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Abstract

The expected areas of the Wiener sausages swept by a disc attached to the two-dimensional Brownian
Bridge joining the origin to a point x over a time interval [0, t] are computed. It is proved that the leading
term of the expectation is given by Ramanujan’s function if |x| = O(

√
t). The second term is also given

explicitly when |x| = o(
√

t). The corresponding result for unconditioned process is also obtained.
c⃝ 2012 Elsevier B.V. All rights reserved.
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1. Introduction

Let Bt be the standard two-dimensional Brownian motion started at the origin defined on a
probability space (Ω ,F , P). Fixing r > 0 let S(r)t be the Wiener sausage of radius r and length
t , namely it is the region swept by the disc of radius r attached to Bs at its centre as s runs from
0 to t :

S(r)t = {z ∈ R2
: |Bs − z| < r for some s ∈ [0, t]}.

In this paper we compute the expectation of the area of S(r)t , which we denote by Area(S(r)t ),
for Brownian motion conditioned to be at a prescribed point x ∈ R2 at time t as well as for
free (unconditioned) Brownian motion. Define N (λ), called Ramanujan’s function [2,28] or

E-mail address: uchiyama@math.titech.ac.jp.

0304-4149/$ - see front matter c⃝ 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.spa.2012.09.005

http://www.elsevier.com/locate/spa
http://dx.doi.org/10.1016/j.spa.2012.09.005
http://www.elsevier.com/locate/spa
mailto:uchiyama@math.titech.ac.jp
http://dx.doi.org/10.1016/j.spa.2012.09.005


192 K. Uchiyama / Stochastic Processes and their Applications 123 (2013) 191–211

integral [6, p. 219], by

N (λ) =


∞

0

e−λu

(lg u)2 + π2 ·
du

u
(λ ≥ 0).

Put κ = 2e−2γ where γ = −


∞

0 e−u lg u du (Euler’s constant). Let E designate the expectation
with respect to P . In this paper we prove the following two theorems.

Theorem 1.1.

d

dt
E[Area(S(r)t )] = 2πN


κt

r2


+

4πr2

t (lg(t/r2))3
(1 + o(1)) as t → ∞,

= r


2π
t

+
π

2
+ O

√
t


as t → 0.

For x ∈ R2 we write x2 for the square of Euclidean length |x|.

Theorem 1.2. For each M > 1, uniformly for |x| < M
√

t , as t → ∞

E[Area(S(r)t ) | Bt = x] = 2π t N


κt

r2


+

πx2

(lg t)2


lg


t

x2 ∨ 1


+ O(1)


+ O(1),

where the left-hand side is the conditional expectation conditioned on Bt = x.

The proof of Theorem 1.1 is performed by Laplace inversion with rather simple computations.
The leading term in the formula of Theorem 1.2 is derived in a similar way to that in Theorem 1.1,
while the identification of the second term of it is made by a delicate analysis unless |x| remains
in a bounded set.

Remark 1. The function N (t) admits the following asymptotic expansion in powers of 1/ lg t as
t → ∞:

N (t) ∼
1

lg t
+

−γ

(lg t)2
+
γ 2

− ζ(2)

(lg t)3
+

3γ ζ(2)+ (−γ )3 − 2ζ(3)

(lg t)4
+ · · · , (1.1)

where ζ(z) =


∞

n=1 n−z . While it requires a tedious computation to derive the corresponding
expansion of N (κt/r2) directly from this one, actually there is a simple way to transform the
expansion. For each α > 0 the expansion for N (αt) is obtained by simply replacing −γ by
−γ − lgα in (1.1), so that the expansion up to the third order term becomes

N (αt) ∼
1

lg t
+

−γ − lgα

(lg t)2
+
(γ + lgα)2 − ζ(2)

(lg t)3
+ · · · . (1.2)

Similarly the asymptotic expansion of 1
t

 t
0 N (αs)ds is obtained by replacing −γ by 1−γ − lgα

and −ζ(k) by 1 − ζ(k) in (1.1), so that

1
t

 t

0
N (αs)ds ∼

1
lg t

+
1 − γ − lgα

(lg t)2
+
(1 − γ − lgα)2 + 1 − ζ(2)

(lg t)3
+ · · · (1.3)
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(see Section 5 for these and related matters). It also is noted that combining Theorems 1.1 and
1.2 yields

E[Area(S(r)t )] − E[Area(S(r)t ) | Bt = 0] = 2π
 t

0


−αs N ′(αs)


ds + O(1)

as t → ∞, where α = κ/r2. The asymptotic expansion of this difference is obtained from that
of E[Area(S(r)t )]/ lg t by a very simple rule (see Lemma 5.2 in Section 5).

Remark 2. It may be reasonable to compare the expected increment of the sausage at time t
with 2πr E[|Bt |] as t ↓ 0. The former one is asymptotic to 2r

√
2π t according to the second half

of Theorem 1.1, while the latter equals 2πr
√
π t/2, so that the ratio of the latter to the former

equals π/2.

Asymptotic behaviour of the area Area(S(r)t ) (or volume in higher dimensions) as t → ∞ has
long been studied from various points of view. It is a typical functional of Brownian paths that
is non-Markovian and the standard limit theorems for it (the law of large numbers, the central
limit theorems or the large deviations) have been of continued interest ([27,14,9], etc.). The
expectation of it is the total heat emitted in the time interval [0, t] from the disc which is kept
at the unit temperature. The sausage for conditioned process (with x = 0) naturally arises in
the study of the asymptotic estimate of the trace of the heat kernel on the plane with randomly
scattered cooling discs kept at zero temperature and has been effectively used (cf. [12,3]).

For free Brownian motion, some asymptotic expansions in negative powers of lg t of the
expectation divided by t for the sausage swept by an arbitrary (non-polar) compact subset of
R2 are obtained by Spitzer [20] up to magnitude o(1/(lg t)2) and by Le Gall [15] to any order
(see also [16]). van den Berg and Bolthausen [26] compute the expectation for Brownian motion
conditioned on returning to the origin at time t for the disc case up to the error term of magnitude
O(t


lg lg t)/(lg t)4 and conjecture that their formula for the conditional expansion would be

valid for the general compact set, K say, of positive capacity if the radius of the disc is replaced
by the logarithmic capacity of K (in the usual normalization [1]), the situation already observed
for the free Brownian case.

