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Abstract

The paper establishes strong convergence results for the joint convergence of sequential order
statistics. There exists an explicit construction such that almost sure convergence to extremal pro-
cesses follows. If a partial sum of rowwise i.i.d. random variables is attracted by a non-Gaussian
limit law then the results apply to invariance principles for sums of extreme sequential order
statistics which turn out to be almost surely convergent or convergent in probability in D[0; 1].
Under certain conditions they converge to the non-Gaussian part of the L�evy process. In addi-
tion, we get an approximation of these L�evy processes by a �nite number of extremal processes.
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1. Introduction

Let Xn; i; 16i6n, denote a rowwise i.i.d. triangular array of real random variables
with convergent partial sums. Then it is well-known that the sequential partial sums

[nt]∑
i=1

Xn; i → Zt; 06t61; (1.1)

are convergent in distribution in the Skorohod space D[0; 1], see Gihman and Skorohod
(1979, Chapter II, p. 199). The process (Zt)t∈[0;1] is a L�evy process which admits a
decomposition

Zt = Z1; t + Z2; t + Z3; t (1.2)

in three independent L�evy processes where Z2; t is a Brownian motion (or degenerate)
and Z1; t ; Z3; t are jump processes. The L�evy measure of Z1; t , which counts the jumps
of the process, is concentrated on (−∞; 0) and it is supported by (0;∞) for Z3; t . In
connection with L�evy processes we refer to Bertoin (1996).
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It is the purpose of this paper to establish invariance principles, strong almost sure
convergence results and approximations in probability for sums of centered extremal
processes

k∑
i=1

X (n)
i:[nt] − bt ; 06t61; (1.3)

in D[0; 1] where X (n)
i:[nt] is the ith smallest (sequential) order statistic of Xn;1; : : : ; Xn; [nt]

given by the nth row and bt are centering functions. The strong convergence results
are obtained by the quantile approach for a special construction of order statistics. For
instance, it is shown that under mild regularity assumptions a �nite sum of extremal
processes of form (1.3) approximates the whole process Z1; t in D[0; 1] in probability.
Similary, the process Z3; t can be approximated by an appropriate �nite sum of upper
extremal processes which asymptotically become independent of (1.3). The method of
proof is based on the quantile approach and an almost sure limit theorem for the joint
distribution of extremal processes, see Section 3. The distributional convergence of
extremal processes for sequential maxima was earlier obtained by Dwass (1964,1966),
Lamperti (1964), Resnick and Rubinovitch (1973) and Resnick (1987).
The present results are closely connected to known in�nite series representations of

L�evy processes without Gaussian part. We will give some references. The roots of the
series representations of Section 4 go back to P. L�evy. His results were summarized
by Kahne (1995) who translated the work in a modern language, see also Bretagnolle
(1973) for L�evy’s decomposition.
Series for real independent increment processes have been considered by Ferguson

and Klass (1972) and Kallenberg (1974) proved almost sure convergence of the se-
ries in the uniform norm on D[0; 1]. LePage (1981) and Rosinski (1990) considered
series in Banach spaces. Rosinski (1990) mentioned the connection to the Ito–L�evy
representation of independent increment processes and he quoted a paper of Resnick.
In connection with the series representation of in�nitely divisible distributions (and

related convergence results) there exists a huge amount of literature. For stable laws
we refer to LePage et al. (1981), and Cs�orgő et al. (1986) who used a strong approxi-
mation, see also Cs�orgő and Horv�ath (1988). In this spirit in�nitely divisible laws were
treated by Cs�orgő et al. (1988). A good reference for further results is also the vol-
ume about sums, trimmed sums and extremes of Hahn et al. (1991). The role of sums
of extreme order statistics in connection with convergent partial sums was discussed
by Janssen (1989,1994) where the �rst paper established almost sure convergence re-
sults (and convergence in probability) to stable laws whereas the second paper intro-
duced distributional convergence for sums of extremes of arbitrary non i.i.d. triangular
arrays. Strong invariance principles for partial sums with stable limit laws in D[0; 1]
were established by LePage et al. (1997). Ould-Rois (1991) considered an invariance
principles for trimmed sums.
The accuracy of the series approximation of in�nitely divisible random variables was

studied by several authors. We refer to Cs�orgő (1989a,b, 1995), Janssen and Mason
(1990) and Bentkus et al. (1996) where rates of convergence can be found.
The meaning of the present results will be explained in the next example.



A. Janssen / Stochastic Processes and their Applications 85 (2000) 255–277 257

Example 1.1 (Stable process with the index 1
2 ). Let ((B(t))t∈[0;∞) be a standard

Brownian motion on C[0;∞). Then
Zt := inf{s: B(s)¿t}; 06t (1.4)

de�nes a L�evy process on [0;∞) which is a stable process with the index � = 1
2 of

stability, see Feller (1971) for instance. Notice that Zt has only positive jumps and we
have Zt = Z3; t according to (1.2).

Consider now a rowwise i.i.d. triangular array of non-negative random variables
Xn; i with

n∑
i=1

Xn; i → Z1 (1.5)

in distribution as n → ∞. For instance, we can choose
Xn; i = Zi=n − Z(i−1)=n for 16i6n (1.6)

which are just the inter arrival times of the underlying Brownian motion which are
determined by the levels ti−1 = (i− 1)=n and ti = i=n. In this case it is pointed out that
a �nite number of the largest inter arrival times can be used to approximate the whole
process (Zt)t∈[0;1].
More precisely, we will construct in the situation of (1.5) versions of Xn; i and Zt such

that the following result holds in the Skorohod space (D[0; 1]; d) which is endowed
with the Skorohod metric d. For each �1; �2¿ 0 there exist non-negative integers k and
n0 such that

P

(
d

((
k∑

i=1

X (n)
[nt]+1−i:[nt]

)
t

; (Zt)t

)
¿�1

)
6�2 (1.7)

holds for all n¿n0, see (1.3) for the de�nition of sequential order statistics. Thus,
a �nite sum of extremal processes approximates the limit of the total partial sum in
D[0; 1]. Notice that the centering function bt of (1.3) can here be ignored. Within
this construction the following strong invariance principle will be proved for a repre-
sentation of the scheme (1.6). For each sequence of increasing functions of integers
t 7→ kn(t) with kn(t)→ ∞ for each t ∈ (0; 1], we have almost sure convergence of the
largest kn(·) extremal processes in D[0; 1], namely

d

((kn(t)∑
i=1

X (n)
[nt]+1−i:[nt]

)
t

; (Zt)t

)
→ 0 P a:e: (1.8)

The result follows from Lemma 4.4. Moreover, the order statistic X (n)
[nt]+1−k:[nt] of the

nth row is almost surely convergent to the kth largest jump of the process (Zs)s∈[0; t].
All these properties reveal the meaning of the largest inter arrival times given by the
special array (1.6).
The present paper is organized as follows. Section 2 establishes the quantile approach

to extremal processes which is based on R�enyi’s representation of uniform order statis-
tics. The joint strong convergence of sequential order statistics to extremal processes
is studied in Section 3. It is shown that under certain conditions the lower and upper
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sequential order statistics become independent. In Section 4 new strong invariance
principles for extreme sequential order statistics attracted to in�nitely divisible laws
are introduced. These results cover Example 1.1 above.
Throughout, let d be the Skorohod metric on D[0; 1] and ‖ · ‖ the norm of uniform

convergence. De�ne x ∧ a=min(x; a) and x ∨ a=max(x; a).

