -variation formula for third level path in [23] is given as

sup
D

Z(m + 1)3
xl−1,xl

− Z(m)3
xl−1,xl

 θ
3

≤ C2

∞
n=1

nγ
2n

k=1

Z(m + 1)3
xn

k−1,x
n
k

− Z(m)3
xn

k−1,x
n
k

 θ
3

+ C3

 ∞
n=1

nγ
2n

k=1

Z(m + 1)1
xn

k−1,x
n
k

− Z(m)1
xn

k−1,x
n
k

θ 1
3

×

 ∞
n=1

nγ
2n

k=1

Z(m + 1)2
xn

k−1,x
n
k

 θ
2 +

Z(m)2
xn

k−1,x
n
k

 θ
2

 2
3

+ C4

 ∞
n=1

nγ
2n

k=1

Z(m + 1)2
xn

k−1,x
n
k

− Z(m)2
xn

k−1,x
n
k

 θ
2

 2
3

×

 ∞
n=1

nγ
2n

k=1

Z(m + 1)1
xn

k−1,x
n
k

θ +
Z(m)1

xn
k−1,x

n
k

θ 1
3

+ C5

 ∞
n=1

nγ
2n

k=1

Z(m + 1)1
xn

k−1,x
n
k

− Z(m)1
xn

k−1,x
n
k

θ 1
3

×

 ∞
n=1

nγ
2n

k=1

Z(m + 1)1
xn

k−1,x
n
k

θ +
Z(m)1

xn
k−1,x

n
k

θ 2
3

, (3.48)

where {xn
k } satisfies (3.9).

We have obtained estimations for the first and second level paths. As there is a connection
between the sample path of local time of symmetric stable processes and its associated Gaussian
processes by Dynkin isomorphism theorem (cf. [24]), therefore, we present some relevant results
for the Gaussian processes first. The importance of the following result regarding Gaussian
random variables will be made clear throughout the estimation of the θ -variation on the third
level path.

Again, we have

|g(b) − g(a)|2 ≤ w1(a, b)2h (3.49)

for any (a, b) ∈ ∆ and hθ > 1.
We consider the cross product term on the increments of the g with parameter h. By a purely

algebraic procedure as in (3.27), for b > a, ϱ > 0, we have
g(b) − g(a)


g(b + ϱ) − g(a + ϱ)


≤

1
2


w1(b + ϱ, a)2h

− w1(b + ϱ, b)2h

+ w1(a + ϱ, b)2h
− w1(a + ϱ, a)2h


. (3.50)

All the estimations of the variance or covariance of the local time one encounter later in this
paper are similar to one of the following formats. For n > m, the proof on the convergence of the
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third level path is a straightforward exercise as pointed out in the proof of the Proposition 4.5.1
in [23]. For m ≥ n, k = 1, 2, . . . , 2n, 2m−n(k − 1) + 1 ≤ r < l ≤ 2m−nk, the estimations of the
variance of local time on different intervals are given by

E

L

xm+1
2l−2

t − L
xn

k−1
t

2
≤ c

 1
2n

α−1
(3.51)

and

E

L

xm+1
2l−1

t − L
xm+1

2l−2
t

2
≤ c

2l − 1

2m+1 −
2l − 2

2m+1

α−1
≤ c

 1
2m

α−1
(3.52)

where c is a generic constant. The covariance of the local time on non-overlapping intervals
[xn

k−1, xm+1
2l−2], [xm+1

2l−2, xm+1
2l−1] satisfies

E

L

xm+1
2l−2

t − L
xn

k−1
t


L

xm+1
2l−1

t − L
xm+1

2l−2
t


=

1
2


−σ 2(xm+1

2l−2 − xn
k−1) + σ 2(xm+1

2l−1 − xn
k−1)

− σ 2(xm+1
2l−1 − xm+1

2l−2)


≤ 0. (3.53)

Here we have used (3.27), the concavity of σ 2 and the following two observations for a non-
negative concave function f :

f (t x) ≥ t f (x) for t ∈ [0, 1],

f (a) + f (b) ≥ f (a + b).

On the other hand, by the increasing property of σ 2 and the first part of (3.53)

E

L

xm+1
2l−2

t − L
xn

k−1
t


L

xm+1
2l−1

t − L
xm+1

2l−2
t


≥ −

1
2
σ 2(xm+1

2l−1 − xm+1
2l−2) ≥ −c

 1

2m+1

α−1
, (3.54)

where c is a generic constant. The covariance of local time on two overlapping intervals
[xn

k−1, xm+1
2r−2], [xn

k−1, xm+1
2l−2] is given by (without loss of generality, assuming l > r )

E(L
xm+1

2l−2
t − L

xn
k−1

t )(L
xm+1

2r−2
t − L

xn
k−1

t )

= E(L
xm+1

2l−2
t − L

xm+1
2r−2

t )(L
xm+1

2r−2
t − L

xn
k−1

t ) + E(L
xm+1

2r−2
t − L

xn
k−1

t )(L
xm+1

2r−2
t − L

xn
k−1

t )

=
1
2


−σ 2(xm+1

2r−2 − xn
k−1) + σ 2(xm+1

2l−2 − xn
k−1) − σ 2(xm+1

2l−2 − xm+1
2r−2)


+ σ 2(xm+1

2r−2 − xn
k−1)

=
1
2


σ 2(xm+1

2l−2 − xn
k−1) − σ 2(xm+1

2l−2 − xm+1
2r−2) + σ 2(xm+1

2r−2 − xn
k−1)


. (3.55)

One can conclude the above is non-negative based on the non-negativity and monotonically
increasing property of σ 2. Moreover, it is bounded from above as

E(L
xm+1

2l−2
t − L

xn
k−1

t )(L
xm+1

2r−2
t − L

xn
k−1

t ) ≤ σ 2(xm+1
2r−2 − xn

k−1) ≤ c
 1

2n

α−1
. (3.56)
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Similarly, one can estimate the following term

E(L
xm+1

2l−2
t − L

xn
k−1

t )(L
xm+1

2r−1
t − L

xm+1
2r−2

t )

= E(L
xm+1

2l−2
t − L

xm+1
2r−1

t )(L
xm+1

2r−1
t − L

xm+1
2r−2

t ) + E(L
xm+1

2r−1
t − L

xm+1
2r−2

t )2

+ E(L
xm+1

2r−2
t − L

xn
k−1

t )(L
xm+1

2r−1
t − L

xm+1
2r−2

t )

=
1
2


−σ 2(xm+1

2r−1 − xm+1
2r−2) + σ 2(xm+1

2l−2 − xm+1
2r−2) − σ 2(xm+1

2l−2 − xm+1
2r−1)

+ 2σ 2(xm+1
2r−1 − xm+1

2r−2) − σ 2(xm+1
2r−2 − xn

k−1) + σ 2(xm+1
2r−1 − xn

k−1)

− σ 2(xm+1
2r−1 − xm+1

2r−2)


=
1
2


σ 2(xm+1

2l−2 − xm+1
2r−2) − σ 2(xm+1

2l−2 − xm+1
2r−1)

− σ 2(xm+1
2r−2 − xn

k−1) + σ 2(xm+1
2r−1 − xn

k−1)

. (3.57)

The above quantity is nonnegative by monotonically increasing property of σ 2. Moreover, it
can be shown that it is bounded from above

E(L
xm+1

2l−2
t − L

xn
k−1

t )(L
xm+1

2r−1
t − L

xm+1
2r−2

t )

=
1
2


σ 2(xm+1

2l−2 − xm+1
2r−2) − σ 2(xm+1

2l−2 − xm+1
2r−1) − σ 2(xm+1

2r−2 − xn
k−1)

+ σ 2(xm+1
2r−1 − xn

k−1)


≤ σ 2(xm+1
2r−1 − xm+1

2r−2)

≤ c
 1

2m

α−1
, (3.58)

where c is a generic constant.
For the case when n > m, we refer to (3.21). Similar to Proposition 3.6, we can prove the

following proposition.

