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Abstract

We study in this article the hydrodynamic limit in the macroscopic regime of the coupled system of
stochastic differential equations,

dλi
t =

1
√

N
dW i

t − V ′(λi
t )dt +

β

2N

∑
j ̸=i

dt

λi
t − λ

j
t

, i = 1, . . . , N , (0.1)

with β > 1, sometimes called generalized Dyson’s Brownian motion, describing the dissipative dynamics
of a log-gas of N equal charges with equilibrium measure corresponding to a β-ensemble, with sufficiently
regular convex potential V . The limit N → ∞ is known to satisfy a mean-field Mc-Kean–Vlasov equation.
We prove that, for suitable initial conditions, fluctuations around the limit are Gaussian and satisfy an
explicit PDE.

The proof is very much indebted to the harmonic potential case treated in Israelsson (2001). Our key
argument consists in showing that the time-evolution generator may be written in the form of a transport
operator on the upper half-plane, plus a bounded non-local operator interpreted in terms of a signed jump
process.
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1. Introduction and statement of main results

1.1. Introduction

Let β ≥ 1 be a fixed parameter, and N ≥ 1 an integer. We consider the following system of
coupled stochastic differential equations driven by N independent standard Brownian motions
(W 1

t , . . . , W N
t )t≥0,

dλi
t =

1
√

N
dW i

t − V ′(λi
t )dt +

β

2N

∑
j ̸=i

dt

λi
t − λ

j
t

, i = 1, . . . , N . (1.1)

Letting

W({λi
}i ) :=

N∑
i=1

V (λi ) −
β

4N

∑
i ̸= j

log(λi
− λ j ), (1.2)

we can rewrite (1.1) as dλi
t =

1
√

N
dW i

t − ∇iW(λ1
t , . . . , λ

N
t )dt . Thus the corresponding

equilibrium measure,

dµN
eq ({λi

}i ) =
1

Z N
V

e−2NW({λi
}i )

=
1

Z N
V

⎛⎝∏
j ̸=i

|λ j
− λi

|

⎞⎠β/2

× exp

(
−2N

N∑
i=1

V (λi )

)
dλ1

· · · dλN (1.3)

is that of a β-log gas with confining potential V .
Let us start with a historical overview of the subject as a motivation for our study. This

system of equations was originally considered in a particular case by Dyson [6] who wanted
to describe the Markov evolution of a Hermitian matrix Mt with i.i.d. increments dG t taken
from the Gaussian unitary ensemble (GUE). In Dyson’s idea, this matrix-valued process was
to be a matrix analogue of Brownian motion. The latter time-evolution being invariant through
conjugation by unitary matrices, we may project it onto a time-evolution of the set of eigenvalues
{λ1

t , . . . , λ
N
t } of the matrix, and obtain (1.1) with β = 2 and V ≡ 0. Keeping β = 2, it is easy to

prove that (1.1) is equivalent to a generalized matrix Markov evolution, d Mt = dG t −V ′(Mt )dt .
The Gibbs measure

PN
V (M) =

1
Z N

e−NTrV (M)d M, d M =

N∏
i=1

d Mi i

∏
1≤i< j≤n

dRe Mi j dIm Mi j

can then be proved to be an equilibrium measure. Such measures, together with their projection
onto the eigenvalue set, µN

eq ({λ1, . . . , λN
}), are the main object of random matrix theory, see

e.g. [1,13,18]. The equilibrium eigenvalue distribution can be studied by various means, in
particular using orthogonal polynomials with respect to the weight e−N V (λ). The scaling in N
(called macroscopic scaling in random matrix theory) ensures the convergence of the random
point measure X N

:=
1
N

∑N
i=1δλi to a deterministic measure µV with compact support and

density ρ when N → ∞ (see e.g. [10], Theorem 2.1). One finds e.g. the well-known semi-circle
law, ρ(x) =

1
π

√
2 − x2, when V (x) = x2/2. Looking more closely at the limit of the point

measure, one finds for arbitrary polynomial V (Johansson [10]) Gaussian fluctuations of order
O(1/N ), contrasting with the O(1/

√
N ) scaling of fluctuations for the means of N independent
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random variables, typical of the central limit theorem. Assuming that the support of the measure
is connected (this essential “one-cut” condition holding in particular for V convex), Johansson
proves that the covariance of the limiting law depends on V only through the support of the
measure – it is thus universal up to a scaling coefficient –, while the means is equal to ρ, plus an
apparently non-universal correction in O(1/N ).