The conjecture stated in [26] has been verified in a very recent paper [17] by McGillivray: in
fact he obtains the asymptotic expansion for any compact set K of positive capacity and computes
the explicit forms of the first three coefficients of the expansion in terms of the logarithmic
capacity of K , the coefficients agreeing with those conjectured in [26]. It is warned that these
authors define the sausage for the Brownian motion B̃t = B2t instead of Bt so that to translate our
results to their case one must replace t by 2t in our formulae. The coefficients of our formulae
of course agree with those obtained previously, whether it is a free or conditioned Brownian
motion which forms the sausage, as readily ascertained by substituting α = κ/r2 in (1.2) and
(1.3) and noting that the logarithmic capacity of the disc of radius r equals r2 (according to the
normalization of logarithmic capacity in them). This suggests that our formulae in Theorems 1.1
and 1.2 would be extended to the sausage swept by any non-polar compact set K in place of the
disc if r is replaced by the logarithmic capacity of K .

The higher dimensional case of free Brownian motion is treated by Getoor [7], Spitzer [20]
and Le Gall [15] for a compact set and by Hamana [8] for a ball. The pinned cases are dealt with
by Uhlenbeck and Beth [25] and McGillivray [19]. A more detailed account of the results for the
expected volume (for dimensions ≥ 2) obtained up to 1997 can be found in [26].
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The function N (t) expressing the leading terms in our theorems has already appeared in
an analogous manner for the corresponding problem concerning the range of random walks
(cf. [21]) (in which N ′(λ) is denoted by W (λ)). The expression by means of N (t) makes possi-
ble a subtle comparison between the expected area of the Wiener sausage and the corresponding
quantity to a random walk of mean zero: we can associate a certain natural ‘radius’, say r∗, of a
lattice point of Z2 with the random walk [22, Remark 6], and according to Corollary 1.1 of [21]
and our Theorem 1.2 the expected number of sites visited by the walk in the first n steps and the
expected area of the Wiener sausage over the internal [0, n] coincide up to the error of O(1) for
the processes conditioned to return to the origin at the time n, provided that r is chosen to be r∗,
the variances of Brownian and random walk processes are the same and the fourth moments of
the random walks exist.

The results obtained in this paper are quite parallel with those in [21], but the methods and
the structures of the proofs are considerably different. In the random walk case we have simple
expressions of the expected ‘area’ of the range of the walk for both free and conditional ones due
to the discrete nature of the walk, which is not available to the Brownian case. In (cf. [21]) the
Fourier analysis is the main tool, while in the present paper it plays a minor, though fundamental,
role. We need a careful evaluation of certain integrals to find out the form of the second term as
given in the formula of Theorem 1.2. Our derivation of it is directed by the result of [21], the
agreement of asymptotic forms of various quantities for Brownian motion and random walks
being expected. The precise estimates of the first hitting time distributions for corresponding
processes as obtained in [22,23] are used in both papers but the usage is much more essential for
the present than in [22]. One can obtain an asymptotic estimate of the density of the first hitting
time distribution valid uniformly with respect to starting positions and, with it, extend the result
of Theorem 1.2 to the case when |x|/

√
t → ∞, which will be studied in another paper [24].

The following notation will be used: a ∧ b = min{a, b}, a ∨ b = max{a, b} (a, b ∈ R);
two dimensional points are denoted by bold face letters z, x, y, |z| denotes the Euclidean length
of z; and x · z the Euclidean inner product of x and z; for functions g and G of a variable x ,
g(x) = O(G(x)) means that there exists a constant C such that |g(x)| ≤ C |G(x)| whenever
x ranges over a specified set; the letters C,C ′,C ′′ etc. denote constants whose values are not
significant and may change in different places where they occur.

We prove Theorem 1.1 in Section 2 and Theorem 1.2 in Section 4. In Section 3 we give some
results on the distribution of the first hitting time to a disc, which prepare for the analysis made
in Section 4. In the last section we derive the asymptotic expansions associated with N (t) as
mentioned in Remark 1.

2. Proof of Theorem 1.1

We shall consider the Brownian motion started at z and denote its law by Pz. Let σ (r) = σU (r)
be the first hitting time of Brownian motion Bt to the disc U (r) of radius r and centred at the
origin. Then

E[Area(S(r)t )] =


R2

Pz[σ
(r) < t]dz.

Let q(z; r) denote the density of the distribution of σ (r):

q(z, t; r) =
d

dt
Pz[σ

(r) < t],

so that
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d

dt
E[Area(S(r)t )] =


z>r

q(z, t; r)dz. (2.1)

Let pt (z) denote the heat kernel on the plane:

pt (z) = (2π t)−1e−z2/2t .

As is well-known we have
∞

0
pt (z)e−λt dt =

1
π

K0(|z|
√

2λ)

(cf. [11,5]), hence
∞

0
q(z, t; r)e−λt dt =

Gλ(0, |z|)
Gλ(0, r)

=
K0(|z|

√
2λ)

K0(r
√

2λ)
, (2.2)

where Gλ denotes the resolvent kernel for the 2-dimensional Bessel process and Kν the usual
modified Bessel function of second kind of order ν. Put

m(t; r) =


|z|>r

q(z, t; r)dz.

From (2.1) and (2.2) we have
∞

0
m(t; r)e−λt dt = 2π


∞

r

K0(u
√

2λ)

K0(r
√

2λ)
udu

=
2πr K1(r

√
2λ)

K0(r
√

2λ)
√

2λ
, (2.3)

where we have applied the identity (d/dz)[zK1(z)] = −zK0(z) for the second equality. From
the scaling property of Brownian motion it follows that

m(t, r) = m(t/r2
; 1)

and we suppose r = 1 in what follows. By Laplace inversion

m(t, 1) =


∞

−∞

K1(
√

2iu)

K0(
√

2iu)
√

2iu
ei tudu. (2.4)

Throughout the paper lg z and
√

z denote the principal branches in −π < arg z < π of the
logarithm and the square root, respectively.

Although one can derive a leading term of m(t; 1) directly from (2.4) as in [23] (the proofs of
Lemmas 4 and 5), here we use the formula

∞

0
N (t)e−λt dt =

1
λ− 1

−
1

λ lg λ
(λ > 0) (2.5)

(cf. [10, p. 196]; also [6]), which somewhat simplifies the proof. Put

ϕ(z) =
K1(

√
2z)

K0(
√

2z)
√

2z
−

1
κ


1

κ−1z − 1
−

1

κ−1z lg(κ−1z)


.
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Then (2.3) is written as
∞

0
m(t; 1)e−λt dt = 2π


∞

0
N (κt)e−λt dt + 2πϕ(λ).

Accordingly (2.4) becomes

m(t, 1)− 2πN (κt) =


∞

−∞

ϕ(iu)ei tudu. (2.6)

Here (and in below) the trigonometric integral at infinity is improper. Note that ϕ(z) is analytic
on the slit domain −π < arg z < π since K0(

√
z) has no zeros in it: the apparent singularity at

z = κ (i.e., that at λ = 1 on the right-hand side of (2.5)) is removable; also ϕ(iu) tends to zero
as u → ∞ and is bounded about the origin as will be observed shortly.

