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Backward Stochastic Differential Equations

Driven by G-Brownian Motion

Mingshang Hu ∗ Shaolin Ji† Shige Peng‡

Yongsheng Song§
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Abstract

In this paper, we study the backward stochastic differential equations
driven by a G-Brownian motion (Bt)t≥0 in the following form:

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds +

∫ T

t

g(s, Ys, Zs)d〈B〉s

−
∫ T

t

ZsdBs − (KT − Kt),

where K is a decreasing G-martingale. Under Lipschitz conditions of f
and g in Y and Z, the existence and uniqueness of the solution (Y, Z, K)
of the above BSDE in the G-framework is proved.

Key words: G-expectation, G-Brownian motion, G-martingale, Backward
SDEs

MSC-classification: 60H10, 60H30

1 Introduction

Consider a Wiener probability space (Ω,F , P ) where Ω is the space of continuous
paths and P is the Wiener measure. It is well known that the canonical process,
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namelyBt(ω) = ωt for ω ∈ Ω, is a standard Brownian motion under P . A typical
kind of classical Backward Stochastic Differential Equation (BSDE for short) is
defined, on this space, as

Yt = ξ +
∫ T

t

g(s, Ys, Zs)ds−
∫ T

t

ZsdBs, (1.1)

where g is a given function, called the generator of (1.1) and ξ is a given FT -
measurable random variable called the terminal condition. The solution of (1.1)
consists of a pair of adapted processes (Y, Z). Linear BSDEs were initiated by
Bismut [2, 1973]. In 1990, Pardoux and Peng [15, 1990] introduced the general
nonlinear BSDEs with Lipschitz continuous generators.

Note that the above classical BSDEs are based on a probability space frame-
work. Recently, there are at least two motivation to drive BSDEs and the cor-
responding time-consistent nonlinear expectations to develop ahead beyond the
probability space framework. The first one is that the classical BSDE can only
provide a probabilistic interpretation of a PDE for quasilinear but not for fully
nonlinear cases. The second one is that the stochastic control techniques in [1]
are difficult to price path-dependent contigent claims in the uncertain volatility
model (UVM for short). In the UVM case, one is faced with a family of probabil-
ity measures which are, in general, mutually singular and nondominated. Thus,
we need a new coherent framework on which one can accommodate problems
involving a family of nondominated measures (see [4]).

In order to overcome the above shortcomings of classical BSDEs, Peng sys-
temically established a time-consistent fully nonlinear expectation theory. The
notion of time-consistent fully nonlinear expectations was first introduced in
[20, Peng2004] and [21, Peng2005].

As a typical case, Peng (2006) introduced G-expectation (see [27] and the
references therein). Under G-expectation framework (G-framework for short),
a new type of Brownian motion called G-Brownian motion was constructed
and the corresponding stochastic calculus of Itô’s type was established. The
existence and uniqueness of solution of a SDE driven by G-Brownian motion can
be proved in a way parallel to that in the classical SDE theory. But the BSDE
driven by G-Brownian motion (Bt)t≥0 becomes a challenging and fascinating
problem.

Just as in the classical case, G-martingale representation theorem is the key
to solve a BSDE in this G-framework. For a dense family of G-martingales,
Peng [23] obtained the following result: a G-martingale M has the form

Mt = M0 + M̄t +Kt,

M̄t :=
∫ t

0

zsBs, Kt :=
∫ t

0

ηs 〈B〉s −
∫ t

0

2G(ηs)ds.

Here M is decomposed into two incompatible G-martingales. The first one M̄
is called symmetric G-martingale. That is, −M̄ is also a G-martingale. The
second one K is quite unusual since it is a decreasing process. A main concern in
the G-framework is how to understand this decreasing G-martingales K, which
aroused an interesting open problem (see [23] and [27]).
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For a general G-martingale, the first step is to decompose it into a sum of
a symmetric G-martingale M̄ and a decreasing G-martingale K. This difficult
problem was solved after a series of successive efforts of Soner, Touzi & Zhang
[33, 2011] and Song [35, 2011], [36, 2012]. The second step is to study that under
what condition the decreasing G-martingale K can be uniquely represented as
Kt :=

∫ t

0
ηs 〈B〉s −

∫ t

0
2G(ηs)ds. Thanks to an original new norm for decreasing

G-martingales introduced in Song [36, 2012], a complete representation theorem
of G-martingales has been obtained in a complete subspace of Lα

G(ΩT ) by Peng,
Song and Zhang [30, 2012].

Due to the above G-martingale representation theorem, a natural formula-
tion of a BSDE driven by G-Brownian motion consists of a triple of processes
(Y, Z,K), satisfying

Yt = ξ +
∫ T

t

f(s, Ys, Zs)ds+
∫ T

t

g(s, Ys, Zs)d〈B〉s (1.2)

−
∫ T

t

ZsdBs − (KT −Kt).

Our main result of this paper is the existence and uniqueness of a solution
(Y, Z,K) for (1.2) (see Theorems 4.1 and 4.2) in the G-framework. Two new
approaches have been introduced to prove the existence and uniqueness theo-
rems. The first one is to apply the partition of unity theorem to construct a new
type of Galerkin approximation instead of the well-known Picard approxima-
tion. The second one involves Lemma 3.4 for decreasing G-martingales, which
helps us to obtain the uniqueness, as well as the existence part of the proof.
Estimate (2.1) originally obtained in [35] also plays an important role in the
proof.

Now we compare the results of this paper with the known ones about fully
nonlinear BSDEs.

Peng [21, Peng2005] introduced a new type of time consistent fully nonlinear
expectations E i

t , i = 1, . . . , n, through which the existence and uniqueness of a
fully nonlinear multi-dimensional BSDE of the following type

Y i
t = E i

t [ξ +
∫ T

t

fi(s, Ys)ds], i = 1, . . . , n, (1.3)

was obtained, where E i
t were not assumed to be sublinear or convex. But this

BSDE was not expressed as a classical differential form of BSDE (1.1).

Soner, Touzi and Zhang [34, 2012] have obtained a deep result of existence
and uniqueness theorem for a new type of fully nonlinear BSDE, called 2BSDE:
to find (Y, Z,KP)P∈Pκ

H
satisfying, for each probability P ∈ Pκ

H , the following
BSDE:

Yt = ξ +
∫ T

t

F̂s(Ys, Zs)ds−
∫ T

t

ZsdBs − (KP
T −KP

t ), P-a.s., (1.4)

such that the following minimum condition is satisfied

KP
t = ess sup

P′∈Pκ
H(t+,P)

EP′
t [KP

T ], P-a.s., ∀P ∈ Pκ
H , t ∈ [0, T ]. (1.5)
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The generator F̂ in (1.4) is formulated in the following way:

F̂ (t, ω, y, z) = F (t, ω, y, z, θt(ω))

and
F (t, ω, y, z, a) := sup

γ
[
1
2
aγ −H(t, ω, y, z, γ)]

for some function H(t, ω, y, z, a) (see Section 2 for the definition of θt). In [34],
to obtain the existence of the solution, the function F (t, ω, y, z, a) was assumed
to be uniformly continuous in ω under the uniform convergence norm. The
G-BSDE (1.2) corresponds to the 2BSDE (1.4) with the generator function

F (t, ω, y, z, a) = f(t, ω, y, z) + g(t, ω, y, z)a.

The main contribution of this paper is about the regularity of the solutions.
In this paper, we introduce a quite different method to show that the triple
(Y, Z,K) is universally defined in the spaces of the G-framework, in which the
processes have strong regularity property (see Section 2 for more details). Up
to now, all the representation results for G-martingales are in the G-framework
(see Peng [23], Soner, Touzi & Zhang [33, 2011] and Song [35, 2011]). Also,
the terminal random variables of 2BSDE considered in [34] are confined in the
G-framework. One advantage of the strong regularity is the time consistency of
the solution. Precisely, for each t ∈ [0, T ), the solution Yt of (1.2), is proved to
be in the space Yt ∈ Lp

G(Ωt) if the given terminal condition YT is assumed in
the space Lp

G(ΩT ). Consequently, like the classical BSDEs, the solution of G-
BSDE can be considered as a time consistent non-linear expectation. Another
advantage of the strong regularity is that the process Kt is “aggregated” (not
depending on P) into a universal process in the G-framework.

In this paper, we consider the Lp solutions, for p > 1, of the BSDEs instead
of just the L2 solutions. Besides, by the method introduced in this paper, the
assumption of uniform continuity on f(t, ω, y, z), g(t, ω, y, z) in ω is unnecessarily
restrictive.