Then Rogers and Shi [21], disregarding the random matrix background, studied directly for
its sake the system (1.1) in the case where V is harmonic (i.e. quadratic) and β = 2, which we
call Hermite case henceforth (by reference to the corresponding class of equilibrium orthogonal
polynomials), proving in particular the following two facts:

(i) two arbitrary eigenvalues never collide, which implies the non-explosion of (1.1);
(ii) the random point process X N

t :=
1
N

∑N
i=1δλi

t
satisfies in the limit N → ∞ a deterministic

hydrodynamic equation of Mc-Kean–Vlasov type, namely, the asymptotic density

ρt ≡ X t := w-limN→∞ X N
t (1.4)

satisfies the PDE
∂ρt (x)

∂t
=

∂

∂x

((
x − p.v.

∫
dy

x − y
ρt (y)

)
ρt (x)

)
, (1.5)

where p.v.
∫ dy

x−y ρt (y) is a principal value integral.

In the case studied by Rogers and Shi, explicit formulas for finite N are known for the Markov
generator in the form of a determinant, called extended kernel, see e.g. [7], chapter XI, or [15]),
whose asymptotics for N → ∞ may in principle be used to study the macroscopic limit. This is
accomplished by noting that a simple conjugation trick turns the generator of the process into an
N -particle Hamiltonian with a one-body potential only, whose eigenfunctions are deduced from
those of one-particle Hamiltonians (actually, harmonic oscillators). For general V , however, in
marked contrast with respect to the equilibrium case, no explicit formulas are known for finite
N , even for β = 2, since the conjugation trick produces a supplementary two-body potential
making the spectral problem unsolvable. To be more precise, Macedo and Macedo [12] classified
all random matrix dynamics which are unitary equivalent to imaginary-time evolution under a
Calogero–Sutherland type Hamiltonian, providing explicit determinantal solutions in connection
to classical orthogonal polynomials when β = 2; however, restricting to SDE’s with additive
noise, the latter class contains only the Hermite case. Related models of diffusions conditioned
on non-intersecting, solvable in terms of classical orthogonal polynomials, have been considered
in Duits [5], who showed convergence of fluctuation field to inhomogeneous Gaussian free field.
Then for β ̸= 2, the finite N equilibrium measure is not fully understood, even in the harmonic
case, see [25].

This makes the direct study of (1.1) for general V and β all the more interesting. Whereas
the PDE appearing in the hydrodynamical limit is known [11], the law of fluctuations is not
known in general, and it is the purpose of this study, and of the forthcoming article [24], to fill
this gap. S. Li, X.-D. Li and Y.-X. Xie [11], generalizing properties (i) and (ii) above, prove
that the random point process X N

t satisfies in the limit N → ∞ a generalization of the above
Mc-Kean–Vlasov equation, namely,

∂ρt (x)
∂t

=
∂

∂x

((
V ′(x) −

β

2
p.v.

∫
dy

x − y
ρt (y)

)
ρt (x)

)
. (1.6)
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The equilibrium measure ρ, defined as the solution of the integral equation β

2 p.v.
∫ dy

x−y ρ(y) =

V ′(x), cancels the right-hand side of (1.6). Replacing in (1.1) β

2N

∑
j ̸=i

1
λi

t −λ
j
t

with

−
1
N

∑
j ̸=i∇U (λi

t − λ
j
t ) where U is some convex two-body potential satisfying some very

general properties of regularity and growth at infinity, one may show that there appears in the
same limit an equation similar to (1.6),

∂ρt (x)
∂t

=
∂

∂x

((
V ′(x) +

β

2

∫
dy U ′(x − y)ρt (y)

)
ρt (x)

)
. (1.7)

Solutions of this type of equations, common in plasma theory and the study of granular
media [3,8] and in particular, the rate of convergence of these to equilibrium, have been studied
in detail using Otto’s infinite dimensional differential calculus [16] in a series of papers, see
e.g. [4,17,26]. However, as already noted by S. Li, X.-D. Li and Y.-X. Xie, the range of
applicability of these papers, written under the assumption that U be Lipschitz, does not seem to
extend to our case when U (x) = −c log|x |. Since formally the law of fluctuations is obtained by
linearizing the system of Eqs. (1.1) around its macroscopic limit ρ, it is clear that one must find
some way to deal with (1.6).