Proposition 3.15. For a continuous path Zx which satisfies (3.7) with hθ > 1, then for n > m

2n
k=1

E

Z(m + 1)3
xn

k−1,x
n
k

− Z(m)3
xn

k−1,x
n
k

 θ
3

≤ C


1

2n+m

 hθ−1
2

, (3.59)

where C is a generic constant depends on θ, h, w1(x ′, x ′′) and c in (3.7).

Proof. If n > m, by (3.21), we show that

2n
k=1

E

Z(m + 1)3
xn

k−1,x
n
k

− Z(m)3
xn

k−1,x
n
k

 θ
3

=

2m+1
l=1


xm+1

l−1 ≤xn
k−1<xm+1

l

E

 1
3!

23(m+1−n)

∆m+1

l Z
⊗3

−
1
3!

23(m−n)

∆m

l Z
⊗3

 θ
3
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=

2m+1
l=1

2n−m−1 E

 1
3!

23(m+1−n)

∆m+1

l Z
⊗3

−
1
3!

23(m−n)

∆m

l Z
⊗3

 θ
3

≤ C


2m

2n

θ 2m+1
l=1

2n−m−1


1
2m

hθ

w1(x ′, x ′′)hθ

≤ C


2m

2n

θ−hθ 1
2n

hθ−1

≤ C


2m

2n

θ−hθ 1
2n

 hθ−1
2


1
2m

 hθ−1
2

≤ C


1

2m+n

 hθ−1
2

, (3.60)

where C is a generic constant depends on θ, h, w1(x ′, x ′′) and c in (3.7). �

However, to estimate the left-hand side of (3.59) is more complicated when m ≥ n. Recall the
following formula in [23]

Z(m + 1)3
xn

k−1,x
n
k

− Z(m)3
xn

k−1,x
n
k

=
1
2


l


Zxm+1

2l−2
− Zxn

k−1


⊗

∆m+1

2l−1 Z ⊗ ∆m+1
2l Z − ∆m+1

2l Z ⊗ ∆m+1
2l−1 Z


+

1
2


l


∆m+1

2l−1 Z ⊗ ∆m+1
2l Z − ∆m+1

2l Z ⊗ ∆m+1
2l−1 Z


⊗

Zxn

k
− Zxm+1

2l+2


+

1
3


l

∆m+1
2l−1 Z


∆m+1

2l Z ⊗ ∆m+1
2l Z + ∆m+1

2l−1 Z ⊗ ∆m+1
2l Z


−

1
6


l

∆m+1
2l Z


∆m+1

2l Z ⊗ ∆m+1
2l−1 Z + ∆m+1

2l−1 Z ⊗ ∆m+1
2l Z


−

1
6


l


∆m+1

2l Z ⊗ ∆m+1
2l−1 Z + ∆m+1

2l−1 Z ⊗ ∆m+1
2l Z


⊗ ∆m+1

2l−1 Z

:= A1 + A2 + A3 + A4 + A5, (3.61)

where the sum runs over 2m−n(k − 1) + 1 ≤ l < 2m−nk. As suggested by Jensen’s inequality,
we have

E
Z(m + 1)3

xn
k−1,x

n
k

− Z(m)3
xn

k−1,x
n
k

 θ
3 ≤


E
Z(m + 1)3

xn
k−1,x

n
k

− Z(m)3
xn

k−1,x
n
k

2 θ
6

. (3.62)

In order to estimate (3.62), we first use (3.61) to estimate

E
Z(m + 1)3

xn
k−1,x

n
k

− Z(m)3
xn

k−1,x
n
k

2.
We will only estimate the term A1 and A3, as other terms can be estimated similarly. For m ≥ n,
we first estimate the term A2

1. Define ϕl = Zxm+1
2l−2

− Zxn
k−1

and ϕi
l = Z i

xm+1
2l−2

− Z i
xn

k−1
, then
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A2
1 =


l


Zxm+1

2l−2
− Zxn

k−1


⊗

∆m+1

2l−1 Z ⊗ ∆m+1
2l Z − ∆m+1

2l Z ⊗ ∆m+1
2l−1 Z

2
=

2
i, j,u=1,i≠ j,u


l

ϕu
l


∆m+1

2l−1 Z i∆m+1
2l Z j

− ∆m+1
2l Z i∆m+1

2l−1 Z j 2

=


i≠ j,u


l

(ϕu
l )2∆m+1

2l−1 Z i∆m+1
2l Z j

− ∆m+1
2l Z i∆m+1

2l−1 Z j 2
+ 2


i≠ j,u


r<l


ϕu

l ϕu
r ∆m+1

2l−1 Z i∆m+1
2r−1 Z i∆m+1

2r Z j∆m+1
2l Z j

− ϕu
l ϕu

r ∆m+1
2l Z i∆m+1

2r−1 Z i∆m+1
2r Z j∆m+1

2l−1 Z j

− ϕu
l ϕu

r ∆m+1
2l−1 Z i∆m+1

2r Z i∆m+1
2r−1 Z j∆m+1

2l Z j

+ ϕu
l ϕu

r ∆m+1
2r Z i∆m+1

2l Z i∆m+1
2l−1 Z j∆m+1

2r−1 Z j


:= J1 + 2(J2 − J3 − J4 + J5). (3.63)

Z i denotes the i th element of Zx := (Lx
t , g(x)) where i = 1, 2. When i = j , the above equation

vanishes. When i ≠ j, l ≠ r , we first consider the case when u = i

J1 =


l

(ϕ1
l )2∆m+1

2l−1 Z1∆m+1
2l Z2

− ∆m+1
2l Z1∆m+1

2l−1 Z22
+


l

(ϕ2
l )2∆m+1

2l−1 Z2∆m+1
2l Z1

− ∆m+1
2l Z2∆m+1

2l−1 Z12
=


l


L

xm+1
2l−2

t − L
xn

k−1
t

2Lxm+1
2l−1

t − L
xm+1

2l−2
t


g(xm+1

2l ) − g(xm+1
2l−1)


−

L

xm+1
2l

t − L
xm+1

2l−1
t


g(xm+1

2l−1) − g(xm+1
2l−2)

2

+


l


g(xm+1

2l−2) − g(xn
k−1)

2g(xm+1
2l−1) − g(xm+1

2l−2)


L
xm+1

2l
t − L

xm+1
2l−1

t


−

g(xm+1

2l ) − g(xm+1
2l−1)


L

xm+1
2l−1

t − L
xm+1

2l−2
t

2

:= I1 + I2. (3.64)

First, we estimate E I1. The estimation of E I2 can be done similarly. Set H1 = L
xm+1

2l−2
t − L

xn
k−1

t ,

H2 = L
xm+1

2l−1
t − L

xm+1
2l−2

t and H3 = L
xm+1

2l
t − L

xm+1
2l−1

t , then

I1 =


l


H1

2 H2
2g(xm+1

2l ) − g(xm+1
2l−1)

2
+ H1

2 H3
2g(xm+1

2l−1) − g(xm+1
2l−2)

2
− 2H1

2 H2 H3

g(xm+1

2l ) − g(xm+1
2l−1)


g(xm+1

2l−1) − g(xm+1
2l−2)


. (3.65)
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We estimate each term in I1 in the following. The bound of the first term in I1 is given by

E


l

H1
2 H2

2g(xm+1
2l ) − g(xm+1

2l−1)
2

≤ c2m−n
 1

2n

α−1 1

2m+1

α−1 1
2m

2h

≤ c
 1

2n

α 1
2m

2h+α−2
, (3.66)

where c is a generic constant. The bound of the second term in I1 is similar to the first term with
l

E H1
2 H3

2g(xm+1
2l−1) − g(xm+1

2l−2)
2

≤ c
 1

2n

α 1
2m

2h+α−2
. (3.67)

The bound of the third term in I1 is given by
l

E H1
2 H2 H3


g(xm+1

2l ) − g(xm+1
2l−1)


g(xm+1

2l−1) − g(xm+1
2l−2)