2. The quantile approach for the joint distribution of extremal processes

In this section almost sure convergence results for the joint distribution of sequential
order statistics are introduced. The results rely on a well-known representation of the
vector of order statistics which is now applied to functional limit theorems. Let us start
with a sequence U1; U2; : : : of i.i.d. uniformly distributed random variables on (0; 1). It
is well-known that their order statistics

(U1:n; : : : ; Un:n)
D=
(

S1
Sn+1

; : : : ;
Sn

Sn+1

)
(2.1)

are equal in distribution to quotients of partial sums where Sk =
∑k

i=1 Yi is the partial
sum of an i.i.d. sequence of standard exponential random variables Yi with mean 1, see
Breiman (1968) or Reiss (1989, p. 41) for a recent reference. Our construction below
can be explained as follows. Assume for a moment that the order statistics Uj:n are
known. Then the chronological order of the Uj:n is given by the antiranks (Dn1; : : : ; Dnn)
with

Ui:n = UDni for i = 1; : : : ; n:

The vector of antiranks is uniformly distributed on the set of permutations of 1; : : : ; n
and they are independent of the order statistics, see H�ajek and �Sid�ak (1967). On the
other hand, if (�(i))i6n denotes another uniformly distributed permutation mutually
independent of the U ’s then

(U1; : : : ; Un)
D=(U�(1):n; : : : ; U�(n):n) (2.2)

are equal in distribution. This simple observation will be combined with (2.1) which
gives us an appropriate random assignment for the treatment of sequential order statis-
tics. In addition, let V1; V2; : : : be a second sequence of i.i.d. uniformly distributed ran-
dom variables on (0,1) mutually independent of the U ’s. For �xed 0¡t61 consider
the Bernoulli process

n 7→
n∑

j=1

1[0; t)(Vj)

which jumps at the integers �(1)t ; �(2)t ; : : : given by

�(1)t =min{ j: 1[0; t)(Vj) = 1}
and

�(k+1)t =min{ j¿�(k)t : 1[0; t)(Vj) = 1}: (2.3)

Notice that t 7→ �(k)t is right continuous on (0; 1] for each k.
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In the next step, let �n(j) be the jth antirank of Vj:n, i.e. Vj:n = V�n( j).
Thus,

( �U1; : : : ; �Un) :=
(
S�n(i)

Sn+1

)
i6n

D=(U1; : : : ; Un) (2.4)

is another representation of the U ’s. For convenience de�ne Vj:n = 0 for j60 and
Vj:n = 1 if j¿n for uniform order statistics.

Lemma 2.1. The joint distribution of the sequential order statistics of �U1; : : : ; �Un is
given by(

�U1:k ; : : : ; �Uk:k
)
k6n =

1
Sn+1

(
S�(1)Vk+1:n

; : : : ; S�(k)Vk+1:n

)
k6n

: (2.5)

Proof. Consider outcomes v1; : : : ; vn of the Vi. Choose t to be the order value t=vk+1:n.
Suppose that �n(1)= i1; : : : ; �n(k)= ik are the antiranks of the k lowest order statistics.
Observe that for j6n the relation vj ¡vk+1:n holds i� j ∈ {i1; : : : ; ik}. Thus,(

�( j)vk+1:n

)
j6k

=
(
ij:k
)
j6k

are now determined to be the order values of i1; : : : ; ik . Conditional under the vi’s
we have

( �U1; : : : ; �Uk) =
1

Sn+1
(Si1 ; : : : ; Sik ):

Since the partial sums Si are ordered by their index the lemma follows from the
equation

( �U1:k ; : : : ; �Uk:k) =
1

Sn+1
(Si1:k ; : : : ; Sik:k ):

The construction above is the key of almost sure functional limit theorems for lower
order statistics. However, we like to treat lower and upper order statistics simultane-
ously. Based on Lemma 2.1 we choose a further construction which yields the asymp-
totic independence of the lower and upper part of order statistics. Throughout, consider
four mutually independent copies of sequences Y ′

i ; Ỹ i ; V ′
i and Ṽ i; i ∈ N, of Yi and Vi

with related partial sums S ′
k ; S̃k and �rst entrance times �′(k)t ; �̃(k)t (2.3), respectively.

De�ne a triangular system of partial sums

Sk;n =
k∑

i=1

Y ′
i for k6[n=2]

and

Sk;n = S[n=2]; n +
k−[n=2]∑

j=1

Ỹ n+1−j−[n=2] for n¿k ¿ [n=2]: (2.6)

This special construction of uniform order statistics based on (2.6) is due to Cs�orgő et al.
(1986), see also Janssen (1989). Notice that

(U1:n; : : : ; Un:n)
D=
(

S1; n+1
Sn+1; n+1

; : : : ;
Sn;n+1

Sn+1; n+1

)
(2.7)
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holds where now the k largest order statistics

Un+1−k:n
D=1− S̃k

Sn+1; n+1
(2.8)

is mainly determined by S̃k for k ¡ [(n+ 1)=2].
At this stage the random variables Vi; 16i6n, are substituted by a new triangular

array Vi;n de�ned by

Vi;n = V ′
i for i6[n=2]

and

Vi;n = Ṽ n+1−i for [n=2]¡i6n: (2.9)

As above let �n(·) be the antiranks of V1; n; : : : ; Vn;n. Then

( �U1; : : : ; �Un) :=
1

Sn+1; n+1

(
S�n(i); n+1

)
i6n

D= (U1; : : : ; Un) (2.10)

holds.
If we are concerned with sequential order statistics of a triangular array we will

introduce an extra index n on the top for the order statistics �U
(n)
k:m which is by de�nition

the kth-order statistic among �U1; : : : ; �Um of the nth row.
The path of our process will lie in the cad lag space D(0; 1] which is de�ned

on the left-sided open interval (0; 1]. The common Skorohod topology for compact
intervals is extended on D(0; 1] in the sense of Resnick (1987, Section 4:4). It is quite
obvious that a sequence of monotone functions xn(·) is convergent to x0(·) in D(0; 1] if
xn(t)→ x0(t) holds for all continuity points t of x0(·). The space D(0; 1]N is equipped
with the product topology.