The idea of the proof of the first formula in Theorem 1.1 would now be obvious. The asymp-
totic behaviour of the Fourier integral on the right side of (2.6) for large values of t depends on
that of ϕ(iu) near zero, provided that ϕ(iu) behaves sufficiently regularly.

In view of the asymptotic formula

Kν(
√

2z) =


π

2
√

2z

1/2

e−
√

2z


1 +

ν2
−

1
4

2
√

2z
+ O(|z|−1)


as |z| → ∞ (2.7)

(−π < arg z < π, ν ≥ 0) (cf. [13, (5.11.9)]), we have

ϕ(iu) =
1

√
2iu

−
3

4iu
+

1
iu lg(iu/κ)

+ R(u), (2.8)

where R(u) = O(|u|
−3/2) with its derivatives R( j)(u) = O(|u|

−3/2− j ) as |u| → ∞.
For the first formula of Theorem 1.1 it suffices to show that as t → ∞

∞

−∞

ϕ(iu)w(u)ei tudu =
4π

t (lg t)3
(1 + o(1)), (2.9)

where w(u) is a smooth function that equals 1 in a neighbourhood of the origin and vanishes
outside a finite interval, for the 1 −w(u) part contributes to the integral at most O(1/t N ) for any
N > 1 so that it is negligible.

Put

g(z) = − lg


1
2

√
2z


− γ = −2−1 lg(κ−1z). (2.10)

By definition

K0(z) =

∞
k=0

(z/2)2k

(k!)2


k

m=1

1
m

− γ − lg


1
2

z


(2.11)

and

K1(z) =
1
z

+
z

2

∞
k=0

(z/2)2k

k!(k + 1)!


lg

z

2
+ γ +

1
2(k + 1)

−

k
m=1

1
m


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for −π < arg z < π . It follows that for −1/2 < u < 1/2

K0(
√

2iu) = g(iu)+ 2−1iu(g(iu)+ 1)+ R1(u); (2.12)

K1(
√

2iu)
√

2iu
=

1
2iu

+
1
2


−g(iu)+

1
2


+ R2(u); (2.13)

and

1

K0(
√

2iu)
=

1
g(iu)

+
−iu

2g(iu)


1 +

1
g(iu)


+ R3(u). (2.14)

Here R1(u) = O(u2)× g(iu), R2(u) = O(u)× g(iu) and R3(u) = O(u2)/g(iu). Substitution
of these together with an easy computation yields

ϕ(iu) = −
1
2

+
1
κ

−
1

[2g(iu)]2 + R4(u) (−1/2 < u < 1/2)

where R4(u) = O(u) with the derivatives R′

4(u) = O(1), R(1+ j)
4 (u) = O(1/u j lg |u|)

( j = 1, 2). For evaluation of the contribution of R4 to the Fourier integral in (2.9) we split
its range at u = ±1/t . The inner part plainly gives the bound O(1/t2), whereas for the outer
part


|u|>1/t R4(u)w(u)ei tudu we repeat the integration by parts four times, which leads to the

same bound of O(1/t2) (see Lemma 2.2 of [22] for more details). Hence
∞

−∞

ϕ(iu)w(u)ei tudu =


∞

−∞

−ei tu

[2g(iu)]2 du + O


1

t2


.

We rewrite the integral on the right-hand side as

κ

i

 i∞

−i∞

−eκt z

[lg z]2 dz

and apply the Cauchy integral theorem. The integral along the lower (resp. upper) half of the
imaginary axis equals the one along the lower (resp. upper) side of the negative real axis in the
positive (resp. negative) direction. Noting lg(−x ± i0) = lg x ± iπ for x > 0 we then find the
foregoing integral equal to

κ


∞

0

−4π(lg x)e−κt x

[(lg x)2 + π2]2 dx =
4π

t (lg t)3
(1 + o(1))

(as t → ∞). Thus the relation (2.9), and hence the first formula of Theorem 1.1, has been proved.
Consider the case t ↓ 0. Here we go back to the original inversion integral in (2.4). From the

asymptotic formula (2.7) we observe as before that the integrand of it involves the singular com-
ponents 1/

√
2iu and 1/4iu that are not integrable at infinity and we evaluate the contributions

of them separately. To this end we bring in a function ψ(z) by

ψ(z) =
K1(

√
2z)

K0(
√

2z)
√

2z
−

1
√

2z
−

1
4(z + 1)

,

so that ψ(z) = O

|z|−3/2


as z → ∞ in the domain −π < arg z < π where ψ(z) is regular. In

addition we have ψ(z) = o(1/z) if z → 0 and apply the Cauchy integral theorem to see that the
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principal value integral p.v.


∞

−∞
ψ(iu)du vanishes, so that as t ↓ 0

p.v.


∞

−∞

ψ(iu)ei tudu =


∞

−∞

ψ(iu)

ei tu

− 1


du = O(
√

t), (2.15)

where the last equality may be verified by splitting the integral at u = ±1/t .
On the other hand

∞

−∞

1
√

2iu
ei tudu =


∞

0

cos u + sin u
√

u
du =


2π
t
, (2.16)

and 
∞

−∞

1
4(iu + 1)

ei tudu =
1
2


∞

0

cos tu + u sin tu

u2 + 1
du =

π

2
e−t . (2.17)

From (2.15) to (2.17) we find the formula as t ↓ 0 as asserted in Theorem 1.1.
The proof of Theorem 1.1 is complete.

3. Preliminary results on the first hitting time to a disc

Here we give several results which prepare for estimation of the expected area of the sausages
for the Brownian bridges. Recall that q(z, t; r) denotes the density of the distribution of σ (r) the
first hitting time at the disc U (r) of Brownian motion Bt started at z. The following result is
proved in [23].

Theorem 3.1. Uniformly for |z| > r , as t → ∞

q(z, t; r) =

lg


1
2κ(z/r)2


(lg(κt/r2))2t

e−z2/2t
+


2γ lg(t/z2)

t (lg t)3
+ O


1

t (lg t)3


for z2 < t,

O


1 + [lg(z2/t)]2

z2(lg t)3


for z2

≥ t.

