Accepted Manuscript Bl e

stochastic
processes
and their
applications

Backward stochastic differential equations driven by G-Brownian
motion

mcen st ooy
et

Mingshang Hu, Shaolin Ji, Shige Peng, Yongsheng Song

PII: S0304-4149(13)00247-0 i | s
DOI: http://dx.doi.org/10.1016/j.spa.2013.09.010
Reference: SPA 2518

To appear in:  Stochastic Processes and their Applications

Received date: 7 December 2012
Revised date: 19 September 2013
Accepted date: 19 September 2013

Please cite this article as: M. Hu, S. Ji, S. Peng, Y. Song, Backward stochastic differential
equations driven by G-Brownian motion, Stochastic Processes and their Applications (2013),
http://dx.doi.org/10.1016/j.spa.2013.09.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.


http://dx.doi.org/10.1016/j.spa.2013.09.010

*Manuscript

CoO~NOOUPAWNLPE

OO OUUUIUUUUIUIUULAAMDDADLNDIARAWWWWWWWWWWNNNNNNNNNNRERRRRRRRER
ORWNPOOONONPRONROOOIDOUIRWNROODNONBRWONROOONOURAWNRPOOONOUDNWNRO

Backward Stochastic Differential Equations
Driven by G-Brownian Motion

Mingshang Hu * Shaolin Jif Shige Peng?
Yongsheng Song®

September 19, 2013

Abstract

In this paper, we study the backward stochastic differential equations
driven by a G-Brownian motion (Bi):>0 in the following form:

T T
Y, :£+/ f(s,Ys,Zs)der/ o(s, Y, Z,)d(B)

T
— / ZsdBs — (K1 — Ky),

t

where K is a decreasing G-martingale. Under Lipschitz conditions of f
and g in Y and Z, the existence and uniqueness of the solution (Y, Z, K)
of the above BSDE in the G-framework is proved.

Key words: G-expectation, G-Brownian motion, G-martingale, Backward

SDEs
MSC-classification: 60H10, 60H30
1 Introduction

Consider a Wiener probability space (2, F, P) where 2 is the space of continuous
paths and P is the Wiener measure. It is well known that the canonical process,
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namely B (w) = w; for w € 2, is a standard Brownian motion under P. A typical
kind of classical Backward Stochastic Differential Equation (BSDE for short) is
defined, on this space, as

T T
Y, =¢ +/ 9(s,Ys, Zs)ds — / Z,dBs, (1.1)
t t

where g is a given function, called the generator of (1.1) and ¢ is a given Frp-
measurable random variable called the terminal condition. The solution of (1.1)
consists of a pair of adapted processes (Y, Z). Linear BSDEs were initiated by
Bismut [2, 1973]. In 1990, Pardoux and Peng [15, 1990] introduced the general
nonlinear BSDEs with Lipschitz continuous generators.

Note that the above classical BSDEs are based on a probability space frame-
work. Recently, there are at least two motivation to drive BSDEs and the cor-
responding time-consistent nonlinear expectations to develop ahead beyond the
probability space framework. The first one is that the classical BSDE can only
provide a probabilistic interpretation of a PDE for quasilinear but not for fully
nonlinear cases. The second one is that the stochastic control techniques in [1]
are difficult to price path-dependent contigent claims in the uncertain volatility
model (UVM for short). In the UVM case, one is faced with a family of probabil-
ity measures which are, in general, mutually singular and nondominated. Thus,
we need a new coherent framework on which one can accommodate problems
involving a family of nondominated measures (see [4]).

In order to overcome the above shortcomings of classical BSDEs, Peng sys-
temically established a time-consistent fully nonlinear expectation theory. The
notion of time-consistent fully nonlinear expectations was first introduced in
[20, Peng2004] and [21, Peng2005].

As a typical case, Peng (2006) introduced G-expectation (see [27] and the
references therein). Under G-expectation framework (G-framework for short),
a new type of Brownian motion called G-Brownian motion was constructed
and the corresponding stochastic calculus of It6’s type was established. The
existence and uniqueness of solution of a SDE driven by G-Brownian motion can
be proved in a way parallel to that in the classical SDE theory. But the BSDE
driven by G-Brownian motion (B;);>0 becomes a challenging and fascinating
problem.

Just as in the classical case, G-martingale representation theorem is the key
to solve a BSDE in this G-framework. For a dense family of G-martingales,
Peng [23] obtained the following result: a G-martingale M has the form

M; = Mo+ M, + Ky,
t t t

M, ::/ zsBs, K; ::/ Ns <B)S—/ 2G(ns)ds.
0 0 0

Here M is decomposed into two incompatible G-martingales. The first one M
is called symmetric G-martingale. That is, —M is also a G-martingale. The
second one K is quite unusual since it is a decreasing process. A main concern in
the G-framework is how to understand this decreasing G-martingales K, which
aroused an interesting open problem (see [23] and [27]).
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For a general G-martingale, the first step is to decompose it into a sum of
a symmetric G-martingale M and a decreasing G-martingale K. This difficult
problem was solved after a series of successive efforts of Soner, Touzi & Zhang
[33, 2011] and Song [35, 2011], [36, 2012]. The second step is to study that under
what condition the decreasing G-martingale K can be uniquely represented as
K := fot ns (B)g — fot 2G(ns)ds. Thanks to an original new norm for decreasing
G-martingales introduced in Song [36, 2012], a complete representation theorem
of G-martingales has been obtained in a complete subspace of L&(€27) by Peng,
Song and Zhang [30, 2012].

Due to the above G-martingale representation theorem, a natural formula-
tion of a BSDE driven by G-Brownian motion consists of a triple of processes
(Y, Z, K), satisfying

T T
Y-+ / F(5,Ya, Z,)ds + / 9(s,Ys, Zo)d(B), (1.2)
t t
T
f/ Z,dB, — (K1 — K).
t

Our main result of this paper is the existence and uniqueness of a solution
(Y, Z,K) for (1.2) (see Theorems 4.1 and 4.2) in the G-framework. Two new
approaches have been introduced to prove the existence and uniqueness theo-
rems. The first one is to apply the partition of unity theorem to construct a new
type of Galerkin approximation instead of the well-known Picard approxima-
tion. The second one involves Lemma 3.4 for decreasing G-martingales, which
helps us to obtain the uniqueness, as well as the existence part of the proof.
Estimate (2.1) originally obtained in [35] also plays an important role in the
proof.

Now we compare the results of this paper with the known ones about fully
nonlinear BSDEs.

Peng [21, Peng2005] introduced a new type of time consistent fully nonlinear
expectations &, i = 1,...,n, through which the existence and uniqueness of a
fully nonlinear multi-dimensional BSDE of the following type

T
y: = 5;‘[5+/ fi(s,Yy)ds], i=1,...,n, (1.3)
t
was obtained, where £ were not assumed to be sublinear or convex. But this

BSDE was not expressed as a classical differential form of BSDE (1.1).