Theorem 2.1. The joint sequential order statistics of (2:10)

t 7→
(
(n �U

(n)
k:[nt])k∈N; (n(1− �U

(n)
[nt]+1−j:[nt]))j∈N

)
(2.11)

are almost convergent in D(0; 1]N × D(0; 1]N to the random variable

t 7→
(
(S ′

�′(k)t
)k∈N; (S̃ �̃( j)t

)j∈N
)
: (2.12)

Proof. For the sequel let Vi:n denote the order statistics of the scheme V1; n; : : : ; Vn;n,
de�ned in (2.9), and let �(k)Vj:n

be their kth entrance time at random time t = Vj:n. First
the kth lower coordinate will be considered in D[a; 1] for a¿ 0. The proof uses the
random time transformation

t 7→ V[nt]+1:n

which satis�es

sup
t∈[0;1]

|V[nt]+1:n − t| → 0 P a:e (2.13)

by the Glivenko Cantelli theorem. As a consequence, we see that it is enough to
prove almost sure convergence of our monotone functions at the random times V[nt]+1:n
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instead of t. For this purpose, we will �rst compare the kth lower order statistic with
the members of the stopped partial sum Sj:n+1 (2.6). In this situation we have by
Lemma 2.1 for n¿1=a and k6n

sup
t∈[a;1]

∣∣∣∣n �U (n)
k:[nt] − S�(k)V[nt]+1:n

; n+1

∣∣∣∣ = sup
t∈[a;1]

∣∣∣∣S�(k)V[nt]+1:n
; n+1

(
n

Sn+1; n+1
− 1
)∣∣∣∣

6
∣∣∣∣S�(k)V[na]+1:n

; n+1

∣∣∣∣
∣∣∣∣ n
Sn+1; n+1

− 1
∣∣∣∣ : (2.14)

Obviously, the �rst entrance times �′(k)t of our sequence V ′
j are �nite with probability

1 for each t ¿ 0. In comparison with the mixed situation (2.9) our construction yields
�(k)t = �′(k)t �nally again with probability 1. Notice that now the event{

S�(k)V[na]+1:n
; n+1 → ∞

}
(2.15)

has probability zero and

sup
t∈[a;1]

∣∣∣∣S�(k)V[nt]+1:n
; n+1 − S ′

�′(k)V[nt]+1:n

∣∣∣∣→ 0 (2.16)

holds almost surely. The strong law of large numbers together with (2.15) proves that
(2.14) converges almost surely to zero. The almost sure convergence of the lower order
statistics now follows from (2.13) and (2.16).
The key of the treatment of the jth largest order statistic is relation (2.8) which

allows a reduction of the proof to the �rst case. Introduce the permutation �n(i) =
(n+ 1)− �n(i) where for instance �n(i) denotes the antirank of Vn+1−i; n = Ṽ i among
V1; n; : : : ; Vn;n provided i¿ [(n+ 1)=2] holds. Our construction (2.10) yields

(1− �U1; : : : ; 1− �Un) =
1

Sn+1; n+1

(
Sn+1; n+1 − Sn+1−�n(i); n+1

)
i6n ; (2.17)

where again Sn+1; n+1 − Sn+1−�n(i); n+1 =
∑�n(i)

j=1 Ỹ j holds for �n(i)6[n=2].
A moments re
ection yields that (2.10) and (2.17) have the same structure if the

index prime ′ and tilde ∼ are changed. Thus the proof of the lower part also implies
the result for the upper order statistics.

3. Almost sure convergence of extremal processes and point processes of extremes

The preceding results apply to triangular arrays of random variables. Sequential
results for order statistics are included if we set a ∈ {±∞} below.
Suppose that

Xn;1; : : : ; Xn;n (3.1)

is a triangular array of row-wise i.i.d. random variables with joint distribution function
Fn on R and sequential order statistics X (n)

1:k6 · · ·6X (n)
k:k of Xn;1; : : : ; Xn;k .

We will use some assumptions.
Let a ∈ [−∞;∞] be �xed. Assume that there exists a right continuous increasing

function G1 : (−∞; a)→ R with G1(x) ↓ 0 as x ↓ −∞ and

nFn(x)→ G1(x) (3.2)
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for all continuity points x ∈ (−∞; a) of G1. Notice that condition (3.2) is equivalent
to the convergence of

X (n)
1:n ∧ a → Z1 (3.3)

in distribution where Z1 is a random variable with distribution function

P(Z16x) = (1− exp(−G1(x)))1(−∞; a)(x) + 1[a;∞)(x): (3.4)

Assume also that there exists a second right continuous decreasing function
G2 : (a;∞)→ R with G2(x)→ 0 as x → ∞ and

n(1− Fn(x))→ G2(x) (3.5)

again for all continuity points x ∈ (a;∞) of G2. As above (3.5) is equivalent to the
distributional convergence of X (n)

n:n ∨ a → Z2 where

P(Z2¡x) = exp(−G2(x))1(a;∞)(x) (3.6)

holds.
The present approach now establishes almost sure convergence results for extremes

given by the special choice of random variables

X (n)
i; n :=F−1

n ( �Ui); (3.7)

where ( �U1; : : : ; �Un) is as in scheme (2.10). For this purpose, we introduce similarly to
Janssen (1994, p. 1768) the monotone inverse functions  1 : (0;∞) → (−∞; a] and
 2 : (0;∞)→ [a;∞) of G1 and G2 by

 1(y) = inf{t: G1(t)¿y} ∧ a; (3.8)

 2(y) = inf{t: G2(t)6y} ∨ a; (3.9)

where  1 and  2 are left continuous.
In contrast to Theorem 2.1 the present sequential results can also be used to establish

convergence on D[0; 1] in various cases. We will see that under our assumptions

Xn;1 → a (3.10)

holds almost surely. Thus we de�ne Xk:0=a,  1(∞)= 2(∞)=a and set �′(k)0 = �̃( j)0 =∞
and S ′

∞ = S̃∞ =∞.

Theorem 3.1. For the sequential order statistics of (3:7) we have almost sure con-
vergence of

t 7→
(
(X (n)

k:[nt])k∈N; (X
(n)
[nt]+1−j:[nt])j∈N

)
(3.11)

in D(0; 1]N × D(0; 1]N to the random variable

t 7→
(
( 1(S ′

�′(k)t
))k∈N; ( 2(S̃ �̃( j)t

))j∈N
)

(3.12)

where the lower (k ∈ N) and upper parts (j ∈ N) of (3:12) are independent. If in
addition a ∈ R holds we have almost sure convergence of (3:11) in D[0; 1]N×D[0; 1]N.
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Proof. Throughout, the almost sure convergence result will be proved for �xed k
and j. Suppose that a¿−∞ holds. Then we have

X (n)
k:[nt] = F−1

n (n �Uk:[nt]=n): (3.13)

Now the present proof follows along the lines of Janssen (1994, p. 1769). The inverse