Recently, many authors investigate the relations between BSDEs and path-
dependent PDEs, the notion of which was proposed in Peng’s ICM2010 lecture.
[11] shows that the G-BSDE in the Markovian case corresponds to a fully non-
linear PDE. In Peng and Wang [32], it is proved that, under reasonable and
concrete regularity assumptions on ξ and g, the classical BSDE is a type of
quasilinear path-dependent PDE, in the sense of Dupire derivatives. The no-
tion of viscosity solution of Dupire’s type was proposed in [29]. A new notion
of viscosity solution, quite different from the original one, was given by [6, 7]
through which a new result of existence and uniqueness theorem was obtained.
More recently, Peng and Song (2013) introduced a new notion of G-expectation-
weighted Sobolev spaces, or in short, G-Sobolev spaces. For the linear case of G
corresponding to the classical Wiener probability space (Ω,F , P ), the authors
have established a 1-1 correspondence between BSDEs and a type of quasilin-
ear path-dependent PDEs in the corresponding P -Sobolev space. When G is
nonlinear, it was proved that the backward SDEs driven by G-Brownian mo-
tion corresponds to fully nonlinear path-dependent PDEs in the corresponding
G-Sobolev spaces.
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The paper is organized as follows. In section 2, we present some preliminaries
for stochastic calculus under G-framework. Some estimates for the solution of
G-BSDE are established in section 3. In section 4 the existence and uniqueness
theorem is provided. In section 5, we present an alternative a priori estimate
for the solutions of G-BSDEs, which may be useful in the follow-up work of
G-BSDEs theory.

2 Preliminaries

We review some basic notions and results of G-expectation and the related
spaces of random variables. The readers may refer to [22], [23], [24], [25], [27]
for more details.

Let ΩT = C0([0, T ]; Rd), the space of Rd-valued continuous functions on
[0, T ] with ω0 = 0, be endowed with the supremum norm and let Bt(ω) = ωt be
the canonical process. Set

H0
T := {ϕ(Bt1 , ..., Btn) : n ≥ 1, t1, ..., tn ∈ [0, T ], ϕ ∈ Cl.Lip(Rd×n)}.

Let (ΩT ,H0
T , Ê) be the G-expectation space. The function G : Sd → R is

defined by

G(A) :=
1
2

Ê[〈AB1, B1〉].
where Sd denotes the collection of d × d symmetric matrices. In this paper,
we only consider non-degenerate G-normal distribution, i.e., there exists some
σ2 > 0 such that G(A) −G(B) ≥ σ2tr[A−B] for any A ≥ B.

Define ‖ξ‖p,G = (Ê[|ξ|p])1/p for ξ ∈ H0
T and p ≥ 1. Then for all t ∈ [0, T ],

Êt[·] is a continuous mapping on H0
T w.r.t. the norm ‖·‖1,G. Therefore it can be

extended continuously to the completion L1
G(ΩT ) of H0

T under the norm ‖·‖1,G.

Let Lip(ΩT ) := {ϕ(Bt1 , ..., Btn) : n ≥ 1, t1, ..., tn ∈ [0, T ], ϕ ∈ Cb.Lip(Rd×n)},
where Cb.Lip(Rd×n) denotes the set of bounded Lipschitz functions on Rd×n.
Denis et al. [5] proved that the completions of Cb(ΩT ) (the set of bounded
continuous function on ΩT ), H0

T and Lip(ΩT ) under ‖ · ‖p,G are the same and
we denote them by Lp

G(ΩT ).

Definition 2.1 Let M0
G(0, T ) be the collection of processes in the following

form: for a given partition {t0, · · ·, tN} = πT of [0, T ],

ηt(ω) =
N−1∑

j=0

ξj(ω)I[tj ,tj+1)(t),

where ξi ∈ Lip(Ωti), i = 0, 1, 2, · · ·, N − 1. For p ≥ 1 and η ∈ M0
G(0, T ),

let ‖η‖Hp
G

= {Ê[(
∫ T

0 |ηs|2ds)p/2]}1/p, ‖η‖Mp
G

= {Ê[
∫ T

0 |ηs|pds]}1/p and denote
by Hp

G(0, T ), Mp
G(0, T ) the completions of M0

G(0, T ) under the norms ‖ · ‖Hp
G
,

‖ · ‖Mp
G

respectively.

Let S0
G(0, T ) = {h(t, Bt1∧t, · · ·, Btn∧t) : t1, . . . , tn ∈ [0, T ], h ∈ Cb,Lip(Rn+1)}.

For p ≥ 1 and η ∈ S0
G(0, T ), set ‖η‖Sp

G
= {Ê[supt∈[0,T ] |ηt|p]}

1
p . Denote by

Sp
G(0, T ) the completion of S0

G(0, T ) under the norm ‖ · ‖Sp
G
.
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We call Lp
G(ΩT ),Mp

G(0, T ), Hp
G(0, T ) and Sp

G(0, T ) the spaces ofG-framework.
In the linear case, such kind of spaces contain amost all processes which we are
interested in. Under the G-expection, however, there do exist some less regular
processes, which can’t be approximated by the “regular” ones by the definitions
of the spaces in the G-framework. A typical process which does not belong to
Mp

G(0, T ) is

θs = lim sup
ε↓0

〈B〉s − 〈B〉s−ε

ε

(see [36, 2012] for more details).

Theorem 2.2 ([5, 12]) There exists a tight subset P ⊂ M1(ΩT ), the set of
probability measures on (ΩT ,B(ΩT )), such that

Ê[ξ] = sup
P∈P

EP [ξ] for all ξ ∈ H0
T .

P is called a set that represents Ê.

Remark 2.3 Denis et al. [5] gave a concrete set PM that represents Ê. For
simplicity, we only introduce the 1-dimensional case, i.e., ΩT = C0([0, T ]; R) .

Let (Ω0,F0, P 0) be a probability space and {Wt} be a 1-dimensional Brown-
ian motion under P 0. Let F 0 = {F0

t } be the augmented filtration generated by
W . Denis et al. [5] proved that

PM := {Ph : Ph = P 0 ◦X−1, Xt =
∫ t

0

hsdWs, h ∈ L2
F 0([0, T ]; [σ, σ])}

is a set that represents Ê, where L2
F 0([0, T ]; [σ, σ]) is the collection of F 0-adapted

measurable processes with σ ≤ |hs| ≤ σ. Here

σ2 := −Ê[−B2
1 ] ≤ Ê[B2

1 ] =: σ2.

For this 1-dimensional case,

G(a) =
1
2

Ê[aB2
1 ] =

1
2
[σ2a+ − σ2a−].

Let P be a weakly compact set that represents Ê. For this P , we define
capacity

c(A) := sup
P∈P

P (A), A ∈ B(ΩT ).

A set A ⊂ ΩT is polar if c(A) = 0. A property holds “quasi-surely” (q.s. for
short) if it holds outside a polar set. In the following, we do not distinguish two
random variables X and Y if X = Y q.s.. We set

Lp(Ωt) := {X ∈ B(Ωt) : sup
P∈P

EP [|X |p] <∞} for p ≥ 1.

It is important to note that Lp
G(Ωt) ⊂ Lp(Ωt). We extend G-expectation Ê to

Lp(Ωt) and still denote it by Ê, for each X ∈ L1(ΩT ), we set

Ê[X ] = sup
P∈P

EP [X ].

6
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For p ≥ 1, Lp(Ωt) is a Banach space under the norm (Ê[| · |p])1/p.

Furthermore, we extend the definition of conditional G-expectation. For
each fixed t ≥ 0, let (Ai)n

i=1 be a partition of B(Ωt), and set

ξ =
n∑

i=1

ηiIAi ,

where ηi ∈ L1
G(ΩT ), i = 1, · · · , n. We define the corresponding conditional

G-expectation, still denoted by Ês[·], by setting

Ês[
n∑

i=1

ηiIAi ] :=
n∑

i=1

Ês[ηi]IAi for s ≥ t.

The following lemma shows that the above definition of conditionalG-expectation
is meaningful.

Lemma 2.4 For each ξ, η ∈ L1
G(ΩT ) and A ∈ B(Ωt), if ξIA ≥ ηIA q.s., then

Êt[ξ]IA ≥ Êt[η]IA q.s..

Proof. Otherwise, we can choose a compact set B(Ωt) ∋ K ⊂ A with c(K) > 0
such that (Êt[ξ] − Êt[η])− > 0 on K. Since K is compact, we can choose a
sequence of nonnegative functions {ζn}∞n=1 ⊂ Cb(Ωt) such that ζn ↓ IK . By
Theorem 31 in [5], we have

Ê[ζn(ξ − η)−] ↓ Ê[IK(ξ − η)−]

and
Ê[ζnÊt[(ξ − η)−]] ↓ Ê[IK Êt[(ξ − η)−]].

Since
Ê[ζn(ξ − η)−] = Ê[ζnÊt[(ξ − η)−]],

we have
Ê[IK Êt[(ξ − η)−]] = Ê[IK(ξ − η)−] = 0.

Noting that
(Êt[ξ]− Êt[η])− ≤ Êt[(ξ − η)−],

we get Êt[(ξ − η)−] > 0 on K. Also by c(K) > 0 we get Ê[IKÊt[(ξ − η)−] > 0.
This is a contradiction and the proof is complete. �

We set

L0,p,t
G (ΩT ) := {ξ =

n∑

i=1

ηiIAi : Ai ∈ B(Ωt), ηi ∈ Lp
G(Ω), n ∈ N}.

We have the following properties.