Rogers’ and Shi’s approach to (1.1) has been successfully generalized to the case of a
harmonic potential with arbitrary β by Israelsson [9] and Bender [2]. The present study owes
very much to these two articles, so let us describe to some extent their contents. There are two
main ideas. Let Y N

t := N (X N
t − X t ) be the rescaled fluctuation process for finite N ; we want

to prove that Y N
t

law
→ Yt when N → ∞ and identify the law of the process (Yt )t≥0. First, Itô’s

formula implies that

d⟨Y N
t , ft ⟩ =

1
2

(1 −
β

2
)⟨X N

t , f ′′

t ⟩dt +
1

√
N

N∑
i=1

f ′

t (λi
t )dW i

t (1.8)

if the test functions ( ft )0≤t≤T , ft : R → R solve the following linear PDE

∂ ft

∂t
(x) = V ′(x) f ′

t (x) −
β

4

∫
f ′
t (x) − f ′

t (y)
x − y

(X N
t (dy) + X t (dy)) (1.9)

(see Proposition 1.3). Eq. (1.9) is a dualized, linearized version of (1.6). Second, Eq. (1.9) may be
integrated in the harmonic case by means of a Stieltjes transform (see Definition 1.2). Namely, the
family of functions {

c
·−z }c∈C,z∈C\R is preserved by (1.9). The solution cN

t
·−zN

t
at time t with terminal

condition cN
T

·−zN
T

=
c

·−z is obtained by solving two coupled ordinary differential equations for cN
t

and zN
t depending on X and the random point measure X N (see [9], Lemma 2). Substituting to

X N its deterministic limit X in the r.-h.s. of (1.9), one gets in a natural way a system of two
coupled ordinary differential equations for (zt )0≤t≤T , (ct )0≤t≤T that describes a solution of the
asymptotic limit of (1.9) in the limit N → ∞, namely,

∂ ft

∂t
(x) = V ′(x) f ′

t (x) −
β

2

∫
f ′
t (x) − f ′

t (y)
x − y

X t (dy). (1.10)

Bender interprets these equations as characteristic equations for a generalized transport
operator (see Appendix A) which is never stated explicitly. Then (at least formally), Itô’s formula
(see [9], p. 29) makes it possible to find explicitly the Markov kernel in the limit N → ∞.
Namely, consider a finite number of points (zk)k in C \ R, and the solutions (zk

t )t≤T of the
corresponding characteristic equations with terminal condition (zk

T )k . Letting ft (x) :=
∑

k
ck

t
x−zk

t
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be the solution of (1.10), and φ ft (Y
N

t ) := ei⟨Y N
t , ft ⟩,

E[φ fT (YT )
⏐⏐Ft ] = E[φ ft (Yt )] exp

(
1
2

∫ T

t

[
i(1 −

β

2
)⟨Xs, f ′′

s ⟩ − ⟨Xs, ( f ′

s )2
⟩

]
ds
)

. (1.11)

Since functions f of the above form are dense in some appropriate Sobolev space, formula (1.11)
allows to conclude that the limit process is Gaussian. Then Bender solves explicitly the charac-
teristic equations, which take on a particularly simple form in the harmonic case, and deduces
first the covariance of the Stieltjes transform of the fluctuation process, Cov(Ut1 (z1), Ut2 (z2)),
Ut (z) := ⟨Yt ,

1
·−z ⟩, and then (taking boundary values and using the Plemelj formula, see

Appendix B), the (distribution-valued) covariance kernel Cov(Yt1 (x1), Yt2 (x2)).
Our approach for the case of a general potential has exactly the same starting point, but dealing

with Eq. (1.9) turns out to be more complicated than in the harmonic case. The reason is that the
family of functions

{ c
·−z

}
c∈C,z∈C\R is no more preserved by (1.9): this is easily seen if V is a

polynomial or extends analytically to a strip around the real axis, since

− V ′(x)∂x

(
1

x − z

)
= (V ′(z)∂z + V ′′(z))

(
1

x − z

)
+

(
V (3)(z)

2!
+

V (4)(z)
3!