 1; n(x) :=F−1
n (x=n) ∧ a (3.14)

of nFn|(−∞; a] converges by (3.2) pointwise to  1 except for a countable subset N ⊂
(0;∞). Since each partial sum S ′

m has continuous distribution the set

M :=
{
S ′
�′(k)t

∈ N for some t ∈ (0; 1]
}

has probability zero. If we combine this result with the almost sure convergence result
for n �Uk:[nt] of Theorem 2.1 we have almost sure convergence of

 1; n(n �U
(n)
k:[nt])→  1(S ′

�′(k)t
) (3.15)

on (0; 1] with probability 1, where again (3.15) converges on M c except for a count-
able number of t’s. In this context the properties of the convergence of monotone
functions for all continuity points are repeatedly used. Thus (3.14) and (3.15) yield
the convergence of the decreasing functions(

X (n)
k:[nt] ∧ a

)
t∈(0;1]

→
(
 1(S ′

�′(k)t
)
)
t∈(0;1]

(3.16)

for all continuity points (of the t’s) of the right-hand side with probability 1.
In the next step, we will show how (3.10) and convergence in D[0; 1] can be proved.
Notice that Vm(n):n → 0 holds a.e. for some sequence m(n)→ ∞, m(n)=n → 0, which

implies �n(1) → ∞ a.e.. Thus �′(k)t → ∞ follows a.e. as t ↓ 0. Since the functions
(3.16) are decreasing in t we have

lim inf
n→∞ Xn;1¿ lim

t↓0
 1(S ′

�′(k)t
) = a a:e: (3.17)

since Xn;1¿X (n)
k:[nt] holds for t¿k=n. The same arguments apply to the array −Xn; i if

a ∈ R. Thus (3.17) implies (3.10) and thus the extra condition (∧a) on the left-hand
side of (3.16) can be cancelled. If a ∈ R holds this result implies the desired conver-
gence in D[0; 1] since (3.16) holds for all continuity points t on a set with probability 1.
If a¡∞ holds the upper order statistics can be treated similarly for �xed j by

a minor modi�cation of the proof above concerning inverse functions. We will use
the following elementary fact of inverse functions. Let X be a random variable with
ordinary left continuous inverse distribution function F−1

X in the sense of (3.8). Then

F̃
−1
X (y) = sup{t: P(X ¡ t)6y}; (3.18)

0¡y¡ 1, de�nes another right continuous inverse.
It is easy to check that

− F−1
X (1− y) = F̃

−1
−X (y) (3.19)

holds and again convergence in distribution implies convergence of the F̃-inverse func-
tions for all continuity points. Keeping (3.19) in mind we will consider the scheme
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−Xi;n with joint distribution functions Hn(x) := 1 − Fn((−x)−). The “∼” inverse of
nHn is just

y 7→ H̃
−1
(y=n) =−F−1

n (1− y=n) (3.20)

if (3.19) is applied. Since nHn(x)→ G2(−x) holds for all continuity points of G2 with
−x¿a we have convergence of the inverse functions

H̃
−1
(·=n) ∧ (−a)→ − 2(·) (3.21)

on the set of continuity points of  2. Alltogether we see that

− X (n)
[nt]+1−j:[nt] =−F−1

n

(
U (n)
[nt]+1−j:[nt]

)
=−F−1

n

(
1− n(1− U[nt]+1−j:[nt])=n

)→ − 2(S̃ �̃ ( j)t
) (3.22)

is almost everywhere convergent in D(0; 1] if Theorem 2.1, (3.10), (3.20) and (3.21)
are taken into account. As above the monotony of (3.22) together with (3.10) implies
the convergence on D[0; 1]. The convergence for each k and each j implies the joint
convergence of the vectors with respect to the product topology.

Remark 3.1. The quantile function  2 of (3.9) can obviously be substituted by its right
continuous version

 ̃ 2(y) := sup{t:G2(t−)¿y}: (3.23)

Notice that then

 2
(
S̃ �̃( j)t

)
=  ̃ 2

(
S̃ �̃( j)t

)
(3.24)

holds a.e. for each t and all j ∈ N.

Example 3.1 (Convergence of extremes). Suppose that (3.2) or equivalently (3.3)
holds for a=∞. Then Theorem 3.1 proves almost sure convergence of the kth extremal
process (with respect to the min-operation)(

X (n)
k:[nt]

)
t∈(0;1]

→  1
(
S ′
�′(k)t

)
t∈(0;1]

(3.25)

in D(0; 1]. For k = 1 this is an almost sure version of the functional limit theorem
of Resnick (1987, Proposition 4:20), who considered maxima instead of lower order
statistics. Distributional convergence of (3.25) can easily be extended to D(0; b] for
each b¿ 0 and D(0;∞) if we start with an unbounded sequence of i.i.d. variables in
each row. De�ne now �t = S ′

�′(1)t
for each t ∈ (0; 1]. Then (�t)t∈(0;1] yields an explicit

construction of an extremal process relative on the time domain (0; 1]. Notice that �t

has the survival function

P(�t ¿x) = exp(−tG1(x)) (3.26)

and �t is a process with “independent and stationary increments” with respect to the
min-operation. To explain this let 0 = t0¡t1¡t2¡ · · ·¡tn61 be a �nite set of
coordinates and introduce further mutually independent random variables W1; : : : ; Wn

with distribution

Wi
D= �ti−ti−1 for i = 1; : : : ; n:
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Then

(�t1 ; : : : ; �tn)
D=
(
min
i6j

Wi

)
j=1; :::; n

(3.27)

holds. We refer to Resnick and Rubinovitch (1973) who studied the structure of
extremal processes.

Remark 3.2. Extremal processes can be used to motivate and introduce the popular
class of proportional hazard models for continuous time in survival models of statistics,
see (3.26). They can be motivated by the construction principle (3.27) as follows. If
the time tj is increasing the survival time

�tj =min(W1; : : : ; Wj)

is limited by an increasing number of risks which are expressed by independent ran-
dom variables W1; : : : ; Wj. Within this model, the survival time �t is determined by a
sequential accumulation of risk factors.