(3.1)

Let σ = σ (1) and q(z, t) = q(z, t; 1). We shall use the estimate of this theorem in the
following slightly reduced form.

Corollary 3.1. Uniformly for |z| > 1, as t → ∞

q(z, t) =

lg


1
2κ(z/r)2


(lg(κt/r2))2

2πpt (z)+ O


| lg[(t/z2) ∨ 2]|

t (lg t)3


for |z|2 < 4t lg(lg t),

= O


1

t (lg t)3


for |z|2 ≥ 4t lg(lg t).

Proof. Using the inequality lg(z2/t) < z2/t for z2 > t the assertion is immediate from
Theorem 3.1. �

The following crude bound is often useful for dealing with the case |z| >


6t lg lg t .

Lemma 3.1. There is a constant c > 0 such that for all |z| > 1 and t > 1,

q(z, t) ≤ c pt+1(z). (3.2)
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Proof. For any unit vector ξ , ps(ξ) depends only on s and we see

pt (z) =

 t

0
q(z, t − s)ps(ξ)ds.

Hence

pt+1(z) ≥

 1

0
q(z, t + 1 − s)

e−1/2s

2πs
ds

and, applying the parabolic Harnack inequality (cf. [18]) which implies that q(z, t) ≤ Cq(z, t +

1 − s) for 0 ≤ s ≤ 1, |z| > 2, we obtain the inequality of the lemma. (Note that for |z| < 2, a
better estimate is given in Corollary 3.1.) �

Remark 3. On the right-hand side of (3.2) we can replace pt+1(z) by pt (z) for |z| < Mt ,
provided that at the same time c is replaced by a constant cM which may depend on M . It is
warned that the constant cM actually depends on M and in fact the ratio q(z, t)/pt (z) tends to
infinity whenever |z|/t → ∞, t → ∞.

Lemma 3.2. For all |z| > 1 and t > 0,

Pz[σ < t] ≤


2e

π

 √
t

|z| − 1
∧ 1


e−(|z|−1)2/2t . (3.3)

Proof. The relation follows from the one dimensional result that if B(2)t denotes the vertical
component of Bt , P(0,|z|)[B(2)s > 1 for 0 < s < t] = 2(2π t)−1/2


∞

(|z|−1) e−u2/2t du. �

Lemma 3.3. There exists c1 > 0 such that for |z| > 2 and t ≥ 1,

0 ≤
d

dt
Ez[Bσ · z; σ < t] ≤ c1

z2

t
pt+1(z).

Proof. The expectation Ez[Bσ ·z; σ < t] is a radial function of z and we may suppose z is on the
upper vertical axis. Let τ0 be the first exit time from H \ U (1), where H denotes the upper half
plane. Let B(1)t and B(2)t be the horizontal and vertical components, respectively, of Bt . Then by
symmetry, for z = (0, y), y > 1,

d

dt
E(0,y)[Bσ · z; σ < t] = y

d

dt
E(0,y)[B(2)τ0

; Bτ0 ∈ H, τ0 < t].

The derivative on the right-hand side is expressed as the integral of the vertical component of
ξ ∈ H ∩ ∂U (1) by P(0,y)[Bτ0 ∈ dξ, τ0 ∈ dt]/dt . It therefore suffices to show that

d

dt
P(0,y)[Bτ0 ∈ H, τ0 < t] ≤ C

y

t2 e−y2/2t . (3.4)

For verification let D = H−(0, 1) = {(x, y−1) : (x, y) ∈ H}. Then, on denoting by τD = τ(D)
the first exit time from D,

P(0,y)[τD ∈ dt, −1 < B(1)τ (D) < 1]

≥


|ξ |=1,ξ∈H

 t

0
ds

d

ds
P(0,y)[Bτ0 ∈ dξ, τ0 ≤ s]Pξ [B(1)τ (D) ∈ (−1, 1), τD + s ∈ dt].
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Since

P(x,y)[τD ∈ dt, B(1)τ (D) ∈ du] = pt ((x − u, y + 1))
y + 1

t
dtdu,

we obtain

2pt ((0, y + 1))
y + 1

t
≥


|ξ |=1,ξ∈H

 t

0

d

ds
P(0,y)

× [Bτ0 ∈ dξ, τ0 ≤ s]
2pt−s(ξ + (0, 1))

t − s
ds

≥ c
 t−1/4

t−1/2

d

ds
P(0,y)[Bτ0 ∈ H, τ0 ≤ s]ds

for some universal constant c > 0. Thus the bound of (3.4) follows in view of the parabolic
Harnack inequality as before. �

4. Wiener sausages for Brownian bridges

For x ∈ R2, put

F(t, x; r) =


|z|≥r

dz
 t

0


|ξ |=r

Pz[σr ∈ ds, Bσr ∈ dξ ]pt−s(x − z − ξ).

Then

E[Area(S(r)t ) | Bt = x] =
1

pt (x)
F(t, x; r)+ πr2. (4.1)

From the scaling property of Brownian motion it follows that

F(t, x; r) = F(t/r2, x/r; 1)

and we have only to consider the case r = 1 as in the proof of Theorem 1.1. Put

F0(t, x) =


|z|≥1

dz
 t

0
Pz[σ ∈ ds]pt−s(z − x) =


|z|≥1

dz
 t

0
q(z, s)pt−s(z − x)ds.

We first consider the case x = 0 in Section 4.1. The general case, dealt with in Section 4.2, is
based on the proof of this special case but need additional estimations of a certain integral that
are involved and partly delicate.

4.1. The case x = 0

Lemma 4.1. Let F and F0 be as above. Then F(t, 0; 1) = F0(t, 0)+ O(1/t).

Proof. Let a be a constant larger than 1. In this proof it may be arbitrarily fixed (e.g. a = 2;
in the case x ≠ 0 treated later we shall take a = x2). We split the range of integration by the
surfaces s = t − a and |z| =


4(t − s) lg(t − s) put

D0 = D0(a) = {(s, z) : t − a < s ≤ t, |z| > 1}

D> = D>(a) = {(s, z) : 0 < s ≤ t − a, |z| >


4(t − s) lg(t − s), |z| > 1},

D< = D<(a) = {(s, z) : 0 < s ≤ t − a, |z| ≤


4(t − s) lg(t − s), |z| > 1}.
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Accordingly we break the rest of the proof into three parts. Some estimates obtained below are
more accurate than necessary for the proof of the present lemma, but they are needed in the proof
of Lemma 4.4 essential for our proof of Theorem 1.2.