≤ c

 1
2m

2h
2m−n

 1
2n

α−1 1
2m

α−1

≤ c


1
2n

α 1
2m

2h+α−2
. (3.68)

Hence, we have

E I1 ≤ c
 1

2n

α 1
2m

2h+α−2
. (3.69)

Now, we compute the estimation for E I2 term, that is

E


l


g(xm+1

2l−2) − g(xn
k−1)

2g(xm+1
2l−1) − g(xm+1

2l−2)


L
xm+1

2l
t − L

xm+1
2l−1

t


−

g(xm+1

2l ) − g(xm+1
2l−1)


L

xm+1
2l−1

t − L
xm+1

2l−2
t

2
≤ c 2m−n

 1

2m+1

2h+α−1


1
2n

2h

≤ c


1
2n

1+2h  1
2m

2h+α−2
. (3.70)

As J2, J3, J4, and J5 have similar structure, we only need to estimate one of them. The estimation
of J2

J2 =


r<l

(L
xm+1

2l−2
t − L

xn
k−1

t )(L
xm+1

2r−2
t − L

xn
k−1

t )(L
xm+1

2l−1
t − L

xm+1
2l−2

t )(L
xm+1

2r−1
t − L

xm+1
2r−2

t )

×

g(xm+1

2r ) − g(xm+1
2r−1)


g(xm+1

2l ) − g(xm+1
2l−1)


+


r<l


g(xm+1

2l−2) − g(xn
k−1)


g(xm+1

2r−2) − g(xn
k−1)


g(xm+1

2l−1) − g(xm+1
2l−2)


×

g(xm+1

2r−1) − g(xm+1
2r−2)


L

xm+1
2r

t − L
xm+1

2r−1
t


L

xm+1
2l

t − L
xm+1

2l−1
t


.
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We estimate the first term in J2 first. By (3.50), we have
g(xm+1

2r ) − g(xm+1
2r−1)


g(xm+1

2l ) − g(xm+1
2l−1)


≤

ϱ2h

2

1 +
1

l − r

2h

+

1 −
1

l − r

2h

− 2


, (3.71)

which does not vanish if h ≠
1
2 , l ≠ r and ϱ =

l−r
2m > 0. Using Taylor expansion at 1

l−r = 0,
one can show that there is a constant Ch depending on h such that

1 +
1

l − r

2h

+

1 −
1

l − r

2h

− 2

 ≤ Ch


1

l − r

2

. (3.72)

Therefore, we have


g(xm+1

2r ) − g(xm+1
2r−1)


g(xm+1

2l ) − g(xm+1
2l−1)


≤ c


1

2m

2h 1
l − r

2−2h

. (3.73)

Hence, it follows that
r<l

E


(L

xm+1
2l−2

t − L
xn

k−1
t )(L

xm+1
2r−2

t − L
xn

k−1
t )(L

xm+1
2l−1

t − L
xm+1

2l−2
t )(L

xm+1
2r−1

t − L
xm+1

2r−2
t )

×

g(xm+1

2r ) − g(xm+1
2r−1)


g(xm+1

2l ) − g(xm+1
2l−1)


≤


r<l

c


1

2m

2h 1
l − r

2−2h
E(L

xm+1
2l−2

t − L
xn

k−1
t )4 1

4

E(L

xm+1
2r−2

t − L
xn

k−1
t )4 1

4

×

E(L

xm+1
2l−1

t − L
xm+1

2l−2
t )4 1

4

E(L

xm+1
2r−1

t − L
xm+1

2r−2
t )4 1

4

≤


r<l

c


1

2m

2h 1
l − r

2−2h

t
2(α−1)

α

 1
2n

α−1 1
2m

α−1

≤ ct
2(α−1)

α

 1
2n

α 1
2m

2h+α−2
, (3.74)

where one summation is consumed by


1
l−r

2−2h

and the second inequality is due to

Lemma 3.1.
The estimation for the second term in J2 is given by

E


r<l


g(xm+1

2l−2) − g(xn
k−1)


g(xm+1

2r−2) − g(xn
k−1)


g(xm+1

2l−1) − g(xm+1
2l−2)


×

g(xm+1

2r−1) − g(xm+1
2r−2)


L

xm+1
2r

t − L
xm+1

2r−1
t


L

xm+1
2l

t − L
xm+1

2l−1
t


≤ c 2m−n


1

2m

2h  1
2n

2h  1
2m

α−1

≤ c


1
2n

1+2h  1
2m

2h+α−2

. (3.75)
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Therefore, the bound for the term E A2
1 is

E A2
1 ≤ c


t

2(α−1)
α

 1
2n

α 1
2m

2h+α−2
+


1
2n

1+2h  1
2m

2h+α−2


. (3.76)

Next we estimate the term A3 in (3.61), that is

E


l

∆m+1
2l−1 Z ⊗ ∆m+1

2l Z ⊗ ∆m+1
2l Z

2
= E


i, j,u


l


∆m+1

2l−1 Z i 2∆m+1
2l Z j 2∆m+1

2l Zu2
+


i, j,u


r<l

E


∆m+1

2r−1 Z i∆m+1
2l−1 Z i ∆m+1

2r Z j∆m+1
2l Z j ∆m+1

2r Zu∆m+1
2l Zu

+


i


r<l

E

∆m+1

2r−1 Z i∆m+1
2l−1 Z i ∆m+1

2l Z i 2∆m+1
2r Z i 2

=


l

E

L

xm+1
2l−1

t − L
xm+1

2l−2
t

2Lxm+1
2l

t − L
xm+1

2l−1
t

2g(xm+1
2l ) − g(xm+1

2l−1)
2

+


l

E

g(xm+1

2l−1) − g(xm+1
2l−2)

2g(xm+1
2l ) − g(xm+1

2l−1)
2Lxm+1

2l
t − L

xm+1
2l−1

t
2

+


r<l

E

L

xm+1
2r−1

t − L
xm+1

2r−2
t


L

xm+1
2l−1

t − L
xm+1

2l−2
t


L

xm+1
2r

t − L
xm+1

2r−1
t


×

L

xm+1
2l

t − L
xm+1

2l−1
t


g(xm+1

2r ) − g(xm+1
2r−1)


g(xm+1

2l ) − g(xm+1
2l−1)


+


r<l

E

g(xm+1

2r−1) − g(xm+1
2r−2)


g(xm+1

2l−1) − g(xm+1
2l−2)


g(xm+1

2r ) − g(xm+1
2r−1)


×

g(xm+1

2l ) − g(xm+1
2l−1)


L

xm+1
2r

t − L
xm+1

2r−1
t


L

xm+1
2l

t − L
xm+1

2l−1
t


+


r<l

E

L

xm+1
2r−1

t − L
xm+1

2r−2
t


L

xm+1
2l−1

t − L
xm+1

2l−2
t


L

xm+1
2l

t − L
xm+1

2l−1
t

2Lxm+1
2r

t − L
xm+1

2r−1
t

2
+


r<l

E

g(xm+1

2r−1) − g(xm+1
2r−2)


g(xm+1

2l−1) − g(xm+1
2l−2)


g(xm+1

2l )

− g(xm+1
2l−1)

2g(xm+1
2r ) − g(xm+1

2r−1)
2

≤


l

ELxm+1
2l−1

t − L
xm+1

2l−2
t

2Lxm+1
2l

t − L
xm+1

2l−1
t

2g(xm+1
2l ) − g(xm+1

2l−1)
2

+


l

Eg(xm+1
2l−1) − g(xm+1

2l−2)
2g(xm+1

2l ) − g(xm+1
2l−1)

2Lxm+1
2l

t − L
xm+1

2l−1
t

2
+


r<l

ELxm+1
2r−1

t − L
xm+1

2r−2
t


L

xm+1
2l−1

t − L
xm+1

2l−2
t


L

xm+1
2r

t − L
xm+1

2r−1
t


×

L

xm+1
2l

t − L
xm+1

2l−1
t


g(xm+1

2r ) − g(xm+1
2r−1)


g(xm+1

2l ) − g(xm+1
2l−1)