It is well known that there is a strong connection between convergence of extremes
and weak convergence of point processes. Since the sequential versions of these results
are needed in Section 4 the connection is brie
y summarized and outlined. Throughout,
the background and terminology of Resnick (1987) is used. Motivated by Theorem 2.1
let us consider the empirical point process

N (t)
n =

[nt]∑
k=1

�n �Uk
=

[nt]∑
k=1

�nU (n)
k: [nt]

(3.28)

for 0¡t61 on the state space (0;∞). Its intensity measure t�|(0; n) → t�|(0;∞) is con-
vergent where � denotes the Lebesgue measure. It is well known that N (t)

n is weakly
convergent to a Poisson point process N (t) with intensity measure t�|(0;∞), see Resnick
(1987). Our Theorem 2.1 now implies weak convergence of N (t)

n to the special con-
struction

N (t) =
∞∑
k=1

�S′
�′(k)t

=
∞∑
j=1

�S′
j
1(0; t)(V ′

j ); (3.29)

where N (t) can be understood as a thinned Poisson process obtained from the standard
Poisson process N (1) given by its renewal form.
The family of Poisson point processes (3.29) can be embedded into a new Poisson

point process M with state space E = (0; 1)× (0;∞). According to Proposition 3:8 of
Resnick (1987)

M =
∞∑
k=1

�(V ′
k ; S

′
k )

(3.30)

de�nes another Poisson point process with intensity measure �= �|(0;1) ⊗ �|(0;∞) on E.
If the transformation  1 (3.8) is applied to the second coordinate of M the transformed
point process

M 1 =
∞∑
k=1

�(V ′
k ; 1(S

′
k ))
1(0;1)×(−∞; a)(V ′

k ;  1(S
′
k)) (3.31)
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is again Poissonian with intensity measure �′ = �|(0;1) ⊗ � on the state space (0; 1) ×
(−∞; a) where � is the measure de�ned by the measure generation function G1|(−∞; a),
see (3.2). As stated in (3.29) the Poisson point process

M 1 ((0; t)× ·) =
∞∑
k=1

� 1(S′
k )
((−∞; a) ∩ ·)1(0; t)(V ′

k) (3.32)

is again the weak limit of the sequential partial sums which are formed by the
array (3.1).
Obviously, a second Poisson point process

M 2 =
∞∑
j=1

�(Ṽ j ; 2(S̃j))1(0;1)×(a;∞)(Ṽ j;  2(S̃j)) (3.33)

can be established on the state space (0; 1)× (a;∞) for the upper extremes, which is
independent of (3.31).
As a further application of Theorem 2.1 we mention that Theorem 2.1 also applies

to the weak convergence of the marked point process

[nt]∑
k=1

�(
k;nU (n)

k:[nt]

) to
∞∑
k=1

�(
k;S′

�′(k)
k

) (3.34)

on the state space N× (0;∞).

4. Convergent sums of sequential order statistics in D[0; 1] and L�evy processes

In this section let us consider a rowwise i.i.d. triangular array of random vari-
ables (3.1) with convergent partial sums (1.1). Again Fn denotes the distribution func-
tion of Xn;1. A necessary condition for the convergence of the partial sums is the
convergence of

nFn(x)→ �(−∞; x] for x¡ 0

and

n(1− Fn(x−))→ �([x;∞)) for x¿ 0 (4.1)

for all continuity points x of the L�evy measure � on R\{0}, see Gnedenko and
Kolmogorov (1968, p. 116). It satis�es∫

min(1; ‖x‖2) d�(x)¡∞ (4.2)

and it is well known that the L�evy measure � counts the number of jumps of the L�evy
process in the following sense: For each Borel set A⊂R with �(@A) = 0 and 0 =∈ �A
we have

�(A) = E

( ∑
06t61

1A(Zt − Zt−)

)
; (4.3)
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see for instance Gihman and Skorohod (1979). After a linear centering procedure in
time t (which is always assumed below) the characteristic functions of the L�evy process
Zt are given by the L�evy–Hin�cin formula ’Zt (y) = exp(t�(y)), y ∈ R, where

�(y) = �(y; �2; �)

=−�2y2

2
+
∫
R\{0}

(exp(ixy)− 1− ixy 1(−�;�)(x)) d�(x) (4.4)

is the exponent and �2¿0 is the variance of the normal part. We will assume that
the truncation points ±� are continuity points of the (possibly unbounded) distribution
function (4.1) of � with �¿ 0. The decomposition of the process (1.2) can now be
described in terms of characteristic functions, namely by

�(y) = �1(y) + �2(y) + �3(y); (4.5)

where by de�nition �1(y) = �(y; 0; �|(−∞;0)), �2(y) = �(y; �2; 0) and, �3(y) =
�(y; 0; �|(0;∞)). The process Zj; t corresponds to exp(t�j) for j63.
As mentioned in the introduction the processes Z1; t and Z3; t admit a series repre-

sentation given by our random variables and point processes introduced in Sections 2
and 3. If we de�ne G1(x)= �(−∞; x] for x¡ 0 and G2(x)= �(x;∞) for x¿ 0 and set
a = 0 then the inverse distribution functions (3.8) and (3.9) determine the Ferguson
and Klass (1972) series representations

Z1; t
D= Z ′

1; t :=
∞∑
j=1

( 1(S ′
j)1(0; t)(V

′
j )− tE( 1(S ′

j)1(−�;0)( 1(S ′
j)))); (4.6)

06t61, and

Z3; t
D= Z̃3; t :=

∞∑
j=1

( 2(S̃j)1(0; t)(Ṽj)− tE( 2(S̃j)1(0;�)( 2(S̃j)))); (4.7)

06t61, which is almost surely convergent in D[0; 1] with respect to the sup-norm,
see Kallenberg (1974). A univariate discussion is included in Janssen (1994). Through-
out, the processes Z1; t and Z3; t will always be identi�ed with the right-hand side of
(4.6) and (4.7). Also the triangular array is always choosen according to the quantile
representation (3.7) and (2.10). Thus, we see that  2(S̃j) is the jth largest jump of the
process t 7→ Z3; t ; t ∈ [0; 1], which occurs at time Ṽ j. The meaning of Theorem 3.1
can now be summarized as follows.

Remark 4.1. The kth lower order statistics and the jth largest order statistic (X (n)
k:n ;

X (n)
n+1−j:n) of the triangular array are almost surely convergent to ( 1(S

′
k);  2(S̃j)) which

are just the kth largest negative jump and the jth largest positive jump of the process
Zt for t ∈ [0; 1]. The same assertion holds for the sequential order statistics if the
process is restricted to 06s6t.

The present results can now be applied in order to get new invariance principles for
sums of sequential order statistics. Observe that in case∫

(−1;∞)
|x| d�(x)¡∞ (4.8)



268 A. Janssen / Stochastic Processes and their Applications 85 (2000) 255–277

the centering constants of (4.6) are convergent and they may be cancelled. Thus

Z̃1; t :=
∞∑
j=1

 1(S ′
j)1(0; t)(V

′
j ) (4.9)

is again almost surely convergent in D[0; 1] with respect to the sup-norm. On the other
hand, each L�evy process on (−∞; 0] is up to a linear drift of type (4.9) and (4.8)
holds with � = 0 and �|(0;∞) = 0. The characteristic function of (4.9) is given by

’Z̃1; t (y) = exp

(
t
∫
R\{0}

(exp(ixy)− 1) d�(x)
)

: (4.10)

Theorem 4.1. Let Xn; i60 be an i.i.d. triangular array with distributional convergent
partial sum and limit characteristic function ’Z̃1; 1 (4:10). Within our special repre-
sentation (3:7) the following result holds. For each t ∈ (0; 1] let 16kn(t)6[nt] be
any sequence with kn(t) → ∞ as n → ∞ such that t 7→ kn(t) is increasing for �xed
n ∈ N. Then

d


kn(·)∑

j=1

X (n)
j:[n·]; Z̃1; ·


→ 0 (4.11)

is convergent to zero in probability on the Skorohod space (D[0; 1]; d). If in addition
the partial sum

∑[nt]
i=1 X

(n)
i:[nt] → Z̃1; t is almost surely convergent for each t within the

special representation (3:7) then (4:11) is also almost surely convergent in D[0; 1].

