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Abstract

We prove a duality theorem for the stochastic optimal control problem with a convex cost function
and show that the minimizer satisfies a class of forward–backward stochastic differential equations. As an
application, we give an approach, from the duality theorem, to h-path processes for diffusion processes.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Let c(x, y) : Rd
×Rd

7→ [0,∞) be measurable and let P0 and P1 ∈ M1(Rd) := the complete
separable metric space, with a weak topology, of Borel probability measures on Rd . The study
of a minimizer of the following T (P0, P1) is called the Monge–Kantorovich problem (or the
optimal mass transportation problem) which has been studied by many authors and which has
been applied in many fields (see [1,2,6,10,12,15,30,33] and the references therein):

T (P0, P1) := inf{E[c(φ(0), φ(1))]|Pφ(t)−1
= Pt (t = 0, 1)}. (1.1)

(When it is not confusing, we use the same notation P for different probability measures.)
Let L(t, x; u) : [0, 1]×Rd

×Rd
7→ [0,∞) be continuous and convex in u. Consider the case

where for (x0, x1) ∈ Rd
× Rd ,
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c(x0, x1) = inf

{∫ 1

0
L

(
t, φ(t);

dφ(t)
dt

)
dt

∣∣∣∣∣φ(t) = xt (t = 0, 1),

t 7→ φ(t) is absolutely continuous

}
, (1.2)

which is a standard variational problem in classical mechanics. Since for any (x0, x1) ∈ Rd
×Rd ,

T (δx0 , δx1) = c(x0, x1),

where δx denotes the delta measure on x , the Monge–Kantorovich problem can be considered as
a generalization of classical mechanics.

Remark 1.1. If L = `(u), then c(x0, x1) = `(x1 − x0) and a function x0 + t (x1 − x0) is a
minimizer in (1.2). This can be shown using Jensen’s inequality (see, e.g., [13, p. 35]).

In the last few years we have been studying the optimal mass transportation problem as
stochastic mechanics in the framework of the stochastic optimal control theory. The following is
a stochastic optimal control counterpart of (1.1) and (1.2) (see [24–27] and [28]):

V (P0, P1) := inf

{
E

[∫ 1

0
L(t, X (t);βX (t, X)) dt

]∣∣∣∣∣
P X (t)−1

= Pt (t = 0, 1), X ∈ A
}
. (1.3)

The set A will be given a precise definition at the end of this section. For the moment, let
us just say that X ∈ A implies that {WX (t) := X (t) − X (0) −

∫ t
0 βX (s, X) ds}0≤t≤1 is a

σ [X (s) : 0 ≤ s ≤ t]-Brownian motion. The meaning of the study of V (P0, P1) is this. Suppose
that we know the probability distributions of a stochastic system at times t = 0 and 1. To study
what happened during the time interval (0, 1), we have to consider problems such as (1.3).

The duality theorem for T (P0, P1) plays a crucial role in the Monge–Kantorovich problem
(see [2,20,30,26,33]). In this paper we prove the duality theorem for V (P0, P1) and obtain the
properties of minimizers of V (P0, P1).

We explain the duality theorem for T (P0, P1) when c(x0, x1) = `(x1 − x0) (see Remark 1.1).
It is said that the duality theorem for T (P0, P1) holds if the following is true:

T (P0, P1) = sup
{∫

Rd
f (x)P1(dx)−

∫
Rd

T f (x)P0(dx)

∣∣∣∣ f ∈ Cb(Rd)

}
, (1.4)

where

T f (x) := sup{ f (y)− `(y − x)|y ∈ Rd
}.

It is easy to see that the following holds (see Remark 1.1):

T f (x) = sup

{
f (φ(1))−

∫ 1

0
`

(
dφ(t)

dt

)
dt

∣∣∣∣∣φ(0) = x,

t 7→ φ(t) is absolutely continuous

}
. (1.5)
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Remark 1.2. As far as the applications are concerned, one would like to replace Cb(Rd) on the
r.h.s. of (1.4) by a smaller space so that one can take a maximizing sequence of nice functions.
Indeed, [15] proved and used that the maximizer of the r.h.s. of (1.4) is locally Lipschitz
continuous. For the readers’ convenience, we show, in Appendix, that Cb(Rd) can be replaced
by C∞

b (R
d) on the r.h.s. of (1.4) provided that (1.4) holds.

For f ∈ Cb(Rd), put

ψ(t, x) :=

sup
{

f (y)− (1 − t)`

(
y − x

1 − t

)∣∣∣∣ y ∈ Rd
}

((t, x) ∈ [0, 1)× Rd),

f (x) ((t, x) ∈ {1} × Rd).

Then ψ(0, x) = T f (x). Suppose that `(u)/|u| → ∞ as |u| → ∞. Then for any bounded,
uniformly Lipschitz continuous function f , ψ(t, x) is bounded and uniformly Lipschitz
continuous in [0, 1] × Rd and is a unique continuous viscosity solution of the following:

∂ψ(t, x)

∂t
+ `∗(Dxψ(t, x)) = 0 ((t, x) ∈ [0, 1)× Rd), (1.6)

ψ(1, x) = f (x) (x ∈ Rd)

(see [11, Chapters 3 and 10]), where

`∗(z) := sup{〈z, u〉 − `(u)|u ∈ Rd
},

〈·, ·〉 denotes the inner product in Rd and Dx := (∂/∂xi )
d
i=1. In particular, from Remark 1.2, if

(1.4) holds, then

T (P0, P1) = sup
{∫

Rd
ψ(1, x)P1(dx)−

∫
Rd
ψ(0, x)P0(dx)

}
, (1.7)

where the supremum is taken over all bounded, uniformly Lipschitz continuous viscosity
solutions of (1.6).

We explain the duality theorem for V (P0, P1). We say that the duality theorem for V (P0, P1)

holds if the following is true (see Theorem 2.1):

V (P0, P1) = sup
{∫

Rd
ϕ(1, x)P1(dx)−

∫
Rd
ϕ(0, x)P0(dx)

}
, (1.8)

where the supremum is taken over all classical solutions ϕ, to the following Hamilton–Jacobi–
Bellman (HJB for short) equation, for which ϕ(1, ·) ∈ C∞

b (R
d):

∂ϕ(t, x)

∂t
+

1
2
4ϕ(t, x)+ H(t, x; Dxϕ(t, x)) = 0 ((t, x) ∈ [0, 1)× Rd). (1.9)

Here 4 :=
∑d

i=1 ∂
2/∂x2

i and for (t, x, z) ∈ [0, 1] × Rd
× Rd ,

H(t, x; z) := sup
u∈Rd

{〈z, u〉 − L(t, x; u)}. (1.10)

Remark 1.3. In the applications of the duality theorem for V (P0, P1), it is important that
functions ϕ in (1.8) are sufficiently smooth so that one can consider the stochastic differential
equation for ϕ(t, X (t)) for a minimizer X (t) of V (P0, P1). In our setting, for any ϕ(1, ·) ∈

C∞

b (R
d), the HJB equation (1.9) has a unique solution ϕ ∈ C1,2([0, 1]×Rd)∩C0,1

b ([0, 1]×Rd)
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and ϕ has a variational expression which is a stochastic optimal control counterpart of (1.5) (see
Lemma 3.3).