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+


r<l

Eg(xm+1
2r−1) − g(xm+1

2r−2)


g(xm+1
2l−1) − g(xm+1

2l−2)


g(xm+1
2r ) − g(xm+1

2r−1)


×

g(xm+1

2l ) − g(xm+1
2l−1)


L

xm+1
2r

t − L
xm+1

2r−1
t


L

xm+1
2l

t − L
xm+1

2l−1
t


+


r<l

ELxm+1
2r−1

t − L
xm+1

2r−2
t


L

xm+1
2l−1

t − L
xm+1

2l−2
t


L

xm+1
2l

t − L
xm+1

2l−1
t

2Lxm+1
2r

t − L
xm+1

2r−1
t

2
+


r<l

Eg(xm+1
2r−1) − g(xm+1

2r−2)


g(xm+1
2l−1) − g(xm+1

2l−2)


g(xm+1
2l ) − g(xm+1

2l−1)
2

×

g(xm+1

2r ) − g(xm+1
2r−1)

2. (3.77)

Using Lemma 3.1 and Cauchy Schwarz inequality, we obtain the bound for the first term
l

ELxm+1
2l−1

t − L
xm+1

2l−2
t

2Lxm+1
2l

t − L
xm+1

2l−1
t

2g(xm+1
2l ) − g(xm+1

2l−1)
2

≤ ct
2(α−1)

α
1
2n

 1
2m

2h+2α−3
. (3.78)

The bound of the second term is
l

Eg(xm+1
2l−1) − g(xm+1

2l−2)
2g(xm+1

2l ) − g(xm+1
2l−1)

2Lxm+1
2l

t − L
xm+1

2l−1
t

2
≤ c

1
2n

 1
2m

4h+α−2
. (3.79)

Similar to (3.74), the bound of the third term is
r<l

ELxm+1
2r−1

t − L
xm+1

2r−2
t


L

xm+1
2l−1

t − L
xm+1

2l−2
t


L

xm+1
2r

t − L
xm+1

2r−1
t


×

L

xm+1
2l

t − L
xm+1

2l−1
t


g(xm+1

2r ) − g(xm+1
2r−1)


g(xm+1

2l ) − g(xm+1
2l−1)


≤ ct

2(α−1)
α

1
2n

 1
2m

2h+2α−3
. (3.80)

The bound of the fourth term is
r<l

Eg(xm+1
2r−1) − g(xm+1

2r−2)


g(xm+1
2l−1) − g(xm+1

2l−2)


g(xm+1
2r ) − g(xm+1

2r−1)


×

g(xm+1

2l ) − g(xm+1
2l−1)


L

xm+1
2r

t − L
xm+1

2r−1
t


L

xm+1
2l

t − L
xm+1

2l−1
t


≤ c

1
2n


1

2m

4h+α−2

. (3.81)

The estimation of the fifth term
r<l

ELxm+1
2r

t − L
xm+1

2r−1
t

2Lxm+1
2l

t − L
xm+1

2l−1
t

2Lxm+1
2l−1

t − L
xm+1

2l−2
t


L

xm+1
2r−1

t − L
xm+1

2r−2
t

 (3.82)
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is more involved. We use the following equation from [25] in the estimation of the fifth term

E
 n

i=1

L yi
t


=


π

E

 
· · ·


0≤t1≤t2<···≤tn≤t

n
i=1

d L
yπi
ti


(3.83)

where the sum in (3.83) runs over all permutation π of {1, 2, . . . , n}.
In the following, we estimate

E

L

xm+1
2r

t − L
xm+1

2r−1
t

2Lxm+1
2l

t − L
xm+1

2l−1
t

2Lxm+1
2l−1

t − L
xm+1

2l−2
t


L

xm+1
2r−1

t − L
xm+1

2r−2
t


. (3.84)

However, it suffices to only estimate a particular term in the summation π , it means we impose
certain restriction on πi and only estimate terms associated with that πi . Before we estimate this
fifth term, we recall Lemma 2.4.6 from [25]

Lemma 3.16. For any positive measurable function f (t) and any T ∈ [0, ∞) and z ∈ R we
have  T

0
f (t)d L z

t =


∞

0
f (τz(s))1τz(s)<T ds,

where {τ(s), s ∈ R+} is a positive increasing stochastic process with stationary and independent
increments.

If Ht is a positive continuous Ft measurable function, F a positive F measurable function,
and T a stopping time (possibly T ≡ ∞), then

E x
 T

0
Ht F ◦ θt d L z

t


= E z(F)E x

 T

0
Ht d L z

t


, (3.85)

where θt is a shift operator with θt ◦ θs = θt+s .

Illustration In order to show how Lemma 3.16 can be applied in what follows, we use the lemma
to prove

E

 t

0

 t

t1
(d Lx1

t2 − d Lx2
t2 )(d Lx3

t1 − d Lx4
t1 )


= E

 t

0


E x3

 t

0
d Lx1

t2 − d Lx2
t2


d Lx3

t1 − E x4

 t

0
d Lx1

t2 − d Lx2
t2


d Lx4

t1


. (3.86)

Proof. First, we rewrite l.h.s. of (3.86) as following t

0

 t

t1
(d Lx1

t2 − d Lx2
t2 )(d Lx3

t1 − d Lx4
t1 )

=

 t

0

 t

t1
d Lx1

t2 .d Lx3
t1 −

 t

0

 t

t1
d Lx1

t2 .d Lx4
t1

−

 t

0

 t

t1
d Lx2

t2 .d Lx3
t1 +

 t

0

 t

t1
d Lx2

t2 .d Lx4
t1 . (3.87)
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We define, for example,
 t

t1
d Lx1

t2 := F(0, t) ◦ θt1 with F(0, t) :=
 t

0 d Lx1
t2 . We apply

Lemma 3.16 to the first term in (3.87) with Ht ≡ 1, then we have

E

 t

0

 t

t1
d Lx1

t2


.d Lx3

t1


= E x3

 t

0
d Lx1

t2


E

 t

0
d Lx3

t1


= E


Lx3

t


.E x3

 t

0
d Lx1

t2


, (3.88)

Similarly, we have

−E

 t

0

 t

t1
d Lx1

t2 .d Lx4
t1


= −E


Lx4

t


.E x4

 t

0
d Lx1

t2


,

−E

 t

0

 t

t1
d Lx2

t2 .d Lx3
t1


= −E


Lx3

t


.E x3

 t

0
d Lx2

t2


,

E

 t

0

 t

t1
d Lx2

t2 .d Lx4
t1


= E


Lx4

t


.E x4

 t

0
d Lx2

t2


.

Hence, this concludes the proof, since

E

 t

0

 t

t1
(d Lx1

t2 − d Lx2
t2 )(d Lx3

t1 − d Lx4
t1 )


= E


Lx3

t


.E x3

 t

0
d Lx1

t2 − d Lx2
t2


− E


Lx4

t


.E x4

 t

0
d Lx1

t2 − d Lx2
t2


= E

 t

0
E x3

 t

0
d Lx1

t2 − d Lx2
t2


.d Lx3

t1


− E

 t

0
E x4

 t

0
d Lx1

t2 − d Lx2
t2


.d Lx4

t1


. � (3.89)

Although there are many terms in the summation π but there are only a finite number of terms.
We estimate the following particular term only. Other terms can be estimated similarly. First note

E
 t

0

 t

t1

 t

t2

 t

t3

 t

t4

 t

t5


d Lx2l

t6 − d Lx2l−1
t6


.


d Lx2l

t5 − d Lx2l−1
t5


·


d Lx2r

t4 − d Lx2r−1
t4


.


d Lx2r

t3 − d Lx2r−1
t3


·


d Lx2l−1

t2 − d Lx2l−2
t2


.


d Lx2r−1

t1 − d Lx2r−2
t1


= E

 t

0

 t

t1

 t

t2

 t

t3

 t

t4
E x2l

 t

0
d Lx2l

t6 − d Lx2l−1
t6


.d Lx2l

t5

− E x2l−1

 t

0
d Lx2l

t6 − d Lx2l−1
t6


.d Lx2l−1

t5


d Lx2r

t4 − d Lx2r−1
t4


.


d Lx2r

t3 − d Lx2r−1
t3


·


d Lx2l−1

t2 − d Lx2l−2
t2


.


d Lx2r−1

t1 − d Lx2r−2
t1


, (3.90)

where we have used (3.85) with Ht ≡ 1 in Lemma 3.16 for the two innermost integrals.
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We use pt (x, y) to denote the transitional probability density function of the symmetric stable
process X. We recall only partial results of Theorem 3.6.5 from [25] which will be used in our
estimation (as symmetric stable Lévy processes is a class of Borel right processes, hence we
simply replace the Borel right processes in the original theorem by symmetric stable process
instead).