Soner, Touzi and Zhang [34, 2012] have obtained a deep result of existence
and uniqueness theorem for a new type of fully nonlinear BSDE, called 2BSDE:
to find (Y, Z, K Jpepy, satisfying, for each probability P € Pj, the following
BSDE:

T T
Yi=¢ +/ E(Ys, Z)ds — / Z.dBs — (Ky — K), P-as., (1.4)
t t

such that the following minimum condition is satisfied

Kl =ess sup EF[KF], Pas., VPePj, tel0,T). (1.5)
P/EPY, (t+,P)
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The generator Fin (1.4) is formulated in the following way:

F(t’wayvz) = F(tvwvyazvgt(w))

and )
F(tvwayv'zva) = Sup[ia’y - H(tawvya 277)]
vy

for some function H (t,w,y, z,a) (see Section 2 for the definition of ;). In [34],
to obtain the existence of the solution, the function F(t,w,y, z,a) was assumed
to be uniformly continuous in w under the uniform convergence norm. The
G-BSDE (1.2) corresponds to the 2BSDE (1.4) with the generator function

F(t7w’ y7 ZV a’) = f(tﬂ w? y’ Z) + g(t7w5 y7 Z)a'

The main contribution of this paper is about the regularity of the solutions.
In this paper, we introduce a quite different method to show that the triple
(Y, Z, K) is universally defined in the spaces of the G-framework, in which the
processes have strong regularity property (see Section 2 for more details). Up
to now, all the representation results for G-martingales are in the G-framework
(see Peng [23], Soner, Touzi & Zhang [33, 2011] and Song [35, 2011]). Also,
the terminal random variables of 2BSDE considered in [34] are confined in the
G-framework. One advantage of the strong regularity is the time consistency of
the solution. Precisely, for each t € [0,T), the solution Y; of (1.2), is proved to
be in the space Y; € L¥,(€;) if the given terminal condition Y7 is assumed in
the space L7, (7). Consequently, like the classical BSDEs, the solution of G-
BSDE can be considered as a time consistent non-linear expectation. Another
advantage of the strong regularity is that the process K; is “aggregated” (not
depending on P) into a universal process in the G-framework.

In this paper, we consider the LP solutions, for p > 1, of the BSDEs instead
of just the L? solutions. Besides, by the method introduced in this paper, the
assumption of uniform continuity on f(¢,w, y, ), g(t,w, y, z) in w is unnecessarily
restrictive.

Recently, many authors investigate the relations between BSDEs and path-
dependent PDEs, the notion of which was proposed in Peng’s ICM2010 lecture.
[11] shows that the G-BSDE in the Markovian case corresponds to a fully non-
linear PDE. In Peng and Wang [32], it is proved that, under reasonable and
concrete regularity assumptions on £ and g, the classical BSDE is a type of
quasilinear path-dependent PDE, in the sense of Dupire derivatives. The no-
tion of viscosity solution of Dupire’s type was proposed in [29]. A new notion
of viscosity solution, quite different from the original one, was given by [6, 7]
through which a new result of existence and uniqueness theorem was obtained.
More recently, Peng and Song (2013) introduced a new notion of G-expectation-
weighted Sobolev spaces, or in short, G-Sobolev spaces. For the linear case of G
corresponding to the classical Wiener probability space (€2, F, P), the authors
have established a 1-1 correspondence between BSDEs and a type of quasilin-
ear path-dependent PDEs in the corresponding P-Sobolev space. When G is
nonlinear, it was proved that the backward SDEs driven by G-Brownian mo-
tion corresponds to fully nonlinear path-dependent PDEs in the corresponding
G-Sobolev spaces.
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The paper is organized as follows. In section 2, we present some preliminaries
for stochastic calculus under G-framework. Some estimates for the solution of
G-BSDE are established in section 3. In section 4 the existence and uniqueness
theorem is provided. In section 5, we present an alternative a priori estimate
for the solutions of G-BSDEs, which may be useful in the follow-up work of
G-BSDEs theory.

2 Preliminaries

We review some basic notions and results of G-expectation and the related
spaces of random variables. The readers may refer to [22], [23], [24], [25], [27]
for more details.

Let Qr = Co([0,T];R?), the space of R%valued continuous functions on
[0, T] with wo = 0, be endowed with the supremum norm and let B;(w) = w; be
the canonical process. Set

HY = {@(By,, ..., Be,) :n > 1ty ety €0, T, 0 € Cppip (RE*™)1.

Let (QT,H%,IE) be the G-expectation space. The function G : S; — R is
defined by

G(A) = %I@[(A317B1>}.

where Sy denotes the collection of d X d symmetric matrices. In this paper,
we only consider non-degenerate G-normal distribution, i.e., there exists some
a? > 0 such that G(A) — G(B) > g*tr[A — B] for any A > B.

Define [|{||p.¢ = (E[|€[P])'/7 for € € H$ and p > 1. Then for all ¢t € [0,7T],

E,[] is a continuous mapping on H$ w.r.t. the norm |- ||1,¢. Therefore it can be
extended continuously to the completion L, (27) of HY under the norm || - [|1 6.

Let Lip(QT) = {(P(Btla ~~-7Btn) n>1,t,...,1, € [O,T], (RS Cb,Lip(Rdxn)},
where Cp, Lip(]RdX”) denotes the set of bounded Lipschitz functions on R**™,
Denis et al. [5] proved that the completions of Cy(€2r) (the set of bounded
continuous function on Qr), H$ and L, (Qr) under || - ||, ¢ are the same and
we denote them by L% (Qr).

Definition 2.1 Let M2(0,T) be the collection of processes in the following

form: for a given partition {tg, - -, tn} = 77 of [0,T],
N-1

Ut(w) = Z gj(w)l[tjiyrl)(t)v
§=0

where & € Lip(Q,), i = 0,1,2,-- N —1. Forp > 1 and n € M2(0,T),
~ T ~r T

let |nlluz, = {EI(fy InsPPds)??I3/P, |lnllae, = {ELfy InsPds]}'/? and denote
by HE(0,T), ME(0,T) the completions of MZ(0,T) under the norms || - || 722,
|+ lasz, respectively.

Let S%(O, T) = {h(t, Btl/\t7 cey Btn/\t) : t17 ey tn S [0, T], h € Cb’Lip(Rn+1)}.
Forp > 1 and n € S%(0,T), set [nllsz, = {IAE[supte[o,T] |7:|P]}». Denote by
S2.(0,T) the completion of S&(0,T) under the norm | - sz, -
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We call LY, (Qr), ME(0,T), HZ(0,T) and S%(0, T') the spaces of G-framework.
In the linear case, such kind of spaces contain amost all processes which we are
interested in. Under the G-expection, however, there do exist some less regular
processes, which can’t be approximated by the “regular” ones by the definitions
of the spaces in the G-framework. A typical process which does not belong to

ME(0,T) is
B)s — (B)s—
0s = limsup7< Jo = (B)s—
€l0 €
(see [36, 2012] for more details).

Theorem 2.2 ([5, 12]) There exists a tight subset P C M1(Qr), the set of
probability measures on (Qr, B(Qr)), such that

E[¢] = sup Ep[¢] for all € € HY.
pPeP

P is called a set that represents E.

Remark 2.3 Denis et al. [5] gave a concrete set Py that represents E. For
simplicity, we only introduce the 1-dimensional case, i.e., Qr = Co([0,T];R) .

Let (Q°, F°, PY) be a probability space and {W;} be a 1-dimensional Brown-
ian motion under P°. Let FO = {F?} be the augmented filtration generated by
W. Denis et al. [5] proved that

t
Puyui={P,:P,=PoX 1 X, = / hsdWs,h € L30([0,T7; (2, 7))}
0

is a set that represents E, where L2,([0,T; [g,]) is the collection of F°-adapted
measurable processes with o < |hs| < . Here

o? = —K[-B? < K[B?] =: 7°.