As is well known, the quadratic case is important and has been studied by many authors
(see [34,14], and also [5,32] and the references therein).

Proposition 1.1 ([25, Lemma 3.4]). Suppose that L = |u|
2, and P1 is absolutely continuous

w.r.t. the Lebesgue measure with p1(x) := P1(x)/dx. Let us also assume that∫
Rd

|x |
2(P0(dx)+ P1(dx))+

∫
Rd

p1(x) log p1(x) dx < ∞.

Then V (P0, P1) is finite, there exists a unique minimizer which is an h-path process {Xh(t)}0≤t≤1
for Brownian motion (see [9]) and (1.8) holds.

In [25] we gave a new proof for the existence of a deterministic minimizer of T (P0, P1)

when c(x0, x1) = `(x1 − x0), by proving that the zero-noise limit of {Xh(t)}0≤t≤1 exists, is
deterministic and is a minimizer of T (P0, P1) (here we say that a stochastic process {X (t)}0≤t≤1
is deterministic if X (t) is a function of t and X (0)). The generalization of this result obtained by
taking the zero-noise limit of the duality theorem in this paper is given in [28].

Since we fix initial and terminal distributions of the semimartingales under consideration,
the known approach is not useful (see [13]). Our proof relies on the Legendre duality of a
lower semicontinuous convex function of Borel probability measures on Rd (see the proof of
Theorem 2.1).

When D2
u L(t, x; u) and D2

u L(t, x; u)−1 exist and are bounded, we show, from (1.8), that the
minimizer of V (P0, P1) satisfies a forward–backward stochastic differential equation (FBSDE
for short; see Theorem 2.2). As an application, we give an approach, from the duality theorem,
to h-path processes for diffusion processes (see Corollary 2.3).

We also show that the supremum in (1.8) can be taken over all bounded, uniformly Lipschitz
continuous viscosity solutions to the HJB equation (1.9) (see Corollary 2.2). For the readers’
convenience, we give the definition of the viscosity solution to the HJB equation (1.9).

Definition 1.1 (Viscosity Solution). (see e.g. [13]) (Viscosity Subsolution) ϕ ∈ U SC([0, 1]×Rd)

is a viscosity subsolution of (1.9) if whenever h ∈ C1,2([0, 1)×Rd) and ϕ−h takes its maximum
at (s, y) ∈ [0, 1)× Rd ,

∂h(s, y)

∂s
+

1
2
4h(s, y)+ H(s, y; Dx h(s, y)) ≥ 0.

(Viscosity Supersolution) ϕ ∈ L SC([0, 1]×Rd) is a viscosity supersolution of (1.9) if whenever
h ∈ C1,2([0, 1)× Rd) and ϕ − h takes its minimum at (s, y) ∈ [0, 1)× Rd ,

∂h(s, y)

∂s
+

1
2
4h(s, y)+ H(s, y; Dx h(s, y)) ≤ 0.

(Viscosity Solution) ϕ ∈ C([0, 1] × Rd) is a viscosity solution of (1.9) if it is both a viscosity
subsolution and a viscosity supersolution of (1.9).

The construction of a semimartingale from a solution of the Fokker–Planck equation with the
p-th integrable drift vector (p > 1) is given in [27] as an application of the duality theorem in
this paper. This is a generalization of [23] where p = 2.
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As the set A over which the infimum is taken in (1.3), we consider the set of all Rd -valued,
continuous semimartingales {X (t)}0≤t≤1 on a complete filtered probability space such that there
exists a Borel measurable βX : [0, 1] × C([0, 1]) 7→ Rd for which

(i) ω 7→ βX (t, ω) is B(C([0, t]))+-measurable for all t ∈ [0, 1], where B(C([0, t])) denotes the
Borel σ -field of C([0, t]),

(ii) {WX (t) := X (t)− X (0)−
∫ t

0 βX (s, X) ds}0≤t≤1 is a σ [X (s) : 0 ≤ s ≤ t]-Brownian motion
(see [22]).

We explain why this is appropriate. Let (Ω ,F, {Ft }t≥0, P) be a complete filtered probability
space, X0 be a (F0)-adapted random variable for which P X−1

0 = P0, and {W (t)}t≥0 denote a
d-dimensional (Ft )-Brownian motion for which W (0) = 0 (see, e.g., [16] or [22]). For a Rd -
valued, (Ft )-progressively measurable stochastic process {u(t)}0≤t≤1, put

Xu(t) = X0 +

∫ t

0
u(s) ds + W (t) (t ∈ [0, 1]). (1.11)

If E[
∫ 1

0 |u(t)| dt] is finite, then {Xu(t)}0≤t≤1 ∈ A and

βXu (t, Xu) = E[u(t)|Xu(s), 0 ≤ s ≤ t] (1.12)

(see [22, p. 270]). Besides this, by Jensen’s inequality,

E

[∫ 1

0
L(t, Xu(t); u(t)) dt

]
≥ E

[∫ 1

0
L(t, Xu(t);βXu (t, Xu)) dt

]
. (1.13)

In Section 2 we state our result which will be proved in Section 4. Technical lemmas are given
in Section 3. In Appendix we give the proof of the last past of Remark 1.2 and a brief description
of an h-path process {Xh(t)}0≤t≤1 for the readers’ convenience.

2. Duality theorem and applications

We recall that our minimization problem is

V (P0, P1) := inf

{
E

[∫ 1

0
L(t, X (t);βX (t, X)) dt

]∣∣∣∣∣
P X (t)−1

= Pt (t = 0, 1), X ∈ A
}
. (2.1)

HereA denotes the set of all Rd -valued, continuous semimartingales {X (t)}0≤t≤1 on a complete
filtered probability space such that there exists a Borel measurable βX : [0, 1]× C([0, 1]) 7→ Rd

for which

(i) ω 7→ βX (t, ω) is B(C([0, t]))+-measurable for all t ∈ [0, 1], where B(C([0, t])) denotes the
Borel σ -field of C([0, t]),

(ii) {WX (t) := X (t)− X (0)−
∫ t

0 βX (s, X) ds}0≤t≤1 is a σ [X (s) : 0 ≤ s ≤ t]-Brownian motion.

In this paper we will use the following notation when we refer to the properties of L .

(A.0) L(t, x; u) : [0, 1] × Rd
× Rd

7→ [0,∞) is continuous and is convex in u.
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(A.1) There exists δ > 1 such that

lim inf
|u|→∞

inf{L(t, x; u) : (t, x) ∈ [0, 1] × Rd
}

|u|δ
> 0.

(A.2)

1L(ε1, ε2) := sup
L(t, x; u)− L(s, y; u)

1 + L(s, y; u)
→ 0 as ε1, ε2 → 0,

where the supremum is taken over all (t, x) and (s, y), ∈ [0, 1]×Rd , for which |t−s| ≤ ε1,
|x − y| < ε2 and all u ∈ Rd .