Lemma 3.17. Let X be a strongly symmetric stable process and assume that its β-potential
density, uβ(x, y), is finite for all x, y ∈ S. (S is the state space of the process.) Let L y

t be a local
time of X at y, with

E x


∞

0
e−βt d L y

t


= uβ(x, y).

Then for every t

E x (L y
t ) =

 t

0
ps(x, y)ds. (3.91)

One may write uβ(y − x) = uβ(x, y) as pointed out in [25].
By (3.91) and the property pt (x, y) = pt (x − y), then we have

E x2l

 t

0
d Lx2l

t6 − d Lx2l−1
t6


= E x2l


Lx2l

t − Lx2l−1
t


=

 t

0


ps(0) − ps(x2l − x2l−1)


ds

=

 t

0


p∆t6

(0) − p∆t6
(x2l − x2l−1)


dt6. (3.92)

In the last equality of (3.92), we have purposely used dt6 instead of ds to indicate that this is for
the innermost integral. Then, we have

E
 t

0

 t

t1

 t

t2

 t

t3

 t

t4
E x2l

 t

0
d Lx2l

t6 − d Lx2l−1
t6


.d Lx2l

t5

− E x2l−1

 t

t5
d Lx2l

t6 − d Lx2l−1
t6


.d Lx2l−1

t5


·


d Lx2r

t4 − d Lx2r−1
t4


.


d Lx2r

t3 − d Lx2r−1
t3


d Lx2l−1

t2 − d Lx2l−2
t2


.


d Lx2r−1

t1 − d Lx2r−2
t1


= E

 t

0

 t

t1

 t

t2

 t

t3

 t

t4

 t

0


p∆t6

(0) − p∆t6
(x2l − x2l−1)


dt6.d Lx2l

t5

−


p∆t6

(x2l − x2l−1) − p∆t6
(0)


dt6.d Lx2l−1

t5


·


d Lx2r

t4 − d Lx2r−1
t4


.


d Lx2r

t3 − d Lx2r−1
t3


.


d Lx2l−1

t2 − d Lx2l−2
t2


·


d Lx2r−1

t1 − d Lx2r−2
t1


, (3.93)

where ∆ti = ti − ti−1.
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Iterating the procedure in (3.93), we obtain the following, where we have used the notation
∆r p(x) = pr (0) − pr (x)

E
 t

0

 t

t1

 t

t2

 t

t3

 t

t4

 t

t5


d Lx2l

t6 − d Lx2l−1
t6


.


d Lx2l

t5 − d Lx2l−1
t5


·


d Lx2r

t4 − d Lx2r−1
t4


.


d Lx2r

t3 − d Lx2r−1
t3


.


d Lx2l−1

t2 − d Lx2l−2
t2


.


d Lx2r−1

t1 − d Lx2r−2
t1


= E

 t

0

 t

t1

 t

t2

 t

t3

 t

t4

 t

0


p∆t6

(0) − p∆t6
(x2l − x2l−1)


dt6.


d Lx2l

t5 + d Lx2l−1
t5


·


d Lx2r

t4 − d Lx2r−1
t4


.


d Lx2r

t3 − d Lx2r−1
t3


.


d Lx2l−1

t2 − d Lx2l−2
t2


.


d Lx2r−1

t1 − d Lx2r−2
t1


= E

 t

0

 t

t1

 t

t2

 t

t3
E x2r

 t

0

 t

0
∆t6 p(x2l − x2l−1)dt6.


d Lx2l

t5 + d Lx2l−1
t5


.d Lx2r

t4

− E x2r−1

 t

0

 t

0
∆t6 p(x2l − x2l−1)dt6.


d Lx2l

t5 + d Lx2l−1
t5


.d Lx2r−1

t4


·


d Lx2r

t3 − d Lx2r−1
t3


.


d Lx2l−1

t2 − d Lx2l−2
t2


.


d Lx2r−1

t1 − d Lx2r−2
t1


= E

 t

0

 t

t1

 t

t2

 t

t3

 t

0

 t

0
∆t6 p(x2l − x2l−1)dt6.


p∆t5

(x2r − x2l)

+ p∆t5
(x2r − x2l−1)


dt5.d Lx2r

t4

−∆t6 p(x2l − x2l−1)dt6.


p∆t5

(x2r−1 − x2l) + p∆t5
(x2r−1 − x2l−1)


dt5.d Lx2r−1

t4


·


d Lx2r

t3 − d Lx2r−1
t3


.


d Lx2l−1

t2 − d Lx2l−2
t2


.


d Lx2r−1

t1 − d Lx2r−2
t1


= E

 t

0

 t

t1

 t

t2

 t

0

 t

0

 t

0


∆t6 p(x2l − x2l−1)dt6.


p∆t5

(x2r − x2l)

+ p∆t5
(x2r − x2l−1)


dt5.d Lx2r

t4

−∆t6 p(x2l − x2l−1)dt6.


p∆t5

(x2r−1 − x2l) + p∆t5
(x2r−1 − x2l−1)


dt5.d Lx2r−1

t4


×


d Lx2r

t3 − d Lx2r−1
t3


.


d Lx2l−1

t2 − d Lx2l−2
t2


.


d Lx2r−1

t1 − d Lx2r−2
t1


= E

 t

0

 t

t1

 t

t2

 t

0

 t

0

 t

0
∆t6 p(x2l − x2l−1)dt6.


p∆t5

(x2r − x2l)

+ p∆t5
(x2r − x2l−1)


dt5.


p∆t4

(0) − p∆t4
(x2r−1 − x2r )


dt4

−


p∆t5

(x2r−1 − x2l) + p∆t5
(x2r−1 − x2l−1)


dt5.


p∆t4

(x2r−1 − x2r ) − p∆t4
(0)


dt4


×


d Lx2r

t3 − d Lx2r−1
t3


d Lx2l−1

t2 − d Lx2l−2
t2


.


d Lx2r−1

t1 − d Lx2r−2
t1


= E

 t

0

 t

t1

 t

0

 t

0

 t

0

 t

0
∆t6 p(x2l − x2l−1)dt6.


p∆t5

(x2r − x2l)
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+ p∆t5
(x2r − x2l−1) + p∆t5

(x2r−1 − x2l) + p∆t5
(x2r−1 − x2l−1)


dt5

·∆t4 p(x2r−1 − x2r )dt4.


d Lx2r

t3 − d Lx2r−1
t3


d Lx2l−1

t2 − d Lx2l−2
t2


.


d Lx2r−1

t1 − d Lx2r−2
t1


= E

 t

0

 t

t1

 t

0

 t

0

 t

0

 t

0
∆t6 p(x2l − x2l−1)dt6.


p∆t5

(x2r − x2l)

+ p∆t5
(x2r − x2l−1) + p∆t5

(x2r−1 − x2l) + p∆t5
(x2r−1 − x2l−1)


dt5

·∆t4 p(x2r−1 − x2r )dt4.


p∆t3

(x2l−1 − x2r ) − p∆t3
(x2l−2 − x2r )