Proposition 2.5 For each ξ, η ∈ L0,1,t
G (ΩT ), we have

(i) Monotonicity: If ξ ≤ η, then Ês[ξ] ≤ Ês[η] for any s ≥ t;

7
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(ii) Constant preserving: If ξ ∈ L0,1,t
G (Ωt), then Êt[ξ] = ξ;

(iii) Sub-additivity: Ês[ξ + η] ≤ Ês[ξ] + Ês[η] for any s ≥ t;

(iv) Positive homogeneity: If ξ ∈ L0,∞,t
G (Ωt) and ξ ≥ 0, then Êt[ξη] = ξÊt[η];

(v) Consistency: For t ≤ s ≤ r, we have Ês[Êr [ξ]] = Ês[ξ].

(vi) Ê[Êt[ξ]] = Ê[ξ].

Proof. (i) is a direct consequence of Lemma 2.9. (ii)-(v) are obvious from the
definition. We only prove Ê[Êt[ξ]] = Ê[ξ] for ξ which is bounded and positive.

Step 1. For ξ =
∑N

i=1 IKiηi, where Ki, i = 1, . . . , N , are disjoint com-
pact sets and ηi ≥ 0, we can choose ϕi

m ∈ Cb(Ωt) such that ϕi
m ↓ Ki and

ϕi
mϕ

j
m = 0 for i 6= j. By the same analysis as that in Lemma 2.4, we can get

Ê[
∑N

i=1 IKi Êt[ηi]] = Ê[
∑N

i=1 IKiηi].

Step 2. For ξ =
∑N

i=1 IAiηi, where Ai, i = 1, . . . , N , are disjoint sets and
ηi ≥ 0. For each fixed P ∈ P , we can choose compact sets Ki

m such that Ki
m ↑

and P (Ai −Ki
m) ↓ 0, then

EP [
N∑

i=1

IAi Êt[ηi]] = lim
m→∞

EP [
N∑

i=1

IKi
m

Êt[ηi]]

≤ lim
m→∞

Ê[
N∑

i=1

IKi
m

Êt[ηi]]

= lim
m→∞

Ê[
N∑

i=1

IKi
m
ηi]

≤ Ê[
N∑

i=1

IAiηi].

It follows that Ê[
∑N

i=1 IAi Êt[ηi]] ≤ Ê[
∑N

i=1 IAiηi]. Similarly we can prove
Ê[

∑N
i=1 IAiηi] ≤ Ê[

∑N
i=1 IAi Êt[ηi]]. �

Let Lp,t
G (ΩT ) be the completion of L0,p,t

G (ΩT ) under the norm (Ê[| · |p])1/p.
Clearly, the conditionalG-expectation can be extended continuously to Lp,t

G (ΩT ).

Set

Mp,0(0, T ) := {ηt =
N−1∑

i=0

ξtiI[ti,ti+1)(t) : 0 = t0 < · · · < tN = T, ξti ∈ Lp(Ωti)}.

For p ≥ 1, we denote by Mp(0, T ), Hp(0, T ), Sp(0, T ) the completion of Mp,0(0, T )
under the norm ||η||Mp := (Ê[

∫ T

0
|ηt|pdt])1/p, ||η||Hp := {Ê[(

∫ T

0
|ηt|2dt)p/2]}1/p,

||η||Sp := (Ê[supt∈[0,T ] |ηt|p])1/p respectively. Following Li and Peng [14], for

each η ∈ Hp(0, T ) with p ≥ 1, we can define Itô’s integral
∫ T

0
ηsdBs. Moreover,

by Proposition 2.10 in [14] and the classical Burkholder-Davis-Gundy Inequality,
the following properties hold.
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Proposition 2.6 For each η, θ ∈ Hα(0, T ) with α ≥ 1 and p > 0, ξ ∈ L∞(Ωt),
we have

Ê[
∫ T

0

ηsdBs] = 0,

σpcpÊ[(
∫ T

0

|ηs|2ds)p/2] ≤ Ê[ sup
t∈[0,T ]

|
∫ t

0

ηsdBs|p] ≤ σ̄pCpÊ[(
∫ T

0

|ηs|2ds)p/2],

∫ T

t

(ξηs + θs)dBs = ξ

∫ T

t

ηsdBs +
∫ T

t

θsdBs,

where 0 < cp < Cp <∞ are constants.

Definition 2.7 A process {Mt} with values in L1
G(ΩT ) is called a G-martingale

if Ês[Mt] = Ms for any s ≤ t.

For ξ ∈ Lip(ΩT ), let E [ξ] = Ê[supt∈[0,T ] Êt[ξ]], where Ê is the G-expectation.
For convenience, we call E G-evaluation.

For p ≥ 1 and ξ ∈ Lip(ΩT ), define ‖ξ‖p,E = {E [|ξ|p]}1/p and denote by
Lp
E(ΩT ) the completion of Lip(ΩT ) under the norm ‖ · ‖p,E .

The following estimate will be frequently used in this paper.

Theorem 2.8 ([35]) For any α ≥ 1 and δ > 0, we have Lα+δ
G (ΩT ) ⊂ Lα

E (ΩT ).
More precisely, for any 1 < γ < β := (α+ δ)/α, γ ≤ 2 and for all ξ ∈ Lip(ΩT ),
we have

Ê[ sup
t∈[0,T ]

Êt[|ξ|α]] ≤ C{(Ê[|ξ|α+δ])α/(α+δ) + (Ê[|ξ|α+δ])1/γ}, (2.1)

where C = γ
γ−1 (1 + 14

∑∞
i=1 i

−β/γ).

Remark 2.9 By α
α+δ <

1
γ < 1, we have

Ê[ sup
t∈[0,T ]

Êt[|ξ|α]] ≤ 2C{(Ê[|ξ|α+δ])α/(α+δ) + Ê[|ξ|α+δ]}.

Set C1 = 2 inf{ γ
γ−1(1 + 14

∑∞
i=1 i

−β/γ) : 1 < γ < β, γ ≤ 2}, then

Ê[ sup
t∈[0,T ]

Êt[|ξ|α]] ≤ C1{(Ê[|ξ|α+δ])α/(α+δ) + Ê[|ξ|α+δ]}, (2.2)

where C1 is a constant only depending on α and δ.

For readers’ convenience, we list the main notations of this paper as follows:

• The scalar product and norm of the Euclid space Rn are respectively
denoted by 〈·, ·〉 and | · |;

• Lip(ΩT ) :={ϕ(Bt1 , ..., Btn) : n ≥ 1, t1, ..., tn ∈ [0, T ], ϕ ∈ Cb.Lip(Rd×n)};

• ‖ξ‖p,G = (Ê[|ξ|p])1/p, ‖ξ‖p,E = (Ê[supt∈[0,T ] Êt[|ξ|p]])1/p;

9
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• Lp
G(ΩT ) :=the completion of Lip(ΩT ) under ‖ · ‖p,G;

• Lp
E(ΩT ) :=the completion of Lip(ΩT ) under ‖ · ‖p,E ;

• M0
G(0, T ) :={ηt =

∑N−1
j=0 ξjI[tj ,tj+1)(t) : 0 = t0 < · · · < tN = T , ξi ∈

Lip(Ωti)};

• ‖η‖Mp
G

= {Ê[
∫ T

0 |ηs|pds]}1/p, ‖η‖Hp
G

= {Ê[(
∫ T

0 |ηs|2ds)p/2]}1/p;

• Mp
G(0, T ) :=the completion of M0

G(0, T ) under ‖ · ‖Mp
G
;

• Hp
G(0, T ) :={the completion of M0

G(0, T ) under ‖ · ‖Hp
G
} for p ≥ 1;

• Lp(ΩT ) :={X ∈ B(ΩT ) : supP∈P EP [|X |p] <∞} for p ≥ 1;

• Mp,0(0, T ) :={ηt =
∑N−1

i=0 ξtiI[ti,ti+1)(t) : 0 = t0 < · · · < tN = T , ξti ∈
Lp(Ωti)};

• ||η||Mp := (Ê[
∫ T

0 |ηt|pdt])1/p, ||η||Hp := {Ê[(
∫ T

0 |ηt|2dt)p/2]}1/p;

• ||η||Sp := {Ê[supt∈[0,T ] |ηt|p]}
1
p ;

• Mp(0, T ) :=the completion of Mp,0(0, T ) under || · ||Mp ;

• Hp(0, T ) :=the completion of Mp,0(0, T ) under || · ||Hp ;

• Sp(0, T ) :=the completion of Mp,0(0, T ) under || · ||Sp ;

• S0
G(0, T ) ={h(t, Bt1∧t, · · ·, Btn∧t) : t1, . . . , tn ∈ [0, T ], h ∈ Cb,Lip(Rn+1)};

• ‖η‖Sp
G

= {Ê[supt∈[0,T ] |ηt|p]}
1
p ;

• Sp
G(0, T ) :=the completion of S0

G(0, T ) under ‖ · ‖Sp
G
;

• Sα
G(0, T ) := the collection of processes (Y, Z,K) such that Y ∈ Sα

G(0, T ),
Z ∈ Hα

G(0, T ), K is a decreasing G-martingale with K0 = 0 and KT ∈
Lα

G(ΩT ).

3 A priori estimates

For simplicity, we consider the G-expectation space (ΩT , L
1
G(ΩT ), Ê) with ΩT =

C0([0, T ],R) and σ2 = Ê[B2
1 ] ≥ −Ê[−B2

1 ] = σ2 > 0. But our results and
methods still hold for the case d > 1.