(A.3) (i) L(t, x; u) ∈ C3([0, 1] × Rd
× Rd

: [0,∞)),
(ii) D2

u L(t, x; u) is positive definite for all (t, x, u) ∈ [0, 1] × Rd
× Rd ,

(iii) sup{L(t, x; 0) : (t, x) ∈ [0, 1] × Rd
} is finite,

(iv) |Dx L(t, x; u)|/(1 + L(t, x; u)) is bounded,
(v) sup{|Du L(t, x; u)| : (t, x) ∈ [0, 1] × Rd , |u| ≤ R} is finite for all R > 0.

(A.4) (i) 1L(0,∞) is finite, or (ii) δ = 2 in (A.1).

Remark 2.1. (i). Take a ∈ C1
b([0, 1] × Rd) ∩ C3([0, 1] × Rd) for which inf{a(t, x)|(t, x) ∈

[0, 1] × Rd
} > 0. If L = a(t, x)(1 + |u|

2)δ/2 (δ > 1), then (A.1)–(A.3) and (A.4, i) hold.
Take a uniformly positive definite A(t, x) = (Ai j (t, x))di, j=1 for which Ai j ∈ C1

b([0, 1] × Rd)∩

C3([0, 1] × Rd) (i, j = 1, . . . , d). If L = 〈A(t, x)u, u〉, then (A.1)–(A.4) hold. (ii). (A.3, i, ii)
imply (A.0). (iii). (A.1) and (A.3, i, ii) imply that for any (t, x) ∈ [0, 1]×Rd , H(t, x; ·) ∈ C3(Rd)

and for any u and z ∈ Rd ,

z = Du L(t, x; u) if and only if u = Dz H(t, x; z),

D2
u L(t, x; u) = D2

z H(t, x; z)−1 if u = Dz H(t, x; z)

(see [33, 2.1.3]), where D2
u := (∂2/∂ui∂u j )

d
i, j=1.

We give a result on the existence of a minimizer of V (P0, P1).

Proposition 2.1. Suppose that (A.0)–(A.2) hold. Then for any P0 and P1 ∈ M1(Rd) for which
V (P0, P1) is finite, V (P0, P1) has a minimizer.

The following is our main result.

Theorem 2.1 (Duality Theorem). Suppose that (A.1)–(A.4) hold. Then (1.8) holds, namely, for
any P0 and P1 ∈ M1(Rd),

V (P0, P1) = sup
{∫

Rd
ϕ(1, x)P1(dx)−

∫
Rd
ϕ(0, x)P0(dx)

}
(∈ [0,∞]), (2.2)

where the supremum is taken over all classical solutions ϕ, to the following HJB equation, for
which ϕ(1, ·) ∈ C∞

b (R
d):

∂ϕ(t, x)

∂t
+

1
2
4ϕ(t, x)+ H(t, x; Dxϕ(t, x)) = 0 ((t, x) ∈ [0, 1)× Rd). (2.3)
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Corollary 2.1. Suppose that (A.1)–(A.4) hold. Then for any P0 and P1 ∈ M1(Rd) for which
V (P0, P1) is finite and any minimizer {X (t)}0≤t≤1 of V (P0, P1), there exists a sequence of
classical solutions {ϕn}n≥1, of the HJB equation (2.3), such that ϕn(1, ·) ∈ C∞

b (R
d) (n ≥ 1)

and that the following holds:

βX (t, X) = bX (t, X (t)) := E[βX (t, X)|(t, X (t))]

= lim
n→∞

Dz H(t, X (t); Dxϕn(t, X (t))) dt dP X (·)−1-a.e. (2.4)

Since classical solutions to PDEs are viscosity solutions (see, e.g., [13]), we obtain the
following.

Corollary 2.2. Suppose that (A.1)–(A.3) and (A.4, i) hold. Then (2.2) holds even if the
supremum is taken over all bounded, uniformly Lipschitz continuous viscosity solutions ϕ of
(2.3).

Next we study just the case where (A.4, ii) holds.

Proposition 2.2. (i) Suppose that (A.0)–(A.2) and (A.4, ii) hold. Then for any P0 and P1 ∈

M1(Rd) for which V (P0, P1) is finite, V (P0, P1) has a Markovian minimizer.
(ii) Suppose in addition that for any (t, x) ∈ [0, 1] × Rd , L(t, x; u) is strictly convex in u. Then

the minimizer is unique.

We now introduce the additional assumption:

(A.5) D2
u L(t, x; u) is bounded,

and show that a minimizer of V (P0, P1) satisfies a FBSDE (see (2.1) for notation).

Theorem 2.2. Suppose that (A.1)–(A.3), (A.4, ii) and (A.5) hold. Then for any P0 and
P1 ∈ M1(Rd) for which V (P0, P1) is finite and the unique minimizer {X (t)}0≤t≤1 of V (P0, P1),
there exist f (·) ∈ L1(Rd , P1(dx)) and a σ [X (s) : 0 ≤ s ≤ t]-continuous semimartingale
{Y (t)}0≤t≤1 such that

{(X (t), Y (t), Z(t) := Du L(t, X (t); bX (t, X (t))))}0≤t≤1

satisfies the following FBSDE: for t ∈ [0, 1],

X (t) = X (0)+

∫ t

0
Dz H(s, X (s); Z(s)) ds + WX (t), (2.5)

Y (t) = f (X (1))−

∫ 1

t
L(s, X (s); Dz H(s, X (s); Z(s))) ds −

∫ 1

t
〈Z(s), dWX (s)〉.

Remark 2.2. (i). (A.4, ii) and (A.5) is appropriate in our approach. Indeed, suppose that L = |u|
δ

and E[
∫ 1

0 |bX (s, X (s))|δds] is finite. Then δ should be greater than or equal to 2 so that
P((X (0), X (1)) ∈ dx dy) is absolutely continuous with respect to P(X (0) ∈ dx)P(X (1) ∈ dy).
Also δ should be less than or equal to 2 so that {

∫ t
0 < Z(s), dWX (s) >}0≤t≤1 is a square

integrable martingale (see the proof of Theorem 2.2). (ii). The existence of a solution to (2.5)
cannot be proved using the known result since assumptions in Theorem 2.2 do not imply the
Lipschitz continuity of z 7→ L(s, x; Dz H(s, x; z)) (see [7]). Indeed, f (x) is not always smooth
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even when L = |u|
2 (see in Appendix). Besides this, (A.1) and (A.3, i, ii) imply the following

(see Remark 2.1, (iii)):

Dz{L(s, x; Dz H(s, x; z))} = D2
z H(s, x; z)Du L(s, x; Dz H(s, x; z)) = D2

z H(s, x; z)z,

which is not bounded.

As an application of Theorem 2.1, we consider h-path processes. We shall refer here to

(A.6) There exist bounded, uniformly continuous functions ξ : [0, 1] × Rd
7→ Rd and

c : [0, 1] × Rd
7→ [0,∞) such that

L(t, x; u) =
1
2
|u − ξ(t, x)|2 + c(t, x) ((t, x; u) ∈ [0, 1] × Rd

× Rd).