(x − z) + . . .

)
(1.12)

features extra unwanted polynomial terms. In practice we need only assume that V is sufficiently
regular, and (letting z =: a + ib) write instead, for a in a neighborhood of the support of the
random point measure

V ′(x) = V ′(a) + V ′′(a)(x − a) + V ′′′(a)
(x − a)2

2
+ (x − a)3Wa(x − a), (1.13)

and find for the first three terms,

− V ′(a)∂x

(
1

x − z

)
= V ′(a)∂a

(
1

x − z

)
, − V ′′(a)(x − a)∂x

(
1

x − z

)
= V ′′(a) (1 + b∂b)

1
x − z

, (1.14)

− V ′′′(a)
(x − a)2

2
∂x

(
1

x − z

)
=

1
2

V ′′′(a) +
1
2

V ′′′(a)(2ib + b2∂a)
1

x − z
, (1.15)

defining a generalized transport operator

− V ′(a)∂a − V ′′(a)(1 + b∂b) −
1
2

V ′′′(a)(2ib + b2∂a). (1.16)

The new piece is the last (Taylor’s remainder) term in (1.13). We must give up at this
point the idea that the time-evolution is a simple characteristic evolution, and prove that the
Taylor remainder produces instead a non-local kernel. Let us highlight the main points while
avoiding technicalities. The main tool here is the use of Stieltjes decompositions of order κ (see
Definition 2.3): for any bmax > 0 and κ = 0, 1, 2, . . . , any sufficient regular, integrable function
f : R → R may be written as an integral over the strip Πbmax := {a ± ib | 0 < |b| < bmax }

f (x) =

∫
+∞

−∞

da
∫ bmax

−bmax

db (−ib)
|b|

κ

(1 + κ)!
fz(x) h(a, b) (1.17)

where fz(x) :=
1

x − z
. (1.18)
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The mapping f ↦→ h is clearly not one-to-one. Explicit Stieltjes decompositions are produced
in [9], Lemma 9; part of the job consists precisely in choosing Stieltjes decompositions with good
properties. Let κ ′

≥ κ ≥ 0. Inserting the time-evolution operator (1.9) into (1.17), we prove that:
– the ( 1

x )-potential and the second-order Taylor expansion of the operator V ′(x)∂x , see (1.14),
(1.15), act together as a transport operator Hκ

: L1(Πbmax ) → L1(Πbmax );
– the Taylor remainder term (see Section 3.7), to which one must add an inessential off-

support contribution (see Section 3.8) and boundary terms (see Section 3.9), may be realized as
a non-local operator |b|

κ ′
−κHκ ′

;κ
nonlocal(t) acting on the coefficient function h,

|b|
κ ′

−κ (Hκ ′
;κ

nonlocal(t))(h)(a, b) := |b|
κ ′

−κ

∫
+∞

−∞

daT

∫ bmax

−bmax

dbT gκ ′
;κ

nonlocal

× (a, b; aT , bT )h(aT , bT ) (1.19)

such that

Hκ+1;κ
nonlocal(t) : L1(Πbmax ) → L1(Πbmax ) (1.20)

are bounded. From (1.20) we get: bHκ+1;κ
nonlocal(h)(a, b) = h̃(a, b) with h̃ ∈ L1(Πbmax , |b|

−1 da db).
In other words, the non-local part of the time evolution is (in some weak sense) regularizing near
the real axis, and acts therefore as a bounded perturbation of Hκ

transport .

1.2. Notations and basic facts

In this paragraph, we simply assume that V is convex. The filtration (Ft )t≥0 is the filtration of
the Brownian (W i

t )t≥0,i=1,...,N .

Definition 1.1.

1. Let

X N
t :=

1
N

N∑
i=1

δλi
t

(1.21)

be the empirical measure process.
2. Call

Y N
t := N (X N

t − X t ) (1.22)

the finite N fluctuation process.