We consider the following type of G-BSDEs for simplicity, and similar esti-
mates hold for equation (1.2).

Yt = ξ +
∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdBs − (KT −Kt), (3.1)

where
f(t, ω, y, z) : [0, T ]× ΩT × R2 → R

satisfies the following properties: there exists some β > 1 such that

10
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(H1) for any y, z, f(·, ·, y, z) ∈Mβ
G(0, T );

(H2) |f(t, ω, y, z)− f(t, ω, y′, z′)| ≤ L(|y − y′|+ |z − z′|) for some L > 0.

For simplicity, we denote by Sα
G(0, T ) the collection of processes (Y, Z,K)

such that Y ∈ Sα
G(0, T ), Z ∈ Hα

G(0, T ), K is a decreasing G-martingale with
K0 = 0 and KT ∈ Lα

G(ΩT ).

Definition 3.1 Let ξ ∈ Lβ
G(ΩT ) and f satisfy (H1) and (H2) for some β > 1.

A triplet of processes (Y, Z,K) is called a solution of equation (3.1) if for some
1 < α ≤ β the following properties hold:

(a) (Y, Z,K) ∈ Sα
G(0, T );

(b) Yt = ξ +
∫ T

t f(s, Ys, Zs)ds−
∫ T

t ZsdBs − (KT −Kt).

In order to get a priori estimates for the solution of equation (3.1), we need
the following lemmas.

Lemma 3.2 Let X ∈ Sα
G(0, T ) for some α > 1. Set

Xn
t =

n−1∑

i=0

Xtn
i
I[tn

i ,tn
i+1)

(t),

where tni = iT
n , i = 0, · · ·, n. Then

Ê[ sup
t∈[0,T ]

|Xn
t −Xt|α] → 0 as n→∞. (3.2)

Proof. For each given n, m ≥ 1, it is easy to check that

sup
i≤n−1

sup
tm
k ∈[tn

i ,tn
i+1]

|Btm
k
−Btn

i
|α

is a convex function. Then by Proposition 11 in Peng [22], we get

Ê[ sup
i≤n−1

sup
tm
k ∈[tn

i ,tn
i+1]

|Btm
k
−Btn

i
|α] = EPσ̄ [ sup

i≤n−1
sup

tm
k ∈[tn

i ,tn
i+1]

|Btm
k
−Btn

i
|α],

where Pσ̄ is a Wiener measure on ΩT such that EPσ̄ [B2
1 ] = σ̄2. Noting that

sup
i≤n−1

sup
tm
k ∈[tn

i ,tn
i+1]

|Btm
k
−Btn

i
|α ↑ sup

i≤n−1
sup

t∈[tn
i ,tn

i+1]

|Bt −Btn
i
|α as m ↑ ∞,

we have

Ê[ sup
i≤n−1

sup
t∈[tn

i ,tn
i+1]

|Bt −Btn
i
|α] = EPσ̄ [ sup

i≤n−1
sup

t∈[tn
i ,tn

i+1]

|Bt −Btn
i
|α] → 0.

From this we can get Ê[supt∈[0,T ] |ηt − ηn
t |α] → 0 for each η ∈ S0

G(0, T ). By the
definition of Sα

G(0, T ), we can choose a sequence (ηm)∞m=1 ⊂ S0
G(0, T ) such that

Ê[supt∈[0,T ] |Xt − ηm
t |α] → 0 as m→∞. Note that

sup
t∈[0,T ]

|Xt −Xn
t | ≤ 2 sup

t∈[0,T ]

|Xt − ηm
t |+ sup

t∈[0,T ]

|ηm
t − (ηm)n

t |,

then we obtain (3.2) by letting n→∞ first and then m→∞. �

11
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Lemma 3.3 Let Xt, Xn
t be as in Lemma 3.2 and α∗ = α

α−1 . Assume that K
is a decreasing G-martingale with K0 = 0 and KT ∈ Lα∗

G (ΩT ). Then we have

Ê[ sup
t∈[0,T ]

|
∫ t

0

Xn
s dKs −

∫ t

0

XsdKs|] → 0 as n→∞.

Proof.

sup
t∈[0,T ]

|
∫ t

0

Xn
s dKs −

∫ t

0

XsdKs|

≤ −
∫ T

0

|Xn
s −Xs|dKs

≤ sup
s∈[0,T ]

|Xn
s −Xs|(−KT ).

So we have

Ê[ sup
t∈[0,T ]

|
∫ t

0

Xn
s dKs −

∫ t

0

XsdKs|] ≤ ‖ sup
s∈[0,T ]

|Xn
s −Xs|‖Lα

G
‖KT‖Lα∗ → 0

as n→∞. �

Lemma 3.4 Let X ∈ Sα
G(0, T ) for some α > 1 and α∗ = α

α−1 . Assume that
Kj, j = 1, 2, are two decreasing G-martingales with Kj

0 = 0 and Kj
T ∈ Lα∗

G (ΩT ).
Then the process defined by

∫ t

0

X+
s dK

1
s +

∫ t

0

X−
s dK

2
s

is also a decreasing G-martingale.

Proof. Let Xn be as in Lemma 3.2. By Lemma 3.3, it suffices to prove that
the process ∫ t

0

(Xn
s )+dK1

s +
∫ t

0

(Xn
s )−dK2

s

is a G-martingale. By properties of conditional G-expectation, we have, for any
t ∈ [tni , t

n
i+1],

Êt[X+
tn
i
(K1

tn
i+1

−K1
tn
i
) +X−

tn
i
(K2

tn
i+1

−K2
tn
i
)]

= X+
tn
i
Êt[K1

tn
i+1

−K1
tn
i
] +X−

tn
i
Êt[K2

tn
i+1

−K2
tn
i
]

= X+
tn
i
(K1

t −K1
tn
i
) +X−

tn
i
(K2

t −K2
tn
i
).

From this we obtain that
∫ t

0 (Xn
s )+dK1

s +
∫ t

0 (Xn
s )−dK2

s is a G-martingale. �
Now we give a priori estimates for the solution of equation (3.1). For this

purpose, a weaker version of condition (H2) is enough.

(H2’) |f(t, ω, y, z)−f(t, ω, y′, z′)| ≤ Lw(|y−y′|+|z−z′|+ε) for some Lw, ε > 0.

12
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In the following three propositions, Cα will always designate a constant
depending on α, T, Lw, σ, which may vary from line to line.

Proposition 3.5 Let f satisfy (H1) and (H2’) for some β > 1. Assume

Yt = ξ +
∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdBs − (KT −Kt),

where Y ∈ Sα(0, T ), Z ∈ Hα(0, T ), K is a decreasing process with K0 = 0
and KT ∈ Lα(ΩT ) for some β ≥ α > 1. Then there exists a constant Cα :=
C(α, T, σ, Lw) > 0 such that

Ê[(
∫ T

0

|Zs|2ds)
α
2 ] ≤ Cα{Ê[ sup

t∈[0,T ]

|Yt|α] + (Ê[ sup
t∈[0,T ]

|Yt|α])
1
2 (Ê[(

∫ T

0

f0
s ds)

α])
1
2 },

(3.3)

Ê[|KT |α] ≤ Cα{Ê[ sup
t∈[0,T ]

|Yt|α] + Ê[(
∫ T

0

f0
s ds)

α]}, (3.4)

where f0
s = |f(s, 0, 0)|+ Lwε.

Proof. Applying Itô’s formula to |Yt|2, we have

|Y0|2 +
∫ T

0

|Zs|2d〈B〉s = |ξ|2 +
∫ T

0

2Ysf(s)ds−
∫ T

0

2YsZsdBs −
∫ T

0

2YsdKs,

where f(s) = f(s, Ys, Zs). Then

(
∫ T

0

|Zs|2d〈B〉s)
α
2 ≤ Cα{|ξ|α+|

∫ T

0

Ysf(s)ds|α
2 +|

∫ T

0

YsZsdBs|
α
2 +|

∫ T

0

YsdKs|
α
2 }.

By Proposition 2.6 and simple calculation, we can obtain

Ê[(
∫ T

0

|Zs|2ds)
α
2 ] ≤ Cα{‖Y ‖α

Sα + ‖Y ‖
α
2
Sα [(Ê[|KT |α])

1
2 + (Ê[(

∫ T

0

f0
s ds)

α])
1
2 ]}.
(3.5)

On the other hand,

KT = ξ − Y0 +
∫ T

0

f(s)ds−
∫ T

0

ZsdBs.

By simple calculation, we get

Ê[|KT |α] ≤ Cα{‖Y ‖α
Sα + Ê[(

∫ T

0

|Zs|2ds)α/2] + Ê[(
∫ T

0

f0
s ds)

α]}. (3.6)

By (3.5) and (3.6), it is easy to get (3.3) and (3.4). �

Remark 3.6 In this proposition, we do not assume that (Y, Z,K) belongs to
Sα

G(0, T ).

Proposition 3.7 Let ξ ∈ Lβ
G(ΩT ) and f satisfy (H1) and (H2’) for some β > 1.