Proof. Introduce the random variable

Yt = lim sup
n→∞

kn(t)∑
j=1

X (n)
j:[nt]:

This process has decreasing trajectories. For �xed t ∈ (0; 1] we have by (2.14) and the
proof of Theorem 3.1 the inequality

Yt6Z̃1; t (4.12)

almost surely. The combination of the Theorems 2.1 and 3.1 of Janssen (1994) proves
that

kn(t)∑
j=1

X (n)
j:[nt] → Z̃1; t (4.13)

is convergent in distribution as n → ∞ for �xed t. Notice that (4.12) implies

P


−

kn(t)∑
j=1

X (n)
j:[nt]6− Z̃1; t − �


→ 0 (4.14)

for each �¿ 0 and thus Lemma 4.1 below together with Remark 4.2 yield convergence
in probability of (4.13) again for �xed t.
The proof of (4.11) now follows from routine convergence arguments for processes

with decreasing trajectories. Let M ⊂ [0; 1]; 0; 1 ∈ M be a countable dense subset.
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For each subsequence there exists a further subsequence {m}⊂N, such that (4.13) is
almost surely convergent along {m} for all t ∈ M . Consequently, (4.11) tends to zero
almost surely along the subsequence {m} and the desired result is proved.
If in addition the partial sums are almost surely convergent we obtain in view

of (4.12)

kn(t)∑
i=1

X (n)
i:[nt] → Z̃1; t (4.15)

almost surely for �xed t. As above (4.15) implies almost sure convergence �rst on M
and then of (4.11) as n → ∞.

Lemma 4.1. Let Wn; n¿0; be a sequence of real random variables with P(Wn6W0−
�)→ 0 for each �¿ 0. Suppose that there exists a strictly increasing function f :R→
[0;∞) with continuous inverse and |f(x) − f(y)|6|x − y| for all x; y ∈ R. Let∫
f(W0) dP be �nite and suppose that∫

f(Wn) dP →
∫

f(W0) dP (4.16)

holds as n → ∞. Then Wn → W0 is convergent in P-probability.

Proof. It is enough to prove that f(Wn) → f(W0) is convergent in probability. The
assumptions imply that

P(f(Wn)− f(W0)6− �)→ 0

holds as n → ∞ for each �¿ 0. Now introduce new random variables Yn=min(f(Wn);
f(W0) + �=2). There exists a sequence �n ↓ 0 with

P(An)→ 0;

where An is the event An= {f(Wn)−f(W0)6− �n}. Since
∫
Yn1An dP → 0 holds our

assumptions imply∫
Yn dP →

∫
f(W0) dP

as n → ∞ if the inequality∫
f(W0) dP6 lim inf

n→∞

∫
Yn dP06 lim

n→∞

∫
f(Wn) dP0

is taken into account. Thus

�P(f(Wn)¿f(W0) + �)=2

6
∫
{f(Wn)¿f(W0)+�}

(f(Wn)− f(W0)− �=2) dP

6
∫
(f(Wn)− Yn) dP → 0

proves the result.
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Remark 4.2. Condition (4.16) obviously holds for some function f if Wn → W0 is
convergent in distribution. Under the assumptions of Lemma 4.1 distributional conver-
gence implies the convergence in probability.

Remark 4.3. The assumptions of Theorem 4.1 allow di�erent choices of the portion
kn(t) of contributing lower order statistics. Note that for kn(t) = [nt] we obtain an
invariance principle (in probability) for the total partial sum. On the other hand, if
kn6n denotes a further sequence with kn → ∞ we may choose either kn(t) = kn ∧ [nt]
or kn(t) = [knt].

Next let us consider arbitrary convergent partial sums. Then it is known that the dis-
tributional convergence of sums of centered extremes for �xed t ¿ 0 strongly depends
on the portion kn(t) of order statistics since a non-trivial Gaussian part of the limit
law changes the situation of (4.11) completely, see Janssen (1994). As conclusion of
that paper recall that always the partial sum of a �nite number of centered lower order
statistics approximates the distribution of Z1; t up to � within the L�evy metric for conver-
gence in distribution. An approximation of this type also holds for extremal processes
of the triangular array and the parts Z1; t and Z3; t of the L�evy process in D[0; 1].
Consider below distributional convergent partial sums (1.1). Without restriction we

may assume that E(Xn;11(−�;�)(Xn;1)) = 0 holds for each n. (Otherwise the triangular
array may be centered.) Then the characteristic function of the L�evy process is just
(4.4) and (4.6), (4.7) provide a series representation of (1.2) for Z ′

1; t ; Z̃3; t , respectively.
In addition, assume that there exists some 0¡�¡ 1 with∫

min(1; |x|2−�) d�(x)¡∞: (4.17)

Note for instance that for each stable non-Gaussian process there exists some � such
that the latter condition holds.

Theorem 4.2. Under the present assumptions about the underlying triangular array
our construction (3:7) yields the following results in (D[0; 1]; d).
(a) (One-sided version) For each pair of positive values �1; �2 there exist positive

integers k and n0 such that

P


d


 k∑

j=1

(
X (n)
j:[n·] − E

(
X (n)
j:[n·]1(−�;�)

(
X (n)
j:[n·]

)))
; Z ′

1; ·


¿�1


6�2 (4.18)

holds for all n¿n0.
(b) (Two-sided version) For each pair of positive values �1; �2 there exist positive

integers k; r and n0 such that

P

(
d

(
k∑

j=1

(X (n)
j:[n·] − E(X (n)

j:[n·]1(−�;�)(X
(n)
j:[n·]))) +

r∑
i=1

(X (n)
[n·]+1−i:[n·]

−E(X (n)
[n·]+1−i:[n·]1(−�;�)(X

(n)
[n·]+1−i:[n·]))); Z

′
1; · + Z̃3; ·

)
¿�1

)
6�2 (4.19)

holds for all n¿n0.
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The proof of Theorem 4.2 requires some preparations. A formal summation of the
limit variables of the lower order statistic (3.12) yield the centered series

∞∑
j=1

(
 1(S ′

�′t ( j)
)− E( 1(S ′

�′t ( j)
)1(−�;0)( 1(S ′

�′t ( j)
)))
)
: (4.20)

The next Lemma proves that this series is indeed convergent in D[0; 1].

Lemma 4.2. Under condition (4:17) series (4:20) converges in probability in
(D[0; 1]; ‖ · ‖) and it coincides almost surely with Z ′

1; · given by (4:6).