Part 1: D0. The contribution to the integrals defining F and F0 from D0 is O(1/t (lg t)2).
Indeed on the one hand we can use the bound (3.2) for the integration w.r.t. z over the
range |z| >


4t lg lg t , in which pt+1(z) = O(1/t (lg t)2). On the other hand, on applying

Corollary 3.1 the contribution of the other part is at most a constant multiple of t

t−a

ds

s(lg s)2


1<|z|<

√
4t lg lg t

(lg |z|) sup
|ξ |=1

pt−s(z − ξ)dz ≤
C

t (lg t)2
. (4.2)

Part 2: D>. For (s, z) ∈ D>, according to Corollary 3.1 q(z, s) ≤ C/s(lg s)3 if a < s < t/2
and q(z, s) ≤ C/s lg s if s > t/2. Hence both the contributions of D> to F and F0 are dominated
from above by a constant multiple of t−a

4


1(s ≤ t/2)

s(lg s)3
+

1(s > t/2)
s lg s


ds


|z|>
√

4(t−s) lg(t−s)
sup
|ξ |=1

pt−s(z − ξ)dz

≤
C ′

t2 + C ′

 t−a

t/2

ds

(s lg s)(t − s)2

= O


1

t lg t


.

On using (3.3) the integral on 0 < s ≤ 4 is readily evaluated to be at most O(1/t2).
Part 3: D<. Observe that if (s, z) ∈ D<, then

pt−s(z − ξ)− pt−s(z) = pt−s(z)(e

z·ξ− 1

2


/(t−s)

− 1)

= pt−s(z)
z · ξ −

1
2

t − s
+ ηt (s, z, ξ) (4.3)

with

ηt (s, z, ξ) = pt−s(z)× O


z2

+ 1

(t − s)2


.

The integral for the difference F(t, 0; 1)− F0(t, 0) restricted to

D0
< := {(s, z) ∈ D< : 0 < s ≤ 4}

is at most O(1/t2) in view of (3.3). Thus we may restrict the integral to the range D< \ D0
<.

Consider the contribution of the first term on the right side of (4.3). Applying Lemma 3.3 with
the help of Corollary 3.1 (for |z| < 2) we deduce that

D<\D0
<

dsdz


|ξ |=1
pt−s(z)

z · ξ

t − s
·

Pz[σ ∈ ds, Bσ ∈ dξ ]

ds


≤ C

 t−a

4
ds


|z|>2

pt−s(z)z2 ps+1(z)
(t − s)s

dz + C
 t−a

4

ds

(t − s)2s(lg s)2
≤

C ′

t
. (4.4)

Here we have applied the trivial bound pt−s(z) < 1/(t − s) (for the integral on s < t/2) as
well as ps+1(z) ≤ 1/s (for that on s > t/2). The part involving the term 1/2 is evaluated to be
O(1/t) by dominating q(z, s) by Cps+1(z) for s < t/2 and by C/s lg s for s > t/2.
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For the proof of the lemma it now suffices to show that
D<\D0

<

dsdz


|ξ |=1
ηt (s, z, ξ) ·

Pz[σ ∈ ds, Bσ ∈ dξ ]

ds
= O


1

t lg t


. (4.5)

To this end we further split the region D< by the surfaces s = t/2 and |z| = 1 +


4s lg lg s

(4 < s < t/2). Denote by J RH(a), J (>)LH , J (<)LH the double integrals on the regions

DRH
< (a) := {(s, z) ∈ D< : t/2 ≤ s < t − a},

D(>)
LH := {(s, z) ∈ D< : 4 < s < t/2, |z| ≥ 1 +


4s lg lg s},

D(<)
LH := {(s, z) ∈ D< : 4 < s < t/2, |z| < 1 +


4s lg lg s},

respectively. Employing Corollary 3.1 we obtain

J RH(a) < C
 t−a

t/2

ds

s lg s


|z|<

√
4(t−s) lg(t−s)

z2

(t − s)2
pt−s(z)dz

<
C ′

t lg t

 t−a

t/2

ds

t − s
= O


1
t


, (4.6)

and, similarly but dominating pt−s(z) simply by 1/(t − s),

J (<)LH < C
 t/2

4

ds

(t − s)3


|z|<1+

√
4s lg lg s

z2

lg s
ps(z)dz

<
C ′

t3

 t/2

4

s

lg s
ds = O


1

t lg t


. (4.7)

With the help of (3.2) and (3.1) as well as (4.3) we deduce that

J (>)LH < C
 t/2

4
ds


|z|>1+

√
6s lg lg s

ps+1(z)
|z|2 pt−s(z)
(t − s)2

dz

+


|z|>1+

√
4s lg lg s


ps(z)
lg s

+
(lg lg s)2

z2(lg s)3


z2 pt−s(z)
(t − s)2

dz



< C ′

 t/2

4
ds


1

(lg s)2t2 +


|z|>1+

√
4s lg lg s

z2 ps(z)dz
t3 lg s

+


|z|>1+

√
6s lg lg s

z2 ps(z)dz
t3



≤
C ′′

t (lg t)2
.

Thus (4.5) has been proved. The proof of the lemma is complete. �

Lemma 4.2.

F0(t, 0) = N (κt)− πpt (1)+ O(1/t (lg t)2).
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Proof. The Laplace transform of F0 is given by
∞

0
F0(t, 0)e−λt dt =


∞

0
e−λt dt


|z|≥1

dz
 t

0
Pz[σ ∈ ds]pt−s(z)

=
1
π


|z|≥1


K0(|z|

√
2λ)

2
dz

1

K0(
√

2λ)

(cf. [11, Section 7.2]). Fortunately we have the identity

r K 2
0 (ra) =

1
2

d

dr


r2


K 2
0 (ra)− K 2

1 (ra)


for any constant a > 0, so that
∞

0
F0(t, 0)e−λt dt = −K0(

√
2λ)+

[K1(
√

2λ)]2

K0(
√

2λ)
.

Hence

F0(t, 0) = −πpt (1)+
1

2π


∞

−∞

[K1(
√

2iu)]2

K0(
√

2iu)
ei tudu.

For evaluation of the last integral we can proceed as in the preceding section. Put

E(z) =
[K1(

√
2z)]2

K0(
√

2z)
−

1
κ


1

κ−1z − 1
−

1

κ−1z lg(κ−1z)


.