Assume that (Y, Z,K) ∈ Sα
G(0, T ) for some 1 < α < β is a solution of equation

(3.1). Then

13
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(i) There exists a constant Cα := C(α, T, σ, Lw) > 0 such that

|Yt|α ≤ CαÊt[|ξ|α +
∫ T

t

|f0
s |αds], (3.7)

Ê[ sup
t∈[0,T ]

|Yt|α] ≤ CαÊ[ sup
t∈[0,T ]

Êt[|ξ|α +
∫ T

0

|f0
s |αds]], (3.8)

where f0
s = |f(s, 0, 0)|+ Lwε.

(ii) For any given α′ with α < α′ < β, there exists a constant Cα,α′ depending
on α, α′, T , σ, Lw such that

Ê[ sup
t∈[0,T ]

|Yt|α] ≤ Cα,α′{Ê[ sup
t∈[0,T ]

Êt[|ξ|α]]

+ (Ê[ sup
t∈[0,T ]

Êt[(
∫ T

0

f0
s ds)

α′ ]])
α
α′ + Ê[ sup

t∈[0,T ]

Êt[(
∫ T

0

f0
s ds)

α′ ]]}.

(3.9)

Proof. For any γ, ǫ > 0, set Ỹt = |Yt|2 + ǫα, where ǫα = ǫ(1− α/2)+, applying
Itô’s formula to Ỹt

α/2eγt, we have

Ỹt
α/2eγt + γ

∫ T

t

eγsỸs
α/2ds+

α

2

∫ T

t

eγsỸs
α/2−1Z2

sd〈B〉s

= (|ξ|2 + ǫα)α/2eγT + α(1 − α

2
)
∫ T

t

eγsỸs
α/2−2Y 2

s Z
2
sd〈B〉s

+
∫ T

t

αeγsỸs
α/2−1Ysf(s)ds−

∫ T

t

αeγsỸs
α/2−1(YsZsdBs + YsdKs)

≤ (|ξ|2 + ǫα)α/2eγT + α(1 − α

2
)
∫ T

t

eγsỸs
α/2−1Z2

sd〈B〉s

+
∫ T

t

αeγsỸs
α/2−1/2|f(s)|ds− (MT −Mt), (3.10)

where f(s) = f(s, Ys, Zs) and

Mt =
∫ t

0

αeγsỸs
α/2−1YsZsdBs +

∫ t

0

αeγsỸs
α/2−1Y +

s dKs.

From the assumption of f , we have
∫ T

t

αeγsỸs
α/2−1/2|f(s)|ds

≤
∫ T

t

αeγsỸs
α/2−1/2(f0

s + Lw|Ys|+ Lw|Zs|)ds

≤ (αLw +
α(Lw)2

σ2(α− 1)
)
∫ T

t

eγsỸs
α/2ds+

α(α − 1)
4

∫ T

t

eγsỸs
α/2−1Z2

sd〈B〉s

+
∫ T

t

αeγsỸs
α/2−1/2|f0

s |ds. (3.11)
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(i) By Young’s inequality, we have

∫ T

t

αeγsỸs
α/2−1/2|f0

s |ds ≤ (α− 1)
∫ T

t

eγsỸs
α/2ds+

∫ T

t

eγs|f0
s |αds. (3.12)

By (3.10), (3.11) and (3.12), we have

Ỹt
α/2eγt + (γ − α̃)

∫ T

t

eγsỸs
α/2ds+

α(α − 1)
4

∫ T

t

eγsỸs
α/2−1Z2

sd〈B〉s

≤ (|ξ|2 + ǫα)α/2eγT +
∫ T

t

eγs|f0
s |αds− (MT −Mt),

where α̃ = αLw + α+ α(Lw)2

σ2(α−1) − 1. Setting γ = α̃+ 1, we have

Ỹt
α/2eγt +MT −Mt

≤ (|ξ|2 + ǫα)α/2eγT +
∫ T

t

eγs|f0
s |αds.

By Lemma 3.4, Mt is a G-martingale, so we have

Ỹt
α/2eγt ≤ Êt[(|ξ|2 + ǫα)α/2eγT +

∫ T

t

eγs|f0
s |αds].

By letting ǫ ↓ 0, there exists a constant Cα := Cα(T, Lw, σ) such that

|Yt|α ≤ CαÊt[|ξ|α +
∫ T

t

|f0
s |αds].

It follows that

Ê[ sup
t∈[0,T ]

|Yt|α] ≤ CαÊ[ sup
t∈[0,T ]

Êt[|ξ|α +
∫ T

0

|f0
s |αds]].

(ii) By (3.10) and (3.11) and setting γ = αLw + α(Lw)2

σ2(α−1) + 1, then we get

Ỹt
α/2eγt ≤ Êt[(|ξ|2 + ǫα)α/2eγT +

∫ T

t

αeγsỸs
α/2−1/2f0

s ds].

By letting ǫ ↓ 0, we get

|Yt|α ≤ CαÊt[|ξ|α +
∫ T

t

|Ys|α−1f0
s ds]. (3.13)

From this we get

|Yt|α ≤ Cα{Êt[|ξ|α] + Êt[ sup
s∈[0,T ]

|Ys|α−1

∫ T

0

f0
s ds]}

≤ Cα{Êt[|ξ|α] + (Êt[ sup
s∈[0,T ]

|Ys|(α−1)α′∗ ])
1

α′∗ (Êt[(
∫ T

0

f0
s ds)

α′ ])
1

α′ }, (3.14)
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where α′∗ = α′

α′−1 . Thus we obtain

Ê[ sup
t∈[0,T ]

|Yt|α] ≤ Cα{||ξ||αα,E + || sup
s∈[0,T ]

|Ys|α−1||α′∗,E ||
∫ T

0

f0
s ds||α′,E}.

It is easy to check that (α− 1)α′∗ < α, then by (2.2) there exists a constant C
only depending on α and α′ such that

|| sup
s∈[0,T ]

|Ys|α−1||α′∗,E ≤ C{(Ê[ sup
t∈[0,T ]

|Yt|α])
α−1

α + (Ê[ sup
t∈[0,T ]

|Yt|α])
1

α′∗ }.

By Young’s inequality, we have

CCα(Ê[ sup
t∈[0,T ]

|Yt|α])
α−1

α ||
∫ T

0

f0
s ds||α′,E ≤

1
4

Ê[ sup
t∈[0,T ]

|Yt|α]+C1Cα||
∫ T

0

f0
s ds||αα′,E

and

CCα(Ê[ sup
t∈[0,T ]

|Yt|α])
1

α′∗ ||
∫ T

0

f0
s ds||α′,E ≤

1
4

Ê[ sup
t∈[0,T ]

|Yt|α]+C1Cα||
∫ T

0

f0
s ds||α

′
α′,E ,

where C1 is a constant only depending on α and α′. Thus we obtain (3.9). �

Proposition 3.8 Let fi, i = 1, 2, satisfy (H1) and (H2’) for some β > 1.
Assume

Y i
t = ξi +

∫ T

t

fi(s, Y i
s , Z

i
s)ds−

∫ T

t

Zi
sdBs − (Ki

T −Ki
t),

where Y i ∈ Sα(0, T ), Zi ∈ Hα(0, T ), Ki is a decreasing process with Ki
0 = 0

and Ki
T ∈ Lα(ΩT ) for some β ≥ α > 1. Set Ŷt = Y 1

t − Y 2
t , Ẑt = Z1

t − Z2
t and

K̂t = K1
t − K2

t . Then there exists a constant Cα := C(α, T, σ, Lw) > 0 such
that

Ê[(
∫ T

0

|Ẑs|2ds)
α
2 ] ≤ Cα{‖Ŷ ‖α

Sα + ‖Ŷ ‖
α
2
Sα

2∑

i=1

[||Y i||
α
2
Sα + ||

∫ T

0

f i,0
s ds||

α
2
α,G]},

(3.15)
where f i,0

s = |fi(s, 0, 0)|+ Lwε, i = 1, 2.

Proof. Applying Itô’s formula to |Ŷt|2, by similar analysis as that in Proposition
3.5, we have

||Ẑ||αHα ≤ Cα{‖Ŷ ‖α
Sα + ‖Ŷ ‖

α
2
Dα [||K1

T ||
α
2
α,G + ||K2

T ||
α
2
α,G + ||

∫ T

0

f̂sds||
α
2
α,G]},

where f̂s = |f1(s, Y 2
s , Z

2
s )− f2(s, Y 2

s , Z
2
s )|+Lwε. By Proposition 3.5, we obtain

||K1
T ||

α
2
α,G + ||K2

T ||
α
2
α,G + ||

∫ T

0

f̂sds||
α
2
α,G

≤ Cα{||Y 1||
α
2
Sα + ||Y 2||

α
2
Sα + ||

∫ T

0

f1,0
s ds||

α
2
α,G + ||

∫ T

0

f2,0
s ds||

α
2
α,G}.

Thus we get (3.15). �
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Proposition 3.9 Let ξi ∈ Lβ
G(ΩT ) , i = 1, 2, and fi satisfy (H1) and (H2’) for

some β > 1. Assume that (Y i, Zi,Ki) ∈ Sα
G(0, T ) for some 1 < α < β are the

solutions of equation (3.1) corresponding to ξi and fi . Set Ŷt = Y 1
t − Y 2

t , Ẑt =
Z1

t − Z2
t and K̂t = K1

t −K2
t . Then

(i) There exists a constant Cα := C(α, T, σ, Lw
1 ) > 0 such that

|Ŷt|α ≤ CαÊt[|ξ̂|α +
∫ T

t

|f̂s|αds], (3.16)

where f̂s = |f1(s, Y 2
s , Z

2
s )− f2(s, Y 2

s , Z
2
s )|+ Lw

1 ε.