For this 1-dimensional case,

Gla) = %E[an} - %[E%ﬁ ~ o%].

Let P be a weakly compact set that represents [E. For this P, we define
capacity
¢(A) := sup P(A), A e B(Qr).
PcP
A set A C Qp is polar if ¢(A) = 0. A property holds “quasi-surely” (q.s. for
short) if it holds outside a polar set. In the following, we do not distinguish two
random variables X and Y if X =Y q.s.. We set

LP(Q) :={X € B() : sup Ep[|X|P] < oo} for p > 1.
PeP

It is important to note that L% () C LP(£;). We extend G-expectation E to
LP(£;) and still denote it by E, for each X € L!(Qr), we set

E[X] = sup Ep[X].
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For p > 1, L?(f),) is a Banach space under the norm ([ - [?])/?.

Furthermore, we extend the definition of conditional G-expectation. For
each fixed t > 0, let (A;)_; be a partition of B(€;), and set

= mila,,
i=1

where 1, € LL(Q7), @ = 1,--- ,n. We define the corresponding conditional
G-expectation, still denoted by E,[-], by setting

n

ZUZIA :Z s[mi]la, for s>t.

The following lemma shows that the above definition of conditional G-expectation
is meaningful.

Lemma 2.4 For each £,n € L5(Qr) and A € B(Q), if E1a4 > nla q.s., then
E:[€]1a > Ein]la g.s..

Proof. Otherwise, we can choose a compact set B(£2;) > K C A with ¢(K) >0
such that (E,[¢] — Ei[n])~ > 0 on K. Since K is compact, we can choose a
sequence of nonnegative functions {¢,}22; C Cy(£2;) such that (, | Ix. By
Theorem 31 in [5], we have

E[C (€ —=n)7) L E[Ix (€ —n)7]

and
E[CuBe[(€ — ) 7)) L E[IKE[(E — )]l
Since
E[Ga (& =m)7] = E[GE: (€ — )7,
we have

E[IKE[(€ —n)7]) = ElIx (€ —n)7] = 0.
Noting that R ) )
(Ee[g] — Ee[n]))™ < E[(€—=n)7],

we get B, [(€ —5)"] > 0 on K. Also by ¢(K) > 0 we get E[IxE[(¢€ —n)~] > 0.
This is a contradiction and the proof is complete. [

We set

Lt (Qr) = {¢ = ZWA A; € B(),mi € L (Q),n € N},

We have the following properties.
Proposition 2.5 For each &, n € ]L(();’l’t(QT), we have

(i) Monotonicity: If € <, then Ey[€] < Eyn] for any s > t;

EN
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(ii) Constant preserving: If € € LG (Qy), then By[€] = &;

(iii) Sub-additivity: B¢ +n) < E[¢] + Ey[n] for any s > t;

(iv) Positive homogeneity: If € € L%m’t(ﬂt) and € > 0, then By[én] = By [n);
(v) Consistency: Fort < s <r, we have B[R, [¢] = E,[¢].

(vi) E[E[¢]] = E[¢].

Proof. (i) is a direct consequence of Lemma 2.9. (ii)-(v) are obvious from the
definition. We only prove E[E;[{]] = E[¢] for £ which is bounded and positive.

Step 1. For £ = vazl Ig,ni, where K;, ¢ = 1,..., N, are disjoint com-

pact sets and 1; > 0, we can choose ¢!, € Cp(£);) such that ¢!, | K; and
@l ol =0 for i # j. By the same analysis as that in Lemma 2.4, we can get
SN - S—"
B oy I Ealmil] = B[22 Trcimal-

Step 2. For & = Zf\il I4,mi, where A;, ¢ = 1,..., N, are disjoint sets and
n; > 0. For each fixed P € P, we can choose compact sets K, such that K¢, 1
and P(A; — K!)) | 0, then

EP[ZIAiEt[mH = lim Ep[Y Iy Eifni]]

¥ =1
N
< lim B[ Txes Byfn]

m— o0 4
=1

N
im B[ Ixi mil
i=1

N
< E[Z [A¢77i1~
i=1

It follows that E[Zil Ia o)) < E[Zfil Ia,m;]. Similarly we can prove
B[S, Lam] € B, TaEdfn]]. O
Let L%'(Qr) be the completion of L% (Qr) under the norm (&[] - [7])/7.
Clearly, the conditional G-expectation can be extended continuously to ]L’C’;’t Q7).
Set
N-1
MP2(0,T) := {n; = Z St ity )() 10 =tg < -+ <tn=T,&, € LP(Q,)}.
i=0
For p > 1, we denote by MP(0, T), HP(0,T), SP(0, T') the completion of MP:°(0, T')
under the norm |[n|ly = (BLfy’ [ne[*dt)/7, |[nl|ew := (BI(fy InePde)y/2)}7,
[nllsr := (E[supsefo,r [7¢|P])1/P respectively. Following Li and Peng [14], for
each n € HP(0,7T) with p > 1, we can define It6’s integral fOT nsdBs. Moreover,

by Proposition 2.10 in [14] and the classical Burkholder-Davis-Gundy Inequality,
the following properties hold.




CoO~NOOUPAWNLPE

OO OUUUIUUUUIUIUULAAMDDADLNDIARAWWWWWWWWWWNNNNNNNNNNRERRRRRRRER
ORWNPOOONONPRONROOOIDOUIRWNROODNONBRWONROOONOURAWNRPOOONOUDNWNRO

Proposition 2.6 For each 1,0 € H*(0,T) with o > 1 and p > 0, £ € L>=(£),
we have

s
E[/ nsdBs] =0,
0
t

T T
ave B / InaPds)”’?) < B[ sup | [ nedBul?) < 5P CE[( / 0. 2ds)?"?),
0 te[o,1] Jo 0

T T T
/ (€ns + 0,)dB, = ¢ / nodB, + / 6.dB.,
t t t

where 0 < ¢, < Cp < o0 are constants.

Definition 2.7 A process { M} with values in L{,(Qr) is called a G-martingale
if Es[My] = M, for any s < t.

For € € L;,(Qr), let E[E] = E[supte[oyﬂ [, [€]], where E is the G-expectation.
For convenience, we call £ G-evaluation.

For p > 1 and € € Ly(Qr), define |[€]l,.e = {E[|€]P]}'/? and denote by
LE(Qr) the completion of L;,(Qr) under the norm || - |[,.¢.

The following estimate will be frequently used in this paper.

Theorem 2.8 (/35]) For any a > 1 and § > 0, we have L& (Qr) € LE(Qr).
More precisely, for any 1 <y < f:=(a+9)/a, v <2 and for all § € L;,(Qr),
we have

E[tes[l(l)pT] Et[‘ﬂaﬂ < C{(fEHﬂaJr&])a/(aJré) + (E[|€|a+5])1/—y}7 2.1)

where C' = 27(1+ 14 S imP).

Remark 2.9 By OzL—i-é < % <1, we have

E[tes[%pﬂ By [l€|°T) < 2C{(Bljg[*+o])/ @+ 1 B(jg|o+]).