− p∆t3
(x2l−1 − x2r−1) + p∆t3

(x2l−2 − x2r−1)


dt3


d Lx2l−1

t2 − d Lx2l−2
t2


·


d Lx2r−1

t1 − d Lx2r−2
t1


= E

 t

0

 t

0

 t

0

 t

0

 t

0

 t

0
∆t6 p(x2l − x2l−1)dt6.


p∆t5

(x2l − x2r )

+ p∆t5
(x2l−1 − x2r ) + p∆t5

(x2l − x2r−1)

+ p∆t5
(x2l−1 − x2r−1)


dt5.∆t4 p(x2r − x2r−1)dt4

·


p∆t3

(x2l−1 − x2r ) − p∆t3
(x2l−2 − x2r ) + p∆t3

(x2l−2 − x2r−1)

− p∆t3
(x2l−1 − x2r−1)


dt3


p∆t2

(x2r−1 − x2l−1) − p∆t2
(x2r−2 − x2l−1)

+p∆t2
(x2r−2 − x2l−2) − p∆t2

(x2r−1 − x2l−2)


dt2


pt1(x2r−1) − pt1(x2r−2)


dt1. (3.94)

By the first inequality of (10.173) in [25], that is pt (x) ≤ pt (0). The last step of the (3.94)
becomesE  t

0

 t

0

 t

0

 t

0

 t

0

 t

0
∆t6 p(x2l − x2l−1)dt6 ·


p∆t5

(x2l − x2r )

+ p∆t5
(x2l−1 − x2r ) + p∆t5

(x2l − x2r−1) + p∆t5
(x2l−1 − x2r−1)


dt5

·∆t4 p(x2r − x2r−1)dt4

·


p∆t3

(x2l−1 − x2r ) − p∆t3
(x2l−2 − x2r )

+ p∆t3
(x2l−2 − x2r−1) − p∆t3

(x2l−1 − x2r−1)


dt3

·


p∆t2

(x2r−1 − x2l−1) − p∆t2
(x2r−2 − x2l−1)

+ p∆t2
(x2r−2 − x2l−2) − p∆t2

(x2r−1 − x2l−2)


dt2 ·


pt1(x2r−1) − pt1(x2r−2)


dt1


≤ E

 t

0

 t

0

 t

0

 t

0

 t

0

 t

0
∆t6 p(x2l − x2l−1)dt6 ·


p∆t5

(x2l − x2r )
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+ p∆t5
(x2l−1 − x2r ) + p∆t5

(x2l − x2r−1) + p∆t5
(x2l−1 − x2r−1)


dt5

·∆t4 p(x2r − x2r−1)dt4

·


p∆t3

(x2l−1 − x2r ) − p∆t3
(x2l−2 − x2r ) + p∆t3

(x2l−2 − x2r−1)

− p∆t3
(x2l−1 − x2r−1)


dt3

·


p∆t2

(x2r−1 − x2l−1) − p∆t2
(x2r−2 − x2l−1)

+ p∆t2
(x2r−2 − x2l−2) − p∆t2

(x2r−1 − x2l−2)


dt2

 · ∆t1 p(x2r−2)


dt1 (3.95)

where ∆t p(x) terms are defined as ∆t p(x) = pt (0) − pt (x). The estimation of the term t
0 ∆t6 p(.)ds in (3.95) is given by t

0
∆t6 p(x2l − x2l−1)ds ≤


∞

0
∆t6 p(x2l − x2l−1)ds

= lim
α→0

(uα(0) − uα(x2l − x2l−1))

= cα

2l − (2l − 1)

2m+1

α−1

=
cα

2

 1

2m+1

α−1

, (3.96)

where we have used (4.90), (4.95)1from [25] and Lemma 3.17 and cα =
2
π


∞

0
1−cos t

tα dt .
The term

 t
0 ∆t4 p(.)ds in (3.95) can be estimated similarly. While the estimation of the term t

0 ∆t1 p(x2r−2)dt1 is t

0
∆t1 p(x2r−2)dt1 ≤ cα

2r − 2

2m+1

α−1

≤ cα, (3.97)

where ∆t1 p(x2r−2) = pt1(0) − pt1(x2r−2), r ≤ 2m−nk and k = 1, . . . , 2n .

By (10.173) in [25], that is pt (x) ≤ pt (0) and ps(0) = dαs
−1
α , we can obtain the following

estimation t

0
p∆t5

(.)ds ≤

 t

0
ps(0)ds ≤

 t

0
dαs−1/αds ≤

αdα

α − 1
t

α−1
α .

for some constant dα . The positivity of the above four estimators follows from (10.173) in [25]
and ps(.) is the transitional probability density.

By Lemma 3.17 and footnote 1, we have t

0


p∆t3

(x2l−1 − x2r ) − p∆t3
(x2l−2 − x2r )

1 (4.90) together with (4.95) states that limα→0(uα(0) − uα(x)) = φ(x) =
cα
2 |x |

α−1 where cα =
2
π


∞

0
1−cos t

tα dt .
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+ p∆t3
(x2l−2 − x2r−1) − p∆t3

(x2l−1 − x2r−1)


dt3

≤ lim
α→0


uα(x2l−1 − x2r ) − uα(0) + uα(0) − uα(x2l−2 − x2r )

+ uα(x2l−2 − x2r−1) − uα(0) + uα(0) − uα(x2l−1 − x2r−1)


= φ(x2l−2 − x2r ) − φ(x2l−1 − x2r ) + φ(x2l−1 − x2r−1) − φ(x2l−2 − x2r−1)

= cα

2l − 2 − 2r

2m+1

α−1
−

2l − 1 − 2r

2m+1

α−1
+

2l − 2r

2m+1

α−1
−

2l − 1 − 2r

2m+1

α−1


≤ cα

2l − 1 − 2r − 2l + 2 + 2r

2m+1

α−1
+

2l − 2r − 2l + 1 + 2r

2m+1

α−1


≤ cα

 1
2m

α−1
, (3.98)

where the first inequality of (3.98) follows from the fact that |x |
α−1

− |y|
α−1

≤ |x − y|
α−1 for

0 < α − 1 < 1.

We can see that (3.98) is bounded from below by using the inequality |x |
α−1

− |y|
α−1

≤

|x − y|
α−1 again and increasing property of | · |

α−1 with 0 < α − 1 < 12l − 2 − 2r

2m+1

α−1
−

2l − 1 − 2r

2m+1

α−1
+

2l − 2r

2m+1

α−1
−

2l − 1 − 2r

2m+1

α−1

≥

2l − 2r − 1

2m+1

α−1
−

 1

2m+1

α−1
−

2l − 1 − 2r

2m+1

α−1
+

2l − 2r

2m+1

α−1

−

2l − 1 − 2r

2m+1

α−1

≥ −

 1

2m+1

α−1
. (3.99)

Similarly, we can prove that t

0


p∆t2

(x2r−1 − x2l−1) − p∆t2
(x2r−2 − x2l−1)

+ p∆t2
(x2r−2 − x2l−2) − p∆t2

(x2r−1 − x2l−2)


dt2

≤ cα

 1
2m

α−1
, (3.100)

and it is bounded from below by the following2l − 2r

2m+1

α−1
−

2l − 2r + 1

2m+1

α−1
+

2l − 2r

2m+1

α−1
−

2l − 1 − 2r

2m+1

α−1

≥

2l − 2r

2m+1

α−1
−

2l − 2r

2m+1

α−1
−

 1

2m+1

α−1
+

2l − 2r

2m+1

α−1
−

2l − 1 − 2r

2m+1

α−1

≥ −

 1

2m+1

α−1
. (3.101)
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Therefore, the estimation of the fifth term in (3.77) is
r<l

ELxm+1
2r

t − L
xm+1

2r−1
t

2Lxm+1
2l

t − L
xm+1

2l−1
t

2Lxm+1
2l−1

t − L
xm+1

2l−2
t


L

xm+1
2r−1

t − L
xm+1

2r−2
t


≤ c t

α−1
α

 1

2m+1

4α−6 1
2n

2

, (3.102)

where c is a generic constant.
The upper bound for the sixth term in (3.77) is

r<l

Eg(xm+1
2r−1) − g(xm+1

2r−2)


g(xm+1
2l−1) − g(xm+1

2l−2)


g(xm+1
2l ) − g(xm+1

2l−1)
2

×

g(xm+1

2r ) − g(xm+1
2r−1)

2
≤ c

1
2n

 1
2m

6h−1
. (3.103)

Therefore, we have

E


l

∆m+1
2l−1 Z ⊗ ∆m+1

2l Z ⊗ ∆m+1
2l Z

2

≤ C

 1
2n

1+2h 1
2m

2h+α−2

+ t
2(α−1)

α

 1
2n

α 1
2m

2h+α−2
+ t

2(α−1)
α

 1
2n

 1
2m

2h+2α−3

+

 1
2n

 1
2m

4h+α−2
+

 1
2n

 1
2m

6h−1
+ t

2(α−1)
α

 1
2n

2


1
2m

3α−5


. (3.104)

Hence, we have proved the following proposition.