(ii) For any given α′ with α < α′ < β, there exists a constant Cα,α′ depending
on α, α′, T , σ, Lw such that

Ê[ sup
t∈[0,T ]

|Ŷt|α] ≤ Cα,α′{Ê[ sup
t∈[0,T ]

Êt[|ξ̂|α]]

+ (Ê[ sup
t∈[0,T ]

Êt[(
∫ T

0

f̂sds)α′ ]])
α
α′ + Ê[ sup

t∈[0,T ]

Êt[(
∫ T

0

f̂sds)α′ ]]}.

(3.17)

Proof. For any γ, ǫ > 0, applying Itô’s formula to (|Ŷt|2 + ǫα)α/2eγt, where
ǫα = ǫ(1− α/2)+, by similar analysis as in Proposition 3.7, we have by setting
γ = αLw + α+ α(Lw)2

σ2(α−1)

(|Ŷt|2 + ǫα)α/2eγt +
∫ T

t

αeγs(|Ŷs|2 + ǫα)α/2−1ŶsẐsdBs + JT − Jt

≤ (|ξ̂|2 + ǫα)α/2eγT +
∫ T

t

eγs|f̂s|αds

and

(|Ŷt|2 + ǫα)α/2eγt +
∫ T

t

αeγs(|Ŷs|2 + ǫα)α/2−1ŶsẐsdBs + JT − Jt

≤ (|ξ̂|2 + ǫα)α/2eγT +
∫ T

t

αeγs(|Ŷs|2 + ǫα)α/2−1/2f̂sds,

where

Jt =
∫ t

0

αeγs(|Ŷs|2 + ǫα)α/2−1(Ŷ +
s dK1

s + Ŷ −s dK2
s ).

By Lemma 3.4, Jt is a G-martingale. Taking conditional G-expectation and
letting ǫ ↓ 0, we obtain a constant Cα := Cα(T, Lw

1 , σ) > 0 such that

|Ŷt|α ≤ CαÊt[|ξ̂|α +
∫ T

t

|f̂s|αds]

and

|Ŷt|α ≤ CαÊt[|ξ̂|α +
∫ T

t

|Ŷs|α−1f̂sds].

By the same analysis as that in Proposition 3.7, we get (3.17). �

Remark 3.10 Noting that
∫ T

0
ηsd〈B〉s ≤ σ̄2

∫ T

0
ηsds for any η ∈ M1

G(0, T ),
thus Propositions 3.7 and 3.9 still hold for G-BSDE (1.2).
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4 Existence and uniqueness of G-BSDEs

In order to prove the existence of equation (3.1), we start with the simple case
f(t, ω, y, z) = h(y, z), ξ = ϕ(BT ). Here h ∈ C∞0 (R2), ϕ ∈ Cb.Lip(R2). For this
case, we can obtain the solution of equation (3.1) from the following nonlinear
partial differential equation:

∂tu+G(∂2
xxu) + h(u, ∂xu) = 0, u(T, x) = ϕ(x). (4.1)

Then we approximate the solution of equation (3.1) with more complicated f by
those of equations (3.1) with much simpler {fn}. More precisely, assume that
‖fn − f‖Mβ

G
→ 0 and (Y n, Zn,Kn) is the solution of the following G-BSDE

Y n
t = ξ +

∫ T

t

fn(s, Y n
s , Z

n
s )ds−

∫ T

t

Zn
s dBs − (Kn

T −Kn
t ).

We try to prove that (Y n, Zn,Kn) converges to (Y, Z,K) and (Y, Z,K) is the
solution of the following G-BSDE

Yt = ξ +
∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdBs − (KT −Kt).

One of the main results of this paper is

Theorem 4.1 Assume that ξ ∈ Lβ
G(ΩT ) and f satisfies (H1) and (H2) for

some β > 1. Then equation (3.1) has a unique solution (Y, Z,K). Moreover,
for any 1 < α < β we have Y ∈ Sα

G(0, T ), Z ∈ Hα
G(0, T ) and KT ∈ Lα

G(ΩT ).

Proof. The uniqueness of the solution is a direct consequence of the a priori
estimates in Proposition 3.8 and Proposition 3.9. By these estimates it also
suffices to prove the existence for the case ξ ∈ Lip(ΩT ) and then pass to the
limit for the general situation.

Step 1. f(t, ω, y, z) = h(y, z) with h ∈ C∞0 (R2).

Part 1. We first consider the case ξ = ϕ(BT −Bt1) with ϕ ∈ Cb,Lip(R) and
t1 < T . Let u be the solution of equation (4.1) with terminal condition ϕ. By
Theorem 6.4.3 in Krylov [13] (see also Theorem 4.4 in Appendix C in Peng [27]),
there exists a constant α ∈ (0, 1) such that for each κ > 0,

||u||C1+α/2,2+α([0,T−κ]×R) <∞.

Applying Itô’s formula to u(t, Bt −Bt1) on [t1, T − κ], we get

u(t, Bt −Bt1) =u(T − κ,BT−κ −Bt1) +
∫ T−κ

t

h(u, ∂xu)(s,Bs −Bt1)ds

−
∫ T−κ

t

∂xu(s,Bs −Bt1)dBs − (KT−κ −Kt), (4.2)

where Kt = 1
2

∫ t

t1
∂2

xxu(s,Bs −Bt1)d〈B〉s −
∫ t

t1
G(∂2

xxu(s,Bs −Bt1))ds is a non-
increasing G-martingale. We now prove that there exists a constant L1 > 0
such that

|u(t, x)− u(s, y)| ≤ L1(
√
|t− s|+ |x− y|), t, s ∈ [0, T ], x, y ∈ R. (4.3)

18
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For each fixed x0 ∈ R, set ũ(t, x) = u(t, x+ x0), it is easy to check that ũ is the
solution of the following PDE:

∂tũ+G(∂2
xxũ) + h(ũ, ∂xũ) = 0, ũ(T, x) = ϕ(x + x0). (4.4)

Define û(t, x) = u(t, x) + Lϕ|x0| exp(Lh(T − t)), where Lϕ and Lh are the
Lipschitz constants of ϕ and h respectively, it is easy to verify that û is a
supersolution of PDE (4.4). Thus by comparison theorem (see Theorem 2.4 in
Appendix C in Peng [27]) we get

u(t, x+ x0) ≤ u(t, x) + Lϕ|x0| exp(Lh(T − t)), t ∈ [0, T ], x ∈ R.

Since x0 is arbitrary, we get |u(t, x)−u(t, y)| ≤ L̂|x−y|, where L̂ = Lϕ exp(LhT ).
From this we can get |∂xu(t, x)| ≤ L̂ for each t ∈ [0, T ], x ∈ R. On the
other hand, for each fixed t̄ < t̂ < T and x ∈ R, applying Itô’s formula to
u(s, x+Bs −Bt̄) on [t̄, t̂], we get

u(t̄, x) = Ê[u(t̂, x+Bt̂ −Bt̄) +
∫ t̂

t̄

h(u, ∂xu)(s, x+Bs −Bt̄)ds].

From this we deduce that

|u(t̄, x)− u(t̂, x)| ≤ Ê[L̂|Bt̂ −Bt̄|+ L̃|t̂− t̄|] ≤ (L̂σ̄ + L̃
√
T )

√
|t̂− t̄|,

where L̃ = sup(x,y)∈R2 |h(x, y)|. Thus we get (4.3) by taking L1 = max{L̂, L̂σ̄+
L̃
√
T}. Letting κ ↓ 0 in equation (4.2), it is easy to verify that

Ê[|YT−κ − ξ|2 +
∫ T

T−κ

|Zt|2dt+ (KT−κ −KT )2] → 0,

where Yt = u(t, Bt −Bt1) and Zt = ∂xu(t, Bt −Bt1). Thus (Yt, Zt,Kt)t∈[t1,T ] is
a solution of equation (3.1) with terminal value ξ = ϕ(BT −Bt1). Furthermore,
it is easy to check that Y ∈ Sα

G(t1, T ), Z ∈ Hα
G(t1, T ) and KT ∈ Lα

G(ΩT ) for
any α > 1.

Part 2. We now consider the case ξ = ψ(Bt1 , BT −Bt1) with ψ ∈ Cb,Lip(R2),
and the more general case can be proved similarly. For each fixed x ∈ R, let
u(·, x, ·) be the solution of equation (4.1) with terminal condition ψ(x, ·). By
Part 1, we have

u(t, x, Bt −Bt1) =u(T, x,BT −Bt1) +
∫ T

t

h(u, ∂yu)(s, x,Bs −Bt1)ds

−
∫ T

t

∂yu(s, x,Bs −Bt1)dBs − (Kx
T −Kx

t ), (4.5)

where Kx
t = 1

2

∫ t

t1
∂2

yyu(s, x,Bs−Bt1)d〈B〉s −
∫ t

t1
G(∂2

yyu(s, x,Bs−Bt1))ds. We
replace x by Bt1 and get

Yt = YT +
∫ T

t

h(Ys, Zs)ds−
∫ T

t

ZsdBs − (KT −Kt),
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where Yt = u(t, Bt1 , Bt −Bt1), Zt = ∂yu(t, Bt1 , Bt −Bt1) and

Kt =
1
2

∫ t

t1

∂2
yyu(s,Bt1 , Bs −Bt1)d〈B〉s −

∫ t

t1

G(∂2
yyu(s,Bt1 , Bs −Bt1))ds.