Set C1 = 2inf{ 23 (1 + 14372 i P/) 1 <y < B,y < 2}, then

Bl sup. Billl°]) < CH{(B{le™ )/ + B[l 1), (2.2)

where Cy is a constant only depending on o and 0.
For readers’ convenience, we list the main notations of this paper as follows:

e The scalar product and norm of the Euclid space R™ are respectively

denoted by (-,-) and |- [;
o Lip(Q7) :={p(By,, ..., Bi,) :n>1,t1,....t, €[0,T], p € Cp Lip(R>™)};

o [€llpe = EIEPD?,  €llpe = Elsupieror Eell€P])"/;
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e LY.(Qr) :=the completion of L;,(Qr) under || - |

p,G3

o LZ(Qr) :=the completion of L;,(Qr) under || - ||,.¢;

o ME(0,T) =={n = X0 &1 0y (8) 10 =ty < -+ <ty =T, & €
Lip(1,)};

o [nllar = {BLfy [n|Pds]}'/, Il ezn, = {EICfy |nsl2ds)P/2)31/7;
o M(0,T) :=the completion of M¢(0,T) under || - ||z ;

e HZ(0,T) :={the completion of MZ(0,T) under |- || 72} for p > 1;
o L) =(X € B(O) : suppep Bp[[X[7] < o0} for p > 1.

o MPY(0,T) :={n = Zflﬁlﬁtif[ti,ti+l)(t) 0=t <---<ty=1T,&, €
LP(Qti)};

o A0l = ELfy InelPdt) /2, il = B[y Ime[2de)e/?)3077;

o lInllss = {(Blsupego,ry ml*1} ¥

e MP(0,T) :=the completion of MP-°(0, T") under || - ||me;

e HP(0,T) :=the completion of MP*(0,7") under || - ||u»;

e SP(0,T) :=the completion of MP:*(0,7") under || - ||ss;

o S2(0,T) ={h(t,Biat, -, Btoat) i t1, ... tn €10, T, h € Cp rip(R" 1)}

o |Inllsz, = {E[sup,cio.z ImlP1}7;
e S2(0,T) :=the completion of S&(0,7) under | - sz,

e 52(0,T) := the collection of processes (Y, Z, K) such that Y € S&(0,T),
Z € H&(0,T), K is a decreasing G-martingale with Ko = 0 and Kr €
L& (Qr).

3 A priori estimates

For simplicity, we consider the G-expectation space (Qr, L& (Qr), E) with Qr =
Co([0,T],R) and *> = E[B?] > —E[-B?] = ¢®> > 0. But our results and
methods still hold for the case d > 1.

We consider the following type of G-BSDEs for simplicity, and similar esti-
mates hold for equation (1.2).

T T
Vi =¢ +/ f(s,Ys, Zs)ds —/ ZsdBs — (K1 — Ky), 3.1)
t t

where
flt,w,y,2):[0,T] x Qr x R> - R

satisfies the following properties: there exists some 6 > 1 such that

10




CoO~NOOUPAWNLPE

OO OUUUIUUUUIUIUULAAMDDADLNDIARAWWWWWWWWWWNNNNNNNNNNRERRRRRRRER
ORWNPOOONONPRONROOOIDOUIRWNROODNONBRWONROOONOURAWNRPOOONOUDNWNRO

(H]‘) fOI' any vy, z, f(a '7y72) € Mg(ovT)7
(H2) |f(t7wayvz) - f(tawyy/a Z,)‘ S L(|y - y/| + ‘Z - Z/|) fOI' some L > 0.

For simplicity, we denote by &%(0,T") the collection of processes (Y, Z, K)
such that Y € S&(0,T), Z € H&(0,T), K is a decreasing G-martingale with
Ky=0and Kt € L%(QT)

Definition 3.1 Let £ € Lg(QT) and f satisfy (H1) and (H2) for some 3 > 1.
A triplet of processes (Y, Z, K) is called a solution of equation (3.1) if for some
1 < a < B the following properties hold:

(a) (Y,Z,K) e 6%(O,T);
(b) Vi =&+ [] f(s,Ys, Zo)ds — [ Z,dBs — (Kr — Ky).

In order to get a priori estimates for the solution of equation (3.1), we need
the following lemmas.

Lemma 3.2 Let X € S&(0,T) for some a > 1. Set

n—1
X = Z Xepdiir a4z, (1),
i=0

where t} = %, i=0,---,n. Then
E[ sup |X!'— X|*] =0 asn — oc. (3.2)
te[0,T]

Proof. For each given n, m > 1, it is easy to check that

sup sup  |Byn — Byp|*
) : :
iSn—lerelty i ]

is a convex function. Then by Proposition 11 in Peng [22], we get

E[ sup sup  |Byn — Byp

iS¢ eltr ty,]

*] = Ep,| sup sup  |Byr — Byp|?],

iSn—lepelty ey ]

where P5 is a Wiener measure on {2 such that Ep, [B?] = 52. Noting that

sup sup  [Byn — Byn

i<n—1gmefer,ir

Sup Sup |Bt - Bt:t'a as m T o,
"
i+1

R

we have
E[ sup  sup |By— Byn|*] = Ep,[sup  sup [B; — Bir|*] — 0.

i<n—1te[tr,t7, ] i<n—1te[tP,t7, ]

i+1 it+1

From this we can get IAE[supte[QT] Ine —nit|*] — 0 for each n € S&(0,T). By the
definition of S&(0,T), we can choose a sequence (n™)S_; C S2(0,T) such that

Elsupyefo, 7y [Xe — n7"|*] — 0 as m — oo. Note that

sup | Xy — X' <2 sup | Xy —n"[+ sup o —(n™)}],
t€[0,T] te[0,T) te[0,T)

then we obtain (3.2) by letting n — oo first and then m — oco. O

11
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Lemma 3.3 Let Xy, X}* be as in Lemma 3.2 and o™ = —*5. Assume that K
is a decreasing G-martingale with Ko =0 and K € L%* (Qr). Then we have

Esup|/X”dK /XdKHHO as n — oo.

te[0,T]
Proof.
5up\/X"dK /XdK|
te[0,T)
<- / X2 = X,|dK,
0
< sup |XI— X.|(—Kp).
s€[0,7
So we have

[ sup |/ XK, — /XdK\ < | sup 1XT ~ Xullig 1Kl e — 0

te [0,T] sel0,T

asn — oo. U

Lemma 3.4 Let X € S§(0,T) for some a > 1 and o = Z%5. Assume that

Ki,j=1,2, are two decreasing G-martingales with Kg =0 and K% € LO‘G* (Qr).
Then the process defined by

t t
/deK;+/ X, dK?
0 0

is also a decreasing G-martingale.

Proof. Let X™ be as in Lemma 3.2. By Lemma 3.3, it suffices to prove that
the process

t t
/ (XP) K} + / (X7)"dK?
0 0

is a G-martingale. By properties of conditional G-expectation, we have, for any
te [tgl?t?#l]v

Ee[Xp (Kin | — Kp) + X (K — Kio)]
- X3RAKY, K|+ XgEIKE,, K}
= Xh (K} — Kp) + X (KE — K.
From this we obtain that fof (XM HdK! + fOt(XQ)’dKE is a G-martingale. [J

Now we give a priori estimates for the solution of equation (3.1). For this
purpose, a weaker version of condition (H2) is enough.

(H2") [f(t,w,y,2) = f(t,w, ', 2")| < L*(ly=y'[+]2 = 2| +-¢) for some L*, & > 0.

12
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In the following three propositions, C, will always designate a constant
depending on «, T, LY, g, which may vary from line to line.