The case developed in [9] and [2] is the harmonic case, V (x) =
1
2 x2 (up to normalization), to

which we shall often refer. Apart from this very particular case, classical examples include the
Landau–Ginzburg potential V (x) =

1
2 x2

+
λ
4 x4, λ ≥ 0, for which the support of the equilibrium

measure is connected, and the density is the product of the (rescaled) semi-circle law by some
explicit polynomial of degree 2 (see e.g. [10], p. 164).

It is proved in (Li–Li–Xie [11], Theorem 1.3) that, provided X N
0

N→∞
→ ρ0, a deterministic

density, the empirical measure process (X N
t ) converges in law to a deterministic measure process

(X t )t≥0 with density ρt solution of the non-linear Fokker–Planck equation,

∂ρt (x)
∂t

=
∂

∂x

((
V ′(x) −

β

2
p.v.

∫
dy

x − y
ρt (y)

)
ρt (x)

)
(1.23)
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with initial condition ρ0. Equivalently, for any test function f ,
d
dt

⟨X t , f ⟩ =
d
dt

∫
ρt (x) f (x) dx = −

∫
V ′(x) f ′(x)X t (dx)

+
β

4

∫∫
f ′(x) − f ′(y)

x − y
X t (dx) X t (dy). (1.24)

The equilibrium measure µN
eq , see (1.3) converges weakly when N → ∞ to the stationary,

deterministic solution X t (dx) = ρeq (x)dx of (1.23), where ρeq is the solution of the following
integral equation, called cut equation, [10]

p.v.

∫
ρeq (x) dx

x − y
= −

2
β

V ′(y). (1.25)

Formula (1.24) is formally obtained as in [21] by taking the limit N → ∞ in the finite N Itô
formula (eq. (3) in [9]),

d⟨X N
t , f ⟩ =

(
β

4

∫∫
f ′(x) − f ′(y)

x − y
X N

t (dx)X N
t (dy) −

∫
V ′(x) f ′(x)X N

t (dx)
)

dt

+
1
2

(1 −
β

2
)

1
N

⟨X N
t , f ′′

⟩ dt +
1

N
√

N

N∑
i=1

f ′(λi
t )dW i

t . (1.26)

Roughly speaking, both terms in the second line of (1.26) are O( 1
N ) (the argument for the

martingale term relies on an L2-bound based on the independence of the (W i )1≤i≤N ).

Definition 1.2 (Stieltjes Transform). Fix z ∈ C \ R.

(i) Let fz(x) :=
1

x−z (x ∈ R).
(ii) Let, for z ∈ C \ R,

M N
t := ⟨X N

t , fz⟩ =

N∑
i=1

1
λi

t − z
(1.27)

and

Mt := ⟨X t , fz⟩ =

∫
ρt (x)
x − z

dx (1.28)

be the Stieltjes transform of X N
t , resp. X t .

Starting from the cut equation (1.25) and applying Plemelj’s formula (see Appendix B), one
finds at equilibrium

M(x + i0) = −
2
β

V ′(x) + iπρeq (x) (1.29)

M(x + i0) − M(x − i0) = 2iπρeq (x), M(x + i0) + M(x − i0) = −
4
β

V ′(x). (1.30)

A PDE for the Stieltjes transform of X t is determined easily from (1.24),
∂ Mt

∂t
=

∂

∂z

(
β

4
(Mt (z))2

+ V ′(z)Mt (z) + Tt (z)
)

, (1.31)

where

Tt (z) :=

∫
V ′(x) − V ′(z)

x − z
X t (dx). (1.32)
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In the harmonic case, T is simply a constant, hence M is the solution of a complex Burgers
equation on C \ R, see e.g. [9], Eq. (6). However, this is no more the case in our general setting,
and the non-local term T in the right-hand side prevents any explicit solution of the equation. Yet
the Stieltjes transform will turn out to be a very convenient technical tool in the computations.