Let {X(t)}0≤t≤1 be a unique weak solution, to the following SDE, which can be constructed
by the change of measure (see (1.11) for notation and [22]): for t ∈ [0, 1],

X(t) = X0 +

∫ t

0
ξ(s,X(s)) ds + W (t). (2.6)

As a corollary to Theorem 2.2, we obtain an approach to the h-path process for {X(t)}0≤t≤1
by the duality theorem (see Proposition 1.1).

Corollary 2.3. Suppose that (A.3, i, iv) and (A.6) hold. Then for any P0 and P1 ∈ M1(Rd)

for which V (P0, P1) is finite and the unique minimizer {X (t)}0≤t≤1 of V (P0, P1), there exist
ft ∈ L1(Rd , Pt (dx)) (t = 0, 1) such that the following holds: for any Borel set A ⊂ C([0, 1]),

P(X (·) ∈ A) = E

[
exp

{
f1(X(1))− f0(X(0))−

∫ 1

0
c(t,X(t)) dt

}
: X(·) ∈ A

]
. (2.7)

Remark 2.3. Corollary 2.3 is known (see e.g. [29]).

3. Lemmas

In this section we give technical lemmas.
The following two lemmas on the property of V (·, ·) will play a crucial role in the sequel.

Lemma 3.1. Suppose that (A.0)–(A.2) hold. Then (Q, P) 7→ V (Q, P) is lower
semicontinuous.

Proof. Suppose that Qn and Pn weakly converge to Q and P as n → ∞, respectively, and that
{V (Qn, Pn)}n≥1 is bounded. Then we can take {Xn(t)}n≥1 ⊂ A such that P Xn(0)−1

= Qn and
P Xn(1)−1

= Pn (n ≥ 1) and that

0 ≤ E

[∫ 1

0
L(t, Xn(t);βXn (t, Xn)) dt

]
− V (Qn, Pn) → 0 as n → ∞.

It is easy to see that {(Xn(t),
∫ t

0 βXn (s, Xn) ds) : t ∈ [0, 1]}n≥1 is tight in C([0, 1]; R2d) from
(A.1) (see [17] or [35]).
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Take a weakly convergent subsequence {(Xnk (t),
∫ t

0 βXnk
(s, Xnk ) ds) : t ∈ [0, 1]}k≥1 so that

lim
k→∞

E

[∫ 1

0
L(t, Xnk (t);βXnk

(t, Xnk )) dt

]
= lim inf

n→∞
V (Qn, Pn) < ∞. (3.1)

Let {(X (t), A(t))}t∈[0,1] denote the limit of {(Xnk (t),
∫ t

0 βXnk
(s, Xnk ) ds) : t ∈ [0, 1]}k≥1 as

k → ∞. Then {X (t) − X (0) − A(t)}t∈[0,1] is a σ [X (s) : 0 ≤ s ≤ t]-Brownian motion and
{A(t)}t∈[0,1] is absolutely continuous (see [17] or [35]).

We can also prove, in the same way as in the proof of [24, (3.17)], the following: from (A.0)
and (A.2),

lim
k→∞

E

[∫ 1

0
L(t, Xnk (t);βXnk

(t, Xnk )) dt

]
≥ E

[∫ 1

0
L

(
t, X (t);

dA(t)

dt

)
dt

]
. (3.2)

In the same way as in (1.13), on considering the completion of P X (·)−1, the proof is over since

P X (t)−1
= lim

k→∞
P Xnk (t)

−1 weakly (0 ≤ t ≤ 1). �

Lemma 3.2. Suppose that (A.0)–(A.2), (A.3, iii) and (A.4) hold. Then for any P0 ∈ M1(Rd),
P 7→ V (P0, P) is convex.

Proof. Take X i ∈ A (i = 1, 2) for which P X i (0)−1
= P0 and

2∑
j=1

E

[∫ 1

0
L(t, X j (t);βX j (t, X j )) dt

]
< ∞. (3.3)

For i = 1, 2, n ≥ 1, t ∈ [0, 1] and ω ∈ C([0, 1]), put

un,i (t, ω) := 1[0,n](|βX i (t, ω)|)βX i (t, ω), (3.4)

Xn,i (t) := X i (0)+

∫ t

0
un,i (s, X i ) ds + WX i (t), (3.5)

where 1A denotes the indicator function of A.
Then {Xn,i (t)}0≤t≤1 ∈ A since un,i (i = 1, 2) are bounded for each n ≥ 1 (see

(1.11) and (1.12)). In particular, we can assume that on the same probability space (Ω ,F, P),
{Xn,i (t)}0≤t≤1 (i = 1, 2) are defined by the change of measures (see [22, p. 279]): for n ≥ 1 and
t ∈ [0, 1],

Xn,i (t) = X0 +

∫ t

0
βXn,i (s, Xn,i ) ds + W (t) (3.6)

(see (1.11) for notation). More precisely, for any B ∈ B(C([0, 1])),

P Xn,i (·)
−1(B) = E[Mn,i (1, X0 + W (·)) : X0 + W (·) ∈ B], (3.7)

where

Mn,i (t, ω) := exp

(∫ t

0
βXn,i (s, ω) dω(s)−

∫ t
0 |βXn,i (s, ω)|

2 ds

2

)
.
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By Itô’s formula, we can show that for any λ ∈ (0, 1), λP Xn,1(·)
−1

+ (1 − λ)P Xn,2(·)
−1 is

a distribution of {Zn,λ(t)}0≤t≤1, ∈ A, such that for t ∈ [0, 1],

βZn,λ(t, ω) =
λβXn,1(t, ω)Mn,1(t, ω)+ (1 − λ)βXn,2(t, ω)Mn,2(t, ω)

λMn,1(t, ω)+ (1 − λ)Mn,2(t, ω)
. (3.8)

Hence, from (A.0), (3.7) and (3.8),

E

[∫ 1

0
L(t, Zn,λ(t);βZn,λ(t, Zn,λ)) dt

]

= E

[∫ 1

0
L(t, X0 + W (t);βZn,λ(t, X0 + W (·)))

× {λMn,1(t, X0 + W (·))+ (1 − λ)Mn,2(t, X0 + W (·))} dt

]

≤ λE

[∫ 1

0
L(t, Xn,1(t);βXn,1(t, Xn,1)) dt

]

+ (1 − λ)E

[∫ 1

0
L(t, Xn,2(t);βXn,2(t, Xn,2)) dt

]
. (3.9)

First we consider the left hand side of (3.9). In the same way as in the proof of Lemma 3.1,
we can show that the liminf of the left hand side of (3.9) as n → ∞ is greater than or equal to
V (P0, λP X1(1)−1

+ (1 − λ)P X2(1)−1) since, from (3.3), (3.4), (1.12), (3.7), (3.8) and (A.1),
by Hölder’s inequality,

E

[∫ 1

0
|βZn,λ(s, Zn,λ)|

δ ds

]

≤ λE

[∫ 1

0
|βXn,1(s, Xn,1)|

δ ds

]
+ (1 − λ)E

[∫ 1

0
|βXn,2(s, Xn,2)|

δ ds

]

≤ λE

[∫ 1

0
|un,1(s, X1)|

δ ds

]
+ (1 − λ)E

[∫ 1

0
|un,2(s, X2)|

δ ds

]

≤ λE

[∫ 1

0
|βX1(s, X1)|

δ ds

]
+ (1 − λ)E

[∫ 1

0
|βX2(s, X2)|

δ ds

]
< ∞.