Now we are in a position to prove (Y, Z,K) ∈ Sα
G(0, T ). We use the following

argument, for each given n ∈ N, by partition of unity theorem, there exist
hn

i ∈ C∞0 (R) with the diameter of support λ(supp(hn
i ))< 1/n, 0 ≤ hn

i ≤ 1,
I[−n,n](x) ≤

∑kn

i=1 h
n
i ≤ 1. Choose xn

i such that hn
i (xn

i ) > 0. Through equation
(4.5), we have

Y n
t = Y n

T +
∫ T

t

n∑

i=1

h(yn,i
s , zn,i

s )hn
i (Bt1)ds−

∫ T

t

Zn
s dBs − (Kn

T −Kn
t ),

where yn,i
t = u(t, xn

i , Bt−Bt1), z
n,i
t = ∂yu(t, xn

i , Bt−Bt1), Y n
t =

∑n
i=1 y

n,i
t hn

i (Bt1),
Zn

t =
∑n

i=1 z
n,i
t hn

i (Bt1) and Kn
t =

∑n
i=1K

xn
i

t hn
i (Bt1).

By the same analysis as that in Part 1, we can obtain a constant L2 > 0
such that for each t, s ∈ [0, T ], x, x′, y, y′ ∈ R,

|u(t, x, y)− u(s, x′, y′)| ≤ L2(
√
|t− s|+ |x− x′|+ |y − y′|).

From this we get

|Yt − Y n
t | ≤

kn∑

i=1

hn
i (Bt1)|u(t, xn

i , Bt −Bt1)− u(t, Bt1 , Bt −Bt1)|+ |Yt|I[|Bt1 |>n]

≤ L2

n
+
||u||∞
n

|Bt1 |.

Thus

Ê[ sup
t∈[t1,T ]

|Yt − Y n
t |α] ≤ Ê[(

L2

n
+
||u||∞
n

|Bt1 |)α] → 0.

By Proposition 3.8, we have

Ê[(
∫ T

t1

|Zs−Zn
s |2ds)α/2] ≤ Cα{Ê[ sup

t∈[t1,T ]

|Yt−Y n
t |α]+(Ê[ sup

t∈[t1,T ]

|Yt−Y n
t |α])1/2},

where Cα > 0 is a constant depending only on α, T , Lw and σ, thus we obtain
Ê(

∫ T

t1
|Zs − Zn

s |2ds)α/2 → 0, which implies that Z ∈ Hα
G(t1, T ) for any α > 1.

By Kt = Yt − Yt1 +
∫ t

t1
h(Ys, Zs)ds −

∫ t

t1
ZsdBs, we obtain Kt ∈ Lα

G(Ωt) for
any α > 1. We now proceed to prove that K is a G-martingale. Following the
framework in Li and Peng [14], we take

hn
i (x) = I[−n+ i

n ,−n+ i+1
n )(x), i = 0, . . . , 2n2 − 1,

hn
2n2 = 1−∑2n2−1

i=0 hn
i . Through equation (4.5), we get

Ỹ n
t = Ỹ n

T +
∫ T

t

h(Ỹ n
s , Z̃

n
s )ds−

∫ T

t

Z̃n
s dBs − (K̃n

T − K̃n
t ),
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where Ỹ n
t =

∑2n2

i=0 u(t,−n+ i
n , Bt−Bt1)h

n
i (Bt1), Z̃

n
t =

∑2n2

i=0 ∂yu(t,−n+ i
n , Bt−

Bt1)hn
i (Bt1) and K̃n

t =
∑2n2

i=0K
−n+ i

n
t hn

i (Bt1). By Proposition 3.8, we have
Ê[(

∫ T

t1
|Zs− Z̃n

s |2ds)α/2] → 0 for any α > 1. Thus we get Ê[|Kt− K̃n
t |α] → 0 for

any α > 1. By Proposition 2.5, we obtain for each t1 ≤ t < s ≤ T ,

Ê[|Êt[Ks]−Kt|] = Ê[|Êt[Ks]− Êt[K̃n
s ] + K̃n

t −Kt|]
≤ Ê[Êt[|Ks − K̃n

s |]] + Ê[|K̃n
t −Kt|]

= Ê[|Ks − K̃n
s |] + Ê[|K̃n

t −Kt|] → 0.

Thus we get Êt[Ks] = Kt. For Yt1 = u(t1, Bt1 , 0), we can use the same method
as Part 1 on [0, t1].

Step 2. f(t, ω, y, z) =
∑N

i=1 f
ihi(y, z) with f i ∈M0

G(0, T ) and hi ∈ C∞0 (R2).

The analysis is similar to Part 2 of Step 1.

Step 3. f(t, ω, y, z) =
∑N

i=1 f
ihi(y, z) with f i ∈ Mβ

G(0, T ) bounded and
hi ∈ C∞0 (R2), hi ≥ 0 and

∑N
i=1 h

i ≤ 1.

Choose f i
n ∈M0

G(0, T ) such that |f i
n| ≤ ‖f i‖∞ and

∑N
i=1 ‖f i

n−f i‖Mβ
G
< 1/n.

Set fn =
∑N

i=1 f
i
nh

i(y, z), which are uniformly Lipschitz. Let (Y n, Zn,Kn) be
the solution of equation (3.1) with generator fn.

Noting that

f̂m,n
s := |fm(s, Y n

s , Z
n
s )−fn(s, Y n

s , Z
n
s )| ≤

N∑

i=1

|f i
n−f i|+

N∑

i=1

|f i
m−f i| =: f̂n+f̂m,

we have, for any 1 < α < β,

Êt[(
∫ T

0

f̂m,n
s ds)α] ≤ Êt[(

∫ T

0

(|f̂n(s)|+ |f̂m(s)|)ds)α].

Thus by Theorem 2.8, we get ||
∫ T

0 f̂m,n
s ds||α,E → 0 as m,n → ∞ for any

α ∈ (1, β). By Proposition 3.9 we know that {Y n} is a cauchy sequence under
the norm ‖ · ‖Sα

G
. By Proposition 3.7 and Proposition 3.8, {Zn} is a cauchy

sequence under the norm ‖ · ‖Hα
G
. In order to show that {Kn

T} is a cauchy
sequence under the norm ‖ · ‖Lα

G
, it suffices to prove {

∫ T

0
fn(s, Y n

s , Z
n
s )ds} is a

cauchy sequence under the norm ‖ · ‖Lα
G
. In fact,

|fn(s, Y n, Zn)− fm(s, Y m, Zm)|
≤ |fm(s, Y n, Zn)− fm(s, Y m, Zm)|+ |fn(s, Y n, Zn)− fm(s, Y n, Zn)|
≤ L(|Ŷs|+ |Ẑs|) + f̂n + f̂m,

which implies the desired result.

Step 4. f is bounded, Lipschitz. |f(t, ω, y, z)| ≤ CIB(R)(y, z) for some
C,R > 0. Here B(R) = {(y, z)|y2 + z2 ≤ R2}.

For any n, by the partition of unity theorem, there exists {hi
n}Nn

i=1 such
that hi

n ∈ C∞0 (R2), the diameter of support λ(supp(hi
n))< 1/n, 0 ≤ hi

n ≤ 1,
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IB(R) ≤
∑N

i=1 h
i
n ≤ 1. Then f(t, ω, y, z) =

∑N
i=1 f(t, ω, y, z)hi

n. Choose yi
n, z

i
n

such that hi
n(yi

n, z
i
n) > 0. Set fn(t, ω, y, z) =

∑N
i=1 f(t, ω, yi

n, z
i
n)hi

n. Then

|f(t, ω, y, z)− fn(t, ω, y, z)| ≤
N∑

i=1

|f(t, ω, y, z)− f(t, ω, yi
n, z

i
n)|hi

n ≤ L/n

and
|fn(t, ω, y, z)− fn(t, ω, y′, z′)| ≤ L(|y − y′|+ |z − z′|+ 2/n).

Noting that |fm(s, Y n
s , Z

n
s )− fn(s, Y n

s , Z
n
s )| ≤ (L/n+ L/m), we have

Êt[|
∫ T

0

(|fm(s, Y n
s , Z

n
s )− fn(s, Y n

s , Z
n
s )|+ 2L

m
)ds|α] ≤ Tα(

L

n
+

3L
m

)α.

So by Proposition 3.9 we conclude that {Y n} is a cauchy sequence under the
norm ‖·‖Sα

G
. Consequently, {Zn} is a cauchy sequence under the norm ‖·‖Hα

G
by

Proposition 3.7 and Proposition 3.8. Now we shall prove {
∫ T

0
fn(s, Y n

s , Z
n
s )ds}

is a cauchy sequence under the norm ‖ · ‖Lα
G
. In fact,

|fn(s, Y n, Zn)− fm(s, Y m, Zm)|
≤ |fm(s, Y n, Zn)− fm(s, Y m, Zm)|+ |fn(s, Y n, Zn)− fm(s, Y n, Zn)|
≤ L(|Ŷs|+ |Ẑs|+ 2/m) + L/n+ L/m,

which implies the desired result.