Proposition 3.5 Let f satisfy (H1) and (H2’) for some > 1. Assume

T T
Yt:u/ f(s,Ys,zs)ds—/ 2,dB, — (K1 — Kb,
t t

where Y € S¥(0,T), Z € H*(0,T), K is a decreasing process with Ko = 0
and Kr € L*(Qr) for some B8 > « > 1. Then there exists a constant Cp, =
C(a,T,a, L") > 0 such that
~ T ~ A 1, T 1
E[(/ |Z[ds) %] < Co{E[ sup [V;|*] + (E[ sup |Yt1aD§(E[(/ fJds)*))z},
0 te[0,T] te[0,7] 0
(3.3)

T

E[|K7|*] < Ca{E[ sup [Y;|] +E[(/ flds)*1}, (34)
t€[0,T] 0

where fO = |f(s,0,0)| + L™e.

Proof. Applying Ité’s formula to |Y;|2, we have

T T T T

Yol? + / \Z.Pd(B). = 6 + / 2, f (s)ds — / 2Y,Z.dB, — / 2V.dK.,
0 0 0 0

where f(s) = f(s,Ys,Zs). Then

T T T T
( / Z.Pd(B))E < Collel*+] / Y, f(s)ds| 4] / Y.Z.dB,|% +] / Y.dK, |3},
0 0 0 0

By Proposition 2.6 and simple calculation, we can obtain

E[(/O 1Z,2ds) %] < Col Y ga+||Y\|§a[<ﬁwma]>%+<E[</O f0ds)*])H).
(3.5

5)
On the other hand,

T T
KTzf—Yo—f—/ f(s)ds—/ ZdB;.
0 0
By simple calculation, we get
R T T
BKr ") < Cul V15 +EI( [ 1ZPasy B[ f2asr]). (36)
By (3.5) and (3.6), it is easy to get (3.3) and (3.4). O

Remark 3.6 In this proposition, we do not assume that (Y, Z, K) belongs to
[e%
G(OvT)

Proposition 3.7 Let¢ € Lg Qr) and f satisfy (H1) and (H2’) for some 3 > 1.

Assume that (Y, Z,K) € 6%(0,T) for some 1 < o < (3 is a solution of equation
(8.1). Then

13
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(i) There exists a constant Co, := C(a, T, 0, L") > 0 such that

R T
Yl < ColiellE]* + / 0] ds]. (3.7)

T
Bl sup [¥i|] < CaB[ sup Eullel* + / Ordsll, (3.8)
t€[0,T t€[0,T] 0

where fO =f(s,0,0)| + LY e.

(ii) For any given o/ with a < o < 3, there exists a constant Cq. o depending
ona, o, T, o, LY such that

E[ sup [Vi|*] < Cu.o{E[ sup E.[|€]%]]
tel0,T] te(o, ]

IE [ sup Et( f ds)® +IE [ sup Et / fods)a 1}
te[0,T] te[0,T]
3.9)

Proof. For any 7, € > 0, set Y, = |Y;|2 + €, where €, = €(1 — a/2)T, applying
Itd’s formula to Y;*/2e7t, we have
~ T ~ o T ~
Y%oz/Qe'yt +’Y/ e'ysl/sa/QdS + 5/ evsna/2—lzgd<B>s
t t
a [T .-
= (6 + )T v a1 §) [ T2z,
t
T ~ T ~
+/ ae?*Y, /21y, f(s)ds — / ae?*Y, >NV, Z,dB, + Y,dK,)
t t
a (T .-
< (e +eo) 2t =) [ T za(m),
t
T ~
+/ e Y, /272 f(s)|ds — (Mp — M), (3.10)
t
where f(s) = f(s,Ys, Zs) and
t t
M; = / ey, Y* 1y, 7.dB, +/ Y, Yy K.
0 0
From the assumption of f, we have
T ~
/ ae'ysyga/Q—l/Q'f(S”dS
t
T ~
S/ ae'ysy-sa/Z—l/Q(f;) —}—L“"Y;‘ +L“’|Zs|)d8
t
a(Lv)? - ala=1) (T o
< LW 'ysy*sa/Zd / 'ysy*sa/Q 122d B),
< (« +_0-72(O‘_1))/t e St ——F— t e 2d(B)

T
+/ e Y, /212 945 (3.11)
¢

14
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(i) By Young’s inequality, we have

T T T
| e et s < 0 - ) [ oot [ et (312)
t t t

By (3.10), (3.11) and (3.12), we have

T T

- - —1 4

Y2 4 (y — 07)/ Y, 2ds + %/ VY, 271 224(B),
t ¢

T
< (|7 + €a)?/?eT +/ e f2|*ds — (Mrp — My),

t

where @ = aL¥ + o + ;2((6:1)12) — 1. Setting v = & + 1, we have

ﬁa/Qe'yt +MT 7Mt

T
< (J€ + €a)/?eT + / 7| 2| ds.

t

By Lemma 3.4, M, is a G-martingale, so we have

T
Vo2 <Ei[(I€ + )2 T + / | £2]ds].
t

By letting € | 0, there exists a constant C,, := C, (T, L*, &) such that

T
Y| < CaBalle]” + / 0] ds).
t
It follows that

R . T
Bl sup [¥i]%] < Cu[ sup E,[l¢* + / 0] ds]).

te[0,T] t€l0,T]

(ii) By (3.10) and (3.11) and setting v = aL¥ + (fg((iu;)f) + 1, then we get

T
?—ta/ZeA/t SEt[(|§|2+ea)a/267T+/ aews?rsa/Zfl/ngds]'
t

By letting € | 0, we get
. T
YV|™ < Colie[1€] +/ Y, [*~ fods]. (3.13)
t

From this we get

il < CulBlE] + Bl sup Y31 / £0ds])

s€[0,T

< CofBa[|€]°] + (B[ sup [Yy[ D ])a
s€1[0,T

(/ fds)* )y, (3.14)
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where o/* = a?‘—_/l Thus we obtain
R T
E[ sup \Yt| ] < Ca{lléllae +1I sup |Ys|a71||a'*,£\|/ fodsllare}-
tel0,T s€[0,T 0

It is easy to check that (a — 1)a/* < «, then by (2.2) there exists a constant C
only depending on o and o’ such that

~ a—1 ~
| sup [Y]*H[are < C{E[ sup [Vi[*])*5 + (B[ sup |Vy]*])==}.
s€[0,T] te[0,T] te[0,T]
By Young’s inequality, we have

T
Bl sup [%|*+C1Call / £0ds|[2)
0

N 1
CCA(B] sup |Vi|o)) "7 ||/ Fodsllare <
t€[0,T)

t€[0,T]

and

CCH(E[ sup [V3]]
t€[0,T]

T
dsllr.c < {B sup WG| [ £
0

1.
4 t€[0,T]

where C is a constant only depending on « and o’. Thus we obtain (3.9). O

Proposition 3.8 Let f;, i = 1,2, satisfy (H1) and (H2’) for some 3 > 1.
Assume

T
Yi=¢ +/ fi(s, Y, Z2) ds—/ ZldB, — (K§ — K}),
¢
where Y' € §%(0,T), Z' € H*(0,T), K' is a_decreasing process with K = 0
and Kt € LY(Qr) for some B> a > 1. Set Y, =Y} ~ Y2 Z, = Z} — Z% and

K, = K} — K2. Then there exists a constant Co = C(a,T,a, L") > 0 such
that

</ 12, ds) § }<c{Hyusa+|\Y||SQZ[\|YZ\|Sa+\|/ Fi0ds|| ),

=1
(3.15)
where fi0 = f;(s,0,0)| + LY, i = 1,2.