Next we consider the right hand side of (3.9). We first consider the case where (A.4, i) holds.
For i = 1 and 2, by Jensen’s inequality, from (1.12),∫ 1

0
E[L(t, Xn,i (t);βXn,i (t, Xn,i ))] dt

≤

∫ 1

0
E[L(t, Xn,i (t); un,i (t, X i ))] dt →

∫ 1

0
E[L(t, X i (t);βX i (t, X i ))] dt (3.10)

as n → ∞ from (A.0), (A.3, iii) and (3.3), by the dominated convergence theorem. Indeed, from
(A.4, i) and (3.4),
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0 ≤ L(t, Xn,i (t); un,i (t, X i ))

≤ (1 +1L(0,∞))(L(t, X i (t); un,i (t, X i ))+ 1)

≤ (1 +1L(0,∞)){L(t, X i (t);βX i (t, X i ))+ L(t, X i (t); 0)+ 1}.

(3.9) and (3.10) imply that P 7→ V (P0, P) is convex. Next we consider the case where
(A.4, ii) holds. In this case we can let n → ∞ from the beginning since P X i (·)

−1 (i = 1, 2)
are absolutely continuous with respect to P(X0 + W (·))−1 (see [22]). Hence (3.9) immediately
implies that P 7→ V (P0, P) is convex. �

In the same way as for A, we define the set of semimartingales At in C([t, 1]). Let us recall
the following result which relies on the fact that (A.3, ii) implies that for any (t, x) ∈ [0, 1]×Rd ,
L(t, x; u) is strictly convex in u.

Lemma 3.3 ([13, p. 210, Remark 11.2]). Suppose that (A.1) and (A.3) hold. Then for any
f ∈ C∞

b (R
d), the HJB equation (2.3) with ϕ(1, ·) = f has a unique solution ϕ, ∈ C1,2([0, 1] ×

Rd) ∩ C0,1
b ([0, 1] × Rd), which can be written as follows:

ϕ(t, x) = sup
X∈At

{
E[ϕ(1, X (1))|X (t) = x]

− E

[∫ 1

t
L(s, X (s);βX (s, X)) ds

∣∣∣∣∣ X (t) = x

]}
, (3.11)

where for the maximizer X ∈ At , the following holds:

βX (s, X) = Dx H(s, X (s); Dxϕ(s, X (s))).

From Remark 2.1, (iii), H ∈ C3([0, 1] × Rd
× Rd) provided (A.1) and (A.3, i,ii) hold. The

following lemma will be used in the proof of Corollary 2.2.

Lemma 3.4. Suppose that (A.1) and (A.3, i, ii, iii) hold. Then for any r > 0,

sup{|Dz H(t, x; z)| : (t, x, z) ∈ [0, 1] × Rd
× Rd , |z| < r} < ∞. (3.12)

Proof. For any r > 0, there exists R(r) > 0 such that

inf{|Du L(t, x; u)| : (t, x, u) ∈ [0, 1] × Rd
× Rd , |u| > R(r)} ≥ r (3.13)

since from (A.3, i, ii), for any (t, x, u) ∈ [0, 1] × Rd
× Rd ,

L(t, x; 0) ≥ L(t, x; u)+ 〈Du L(t, x; u),−u〉,

from which

inf{|Du L(t, x; u)| : (t, x) ∈ [0, 1] × Rd
}

≥
1
|u|

{inf{L(t, x; u) : (t, x) ∈ [0, 1] × Rd
} − sup{L(t, x; 0) : (t, x) ∈ [0, 1] × Rd

}}

→ ∞ (as |u| → ∞ (from (A.1) and (A.3, iii))).

The supremum in (3.12) is less than or equal to R(r)(< ∞). Indeed, if this is not true, then there
exists (t, x, z) ∈ [0, 1] × Rd

× Rd for which

|z| < r, |Dz H(t, x; z)| > R(r).
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The second inequality implies, from (3.13), that |z| ≥ r since

z = Du L(t, x; Dz H(t, x; z))

from Remark 2.1, (iii). This contradicts the fact that |z| < r . �

Next we state and prove lemmas which will be used in the proof of Proposition 2.2.

Lemma 3.5 ([3, p. 114] and [4]). Suppose that {P(t, dx)}t∈[0,1] ⊂ M1(Rd) such that there
exists b(t, x) : [0, 1] × Rd

7→ Rd which satisfies the following:

∂P(t, dx)

∂t
=

1
2
4P(t, dx)− div(b(t, x)P(t, dx))(in dist. sense), (3.14)∫ 1

0
dt
∫

Rd
|b(t, x)|2 P(t, dx) < ∞. (3.15)

Then there exists a unique weak solution {X (t)}0≤t≤1 to the following (see (1.11) for notation):
for t ∈ [0, 1],

X (t) = X (0)+

∫ t

0
b(s, X (s)) ds + W (t), (3.16)

P(X (t) ∈ dx) = P(t, dx). (3.17)

Put

V (P0, P1) := inf
∫ 1

0

∫
Rd

L(t, x; b(t, x))P(t, dx) dt, (3.18)

where the infimum is taken over all (b(t, x), P(t, dx)) for which {P(t, dx)}0≤t≤1 ⊂ M1(Rd),
(3.14) holds and P(t, dx) = Pt (t = 0, 1).

The following which can be proved from Lemma 3.5 can be considered as a generalization
of [23, Lemma 2.5] which is a stochastic control counterpart of [2] (see also [33, p. 239]) when
L(t, x; u) = |u|

2.

Lemma 3.6. Suppose that (A.0)–(A.1) and (A.4, ii) hold. Then for any P0 and P1 ∈ M1(Rd),
V (P0, P1) = V (P0, P1).

Proof. We first prove

V (P0, P1) ≥ V (P0, P1). (3.19)

Take X ∈ A such that E[
∫ 1

0 L(t, X (t);βX (t, X)) dt] is finite and that P X (t)−1
= Pt

(t = 0, 1). Set bX (t, X (t)) := E[βX (t, X)|(t, X (t))].
Then (bX (t, x), P(X (t) ∈ dx)) satisfies (3.14). Indeed, for any f ∈ C∞

0 (R
d) and t ∈ [0, 1],

by Itô’s formula,∫
Rd

f (x)P(X (t) ∈ dx)−

∫
Rd

f (x)P(X (0) ∈ dx)

= E[ f (X (t))− f (X (0))]

=

∫ t

0
ds E

[
1
2
4 f (X (s))+ 〈βX (s, X), D f (X (s))〉

]
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=

∫ t

0
ds E

[
1
2
4 f (X (s))+ 〈E[βX (s, X)|(s, X (s))], D f (X (s))〉

]
=

∫ t

0
ds
∫

Rd

(
1
2
4 f (x)+ 〈bX (s, x), D f (x)〉

)
P(X (s) ∈ dx). (3.20)

Hence, from (A.0), by Jensen’s inequality,

E

[∫ 1

0
L(t, X (t);βX (t, X)) dt

]

≥ E

[∫ 1

0
L(t, X (t); bX (t, X (t))) dt

]

=

∫ 1

0
dt
∫

Rd
L(t, x; bX (t, x))P(X (t) ∈ dx) ≥ V (P0, P1), (3.21)

which implies (3.19).
Next we prove the opposite inequality of (3.19). Take (b(t, x), P(t, dx)) for which

{P(t, dx)}0≤t≤1 ⊂ M1(Rd), (3.14) holds and P(t, dx) = Pt (dx) (t = 0, 1) and for which∫ 1
0 dt

∫
Rd L(t, x; b(t, x))P(t, dx) is finite.