Proposition 3.18. For a continuous path Zx which satisfies (3.7), then for the case m ≥ n

2n
k=1

E

Z(m + 1)3
xn

k−1,x
n
k

− Z(m)3
xn

k−1,x
n
k

 θ
3

≤ C

 1
2n

 1+2h
6 θ−1 1

2m

 2h+α−2
6 θ

+

 1
2n

 α
6 θ−1 1

2m

 2h+α−2
6 θ

+

 1
2n

 1
6 θ−1 1

2m

 2h+2α−3
6 θ

+

 1
2n

 θ
6 −1 1

2m

 4h+α−2
6 θ

+

 1
2n

 θ
6 −1 1

2m

 6h−1
6 θ

+

 1
2n

 2
6 θ−1 1

2m

 3α−5
6 θ


, (3.105)

where C is a generic constant depends on θ, h, w1(x ′, x ′′), and c in (3.7).
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Theorem 3.19. Let α ∈ ( 3
2 , 2), 2

3−α
≤ q < 4. Then for a continuous path Zx satisfy (3.7), there

exists a unique Z3 and a simplex ∆ taking values in (R2)⊗3 such that

sup
D


l

Z(m)3
xl−1,xl

− Z3
xl−1,xl

 θ
3

 3
θ

→ 0, (3.106)

both almost surely and in L1(Ω , F , P) as m → ∞, for some θ such that 4
2h+α−1 < θ < 4.

Proof. From [23], we have

E sup
D

Z(m + 1)3
xl−1,xl

− Z(m)3
xl−1,xl

 θ
3

≤ C2

∞
n=1

nγ
2n

k=1

E
Z(m + 1)3

xn
k−1,x

n
k

− Z(m)3
xn

k−1,x
n
k

 θ
3

+ C3 E

 ∞
n=1

nγ
2n

k=1

Z(m + 1)1
xn

k−1,x
n
k

− Z(m)1
xn

k−1,x
n
k

θ 1
3

×

 ∞
n=1

nγ
2n

k=1

Z(m + 1)2
xn

k−1,x
n
k

 θ
2 +

Z(m)2
xn

k−1,x
n
k

 θ
2

 2
3

+ C4 E

 ∞
n=1

nγ
2n

k=1

Z(m + 1)2
xn

k−1,x
n
k

− Z(m)2
xn

k−1,x
n
k

 θ
2

 2
3

×

 ∞
n=1

nγ
2n

k=1

Z(m + 1)1
xn

k−1,x
n
k

θ +
Z(m)1

xn
k−1,x

n
k

θ 1
3

+ C5 E

 ∞
n=1

nγ
2n

k=1

Z(m + 1)1
xn

k−1,x
n
k

− Z(m)1
xn

k−1,x
n
k

θ 1
3

×

 ∞
n=1

nγ
2n

k=1

Z(m + 1)1
xn

k−1,x
n
k

θ +
Z(m)1

xn
k−1,x

n
k

θ 2
3

. (3.107)

By Propositions 3.15 and 3.18, the estimate of the first term on the r.h.s. of (3.107) is

∞
n=1

nγ E
2n

k=1

Z(m + 1)3
xn

k−1,x
n
k

− Z(m)3
xn

k−1,x
n
k

 θ
3

≤ C
∞

n=m
nγ
 1

2n+m

 hθ−1
2

+ C
m−1
n=1

nγ

 1
2n

 1+2h
6 θ−1 1

2m

 2h+α−2
6 θ

+

 1
2n

 1
6 θ−1 1

2m

 2h+2α−3
6 θ

+

 1
2n

 θ
6 −1 1

2m

 4h+α−2
6 θ

+

 1
2n

 α
6 θ−1 1

2m

 2h+α−2
6 θ

+

 1
2n

 θ
6 −1 1

2m

 6h−1
6 θ

+

 1
2n

 2
6 θ−1 1

2m

 4α−6
6 θ


≤ C

 1
2m

 hθ−1
2

+ C
m−1
n=1

nγ

 1
2n

 2h+1
6 θ−1 1

2m

 2h+α−2
6 θ

+

 1
2n

 α
6 θ−1 1

2m

 2h+α−2
6 θ
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+

 1
2n

 θ
6 −

2
3 +ϵ 1

2m

 2h+2α−3
6 θ−

1
3 −ϵ

+

 1
2n

 θ
6 −

2
3 +ϵ 1

2m

 4h+α−2
6 θ−

1
3 −ϵ

+

 1
2n

 θ
6 −

2
3 +ϵ 1

2m

 6h−1
6 θ−

1
3 −ϵ

+

 1
2n

 2θ
6 −1 1

2m

 4α−6
6 θ


:= Km .

For h > 1
4 and α > 3

2 , one can choose θ sufficiently close to 4 such that 2h+1
6 θ − 1 >

0, 2h+α−2
6 θ > 0, α

6 θ − 1 > 0, 2θ
6 − 1 > 0, 4α−6

6 θ > 0. We choose ϵ > 0 with 2
3 −

θ
6 < ϵ <

min{
2h+2α−3

6 θ −
1
3 , 4h+α−2

6 θ −
1
3 , 6h−1

6 θ −
1
3 } =

6h−1
6 θ −

1
3 , hence

Km ≤ C

 1
2m

 hθ−1
2

+

 1
2m

 2h+α−2
6 θ

+

 1
2m

 2h+2α−3
6 θ−

1
3 −ϵ

+

 1
2m

 4h+α−2
6 θ−

1
3 −ϵ

+

 1
2m

 6h−1
6 θ−

1
3 −ϵ

+

 1
2m

 4α−6
6 θ


. (3.108)

Therefore, if we sum up all m, we would have


m Km < ∞. This shows that

Z(m)3


m∈N ∈

(R2)⊗3 is a Cauchy sequence in θ -variation distance. In other words, it has a limit as m → ∞,
denote it by Z3

∈ (R2)⊗3. By Lemma 3.3.3 in [23], Z3 has finite θ -variation. Together with the
convergence result of the second level path and first level path, we complete the proof of the
theorem. �

Based on Chapter 5 in [23], for any Lipschitz one form in the sense of Stein f : R2
→

L(R2, R2), the almost rough path Y = (1, Y 1
a,b, Y 2

a,b, Y 3
a,b) is given by

Y 1
a,b = f (Za)Z1

a,b + f 2(Za)Z2
a,b + f 3(Za)Z3

a,b,

Y 2
a,b = (f (Za) ⊗ f (Za))Z2

a,b + (f (Za) ⊗ f 2(Za))


s<u1<u2<t

dZ1
s,u1

⊗ dZ2
s,u2

,

+ (f 2(Za) ⊗ f (Za))


s<u1<u2<t

dZ2
s,u1

⊗ dZ1
s,u2

,

Y 3
a,b = (f (Za) ⊗ f (Za) ⊗ f (Za))Z3

a,b.