Proof. Applying Itd’s formula to |Yt |2, by similar analysis as that in Proposition
3.5, we have

121l < CalllVlIg + IVl UIEHIZ ¢ + 1K3Z o+ ||/ fsds||2 &)
where f, = |fi(s, Y2, Z2) — fa(s, Y2, Z2)| + L*c. By Proposition 3.5, we obtain
b6+ 1315 +1 [ Lol

T
< CLIYYE + V2 + ] /0 F10ds||% ¢ + | /0 F20ds)|

Thus we get (3.15). O
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Proposition 3.9 Let ¢ € L’g(QT) ,i=1,2, and f; satisfy (H1) and (H2’) for
some (3> 1. Assume that (Y, Z', K') € &%(0,T) for some 1 < a < 3 are the
solutions of equation (3.1) corresponding to £ and f; . Set Y, = Y-Y2, Z, =
Z}— 72 and K, = K} — K2. Then

(1) There exists a constant Cp := C(a, T, g, LY) > 0 such that
T
Tl < CaBulléln + [ \fiinas) (3.16)
t

where fs = ‘f1(57YstZs2> - f2(51Y527Zs2>‘ + Lye

(ii) For any given o with a < o' < 3, there exists a constant Co o depending
ona, o, T, o, LY such that
E[ sup [V;|*] < Coa{E[ sup E[|£]*]
t€[0,T] te[o T]

+ (E[ sup Et fsds )" —|—E [ sup Et[(/ fsds }
te[0,T] te[0,T]
(3.17)

Proof. For any v,e > 0, applying Itd’s formula to (|¥;|2 + e)®/2e7!, where
€a = €(1 — a/2)", by similar analysis as in Proposition 3.7, we have by setting

w2
= al’+a+ gy

T
(V2] + ea)™/2e" + / ae ™ (|Ya]? + eq)* 7Y, ZdBs + Jp — J,
t

T
< (|67 + €a)*/?e™ +/ | fo|“ds
t
and

T
(IV:]? + €0)/ 27 + / aeV* (|V|? + €0)* Y, Z4dBs + Jr — J;
t

T
< (€7 + e)/2T 4 / e ((Val? + ca) /22 fds,
t

where ,
Y3 / ae™ ([Ysl? + ea)*P TNV AR, + Y dK?).
0

By Lemma 3.4, J; is a G-martingale. Taking conditional G-expectation and
letting € | 0, we obtain a constant C,, := Co (T, LY, ) > 0 such that

i < CaBldr+ [ 1
t

and

A~ A ~ T A~ ~

Tl < Calullf + [ IVl fuds)

t

By the same analysis as that in Proposition 3.7, we get (3.17). O
Remark 3.10 Noting that fOT nsd(B)s < &2 fOT nsds for any n € ML(0,T),
thus Propositions 3.7 and 3.9 still hold for G-BSDE (1.2).
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4 Existence and uniqueness of G-BSDEs

In order to prove the existence of equation (3.1), we start with the simple case
f(t,w,y,2) = h(y, z), £ = o(Br). Here h € C5°(R?), ¢ € Cy.1;p(R?). For this
case, we can obtain the solution of equation (3.1) from the following nonlinear
partial differential equation:

Opu+ G(02,u) + hu, Oyu) = 0,u(T, ) = @(z). (4.1)

Then we approximate the solution of equation (3.1) with more complicated f by
those of equations (3.1) with much simpler {f,}. More precisely, assume that
lfn — f||Mg — 0 and (Y™, Z™, K™) is the solution of the following G-BSDE

T T
Y ey / Fuls. Y2 Z0)ds — / 77dB, — (K} — K7).
t t

We try to prove that (Y™, Z™, K™) converges to (Y, Z, K) and (Y, Z, K) is the
solution of the following G-BSDE

T T
Y, :5+/ f(s,Ys,Zs)ds—/ Z.dB, — (Kr — K)).
t t

One of the main results of this paper is

Theorem 4.1 Assume that £ € Lg(QT) and f satisfies (H1) and (H2) for
some 3 > 1. Then equation (8.1) has a unique solution (Y, Z,K). Moreover,
forany 1 < o < we have Y € S&(0,T), Z € H&(0,T) and Kr € L&(Qr).

Proof. The uniqueness of the solution is a direct consequence of the a priori
estimates in Proposition 3.8 and Proposition 3.9. By these estimates it also
suffices to prove the existence for the case £ € L;,(Q7) and then pass to the
limit for the general situation.

Step 1. f(t,w,y,2) = h(y, z) with h € C$°(R?).

Part 1. We first consider the case £ = ¢(Br — By, ) with ¢ € Cy 1ip(R) and
t1 < T. Let u be the solution of equation (4.1) with terminal condition ¢. By
Theorem 6.4.3 in Krylov [13] (see also Theorem 4.4 in Appendix C in Peng [27]),
there exists a constant o € (0, 1) such that for each x > 0,

‘|u|‘Cl+a/2v2+a([O,T—n]xR) < oo.

Applying It6’s formula to u(t, By — By, ) on [t1,T — k], we get
T—k
u(t,B; — By,) =u(T — k, Br—,, — By, ) + / h(u, Ozu)(s, Bs — By, )ds
t
T—k
- / Dyu(s, By — By, )dB, — (Kp_p — Ky), (4.2)
t

where K; = %f:l 02,u(s, Bs — By, )d(B)s — fttl G(92,u(s, Bs — By,))ds is a non-

increasing G-martingale. We now prove that there exists a constant L; > 0
such that

lu(t,z) —u(s,y)| < Li(3/|t — s| + |z —y|), t,s € [0,T],z,y € R. (4.3)

18
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For each fixed zo € R, set a(t,z) = u(t, z + o), it is easy to check that @ is the
solution of the following PDE:

oyt + G(02 @) + h(@, 0.1) = 0, u(T,x) = (x + x0). (4.4)

Define 4(t,z) = u(t,x) + Ly|zo|exp(La(T — t)), where L, and Ly are the
Lipschitz constants of ¢ and h respectively, it is easy to verify that @ is a
supersolution of PDE (4.4). Thus by comparison theorem (see Theorem 2.4 in
Appendix C in Peng [27]) we get

u(t,x + o) < u(t,x) + Ly|xo|exp(Ln(T —t)), t € [0,T],xz € R.

Since 1 is arbitrary, we get [u(t, ) —u(t,y)| < Llz—y|, where L = L, exp(LsT).
From this we can get |d,u(t,z)| < L for each t € [0,T], 2 € R. On the
other hand, for each fixed f < ¢ < T and = € R, applying Ité’s formula to
u(s,z + By — By) on [, 1], we get

i
u(t,z) = Elu(t,x + B; — By) + / h(u,0u)(s,x + Bs — Bg)ds].
t
From this we deduce that
lu(t,z) — u(f, z)| < E[ﬁ|Bt — Bf| + l~}|1§— t] < (i)& + iﬁ)\/ |f -1,

where L = SUp(; yyerz [P(2,y)|. Thus we get (4.3) by taking L, = max{L, Lz +
LVT}. Letting & | 0 in equation (4.2), it is easy to verify that

T
E[|Yr—x — §|2 + / |Zt|2dt + (Kp—y — KT)Z] — 0,
T—k
where Y; = u(t, B — By, ) and Z; = Oyu(t, By — By,). Thus (Y3, Zy, Ki)eepe, 1 is
a solution of equation (3.1) with terminal value & = ¢(Br — By, ). Furthermore,
it is easy to check that Y € S&(t1,T), Z € H&(t1,T) and Ky € L (Qr) for
any a > 1.