The first idea, coming from [9], is to transfer the drift in the time-evolution of Y N
t to the test

function f . This is done through a straightforward generalization of (Israelsson [9], Lemma 1):

Proposition 1.3 (see Israelsson [9]). Assume the following event holds for some constant R > 0,

ΩR : sup
0≤t≤T

max
i=1,...,N

|λi
| ≤ R; ∀t ≤ T, supp(X t ) ⊂ [−R, R], (1.33)

i.e. that the support of the random point measure X N
t and of the measure X t is ⊂ [−R, R] for

0 ≤ t ≤ T . Let ( ft )0≤t≤T , ft : R → R be such that

∂ ft

∂t
(x) = V ′(x) f ′

t (x) −
β

4

∫
f ′
t (x) − f ′

t (y)
x − y

(X N
t (dy) + X t (dy)) (1.34)

for all |x | ≤ R. Then

d⟨Y N
t , ft ⟩ =

1
2

(1 −
β

2
)⟨X N

t , f ′′

t ⟩dt +
1

√
N

N∑
i=1

f ′

t (λi
t )dW i

t . (1.35)

As emphasized in the above Proposition, (1.34) need only hold on [−R, R], because ⟨X N
t , f ⟩

and ⟨X t , f ⟩ do not depend on the values of f on C \ [−R, R].
The above Proposition is a direct consequence of Itô’s formula applied to the fluctuation

process (just subtract (1.26) from (1.24)),

d⟨Y N
t , f ⟩ =

β

4

∫∫
f ′(x) − f ′(y)

x − y

[
X N

t (dx) + X t (dx)
]

Y N
t (dy) −

∫
V ′(x) f ′(x)Y N

t (dx)

+
1
2

(1 −
β

2
)⟨X N

t , f ′′
⟩ +

1
√

N

N∑
i=1

f ′(λi
t )dW i

t . (1.36)

Then Israelsson solves Eq. (1.34) in the harmonic case by using as test functions the c
·−z ,

c ∈ C, z ∈ C \ R, on which the generator of time-evolution acts in a particularly simple way.
We do not reproduce their results here however, since they do not separate the analysis of the
term due to the harmonic potential from that due to the two-body logarithmic potential. We shall
analyze (1.34) in Section 3 after we have introduced Stieltjes decompositions.

Normalization: the reader willing to compare our results with those of Israelsson [9] or
Bender [2] should take into account the different choices of normalization. Compared to [9],
we fix σ = 1 and let α =

β

2 , γ =
1
2 (1 −

β

2 ). After rescaling the λi ’s by a factor β−1/2, we obtain
for V quadratic [2] with σ =

1
2 .

1.3. Main result and outline of the article

Assumptions on V .
We assume V to be a convex function in C11.
Main examples are convex polynomials, or suitable, smooth perturbations thereof.
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Under our assumptions (see e.g. [10], Theorem 2.1 and Proposition 3.1) the equilibrium
measure ρeq is well-defined and compactly supported, its support [a, b] is connected, and ρeq

is a solution of the cut-equation (1.25).

Assumptions on the initial measure.
Let µN

0 = µ0({λi
0}i ) be the initial measure of the stochastic process {λi

t }t≥0,i=1,...,N , and
X N

0 :=
1
N

∑N
i=1δλi

0
be the initial empirical measure. Since N varies, we find it useful here to

add an extra upper index (λN ,i
0 )i=1,...,N to denote the initial condition of the process for a given

value of N . We assume that:

(i) (large deviation estimate for the initial support) there exist some constants C0, c0, R0 > 0
such that, for every N ≥ 1,

P[ max
i=1,...,N

|λ
N ,i
0 | > R0] ≤ C0e−c0 N . (1.37)

(ii) X N
0

law
→ ρ0(x) dx when N → ∞, where ρ0(x) is a deterministic measure;

(iii) (rate of convergence)(
E[|M N

0 (z) − M0(z)|
2
]
)1/2

= O(
1

Nb
) (1.38)

for z = a + ib ∈ C \ R, where M0(z) :=
∫

dx ρ0(x)
x−z is the Stieltjes transform of ρ0.

Lemma 5.1 proves that the initial large deviation estimate (i) implies a uniform-in-time large
deviation estimate for the support of the random point measure, which is essential for our main
result.

Definition 1.4 (Sobolev Spaces). Let Hn := { f ∈ L2(R) | ∥ f ∥Hn < ∞} (n ≥ 0), where
∥ f ∥Hn :=

(∫
dξ (1 + |ξ |

2)n
|F f (ξ )|2

)1/2
, and H−n := (Hn)′ its dual.