Proof. Notice that similar to (3.29) we have

n∑
k=1

 1(S ′
�′t (k)
) =

�′t
(n)∑

j=1

 1(S ′
j)1(0; t)(V

′
j ): (4.21)

Without restriction we may now assume that �(−∞;−�] = 0 and  1¿ − � hold,
cf. Janssen (1994, Section 4) for related truncation methods.
Under condition (4.8) one obtains by (4.10) of Janssen (1994)

∞∑
j=1

E( 1(S ′
j))¿−∞ (4.22)

and elementary calculations for inverse binomial distributions prove
∞∑
j=1

E
(
 1
(
S ′
�′t ( j)
))
= t

∞∑
j=1

E( 1(Sj)) (4.23)

for each t ¿ 0. Notice that according to our assumption the indicator 1(−�;0)(·) disap-
pears. In this special case (4.21) and (4.23) imply the result.
The general case can be treated by the following arguments. Kallenberg’s result of

(1974) shows that

t 7→ �n(t) :=
�′t
(n)∑

j=1

 1(S ′
j)1(0; t)(V

′
j )− t

�′t
(n)∑

j=1

bj (4.24)

is convergent in (D[0; 1]; ‖ · ‖) for bj :=E( 1(Sj)) which abbreviates the centering
coe�cients. Here (4.21) and �′t

(n)¿n should be taken into account. An inspectation of
the means of (4.21) implies

n∑
j=1

E
(
 1(S ′

�′t ( j)
)
)
= E


t

�′t
(n)∑

j=1

bj


 (4.25)

if �rst conditional expectations under (V ′
j )j∈N are considered.

Let Wn(t) denote the nth partial sum of (4.20). Then we are now in the position to
prove the convergence of

‖Wn(·)− Z ′
1; ·‖ → 0 (4.26)

in probability. Since Wn(0) = 0 we have

‖Wn(·)− Z ′
1; ·‖6 sup

06t61=n
|Z ′
1; t |+ sup

1=n6t61
|Wn(t)− Z ′

1; t | (4.27)
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for each n. It is easy to see that

sup
06t6s

|Z ′
1; t | → 0 (4.28)

in probability as s ↓ 0. (Recall that martingale arguments can be applied since Var(Z ′
1; s)

→ 0 holds as s ↓ 0.) On the other hand, a comparison of the partial sums (4.21), (4.24)
and (4.25) yields

sup
1=n6t61

|Wn(t)− Z ′
1; t |6 sup

1=n6t61
|�n(t)− Z ′

1; t |

+ sup
1=n6t61

∣∣∣∣∣∣t

�′t

(n)∑
j=1

bj − E


�′t

(n)∑
j=1

bj





∣∣∣∣∣∣ : (4.29)

Due to our assumptions the sequence bn ↑ 0 is increasing. Notice that
∞∑
n=1

|bn|2−�6
∞∑
n=1

E(| 1(S ′
n)|2−�)¡∞ (4.30)

holds. In view of Janssen (1994), (4.13) and condition (4.17) our sum (4.30) is �nite.
(Turn to a L�evy measure with inverse y 7→ −| 1(y)|2−�.) The subsequent Lemma 4.3
together with (4.24) implies that (4.29) converges to zero in probability. Thus our
formulas (4.27) and (4.28) imply the result.

Lemma 4.3. Let aj ↓ 0 be a sequence of real numbers with
∑∞

j=1 a
2−�
j ¡∞ for some

0¡�¡ 1. De�ne Yn(t) =
∑�′t

(n)

j=1 aj. Then we have

sup
1=n6t61

|Yn(t)− E(Yn(t))| → 0 (4.31)

in probability as n → ∞.

Proof. It is easy to see that

s 7→ �′(n)1−s

is a process with independent increments and �(n)1 =n. Thus s 7→ Yn(1−s)−E(Yn(1−s))
is a martingale. Now upper bounds for the variance of Yn(t) will be deduced. For these
reasons let us �rst prove that

Var(Yn(t))6a2nVar(�
′
t
(n)) (4.32)

holds. Since �′t
(n)¿n we may assume for a moment that a1 = a2 = · · · = an−1 = 0 is

satis�ed. Then we may decompose

an�′t
(n) = Yn(t) +

�′t
(n)∑

j=n

(an − aj)=:Yn(t) + Zn(t):

By H�ajek’s Lemma 3:1, see H�ajek (1968), we have Cov(Yn(t); Zn(t))¿0 and thus

Var(Yn(t))6Var(an�′t
(n)) (4.33)
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implies statement (4.32). Elementary properties of geometric distributions imply

a2nVar(�
′
t
(n))6na2nVar(�

′
t
(1))6

na2n
t2

(4.34)

for each t ¿ 0. This inequality can be combined with the Birnbaum Marshall
inequalities for martingales, see Shorack and Wellner (1986, p. 873). De�ne �(s) =
Var(Yn(1− s)). Then

P

(
sup

06s61−1=n
(1− s)|Yn(1− s)|¿�

)
6�−2

∫
[0;1−1=n]

(1− s)2 d�(s) (4.35)

holds. Integration by parts implies∫
[0;1−1=n]

(1− s)2 d�= n−2�(1− 1=n) + 2
∫
[0;1−1=n]

(1− s)�(s) ds: (4.36)

Applying (4.32) and (4.34) we obtain the following upper bound of (4.36), namely

na2n

(
1 + 2

∫
[0;1−1=n]

(1− s)−1 ds
)
= na2n(1 + 2 log n): (4.37)

By our assumptions we have that na2−�
n is bounded and (4.35) converges to zero

as n → ∞.

The proof of Theorem 4.2.
The present proof will be prepared by convergence results about functions in D[0; 1].

Although the Skorohod space (D[0; 1]; d) is no topological group the following assertion
holds. Under conditions (4.38) the convergence of xn →y and yn →y in D[0; 1] implies
convergence of the sum xn + yn → x + y with respect to d (Whitt, 1980).

x; y have no joint discontinuity points and they have

no jumps in the upper end point t = 1: (4.38)

Since this fact may be known we will only sketch the analytic proof along the lines
of Billingsley (1968, Section 14) using his notation.
If I is an interval de�ne

wx(I) = sup{|x(s)− x(t)|: s; t ∈ I}:
For each �¿ 0 we may choose discontinuity points 0¡t1¡t2¡ · · ·¡tr−1¡ 1 of
x with

wx[ti−1; ti)¡� for 16 i6r − 1
and

wx[tr−1; 1]¡�;

where t0 = 0; tr = 1. Observe that for each �¿ 0 we have

wx−xn [ti−1 + �; ti − �]62�

and

wx−xn [tr−1 + �; 1]62�

for n large enough.
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The same assertion holds for discontinuity points s1¡s2¡ ·¡sq−1 of y which are
di�erent from the t’s.
Choose now �6� small enough such that |ti − sj|¿ 8� holds for all pairs (i; j) and