Part 2. We now consider the case £ = 9(By,, Br — By, ) with ¢ € Cy, 1;,(R?),
and the more general case can be proved similarly. For each fixed x € R, let
u(-,x,-) be the solution of equation (4.1) with terminal condition ¢ (z,-). By
Part 1, we have

T
u(t,x, By — By,) =u(T,z, Br — B:,) + / h(u, Oyu)(s, x, Bs — By, )ds
¢
T
—/ Oyu(s,x, B — By, )dBs — (K7 — K7), (4.5)
t

where Kf = 1 fttl 92, u(s,x, By — By, )d(B) s — fttl G(82,u(s,z, Bs — By, ))ds. We
replace x by B, and get

T T
Y, =Yr +/ h(Y,, Z4)ds — / Z,dB, — (K1 — K),
t t
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where Y; = u(t, By,, By — By, ), Zy = Oyu(t, By,, B — By, ) and

t
/ 0%, s, B, By = B )a(B). — | Gl uls. Bu. B, — Buy)ds.

Now we are in a position to prove (Y, Z, K) € 6%(0,T). We use the following
argument, for each given n € N, by partition of unity theorem, there exist
h € C§°(R) with the diameter of support A(supp(hl'))< 1/n, 0 < AP < 1,
I_ppy(r) < Zf;l h? < 1. Choose z} such that hA’(z}*) > 0. Through equation
(4.5), we have

T n T
Yi"=Yq’f+/ > hylt 2y )h"(Bn)ds—/ Z$dBs = (Kt — K{'),
[— t

Whereytn —’U/(t, zaBt Btl) 711 ayu(ta szf Btl) }/t _Zz 1yt hn(Bt1)7
Zp =3, 7 h (Byy) and K”=Z L K7 R (By,).

By the same analysis as that in Part 1, we can obtain a constant Ly > 0
such that for each ¢, s € [0,T], z, 2/, y, ¥’ € R,

u(t, 2, y) —uls, a',y")| < La(VIt = s| + o — 2| + [y = y/]).

From this we get

o
|V =Y/ < Zhn(Btl lu(t,x7, By — Bt,) — u(t, Be,, Bt — By,)| + Vil B, |>n)
=1

Lo lullso
n
Thus I I ||
~ U|| oo
E[ sup [Y; —Y"[* ]<E[(—2+ ——[Bu[)*] — 0.
tE[t1,T]

By Proposition 3.8, we have

A T A A

E[(/ |2, = Z1Pds)*?] < Co{E[ sup [V =Y,*[*]+ (B[ sup |Y,—Y"|*])'/},
t1 telty,T] te(ty,T)

where C, > 0 is a constant depending only on «, T';, L™ and g, thus we obtain
]E(f: |Zs — Z7|?ds)*/? — 0, which implies that Z € H&(t;,T) for any o > 1.

By Ky = Y; =Yy, + [} h(Ys, Zo)ds — [} Z.dB,, we obtain K, € L(Q) for
any o > 1. We now proceed to prove that K is a G-martingale. Following the
framework in Li and Peng [14], we take

hi(@) =T pys pyimy(2),0= 0,000, 2n° — 1,
hy.=1-— Z% -t h?. Through equation (4.5), we get

T T
Ve =i [ W zds— [ Zrap. - (R - Rp)
t t
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2n?

where Y, = Zfﬁ; u(t,—n+=, By— By )W (By,), Z] = S50 Oyult, —n+<, By —
By, )hi(B;,) and K* = ZZZ Kt_"-‘_’%h;‘(Btl). By Proposition 3.8, we have
]E[(fg | Zy — Z7|?ds)*/?] — 0 for any o > 1. Thus we get E[|K; — K7|*] — 0 for
any « > 1. By Proposition 2.5, we obtain for each t; <t <s < T,
BB, (K] — Ki|] = B[|B[K,] — By [K]] + K7 — K]
< B[E(K, — K2 + E[|K] — K]
&K, - K7+ BIET - K] — 0.

Thus we get B,[K,] = K;. For Y;, = u(t, By,,0), we can use the same method
as Part 1 on [0, ¢1].

Step 2. f(t,w,y,2) = Zfil fihi(y, z) with fi € M2(0,T) and h' € C§°(R?).

The analysis is similar to Part 2 of Step 1.

Step 3. f(t,w,y,2z) = Zf\il fihi(y, 2) with f¢ € Mg(O,T) bounded and
hi e C°(R%), hi >0 and S b < 1.

Choose fi € M2(0,T) such that | f| < || f||oc and Zivzl I fofiHMg <1/n.
Set f, = Zivzl fihi(y,z), which are uniformly Lipschitz. Let (Y™, Z" K") be
the solution of equation (3.1) with generator f,,.

Noting that

N N
Fm = (8, Y Z0) = (8, Y3 Z0 <Y =1+ =11 =2 fat fns
=1

i=1

we have, for any 1 < a < (3,
~ T ~ ~ T ~ ~
B,[( / fminds)e) < By / (Fa(3)] + |Fn(5))ds) ).

Thus by Theorem 2.8, we get ||f0T fmnds|lae — 0 as m,n — oo for any
a € (1,0). By Proposition 3.9 we know that {Y"} is a cauchy sequence under
the norm || - [|se. By Proposition 3.7 and Proposition 3.8, {Z"} is a cauchy

sequence under the norm || - [|gg. In order to show that {/K}} is a cauchy

sequence under the norm || - || e, it suffices to prove {fOT fu(s, Y, Z7)ds} is a
cauchy sequence under the norm || - [|re. In fact,

|fn(57Yn’Z") _.fm(saYm>Zm)‘
S |fm(svyna Zn) - fm(svymvzm” + |fn(s’yn’Zn) - fm(svyn,Zn)l
< LYl +1Z0) + fu+ fns

which implies the desired result.

Step 4. f is bounded, Lipschitz. |[f(t,w,y,2)] < Clg(g)(y,z) for some
C,R > 0. Here B(R) = {(y, 2)|y* + 2% < R?}.

For any n, by the partition of unity theorem, there exists {h;}f\i‘l such

that hi € C5°(R?), the diameter of support A(supp(hf))< 1/n, 0 < hi <1,
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Ipr) < vazl hi < 1. Then f(t,w,y,z) = Zl]il f(t,w,y,z)hfl. Choose y;,z}l
such that h? (ye,z1) > 0. Set f,,(t,w,y,2) = Zfil f(t,w, e, 21 )kt . Then

N
|f(t,w,y,z) - f'n(t7w7yvz)| S Z |f(t,w,y,z) - f(t,W,y;,Z;)‘h:l S L/n
=1

and
|fn(t,w,y,z) - fn(tvwaylv'z/)‘ < L(|y - y/| + |Z N Z/| + 2/71)
Noting that |fon(s, Y, Z2) — fu(s, Y2, Z0)| < (L/n+ L/m), we have
L 3L

T
n 1 1 2L @ @
Bl [ (fns. Y2 20) = s, Y2 200+ 200 < T2+

).