Then for −1/2 < u < 1/2, E(iu) = −1+
1
κ
+[4g(iu)]−1

−[2g(iu)]−2
+R(u)with R(u) = O(u)

and as before (see (2.5) and the ensuing discussion up to (2.6)) we have

F0(t, 0)− N (κt)+ πpt (1) =
1

2π


∞

−∞

E(iu)ei tudu = O


1

t (lg t)2


.

The proof of the lemma is complete. �

Combining Lemmas 4.1 and 4.2 with (4.1) leads to the assertion of Theorem 1.2 with x = 0.

4.2. The case x ≠ 0

We first extend Lemma 4.1.

Lemma 4.3. For each M ≥ 1 uniformly for |x| < M
√

t , as t → ∞

F(t, x; 1) = F0(t, x)+ O(1/t).

Proof. First of all we verify that
|x−z|<1,|z|>1

dz
 t

t−1
Pz[σ ∈ ds, Bσ ∈ dξ ]pt−s(z − x − ξ) ≤

C

t lg t
. (4.8)

For verification we use the inequality

Pz[σ ∈ ds, Bσ ∈ dξ ] ≤


dyp1(y − z)Py[σ + 1 ∈ ds, Bσ ∈ dξ ].
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If |x− z| < 1, p1(y− z) is dominated by e−(y−x)2/4. Hence, performing the integration by z first,
we see that the repeated integral in (4.8) is at most

 t
t−1 ds


e−(y−x)2/4q(y, s − 1)dy, which is

evaluated to be O(1/t lg t) according to Corollary 3.1.
The rest of the proof proceeds in parallel with that of Lemma 4.1. Of course we must replace

pt−s(z − ξ) and pt−s(z) by pt−s(z − x − ξ) and by pt−s(z − x), respectively. We accordingly
modify the definition of D< as

D< = {(s, z) : 0 < s < t − a, |z − x| ≤


4(t − s) lg(t − s)}

and D> analogously. Then Parts 1 and 2 are treated without any change except that for Part 1 we
use (4.8). For Part 3 we consider

pt−s(z − x − ξ)− pt−s(z − x) = pt−s(z − x)


e


(z−x)·ξ− 1

2


/(t−s)

− 1


= pt−s(z − x)
(z − x) · ξ −

1
2

t − s
+ ηt,x(s, z, ξ) (4.9)

with

ηt,x(s, z, ξ) = pt−s(z − x)× O


|z − x|

2
+ 1

(t − s)2


in place of (4.3). In the first term on the last member of (4.9) x·ξ may be replaced by (x·z)(z·ξ)/z2

since by symmetry the component of ξ perpendicular to z vanishes after integration. It follows
that (z − x) · ξ can be replaced by (z · ξ)z · (z − x)/|z|2. Keeping this in mind and employing
(3.3) together with Lemma 3.3 and Corollary 3.1, we deduce that

D<
dsdz




|ξ |=1
pt−s(z − x)

(z − x) · ξ −
1
2

t − s
·

Pz[σ ∈ ds, Bσ ∈ dξ ]

ds


≤

C

t
+

 t−a

a
ds


|z|≥2

|z · (z − x)|
(t − s)s

· pt−s(z − x)ps(z)dz

+ C


|z|<2
dz
 t−a

a
|z − x| e−|z−x|

2/2(t−s) ds

(t − s)2s(lg s)2

≤
C ′

t
. (4.10)

Here the last inequality is due to the observation that the first integral in the middle member
restricted on the interval s ∈ [a, t/2] is at most a constant multiple of

1

t2

 t/2

a
ds


R2

z2
+ |z ∥ x|

s
ps(z)dz ≤

1
t

+
|x|

t2

 t/2

0

1
√

s
ds = O


1
t


and similarly for the other interval.

The rest of the proof is similarly dealt with and hence omitted. �

Lemma 4.4. Foe each M ≥ 1 uniformly for |x| < M
√

t , as t → ∞

F0(t, x)− F0(t, 0) = 2π [pt (x)− pt (0)]
t

lg t
+

x2

2t (lg t)2


lg


t

x2 ∨ 1


+ O(1)


+ O


1

t lg t


.
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The right-hand side of the formula of this lemma is suggested by that of Theorem 1.2 and the
latter in turn is by the corresponding one in [21] for random walks. The course of proof given
below is often steered by the asserted formula.

Proof of Lemma 4.4. We suppose |x| <
√

t /2 for simplicity of the description of the proof
(otherwise one may take a = x2/2M2 instead of a = x2 in below). Suppose also |x| ≥ 2,
the same proof of Lemma 4.1 being applicable with little alteration if |x| < 2. We make
computations analogous to those in the proof of Lemma 4.1. We substitute a = x2 in the
definitions of D0, D> and D< given therein and denote the resulting regions by D0(x2), D>(x2)

and D<(x2), respectively; denote the contributions from them to the difference F0(t, x)−F0(t, 0)
by I [D0(x2)], I [D>(x2)] and I [D<(x2)], respectively.

For the estimate given in Part 2 of the proof of Lemma 4.1 where the integral over D>(a) is
dealt with we have the same bound O(1/t lg t), namely

I [D>(x2)] = O(1/t lg t), (4.11)

since |z − x| ≥ |z| − |x| ≥


3t lg t if t/2 < s < t − x2 and (s, z) ∈ D>(x2) (the integral on
0 < s < t/2 is dealt with in the same way as before).

The rest of the proof is somewhat involved and broken into three parts 1–3.
1. Estimation of I [D0(x2)]. There exists a constant C such that for |x| > 1, x2

0
du


R2

lg z2
− lg |z − x|

2
 pu(z)dz < Cx2 (4.12)

as is proved shortly. For the integral that gives I [D0(x2)] we may restrict (s, z) to {4 <

t − s < x2, |z| <


4s lg lg s}, the contribution of the remainder being at most O(x2/t (lg t)2) as
discussed before. In view of this as well as of (4.12) we may write it as t−4

t−x2
ds


|z|<
√

4s lg lg s

2πps(z)
(lg s)2


(lg |z − x|

2)pt−s(z − x)− (lg z2)pt−s(z)


dz

+ O


x2

t (lg t)2


.

Substituting from the identities lg |z − x|
2

= lg(t − s) + lg[|z − x|
2/(t − s)] and lg z2

=

lg(t − s) + lg[z2/(t − s)] and noting that


lg(z2/(t − s))pt−s(z)dz equals

(lg z2)p1(z)dz, a

finite constant we find that

I [D0(x2)] = 2π [pt (x)− pt (0)]
 t−4

t−x2

lg(t − s)ds

(lg s)2
+ O


x2

t (lg t)2


. (4.13)

This is not negligible and to contribute to the leading term on the right-hand side of the formula
of the lemma.