The measure-valued process Y N may be shown to converge in C([0, T ], H−14):

Main theorem (Gaussianity of limit fluctuation process).
Let Y N

t be the finite N fluctuation process (see Definition 1.1). Then:

1. Y N law
→ Y when N → ∞, where Y is a Gaussian process. More precisely, Y N converges

to Y weakly in C([0, T ], H−14);
2. let φh(Y N

t ) := ei⟨Y N
t ,C0h⟩, with C0 (Stieltjes decomposition of order 0 with arbitrary cut-off

bmax > 0) as in Definition 2.3. Then

E[φ fT (YT )
⏐⏐Ft ] = φht (Yt ) exp

(
1
2

∫ T

t

[
i(1 −

β

2
)
⟨
Xs, f ′′

s

⟩
−
⟨
Xs, ( f ′

s )2⟩] ds
)

(1.39)

where ( fs)0≤s≤T is the solution of the asymptotic equation (1.10).

Scheme of proof. As in Israelsson [9], the main task is to prove a uniform in N Sobolev bound,
called “H8-bound”, see (4.10),

E[ sup
0≤s≤T

|⟨Y N
s , φ⟩|] ≤ CT ∥φ∥H8 (1.40)
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implying in particular tightness in some Sobolev space with negative index. Representing φ in
terms of its standard Stieltjes decomposition of order 5, φ = C5h, this is shown (by technical
arguments developed in [9]) to hold provided

E[|N (M N
t (z) − Mt (z))|

2
] ≤ C |b|

−12 (1.41)

(see (4.18)) or equivalently E[|⟨Y N
t , fz⟩|

2] ≤ C |b|
−12. Apply (1.9): start from terminal condition

fT := fzT and integrate in time, ⟨Y N
T , fzT ⟩ =

⟨
Y N

0 , f0 +
1
2 (1 −

β

2 )
∫ T

0 dt
(
⟨X N

t , f ′′
t ⟩ +

1
√

N

∑N
i=1 f ′

t (λi
t )dW i

t

)⟩
. Terms in the r.-h.s. are bounded in Section 4 using a control over

( ft )0≤t≤T , solution of the evolution equation (1.9). The above equation is solved in the following
way: it is proved to be compatible with the Stieltjes decomposition of order κ ,

ft (x) ≡ (Cκht )(x) =

∫
+∞

−∞

da
∫ bmax

−bmax

db (−ib)
|b|

κ

(1 + κ)!
fz(x) ht (a, b) (1.42)

see Definition 2.3, if ∂ht
∂t (a, b) = Ht ht (a, b) for a certain time-dependent operator Ht – a

“Stieltjes transform” of the evolution operator featuring in (1.9) – acting on L1(Πbmax ), which is
written down explicitly and analyzed in great details in Section 3.

The article is organized as follows. We first introduce a family of Stieltjes decompositions Cκ

depending on a regularity index κ = 0, 1, 2, . . . (see Section 2). The main technical section is
Section 3, where we rewrite the r.-h.s. of Eq. (1.34) using Stieltjes decompositions as a sum of
linear operators which we call generators; these are of two types: generalized transport operators,
including V -dependent terms sketched above in (1.16), summing up to Htransport , and bounded
operators summing up to Hnonlocal . We prove our Main Theorem in Section 4. Since (1.39)
is formally just a consequence of Itô’s formula, and most of the technical arguments used in
Israelsson’s paper to justify this formula hardly depend on V , Section 4 really revolves around a
fundamental estimate, Lemma 4.2, which is based on properties of the characteristics, hence is
strongly V -dependent. The analysis of the generators made in details in Section 3 allows one to
prove the latter estimate. To conclude, one uses as input large deviation estimates for the support
of the measure proved in Section 5. Finally, Appendices A and B, where we collected some
well-known facts and formulas about transport equations and Stieltjes transforms.

In an article in preparation [24], we solve (1.39) and obtain the Gaussian kernel of the limiting
fluctuation process Y .