Then, from (A.1) and (A.4, ii), (3.15) holds. From Lemma 3.5, there exists a Markov process
{X (t)}0≤t≤1 for which (3.16) and (3.17) hold. In particular, we have∫ 1

0
dt
∫

Rd
L(t, x; b(t, x))P(t, dx)

= E

[∫ 1

0
L(t, X (t); b(t, X (t))) dt

]
≥ V (P0, P1). � (3.22)

4. Proof of our result

In this section we give the proof of our result.

Proof of Proposition 2.1. Replace (Qn, Pn) by (P0, P1) in the proof of Lemma 3.1. Then the
proof is over. �

Since P 7→ V (P0, P) is lower semicontinuous and convex from Lemmas 3.1 and 3.2, we can
reduce the proof of Theorem 2.1 to the fact that V (P0, ·)

∗∗(P) = V (P0, P).

Proof of Theorem 2.1. V (P0, ·) 6≡ ∞. Indeed, for P1 = P(X0 + W (1))−1 (see (1.11) for
notation), from (A.3, iii),

V (P0, P1) ≤ sup{L(t, x; 0) : (t, x) ∈ [0, 1] × Rd
} < ∞.

Consider P 7→ V (P0, P) as a function on the space of finite Borel measures on Rd , by putting
V (P0, P) = +∞ for P 6∈ M1(Rd). From Lemmas 3.1 and 3.2 and [8, Theorem 2.2.15 and
Lemma 3.2.3],

V (P0, P1) = sup
f ∈Cb(Rd )

{∫
Rd

f (x)P1(dx)− V ∗

P0
( f )

}
, (4.1)
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where for f ∈ Cb(Rd),

V ∗

P0
( f ) := sup

P∈M1(Rd )

{∫
Rd

f (x)P(dx)− V (P0, P)

}
.

Take Φ ∈ C∞

0 ([−1, 1]
d
; [0,∞)) for which

∫
Rd Φ(x)dx = 1. For ε > 0, put

Φε(x) := ε−dΦ(x/ε).

Denote by V(P0, P1) the right hand side of (2.2). We prove the following which implies (2.2):

V (P0, P1) ≥ V(P0, P1) ≥
V (Φε ∗ P0,Φε ∗ P1)

1 +1L(0, ε)
−1L(0, ε), (4.2)

where ∗ denotes the convolution of two measures and should be distinguished from ∗ in (4.1).
Indeed, from (A.2), Lemma 3.1 and (4.2), we have (2.2).

The first inequality in (4.2) can be proved from (4.1) and (4.3) below: for any f ∈ C∞

b (R
d),

from Lemma 3.3,

V ∗

P0
( f ) = sup

{
E[ f (X (1))] − E

[∫ 1

0
L(t, X (t);βX (t, X)) dt

]
:

X ∈ A, P X (0)−1
= P0

}

=

∫
Rd
ϕ f (0, x)P0(dx), (4.3)

where ϕ f denotes the unique classical solution to the HJB equation (2.3) with ϕ(1, ·) = f (·).
We prove the second inequality in (4.2). For f ∈ Cb(Rd), put

fε(x) :=

∫
Rd

f (y)Φε(y − x) dy. (4.4)

Then fε ∈ C∞

b (R
d) and, from (4.3),

V(P0, P1) ≥

∫
Rd

fε(x)P1(dx)− V ∗

P0
( fε)

≥

∫
Rd

f (x)Φε ∗ P1(dx)−
(VΦε∗P0)

∗((1 +1L(0, ε)) f )

1 +1L(0, ε)
−1L(0, ε). (4.5)

Indeed, for any X ∈ A, from (A.2),

E[ fε(X (1))] − E

[∫ 1

0
L(t, X (t);βX (t, X)) dt

]

=

∫
Rd

Φ(z) dzE[ f (X (1)+ εz)] − E

[∫ 1

0
L(t, X (t);βX (t, X)) dt

]

≤

∫
Rd

Φ(z) dz

{
E[ f (X (1)+ εz)] − E

[∫ 1

0

L(t, X (t)+ εz;βX (t, X))

1 +1L(0, ε)
dt

]}
+1L(0, ε).

(4.1) and (4.5) imply the second inequality in (4.2). �
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Proof of Corollary 2.1. Identity (2.2) implies, by Itô’s formula, that there exists a sequence
{ϕn}n≥1 of classical solutions, to the HJB equation (2.3), such that for any minimizer {X (t)}0≤t≤1
of V (P0, P1),

E

[∫ 1

0
L(t, X (t);βX (t, X)) dt

]

= lim
n→∞

E

[∫ 1

0
{〈βX (t, X), Dxϕn(t, X (t))〉 − H(t, X (t); Dxϕn(t, X (t)))} dt

]
. (4.6)

Since (A.3, i, ii) imply that L(t, x; u) is of class C3 and is strictly convex in u for any
(t, x) ∈ [0, 1] × Rd , (4.6) completes the proof.

Indeed, from (A.0), the following holds (see, e.g., [33]): for any (t, x) ∈ [0, 1] × Rd ,

L(t, x; u) = sup
z∈Rd

{〈z, u〉 − H(t, x; z)}. (4.7)

Therefore (4.6) is equivalent to

0 = lim
n→∞

E

[∫ 1

0
|L(t, X (t);βX (t, X))

− {〈βX (t, X), Dxϕn(t, X (t))〉 − H(t, X (t); Dxϕn(t, X (t)))}| dt

]
, (4.8)

which implies that there exists a subsequence {nk}k≥1 for which

L(t, X (t);βX (t, X))

= lim
k→∞

{〈βX (t, X), Dxϕnk (t, X (t))〉 − H(t, X (t); Dxϕnk (t, X (t)))} (4.9)

dt dP X (·)−1-a.e. �

Proof of Corollary 2.2. For any f ∈ C∞

b (R
d), the HJB equation (2.3) with ϕ(1, ·) = f (·) has a

unique solution ϕ f ∈ C1,2([0, 1]×Rd)∩C0,1
b ([0, 1]×Rd) from Lemma 3.3. In particular, ϕ f is

a bounded, uniformly Lipschitz continuous viscosity solution of the HJB equation (2.3) since a
classical solution is a viscosity solution (see e.g. [13]). From Theorem 2.1, we only have to prove
the following to complete the proof: for any bounded, uniformly Lipschitz continuous viscosity
solution ϕ of the HJB equation (2.3) and any X ∈ A

E[ϕ(1, X (1))− ϕ(0, X (0))] ≤ E

[∫ 1

0
L(t, X (t);βX (t, X)) dt

]
. (4.10)

We prove (4.10). Take C(ϕ) > 0 so that

|ϕ(t, x)− ϕ(s, y)| ≤ C(ϕ)(|t − s| + |x − y|) ((t, x), (s, y) ∈ [0, 1] × Rd).