Step 5. f is bounded, Lipschitz.

For any n ∈ N, choose hn ∈ C∞0 (R2) such that IB(n) ≤ hn ≤ IB(n+1) and
{hn} are uniformly Lipschitz w.r.t. n. Set fn = fhn, which are uniformly
Lipschitz. Noting that for m > n

|fm(s, Y n
s , Z

n
s )− fn(s, Y n

s , Z
n
s )|

≤ |f(s, Y n
s , Z

n
s )|I[|Y n

s |2+|Zn
s |2>n2]

≤ ‖f‖∞
|Y n

s |+ |Zn
s |

n
,

we have

Êt[(
∫ T

0

|fm(s, Y n
s , Z

n
s )− fn(s, Y n

s , Z
n
s )|ds)α]

≤ ‖f‖α
∞

nα
Êt[(

∫ T

0

|Y n
s |+ |Zn

s |ds)α]

≤ ‖f‖α
∞

nα
C(α, T )Êt[

∫ T

0

|Y n
s |αds+ (

∫ T

0

|Zn
s |2ds)α/2],

where C(α, T ) := 2α−1(Tα−1 + Tα/2]).

So by Theorem 2.8 and Proposition 3.7 we get ||
∫ T

0 f̂m,n
s ds||α,E → 0 as

m,n → ∞ for any α ∈ (1, β). By Proposition 3.9, we conclude that {Y n} is
a cauchy sequence under the norm ‖ · ‖Sα

G
. Consequently, {Zn} is a cauchy
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sequence under the norm ‖ · ‖Hα
G
. Now it suffices to prove {

∫ T

0
fn(s, Y n

s , Z
n
s )ds}

is a cauchy sequence under the norm ‖ · ‖Lα
G
. In fact,

|fn(s, Y n, Zn)− fm(s, Y m, Zm)|
≤ |fm(s, Y n, Zn)− fm(s, Y m, Zm)|+ |fn(s, Y n, Zn)− fm(s, Y n, Zn)|
≤ L(|Ŷs|+ |Ẑs|) + |f(s, Y n

s , Z
n
s )|1[|Y n

s |+|Zn
s |>n],

which implies the desired result by Proposition 3.7.

Step 6. For the general f .

Set fn = [f ∨ (−n)] ∧ n, which are uniformly Lipschitz. Choose 0 < δ <
β−α

α ∧ 1. Then α < α′ = (1 + δ)α < β. Since for m > n

|fn(s, Y n, Zn)−fm(s, Y n, Zn)| ≤ |f(s, Y n
s , Z

n
s )|I[|f(s,Y n

s ,Y n
s )|>n] ≤

1
nδ
|f(s, Y n

s , Z
n
s )|1+δ,

we have

Êt[(
∫ T

0

|fn(s, Y n, Zn)− fm(s, Y n, Zn)|ds)α]

≤ 1
nαδ

Êt[(
∫ T

0

|f(s, Y n
s , Z

n
s )|1+δds)α],

≤ C(α, T, L, δ)
nαδ

Êt[
∫ T

0

|f(s, 0, 0)|α′ds+
∫ T

0

|Y n
s |α

′
ds+ (

∫ T

0

|Zn
s |2ds)

α′
2 ],

where C(α, T, L, δ) := 3α′−1(Tα−1 + Lα′T
α(1−δ)

2 + Tα−1Lα′). So by Theorem
2.8 and Proposition 3.7 we get ||

∫ T

0
f̂m,n

s ds||α,E → 0 as m,n → ∞ for any
α ∈ (1, β). By Proposition 3.9, we know that {Y n} is a cauchy sequence under
the norm ‖ · ‖Sα

G
. And consequently {Zn} is a cauchy sequence under the norm

‖ · ‖Hα
G
. Now we prove {

∫ T

0
fn(s, Y n

s , Z
n
s )ds} is a cauchy sequence under the

norm ‖ · ‖Lα
G
. In fact,

|fn(s, Y n, Zn)− fm(s, Y m, Zm)|
≤ |fm(s, Y n, Zn)− fm(s, Y m, Zm)|+ |fn(s, Y n, Zn)− fm(s, Y n, Zn)|

≤ L(|Ŷs|+ |Ẑs|) +
3δ

nδ
(|f0

s |1+δ + |Y n
s |1+δ + |Zn

s |1+δ),

which implies the desired result by Proposition 3.7. �
Moreover, we have the following result.

Theorem 4.2 Assume that ξ ∈ Lβ
G(ΩT ) and f , g satisfy (H1) and (H2)for

some β > 1. Then equation (1.2) has a unique solution (Y, Z,K). Moreover,
for any 1 < α < β we have Y ∈ Sα

G(0, T ), Z ∈ Hα
G(0, T ) and KT ∈ Lα

G(ΩT ).

Proof. The proof is similar to that of Theorem 4.1. �

Remark 4.3 The above results still hold for the case d > 1.
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5 An alternative estimates of G-BSDEs

In this section, we present an alternative a priori estimate for the solutions of
G-BSDEs, which may be useful in the follow-up work of G-BSDEs theory.

For simplicity, we only consider the case d = 1. The results still hold for the
case d > 1.

We consider the following type of G-BSDEs:

Y i
t = ξi +

∫ T

t

fi(s, Y i
s , Z

i
s)ds+

∫ T

t

gi(s, Y i
s , Z

i
s)d〈B〉s (5.1)

−
∫ T

t

Zi
sdBs − (Ki

T −Ki
t),

where ξi ∈ Lβ
G(ΩT ) and fi, gi satisfy (H1) and (H2) for some β > 1, i = 1, 2.

Proposition 5.1 Assume that (Y i, Zi,Ki) ∈ Sα
G(0, T ) for some 1 < α < β,

i = 1, 2, are the solutions of equation (5.1) corresponding to ξi, fi and gi. Set
Ŷt = Y 1

t − Y 2
t . Then there exists a constant Cα > 0 depending on α, T , G and

L such that

|Ŷt|α ≤ CαÊt[(|ξ̂|+
∫ T

t

(|f̂s|+ |ĝs|)ds)α], (5.2)

where ξ̂ = ξ1 − ξ2, f̂s = f1(s, Y 2
s , Z

2
s ) − f2(s, Y 2

s , Z
2
s ), ĝs = g1(s, Y 2

s , Z
2
s ) −

g2(s, Y 2
s , Z

2
s ).

Proof. For each fixed t < T , we consider the following SDE:

Xr =
∫ r

t

(f1(s, Y 2
s −Xs, Z

2
s )− f2(s, Y 2

s , Z
2
s ))ds

+
∫ r

t

(g1(s, Y 2
s −Xs, Z

2
s )− g2(s, Y 2

s , Z
2
s ))d〈B〉s.

By the comparison theorem, we obtain that

|Xr| ≤
∫ r

t

|f̂s| exp{L(r − s+ 〈B〉r − 〈B〉s)}ds

+
∫ r

t

|ĝs| exp{L(r − s+ 〈B〉r − 〈B〉s)}d〈B〉s

≤ C

∫ r

t

(|f̂s|+ |ĝs|)ds,

where C depends on T , G and L. Set Ỹ 1
r = Y 1

r +Xr for r ∈ [t, T ], by applying
Itô’s formula to Y 1

r +Xr, we get

Ỹ 1
r = ξ1 +XT +

∫ T

r

(f1(s, Ỹ 1
s −Xs, Z

1
s )− f1(s, Y 2

s −Xs, Z
2
s ) + f2(s, Y 2

s , Z
2
s ))ds

+
∫ T

r

(g1(s, Ỹ 1
s −Xs, Z

1
s )− g1(s, Y 2

s −Xs, Z
2
s ) + g2(s, Y 2

s , Z
2
s ))d〈B〉s

−
∫ T

r

Z1
sdBs − (K1

T −K1
r ).
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By Proposition 3.9 we obtain that

|Ŷt|α = |Ỹ 1
t − Y 2

t |α ≤ CαÊt[|ξ̂ +XT |α]

≤ CαÊt[(|ξ̂|+
∫ T

t

(|f̂s|+ |ĝs|)ds)α].

�

Corollary 5.2 Assume that (Y, Z,K) ∈ Sα
G(0, T ) for some 1 < α < β is the

solution of equation (5.1) corresponding to ξ, f and g. Then there exists a
constant Cα > 0 depending on α, T , G and L such that

|Yt|α ≤ CαÊt[(|ξ|+
∫ T

t

(|f(s, 0, 0)|+ |g(s, 0, 0)|)ds)α]. (5.3)

Proof. Letting ξ2 = 0, f2 = g2 = 0, it is easy to check that Y 2
t = 0. By

Proposition 5.1 we get equation (5.3). �

Remark 5.3 Noting that Cα is bounded for α ≥ 1
2 (1+β), then equations (5.2)

and (5.3) still hold for α = β by taking α ↑ β.
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