So by Proposition 3.9 we conclude that {Y™} is a cauchy sequence under the
norm ||-||se. Consequently, {Z"} is a cauchy sequence under the norm |[|-[| o, by

Proposition 3.7 and Proposition 3.8. Now we shall prove {fOT (s, Y, Z7)ds}
is a cauchy sequence under the norm || - [|e. In fact,

|fn(S7Yn7Zn) - fm(S:YWL?ZT”)‘
S |f’m(87yn?Zn) - fm(S’Ym7Zm)| + |fn(SaYn7Zn) - fm(s’yn7zn)|
< L(Ys| + |Zs| +2/m) + L/n + L/m,

which implies the desired result.
Step 5. f is bounded, Lipschitz.

For any n € N, choose h™ € C§°(R?) such that Ig(,) < h™ < Ip(,41) and
{h™} are uniformly Lipschitz w.r.t. n. Set f, = fh"™, which are uniformly
Lipschitz. Noting that for m > n

|fm(57ngna Zg) - fn(svxfsnv Zg)|
<|f(, Y8 ZE) v 41z 25n2)

Yyl + 122
< o2,

we have
. T
Bu( [ 1o Y2 22) = s Y2 Z2) )]
0
Hf”(oxo " T n n @
< W[ v+ 12z1a5))
n 0
a R T T
< W ooyl [ zicds + ([ 1720y,
0 0

where C(a, T) := 20~ YT~ 4 T*/2]).
So by Theorem 2.8 and Proposition 3.7 we get || foT fmnds|la.e — 0 as

S

m,n — oo for any « € (1,3). By Proposition 3.9, we conclude that {Y"} is
a cauchy sequence under the norm || - [se. Consequently, {Z"} is a cauchy
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sequence under the norm || - || gs. Now it suffices to prove {fOT (s, Y, Z)ds}
is a cauchy sequence under the norm || - [[1e. In fact,

|fn(8, an Zn) - fm(sa Ym7 Zm)‘

< |f’m(87yna Zn) - f’m(say7n7 Zm)| + |f’n(8a Yn7 Zn) - fm(sayn7 Zn)l

< L(YSl + 1Zs]) + £ (s, Y ZO) Ly 41221500,

which implies the desired result by Proposition 3.7.
Step 6. For the general f.

Set f, = [f V (—n)] A n, which are uniformly Lipschitz. Choose 0 < § <
%Al. Then a < o = (1 + §)a < (. Since for m > n

n n n n n n 1 n n
‘fn(say 7Z )7fm<svy 7Z )| < |f(S,Y; »Zs)|I[|f(s,YgL,Ys")|>n] < m|f(57}/s 7Zs)|1+67

we have
. T
B / a8, Z%) = fu(s, Y™, 27)|ds)°]

1 . T
= W“‘:f“/o 1f (s, Y7, Z2)] H0ds)°],

Cle.T,L,0) . [T ' e ! 7
< SOL LI [ 1008 st [ rias+ ([ 12:Pan%)
0 0 0

where C(a, T, L,8) := 3¢’ -1 (11 + L&'T*5% 4 7o=1L2"). So by Theorem
2.8 and Proposition 3.7 we get ||fOT fmnds|lae — 0 as m,n — oo for any

a € (1,0). By Proposition 3.9, we know that {Y™} is a cauchy sequence under
the norm || - [|se. And consequently {Z"} is a cauchy sequence under the norm

|l - lmg. Now we prove {fOT fu(s, Y], Z7)ds} is a cauchy sequence under the
norm || - [|re.. In fact,

|fn(57ynjzn) _ fm(S,Y7TL7ZnL)‘
S |fm'(S7YTL’Zn) - fm(S’Ym7Zm)| + |fn(sayn7zn) - fm(svynvzn)l

. R 39
< L(JYs| + |Zs)) + E(\fﬁ’l”‘s + YR 221,

which implies the desired result by Proposition 3.7. [

Moreover, we have the following result.

Theorem 4.2 Assume that £ € L’g(QT) and f, g satisfy (H1) and (H2)for
some 8 > 1. Then equation (1.2) has a unique solution (Y, Z, K). Moreover,
forany 1 < o < we have Y € S&(0,T), Z € H&(0,T) and Kr € L&(Qr).

Proof. The proof is similar to that of Theorem 4.1. [J

Remark 4.3 The above results still hold for the case d > 1.
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5 An alternative estimates of G-BSDEs

In this section, we present an alternative a priori estimate for the solutions of
G-BSDEs, which may be useful in the follow-up work of G-BSDEs theory.

For simplicity, we only consider the case d = 1. The results still hold for the
case d > 1.

We consider the following type of G-BSDEs:
T
=&+ / fi(s,YE Z1) ds—l—/ gi(s, Y, ZH)d(B)s (5.1)

- / ZidB, — (K} — Kj),
t
where £ € Lg(QT) and f;, g; satisfy (H1) and (H2) for some 5> 1,7 =1,2.

Proposition 5.1 Assume that (Y, Z',K") € 84(0,T) for some 1 < a < (3,
i = 1,2, are the solutions of equation (5.1) corresponding to £, f; and g;. Set

Y, = Y,! — Y2, Then there exists a constant Cy, > 0 depending on o, T, G and
L such that

A~ A ~ T ~
D" < Caif(€] + / (1] + [3s])ds)°), (5.2)

where € = €' — €2, fi = fi1(s,Y2,Z2) — fo(s,Y2,22), G5 = g1(s,Y2,Z2) -
92(3v1§27Z§)'

Proof. For each fixed t < T, we consider the following SDE:
X = [ (B2 = X0 2) ~ fols. Y2, 22))ds
t

n / (0205, Y2 — X, 22) — go(s, Y2, Z2))d(B)..
t

By the comparison theorem, we obtain that

|X\</ il exp{L(r — s + (B), — (B)J)}ds
/ 3l exp{L(r — 5 + (B), — (B))}d(B),
fc/t (ful + 134])ds,

where C depends on T, G and L. Set Y;! = Y;! + X, for r € [t, T], by applying
It6’s formula to V! + X,., we get

T
)/7‘1 ~~ £1 + Xr +/ (f1(57?91 - Xsazsl) - fl(SaYE - X%ZE) + fQ(S,YB,ZE))dS
T ] T
b [ T = X 2D = 5.V X Z2) 4 gal, Y2, ZD)(E).

T
- [ ziap. - ;- x)
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By Proposition 3.9 we obtain that
Vi|* = [V} = Y21 < Callel|€ + Xr|*]

A~ ~ T ~
gammm+lunwmmMM-
O

Corollary 5.2 Assume that (Y,Z,K) € 62(0,T) for some 1 < a < 3 is the
solution of equation (5.1) corresponding to &, f and g. Then there exists a
constant Cy, > 0 depending on o, T, G and L such that

Vi < Cale (€] +/t (17(s,0,0)| + g(s,0,0)|)ds)°]. (5.3)

Proof. Letting £ = 0, fo = g2 = 0, it is easy to check that Y;> = 0. By
Proposition 5.1 we get equation (5.3). O

Remark 5.3 Noting that C,, is bounded for a > %(14—5), then equations (5.2)
and (5.3) still hold for o = 3 by taking o 1 3.
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