The following constant is finite from Lemma 3.4:

R0 := sup{|Dz H(t, x; z)| : (t, x, z) ∈ [0, 1] × Rd
× Rd , |z| ≤ C(ϕ)}. (4.11)

Since ϕ is a viscosity subsolution of the HJB equation (2.3), ϕ is a viscosity subsolution of the
HJB equation (2.3) with H(t, x; z) replaced by

HR(t, x; z) := sup{〈z, u〉 − L(t, x; u)|u ∈ Rd , |u| ≤ R}
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for any R ≥ R0. Indeed, whenever h ∈ C1,2([0, 1) × Rd) and ϕ − h takes its maximum at
(s, y) ∈ [0, 1)× Rd ,

−|a|C(ϕ) ≤ ϕ(s, y + a)− ϕ(s, y) ≤ h(s, y + a)− h(s, y) (a ∈ Rd).

Therefore |Dyh(s, y)| ≤ C(ϕ), from which

H(s, y; Dx h(s, y))

= 〈Dx h(s, y), Dz H(s, y; Dx h(s, y))〉 − L(s, y; Dz H(s, y; Dx h(s, y)))

= HR(s, y; Dx h(s, y)) (R ≥ R0)

from (4.11) (see Remark 2.1, (iii)). In the same way we can prove that ϕ is a viscosity
supersolution of the HJB equation (2.3) with H replaced by HR for any R ≥ R0.

From [21, Theorem II.3], for any X ∈ A,

E[ϕ(1, Xn(1))− ϕ(0, Xn(0))] ≤ E

[∫ 1

0
L(t, Xn(t); un(t, X)) dt

]
, (4.12)

where we define un and Xn in the same way as in (3.4) and (3.5). In the same way as in (3.10),
from (A.4, i),

lim
n→∞

E

[∫ 1

0
L(t, Xn(t); un(t, X)) dt

]
= E

[∫ 1

0
L(t, X (t);βX (t, X)) dt

]
, (4.13)

which completes the proof of (4.10). �

From Proposition 2.1, Lemmas 3.5 and 3.6, we prove Proposition 2.2.

Proof of Proposition 2.2. From Proposition 2.1, V (P0, P1) has a minimizer. From Lemma 3.6,
in the same way as in (3.21), we can prove that V (P0, P1) has a minimizer. Hence, from
Lemmas 3.5 and 3.6, there exists a Markovian minimizer of V (P0, P1).

If for any (t, x) ∈ [0, 1] × Rd , L(t, x; u) is strictly convex in u, then all minimizers of
V (P0, P1) are Markovian.

Indeed, Lemma 3.6 and (3.21) imply that if X is a minimizer of V (P0, P1), then

βX (t, X) = bX (t, X (t)) dt dP X (·)−1-a.e.

(A.4, ii) implies that P X (·)−1 is absolutely continuous with respect to P(X0 + W (·))−1 (see
(1.11) for notation). Hence {X (t)}0≤t≤1 is Markovian.

In particular, from Lemmas 3.5 and 3.6, the set of all minimizers of V (P0, P1) is equal to that
of all {(bX (t, x), P(X (t) ∈ dx))}0≤t≤1 for the Markovian minimizers {X (t)}0≤t≤1 of V (P0, P1).

Hence, to prove the uniqueness of a minimizer of V (P0, P1), we only have to prove that of
b for which there exists {P(t, dx)}0≤t≤1 such that {(b(t, x), P(t, dx))}0≤t≤1 is a minimizer of
V (P0, P1).

Indeed, since P X (·)−1 is absolutely continuous with respect to P(X0 + W (·))−1 for a
Markovian minimizer {X (t)}0≤t≤1 of V (P0, P1), {bX (t, x)}0≤t≤1 determines P X (·)−1.

Take minimizers (bi (t, x), Pi (t, dx)) of V (P0, P1) (i = 0, 1). For any λ ∈ (0, 1), put
pi (t, x) := Pi (t, dx)/dx and

bλ(t, x) :=
(1 − λ)b0(t, x)p0(t, x)+ λb1(t, x)p1(t, x)

(1 − λ)p0(t, x)+ λp1(t, x)
(0 < t ≤ 1),
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provided that the denominator is positive. Then

V (P0, P1)

≤

∫ 1

0
dt
∫

Rd
L(t, x; bλ(t, x))((1 − λ)p0(t, x)+ λp1(t, x))dx

≤ (1 − λ)

∫ 1

0
ds
∫

Rd
L(t, x; b0(t, x))p0(t, x)dx

+ λ

∫ 1

0
ds
∫

Rd
L(t, x; b1(t, x))p1(t, x)dx

= V (P0, P1). (4.14)

Indeed,

∂((1 − λ)p0(t, x)+ λp1(t, x))

∂t

=
1
2
4((1 − λ)p0(t, x)+ λp1(t, x))− div(bλ(t, x)((1 − λ)p0(t, x)+ λp1(t, x)))

in the dist. sense.
From (4.14), by the strict convexity of u 7→ L(t, x; u) ((t, x) ∈ [0, 1] × Rd ),

b0(t, x) = b1(t, x) if p0(t, x)p1(t, x) > 0. (4.15)

Putting bi (t, x) = b j (t, x) if pi (t, x) = 0 (i, j = 0, 1, i 6= j), the proof is over. �

From Theorem 2.1 and Proposition 2.2, we prove Theorem 2.2.

Proof of Theorem 2.2. Take {ϕn}n≥1 in (4.8). Then for t ∈ [0, 1], by Itô’s formula,

ϕn(t, X (t))− ϕn(0, X (0))

=

∫ t

0
{〈bX (s, X (s)), Dxϕn(s, X (s))〉 − H(s, X (s); Dxϕn(s, X (s)))} ds

+

∫ t

0
〈Dxϕn(s, X (s)), dWX (s)〉. (4.16)

By Doob’s inequality (see [16]),

E

[
sup

0≤t≤1

∣∣∣∣∫ t

0
〈Dxϕn(s, X (s)), dWX (s)〉 −

∫ t

0
〈Du L(s, X (s); bX (s, X (s))), dWX (s)〉

∣∣∣∣2
]

≤ 4E

[∫ 1

0
|Dxϕn(s, X (s))− Du L(s, X (s); bX (s, X (s)))|2 ds

]

≤ 4C E

[∫ 1

0
{L(s, X (s); bX (s, X (s)))− 〈bX (s, X (s)), Dxϕn(s, X (s))〉

+ H(s, X (s); Dxϕn(s, X (s)))} ds

]
→ 0 as n → ∞ (4.17)
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from (4.8), where

C := 2 sup{〈D2
u L(t, x; u)z, z〉 : (t, x, u, z) ∈ [0, 1] × Rd

× Rd
× Rd , |z| = 1}.