Consider one form f : R2
→ L(R2, R2) defined asf (z)ξ = (v, yv),

where z = (x, y) and ξ = (v, w). For the general case, it is defined as

f k+1(v, w)(v) =


0,


j

dk f (w)(w
j
k+1, . . . , w

j
2)v

j
1



for all v =


j (v
j
k+1, w

j
k+1) ⊗ · · · ⊗ (v

j
2 , w

j
2) ⊗ (v

j
1 , w

j
1).

We use the notation
 b

a
f (Z)dZn to denote the nth degree term of

 b
a
f (Z)dZ. When n = 1,

we have
∞

−∞

f (Z)dZ1
=


∞

−∞

d Lx
t ,


∞

−∞

g(x)d Lx
t


. (3.109)
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One can therefore use the almost rough path to construct the unique rough path


∞

−∞
f (Z)dZ

with roughness θ in T (3)(R2). In particular
∞

−∞

f (Z)dZ1
= lim

m(D)→0

r
i=1

Y 1
xi−1,xi

= lim
m(D)→0

r
i=1

f (Zxi−1)(Z
1
xi−1,xi

)

+ f 2(Zxi−1)(Z
2
xi−1,xi

) + f 3(Zxi−1)(Z
3
xi−1,xi

)


. (3.110)

The above integral is well defined as the limit of the almost rough path. In particular, we have

f (Za)(Z1
a,b) + f 2(Za)(Z2

a,b) + f 3(Za)(Z3
a,b) =


Lb

t − La
t , g(a)(Lb

t − La
t )


+


0, (Z2

a,b)2,1


(3.111)

as f 3 is equal to zero for this particular linear one-form. Hence, we have the following corollary.

Corollary 3.20. Let 3
2 < α < 2 and g be a continuous function with bounded q-variation,

2
3−α

< q < 4. Then, the integral
 b

a g(x)d Lx
t for (a, b) ∈ ∆ can be defined as b

a
g(x)d Lx

t = lim
m(D)→0

 r
i=1

g(xi−1)(Lxi
t − Lxi−1

t ) + (Z2
xi−1,xi

)2,1


. (3.112)

3.5. Convergence of rough path integrals for the third level path

In this section, we will prove the convergence of the rough path integral of the third level path
in the θ -variation topology.

Proposition 3.21. Let 3
2 < α < 2, 2

3−α
≤ q < 4. Moreover, let Z j (x) := (Lx

t , g j (x)), and
Z(x) := (Lx

t , g(x)), where g j (·), g(·) are both continuous and of bounded q-variation. Suppose
g j (x) → g(x) as j → ∞ uniformly and the control function w j (x, y) of g j converges to the
control function w(x, y) of g as j → ∞ uniformly in (x, y). Then as j → ∞ such that the
geometric rough path Z j (·) associated with Z j (·) converges to the geometric rough path Z(·)

associated with Z(·) a.s. in θ -variation topology as j → ∞. Here, we choose a θ such that
4

2h+α−1 < θ < 4. In particular,


∞

−∞
g j (x)d Lx

t →


∞

−∞
g(x)d Lx

t a.s. as j → ∞.

Proof. By the reasoning given above and under the conditions given in the proposition, one can
obtain the geometric rough path Z j (·) associated with Z j (·), and also the smooth rough path
Z j (m). Here the Z j is defined as Z j = (1, Z1

j , Z2
j , Z3

j ) while Z = (1, Z1, Z2, Z3), similarly

we have Z j (m) = (1, Z1
j (m), Z2

j (m), Z3
j (m)) while Z(m) = (1, Z1(m), Z2(m), Z3(m)). The

convergence of Z j (·) → Z(·) in θ -variation means the convergence of corresponding level path
in θ -variation when g j (·) → g(·) as j → ∞. We have discussed the convergence of first and
second level in Proposition 3.10. By similar argument as in Proposition 3.10, one can show the
convergence of the third level path. �
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Next, we prove that in fact the proposition above is also true for function g being of bounded
q-variation ( 2

3−α
≤ q < 4), but not being continuous.

Theorem 3.22. Let g(x) be a càdlàg path with bounded q-variation ( 2
3−α

≤ q < 4). Then x ′′

x ′

Lx
t dg(x) =

 τδ(x ′′)

x ′

L t,δ(y)dgδ(y).

The proof of Theorem 3.22 is similar to Theorem 3.12. Based on Theorem 3.22 and Proposi-
tion 3.21, one can prove the following proposition

Proposition 3.23. Let α ∈ ( 3
2 , 2), 2

3−α
≤ q < 3, one can choose θ such that 4

2h+α−1 < θ < 3.
Moreover, let Z j (x) := (Lx

t , g j (x)), Z(x) := (Lx
t , g(x)), where g j (.), g(.) are both of bounded

q-variation, and g j is continuous and g is càdlàg with decomposition g = gc +h, where gc is the
continuous part of g and h is the jump part of g. Suppose g j = gc j + h j with control function
wcj and whj such that gcj → gc and wcj → wc uniformly, h j satisfying conditions (3.47) in
Proposition 3.13. Then

∞

−∞

g j (x)d Lx
t →


∞

−∞

g(x)d Lx
t a.s. as j → ∞.

Recall ρ as the mollifier and define

h j (x) =

 2

0
ρ(z)h


x −

z

j


dz

and h jδ in the same way as Gδ , so h jδ = h j as h j is continuous. Define hδ in the same way as
Gδ , then

hδ j (y) =

 2

0
ρ(z)hδ


y −

z

j


dz.

Thus by the integration by parts formula and Fubini theorem, we have
∞

−∞

Lδ
t (y)dhδ j (y) = −


∞

−∞

hδ j (y)d Lδ
t (y)

= −


∞

−∞

 2

0
ρ(z)hδ


y −

z

j


dzd Lδ

t (y)

= −

 2

0


∞

−∞

hδ


y −

z

j


d Lδ

t (y)ρ(z)dz.

By Theorem 3.12, we have
∞

−∞

hδ


y −

z

j


d Lδ

t (y) =


∞

−∞

h


x −

z

j


d Lx

t .

Hence,
∞

−∞

Lδ
t (y)dhδ j (y) = −

 2

0
ρ(z)


∞

−∞

h


x −

z

j


d Lx

t dz
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= −


∞

−∞

 2

0
h


x −

z

j


ρ(z)dzd Lx

t

= −


∞

−∞

h j (x)d Lx
t

=


∞

−∞

Lx
t dh j (x)

=


∞

−∞

Lδ
t (x)dh jδ(x). (3.113)

The last equality follows from Theorem 3.12. This indicates that condition (3.47) in
Proposition 3.13, which is also needed in Proposition 3.23, is satisfied.

The following theorem summarizes the main results of the paper.

Theorem 3.24. Let X = (X t )t≥0 be a symmetric α-stable process and f : R → R be absolutely
continuous, locally bounded function and has (α − 1)th fractional order derivative ▽α−1

− f (x)

which is locally bounded. Assume ▽α−1
− f (x) is of bounded q-variation, where 1 ≤ q < 4. Then

we have the following extended version of Itô’s formula

f (X t ) = f (X0) +

 t

0
▽− f (Xs)d Xs

+

 t

0


R


f (Xs− + y) − f (Xs−)


Ñ (dy, ds) − Cα


∞

−∞

▽α−1
− f (x)dx Lx

t , (3.114)

where Cα =
π

1
2 Γ (1−

2
α
)

α2α−1Γ ( 1+α
2 )

.

The integral


∞

−∞
▽α−1

− f (x)dx Lx
t is a Lebesgue–Stieltjes integral when q = 1, a Young

integral when 1 < q < 2
3−α

for 1 < α < 2 and a rough path integral when 2
3−α

≤ q < 4

for 3
2 < α < 2 respectively.

Proof. We have already showed that the integral


∞

−∞
▽α−1

− f (x)dx Lx
t can be defined as a Young

integral when 1 < q < 2
3−α

for 1 < α < 2. Based on the result proved for level 1, level 2, level
3 path and (3.113), as well as applying a standard smoothing argument and taking limit using
Proposition 3.23, one can define the integral


∞

−∞
▽α−1

− f (x)dx Lx
t as a rough path integral. �
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