A :=
r−1⋃
i=1

(ti − 4�; ti + 4�) ∪
q−1⋃
j=1

(sj − 4�; sj + 4�)

is a union of pairwise disjoint intervals. Let now �n : [0; 1] → [0; 1] be strictly in-
creasing and continuous with �n(0) = 0; �n(1) = 1 such that ‖xn ◦ �n − x‖¡� and
sup06t61|�n(t) − t|¡� holds for large n and let �n be its counterpart for the y’s,
namely

‖yn ◦ �n − y‖¡� and sup
06t61

|�n(t)− t|¡�:

De�ne now a new continuous function �∗n (t) = t for t outside of A and

�∗n = �n on [ti − 2�; ti + 2�];

�∗n = �n on [sj − 2�; sj + 2�]:
On the remaining intervals of the type [ti − 4�; ti − 2�] the function �∗n is assumed to
be linear and continuous in the endpoint. If we put everything together we have

‖(xn + yn) ◦ �∗n − (x + y)‖64�:
Thus (b) is proved.
If we now put all technical details together our Theorem 4.2 can be proved. We will

restrict ourselves to (b) since the proof of (a) is similar. As consequence of Lemma 4.2
we may choose positive integers k and r with

P

(∥∥∥∥
k∑

j=1

(
 1(S ′

�′(j)·
)− E( 1(S ′

�′(j)·
)1(−�;0)( 1(S ′

�′(j)·
)))
)

+
r∑

i=1

(
 2(S̃ �̃(i)·

)− E( 2(S̃ �̃(i)·
)1(0;�)( 2(S̃ �̃(i)·

)))
)

− (Z ′
1; · + Z̃3; ·)

∥∥∥∥¿�1=2

)
6�2=2: (4.39)

From now on k and r are �xed. It is easy to see that Theorem 3.1 and (3.10) imply
almost sure convergence of

k∑
j=1

X (n)
j:[n·] →

k∑
j=1

 1(S ′
�′(j)·
) (4.40)

and
r∑

i=1

X[n·]+1−i:[n·] →
r∑

i=1

 2(S̃ �̃( j)·
) (4.41)

both in D[0; 1] since the left-hand side of (4.40) decreases for t¿k=n. Since V ′
1 ; V

′
2 ; : : : ;

Ṽ 1; Ṽ 2; : : : are all di�erent with probability one we see that the limit processes (4.40)
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and (4.41) have no joint jumps almost surely and the process does not jump at t = 1
again with probability one. According to statement (4.38) the sum

k∑
j=1

X (n)
j:[n·] +

r∑
i=1

X (n)
[n·]+1−i:[n·] (4.42)

is almost surely convergent in (D[0; 1]; d). On the other hand, the dominated conver-
gence theorem proves pointwise convergence of

k∑
j=1

E
(
X (n)
j:[nt]1(−�;�)(X

(n)
j:[nt])

)
→

k∑
j=1

E
(
S ′
�′(j)t
1(−�;0)(S ′

�′(j)t
)
)
: (4.43)

Notice that the right-hand side is continuous in t. The uniform convergence of (4.43)
in t can be proved as follows. If we substitute the truncation function x 7→ x1(−�;�)(x)
of (4.43) by the monotone function

x 7→ ’(x) =−�1(−∞;−�)(x) + x1(−�;�)(x) + �1[�;∞)(x)

we get by the monotony uniform convergence of

E
(
’(X (n)

j:[n·])
)

for �xed j since the limit is continuous in t. The same argument applies to the trunca-
tion function −�1(−∞;−�]. In addition (3.10) implies that the expectations with respect
to truncation functions 1(�;∞) converge uniformly to zero. Thus (4.43) is uniformly
convergent and a similar result holds for the expectations of the upper order statistics.
The combination of (4.40)–(4.42) together with their truncated expectations implies
almost sure convergence of the properly centered sums (4.42) to the related sum of
partial sums of Z ′

1; · and Z̃3; · in (D[0; 1]; d). The desired assertion now follows from
(4.39).

Finally, we will return to the stable process (1.4) of Example 1.1. The application of
Theorem 4.1 requires the following lemma which implies the almost sure convergence
result (1.8).

Lemma 4.4. (a) The �= 1=2 stable process (1:4) is equal in distribution to

Zt
D=
2
�

∞∑
j=1

S−2
j 1(0; t)(Vj); 0¡t61: (4.44)

(b) Let Ft denote the distribution function of Zt . Then Ft has the inverse distribution
function t2F−1

1 (·) and we may choose Xn; i of (1:6) as

Xn; i := n−2F−1
1 (1− �Ui); 16i6n; (4.45)

where ( �U1; : : : ; �Un) is taken from (2:4). For this special representation we have
[nt]∑
i=1

X (n)
[nt]+1−i:[nt] →

2
�

∞∑
j=1

S−2
j 1(0; t)(Vj) (4.46)

almost surely for each t ¿ 0.
As consequence the almost sure invariance principle (1:8) holds for the inter arrival

times (1:6).
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Proof. (a) The stability of the process implies Zt
D= t2Z1 and Ft(x) = F1(xt−2). Since

(1− F1(x))x1=2 → 2=
√
2� holds for x → ∞, see Feller (1971, p. 52, 64), we have

n(1− F1=n(x))→ �([x;∞)) = 2√
2�

x−1=2 for x¿ 0:

Consequently, the inverse (3.9) for � is just  2(y) = 2=�y−2 for y¿ 0 and (4.44)
holds.
(b) For the inverse of F1 we obtain

u2F−1
1 (1− u)→ 2=� as u → ∞:

The arguments used in the proof of Theorem 4.1 show that for each �xed k and �xed
t ¿ 0 we have almost sure convergence of

k∑
i=1

n−2F−1
1 (1− �Ui:[nt])→ 2

�

k∑
j=1

S−2
�( j)t

; (4.47)

where �( j)t is de�ned by (2.3). Notice that the almost sure limit of the right-hand side
of (4.47) is just (4.44), confer (3.29) and (4.9).
In the next step, an upper bound for the remaining sum of the lower n − k order

statistics will be derived. The concrete expression of the F1-density implies

1− F1(x)6�([x;∞))
and

06F−1
1 (1− u)6 2(u)

for each 0¡u¡ 1. Thus
[nt]∑

i=k+1

n−2F−1
1 (1− �U

(n)
i:[nt])6

n∑
i=k+1

n−2F−1
1 (1− �U

(n)
i:n )

6
2
�

(
Sn+1

n

)2 ∞∑
i=k+1

S−2
i

holds. Notice that the right-hand side converges to zero almost surely if min(n; k)→ ∞.
This result combined with (4.47) implies the statement of Lemma 4.1(b).
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Cs�orgő, M., Cs�orgő, S., Horv�ath, L., Mason, D.M., 1986. Normal and stable convergence of integral functions
of the empirical distribution function. Ann. Probab. 14, 86–118.
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