Indeed, for a smooth, strictly convex function f : Rd
7→ [0,∞) for which f (v)/|v| → ∞ as

|v| → ∞ and (u, z) ∈ Rd
× Rd , by Taylor’s Theorem, there exists θ ∈ (0, 1) such that

f (u)− {〈u, z〉 − f ∗(z)}

= f ∗(z)− f ∗(D f (u))− 〈D f ∗(D f (u)), z − D f (u)〉

=
〈D2 f ∗(z + θ(z − D f (u)))(z − D f (u)), z − D f (u)〉

2
,

and D2 f ∗(z) = D2 f (D f ∗(z))−1 (see Remark 2.1, (iii)).
From (4.8), (4.16) and (4.17), ϕn(1, y) − ϕn(0, x) is convergent in L1(Rd

×

Rd , P((X (0), X (1)) ∈ dx dy)).
From (A.4, ii), P X (·)−1 is absolutely continuous with respect to P(X0 + W (·))−1 (see (1.11)

for notation). In particular,

p(t, y) := P(X (t) ∈ dy)/dy exists (t ∈ (0, 1]),

p(0, x; t, y) := P(X (t) ∈ dy|X (0) = x)/dy exists P0(dx)-a.e. (t ∈ (0, 1]).

Therefore P((X (0), X (1)) ∈ dx dy) is absolutely continuous with respect to P0(dx)P1(dy).
Indeed,

P((X (0), X (1)) ∈ dx dy) =
p(0, x; 1, y)

p(1, y)
P0(dx)P1(dy).

Hence, from [31, Prop. 2], there exist f ∈ L1(Rd , P1(dx)) and f0 ∈ L1(Rd , P0(dx)) such that

lim
n→∞

E[|ϕn(1, X (1))− ϕn(0, X (0))− { f (X (1))− f0(X (0))}|] = 0. (4.18)

Put

Y (t) := f0(X (0))+

∫ t

0
L(s, X (s); bX (s, X (s))) ds

+

∫ t

0
〈Du L(s, X (s); bX (s, X (s))), dWX (s)〉. (4.19)

From (4.8) and (4.16)–(4.18), (2.5) holds. �

We prove Corollary 2.3 from Theorem 2.2.

Proof of Corollary 2.3. The assumptions in Corollary 2.3 imply those in Theorem 2.2. When
(A.6) holds, from (4.8) and (4.16)–(4.18),

f (X (1))− f0(X (0))−

∫ 1

0
c(s, X (s)) ds

=

∫ 1

0
〈bX (s, X (s))− ξ(s, X (s)), dX (s)− ξ(s, X (s)) ds〉

−
1
2

∫ 1

0
|bX (s, X (s))− ξ(s, X (s))|2 ds, (4.20)

which completes the proof (see [22]). �
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Appendix

For the readers’ convenience, we give the proof of Remark 1.1 and describe some properties
of the h-path process {Xh(t)}0≤t≤1 introduced in Section 1.
(i) For f ∈ Cb(Rd), fε ∈ C∞

b (R
d) (see (4.4) for notation). Supposed that (1.4) holds. Then

T (P0, P1) ≥ sup
{∫

Rd
f (x)P1(dx)−

∫
Rd

T f (x)P0(dx)

∣∣∣∣ f ∈ C∞

b (R
d)

}
≥ sup

{∫
Rd

fε(x)P1(dx)−

∫
Rd

T fε(x)P0(dx)

∣∣∣∣ f ∈ Cb(Rd)

}
≥ T (Φε ∗ P0,Φε ∗ P1), (A.1)

where ∗ denotes the convolution. The second inequality of (A.1) is true since∫
Rd

fε(x)P1(dx) =

∫
Rd

f (x)Φε ∗ P1(dx),

T fε(x) = sup
{∫

Rd
{ f (y + z)− `(y + z − (x + z))}Φε(z) dz

∣∣∣∣ y ∈ Rd
}

≤

∫
Rd

T f (x + z)Φε(z) dz =

∫
Rd

T f (z)Φε(z − x) dz.

Since Φε ∗ Pt (dx) → Pt (dx) weakly as ε → 0 (t = 0, 1) and since (P0, P1) 7→ T (P0, P1) is
lower semicontinuous (see [33]), (A.1) implies Remark 1.1.
(ii) Suppose that L = |u|

2 and that (2.1) is finite. Then the probability law of {Xh(t)}0≤t≤1
is absolutely continuous with respect to that of {X0 + W (t)}0≤t≤1 (see (1.11) for notation). In
particular, P1 is absolutely continuous with respect to the Lesbegue measure dx (see [22]). It is
known that there exists a unique pair of nonnegative, σ -finite Borel measures (ν0, ν1) for which

P0(dx) =

(∫
Rd

g1(x − y)ν1(dy)

)
ν0(dx),

P1(dy) =

(∫
Rd

g1(x − y)ν0(dx)

)
ν1(dy),

(A.2)

where for x ∈ Rd and t > 0,

gt (x) :=
1

(2π t)d/2
exp

(
−

|x |
2

2t

)
.

(A.2) is called Schrödinger’s functional equation (see [18] and also [31] for the recent
development). For x ∈ Rd , put

h(t, x) :=


∫

Rd
g(1−t)(x − y)ν1(dy) (0 ≤ t < 1),

ν1(dx)

dx
(t = 1).

(A.3)
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Then the h-path process {Xh(t)}0≤t≤1 is the unique weak solution to the following (see [19]): for
t ∈ [0, 1],

Xh(t) = X0 +

∫ t

0
Dx log h(s, Xh(s)) ds + W (t). (A.4)

It is known that for any Borel set A ⊂ C([0, 1]),

P(Xh(·) ∈ A) = E

[
h(1, X0 + W (1))

h(0, X0)
: X0 + W (·) ∈ A

]
. (A.5)

In particular,

P((Xh(0), Xh(1)) ∈ dx dy) = ν0(dx)g1(x − y)ν1(dy). (A.6)

From (A.2) and (A.3), h(1, x) is not always smooth. But it is also known that h ∈ C1,2([0, 1)×

Rd) (see [19]) and ϕ(t, x) := log h(t, x) satisfies the HJB equation (2.3). Indeed, from [19],

∂h(t, x)

∂t
+

1
2
4h(t, x) = 0 ((t, x) ∈ (0, 1)× Rd).

From [25, Lemma 3.4], we also have

V (P0, P1)

=

∫
Rd

|x |
2(P0(dx)+ P1(dx))+ 2

∫
Rd

(
log

P1(dx)

dx

)
P1(dx)+ d log(2π)

− 2
∫∫

Rd
×Rd

log
{∫∫

Rd
×Rd

exp(〈x, z1〉 + 〈y, z0〉 − 〈z0, z1〉)

× P((Xh(0), Xh(1)) ∈ dz0 dz1)

}
P((Xh(0), Xh(1)) ∈ dx dy). (A.7)
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Probab. Statist. 30 (1994) 83–132.
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