Proof of (4.12). If the range of integration is restricted to |z|∧|z−x| > |x|/2, then
 lg z2

−lg |z−

x |
2
 is uniformly bounded and the corresponding (repeated) integral is obviously bounded by a

positive multiple of x2. The integral corresponding to {|x − z| ≤ |x|/2} can be readily evaluated
to be O(x2). For the range |z| ≤ |x|/2 it suffices to show that

1

x2

 x2

0

du

u


|z|<|x|


lg

|x|

|z|


e−|z|2/2udz < C ′. (4.14)
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Changing the variables of integration according to s = u/x2 and y = z/|x| transforms the left-
hand side of (4.14) to

 1
0 s−1ds


|y|<1(lg |y|)e−y2/2sdy, which is independent of x . By another

change of variables this last integral is further transformed to
∞

1

ds

s2


|y|<

√
s


lg

√
s

|y|


e−y2/2dy,

which is certainly finite. Hence we have (4.14). �

2. Estimation of I [D<(x2)]. For (s, z) ∈ D<(x2), instead of (4.3) we have

pt−s(z − x)− pt−s(z) = pt−s(z)(e

z·x−

1
2 x2


/(t−s)

− 1)

= pt−s(z)


z · x −

1
2 x2

t − s
+

(z · x)2

2(t − s)2
−
(z · x)x2

2(t − s)2


+ ηt,x(s, z) (4.15)

with

ηt,x(s, z) = pt−s(z)
x2

t − s
× O


x2

t − s
+

|z|4

(t − s)2


.

Since the double integral of the terms that are linear in z inside the big square brackets in (4.15)
vanishes by skew symmetry, the substantial part of pt−s(z − x)− pt−s(z) reduces to pt−s(z)×

L t,x(z), where

L t,x(s, z) = −
x2

2(t − s)
+

(z · x)2

2(t − s)2
+

x2

t − s
× O


x2

t − s
+

|z|4

(t − s)2


. (4.16)

Let D0
<, DRH

< (x2), D(>)
LH and D(<)

LH be defined as in Part 3 of the proof of Lemma 3.3 and
denote by I [D0

<], I [DRH
< (x2)] etc. the corresponding double integrals on them, so that

I [D<(x2)] = I [D0
<] + I [DRH

< (x2)] + I [D(<)
LH ] + I [D(>)

LH ]. (4.17)

The integrals I [D0
<], I [D(<)

LH ] and I [D(>)
LH ] are independent of x as the notation suggests.

2.1. Estimation of I [DRH
< (x2)]. By definition

I [DRH
< (x2)] =

 t−x2

t/2
ds


|z|<
√

4(t−s) lg(t−s)
q(z, s)


pt−s(z − x)− pt−s(z)


dz. (4.18)

Let (s, z) be in the region of integration of this integral. By what is remarked right above,
pt−s(z − x)− pt−s(z) may be replaced by pt−s(z)L t,x(s, z), which is bounded in absolute value
by a constant multiple of

pt−s(z)(t − s)−1x2

1 + (t − s)−2

|z|4

.

Keeping this in mind one replaces the upper limit


4(t − s) lg(t − s) of the inner integral in
(4.18) by


8(t − s) lg lg(t − s). Since q(z, s) ≤ C(lg |z|)/s(lg s)2 in view of Corollary 3.1 and

the integral of (lg |z|)[1+ (t − s)−2z4
]pt−s(z) w.r.t. z over |z| >


8(t − s) lg lg(t − s) is at most

1/[lg(t − s)]2, the error given rise to by this replacement is bounded above by

C ′x2
 t−x2

t/2

ds

s(lg s)2[(t − s)(lg(t − s))2]
= O


x2

t (lg t)2


.
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This together with Corollary 3.1 shows that

I [DRH
< (x2)] =

 t−x2

t/2
ds


|z|<
√

8(t−s) lg lg(t−s)

lg z2

(lg s)2
2πps(z)

×


pt−s(z − x)− pt−s(z)


dz + O


x2

t (lg t)2


. (4.19)

Now, substituting the decomposition lg z2
= lg(t − s)+ lg[z2/(t − s)], we have

I [DRH
< (x2)] = 2π [pt (x)− pt (0)]

 t−x2

t/2

lg(t − s)

(lg s)2
ds + K (x, t)+ O


x2

t (lg t)2


, (4.20)

where

K (x, t) =

 t−x2

t/2

ds

(lg s)2


|z|<

√
8(t−s) lg lg(t−s)


lg

z2

t − s


× 2πps(z)pt−s(z)L t,x(s, z)dz.

On writing u for t − s, using the identity

2πpu(z)pt−u(z) = t−1 p(t−u)u/t (z),

noting that one may replace lg(z2/u) by lg

z2/[u(t − u)/t]


in the present estimation, and

changing the variables of integration according to y = z/
√

s(t − s)/t , the inner integral above
becomes

|z|<
√

8u lg lg u

lg(z2/u)

t
p(t−u)u/t (z)L t,x(t − u, z)dz

=


|y|<

√
8(t/(t−u)) lg lg u

lg y2

t


−

x2

2u
+
(t − u)(y · x)2

2ut


p1(y)dy + R

=


−

1
2tu

b1 +
t − u

4ut2 b2


x2

+ O


x2

tu(lg u)3/2


+ R

(under the restriction x2 < u < t/2), where R denotes the contribution of the error term in
L t,x(t − u, z) and we have used the identity


(y · x)2 f (|y|)dy = 2−1x2


y2 f (|y|)dy valid for a

non-negative function f (r) and

b1 =


R2
(lg y2)p1(y)dy and b2 =


R2

y2(lg y2)p1(y)dy.

It follows that b2 − 2b1 = 2 and |R| ≤ C |K (x, t)|x2/t . Noting that
 t/2

x2 u−1(lg(t − u))−2du =

(lg t/x2)(lg t)−2
+ O((lg t)−2) we infer

K (x, t) =
x2 lg(t/x2)

2t (lg t)2
+ O


x2

t (lg t)2


,

and substitution into (4.20) yields

I [DRH
< (x2)] = 2π [pt (x)− pt (0)]

 t−x2

t/2

lg(t − s)

(lg s)2
ds +

x2 lg(t/x2)

2t (lg t)2
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+ O


x2

t (lg t)2


. (4.21)

2.2. Estimation of I [D(<)
LH (x

2)]. This part is similar to the preceding one but much simpler.
This time we substitute lg z2

= lg s + lg(z2/s) to see that

I [D(<)
LH (x

2)] =

 t/2

4
ds


|z|<
√

4s lg lg s
q(z, s)


pt−s(z − x)− pt−s(z)


dz

= 2π [pt (x)− pt (0)]
 t/2

4

ds

lg s
+ R (4.22)

with

|R| ≤ C
 t/2

4

ds

(lg s)2


R2

pt−s(z)


x2

t − s
+

z2x2

(t − s)2


lg

z2

s


ps(z)dz

≤
C ′x2

t (lg t)2
.

2.3. Estimation of I [D0
LH(x

2)] and I [D(>)
LH (x

2)]. It is readily checked that I [D0
<(x

2)] =

O(1/t (lg t)2). By the same argument as made for the estimation of J (>)LH in the proof of
Lemma 4.1 we deduce that

I [D(>)
LH (x

2)] = O


x2

t (lg t)2


. (4.23)

3. Completion of Proof. Combining (4.13), (4.17) and (4.21)–(4.23) we deduce that

I [D<(x2)] = 2π [pt (x)− pt (0)]

 t

t/2

lg(t − s)

(lg s)2
ds +

 t/2

0

ds

lg s



+
x2 lg(t/x2)

2t (lg t)2
+ O


x2

t (lg t)2


.

Finally, noting
 t

t/2
lg(t−s)
(lg s)2

ds +
 t/2

0
ds
lg s = t/ lg t + O(t/(lg t)2) and recalling (4.11) as well

as F0(t, x) − F0(t, 0) = I [D0(x2)] + I [D>(x2)] + I [D<(x2)] we conclude the formula of
Lemma 4.4. �

Proof of Theorem 1.2. From Lemmas 4.2 and 4.3 it follows that for 1 < |x| < M
√

t ,

F(t, x, 1)
pt (x)

=
N (κt)− πpt (1)+ F0(t, x)− F0(t, 0)

pt (x)
+ O(1).

By Lemma 4.4 we can write the right-hand side as

2π t N (κt)+ 2π t


−N (κt)+

1
lg t


pt (x)− pt (0)

pt (x)

+
πx2

(lg t)2


lg


t

x2


+ O(1)


+ O(1),

in which the second term reduces to O(x2/(lg t)2) since N (κt) = 1/ lg t + O(1/(lg t)2). In view
of (4.1) this yields the formula of Theorem 1.2. �
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5. On the asymptotic expansion related to N(λ)

Our arguments made in this section are based on the following formula due to Bouwkamp [2]:
for λ > 0, σ ≥ 0

∞

0

uσ−1e−λu

(lg u)2 + π2 du =

 s

0

sinπx

π
Γ (σ + x)e−x lg λdx +

θ(λ, s)Γ (σ + s)

π2λs
, (5.1)

where s may be an arbitrary positive number and |θ(λ, s)| ≤ 1 (Eq. (11) of [2]; see also Dorning
et al. [4, Eq. (17)] for the case σ = 0). From this he obtains the asymptotic expansion of N (λ) in
powers of 1/ lg λ as λ → ∞. We shall extend the argument of [2]. Take σ = 0 in (5.1) so that the
integral on the left gives N (λ) and substitute from Euler’s relation Γ (x)Γ (1 − x) = π/ sinπx
as well as λ = αt to see that as t → ∞

N (αt) =

 s

0

1
Γ (1 − x)αx e−x lg t dx + O


1
t s


. (5.2)

Lemma 5.1. For any constant α > 0, the function N (αt) admits the asymptotic expansion

N (αt) ∼
1

(lg t)

∞
n=0

an(α)

(lg t)n
(t → ∞)

with the constants an(α) determined by

1
Γ (1 − x)αx =

∞
n=0

an(α)

n!
xn (|x | < 1). (5.3)

Proof. The integral on the right-hand side of (5.2) is a Laplace transform, in the variable
lg t , of a function regular at x = 0 and it is standard to infer that the integral admits an
asymptotic expansion in the powers of 1/ lg t with the coefficients determined by (5.3), showing
the lemma. �

Lemma 5.2. For each constant α > 0, as t → ∞ t

0
N (αs)ds ∼

t

(lg t)

∞
n=0

bn(α)

(lg t)n
,

 t

0


−αs N ′(αs)


ds ∼

t

(lg t)2

∞
n=0

(n + 1)bn(α)

(lg t)n

with the constants bn(α) determined by

1
(1 − x)Γ (1 − x)αx =

∞
n=0

bn(α)

n!
xn (|x | < 1).

Proof. Integrate the both sides of (5.2) to see that t

1/α
N (αu)du = t

 s

0

1
(1 − x)Γ (1 − x)αx e−x lg t dx

−

 s

0

1/α
(1 − x)Γ (1 − x)

dx + O


1

t s−1


, (5.4)
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which is valid for every s > 0. Note that 1/(1 − z)Γ (1 − z) = 1/Γ (−z) is an entire function.
Since O(1) term is negligible for the asymptotic expansion, we obtain the first formula as in
the preceding proof. One can verify the second one in a similar way but by employing (5.1)
with σ = 1. Alternatively, note that the left-hand side integral of the second formula equals t

0 N (αs)ds − t N (αt). Then, we readily derive it from the first one combined with the preceding
lemma. �

From the Weierstrass product formula

1
Γ (1 + x)

= eγ x
∞

n=1

e−x/n


1 +
x

n


(cf. [13]) it follows that if ζ(z) =


∞

k=1 k−z ,

lg
1

Γ (1 − x)
= −γ x −

∞
n=2

1
n
ζ(n)xn, (5.5)

hence
∞

n=0

an(α)

n!
xn

= exp


−(γ + lgα)x −

∞
n=2

1
n
ζ(n)xn


.

Similarly, using (1 − x)−1
= exp


∞

n=1 n−1xn we obtain from (5.5)

∞
n=0

bn(α)

n!
xn

= exp


−(γ + lgα − 1)x −

∞
n=2

1
n
[ζ(n)− 1]xn


.

From these identities one can readily compute the first several terms of (an(α))
∞

n=0 and those of
(bn(α))

∞

n=0 as exhibited in (1.2) and (1.3), respectively.
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[5] A. Erdélyi, Tables of Integral Transforms, Vol. I, McGraw-Hill, Inc., 1954.
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