2. Stieltjes decompositions

In (Israelsson [9], Lemma 9) one finds the following decomposition of an L1 function
f : R → R living in the Sobolev space H2 as a sum of functions of the type

fz : x ↦→
1

x − z
, (2.1)

where z = a + ib, b ̸= 0 (see Appendix B),

f (x) =

∫
+∞

−∞

da
∫

+∞

−∞

(−ib) db fz(x)h(a), h(a) = − f ′′(a). (2.2)
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The above “reproducing kernel type” decomposition is clearly not unique. The proof is based
on the fact that, for κ = 0, 1, 2, . . . (see (B.11))∫

+∞

−∞

db (−ib) |b|
κ

· F(fib)(s) = 2
∫

+∞

0
db |b|

κF(Im fib)(s)

= 2π

∫
+∞

−∞

db |b|
1+κ e−b|s|

= 2π · (1 + κ)! |s|−2−κ , (2.3)

where F is the Fourier transform (see Appendix B for normalization), from which we also get
the following family of decompositions, valid for f ∈ L1

∩ H2+κ , κ ∈ N,

f (x) =

∫
+∞

−∞

da
∫

+∞

−∞

(−ib) db
|b|

κ

(1 + κ)!
fz(x)h(a), h(a) = F−1(|s|2+κF( f ))(a), (2.4)

a straightforward generalization of (2.2) obtained by choosing some arbitrary value of κ instead
of κ = 0 in (2.3). Note that h is real since F−1(|s| ·) is given by a real-valued convolution kernel
(see Appendix B).

The reason for introducing this κ-dependent family of decompositions is that the coefficient
of fz(x) now vanishes to order 1 + κ instead of 1 on the real axis, a property inherited from the
assumed supplementary regularity of f . Note that, for κ even, F−1(|s|2+κF(·)) is the differential
operator (−∂2

s )1+κ/2. For κ odd, on the other hand, one gets derivatives of the ( 1
x )-kernel (see

Appendix B).
Since all interesting phenomena appear when |b| is small, and we want to avoid artificial

problems arising when |b| is not bounded, we shall actually use analogous decompositions in
which |b| ranges from 0 to some maximal value bmax > 0. This introduces the following changes.
First, instead of (2.2), we get

f (x) =

∫
+∞

−∞

da
∫ bmax

−bmax

(−ib) db
|b|

κ

(1 + κ)!
fz(x)h(a), h(a) = (F−1(K κ

bmax
) ∗ f )(a), (2.5)

where

K κ
bmax

(s) :=

(
2
∫ bmax

0
db |b|

1+κ
· F(Im (fib))(s)

)−1

(2.6)

(note that the above integral is > 0 by (B.11)). We now study the convolution operator

Kκ
bmax

: f ↦→ F−1(K κ
bmax

) ∗ f, (2.7)

depending on the parity of κ:

(i) For κ even,∫ bmax

0
db |b|

1+κ
· F(Im fib)(s) = π

∫ bmax

0
db |b|

1+κ e−b|s|

= π (−∂2
s )κ/2(k0

bmax
(|s|)), (2.8)

where

k0
bmax

(|s|) =
1
s2

(
1 − (1 + bmax |s|)e−bmax |s|) . (2.9)

When |s| → ∞, k0
bmax

(|s|) ∼ s−2; on the other hand, k0
bmax

(|s|)
s→0
∼ b2

max
∑

k≥0
(−1)k

(k+2)! (k +

1)(bmax |s|)k . Thus (−∂2
s )κ/2(k0

bmax
(|s|))

|s|→∞

∼ (−1)κ/2 s−(2+κ)

(κ+1)! , and (−∂2
s )κ/2(k0

bmax
(|s|))

|s|→0
∼
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(−1)κ/2 b2+κ
max

2+κ
. It is a simple exercise to prove the following: let

K κ
bmax

(s) := (−1)κ/2 ((κ + 1)! s2+κ
+ (2 + κ)b−(2+κ)

max

)−1
K κ

bmax
(s) − 1. (2.10)

Then (K κ
bmax

)( j)(s), j = 0, 1, 2 is O( b j
max

1+b2
max s2 ) uniformly in s and bmax . Hence the

convolution operator

Kκ
bmax

: f ↦→ F−1(K κ
bmax

) ∗ f (2.11)

is a bounded operator from L1(R) ∩ L∞(R) to L1(R) ∩ L∞(R). Indeed,

|||Kκ
bmax

|||L1(R)→L1(R), |||Kκ
bmax

|||L∞(R)→L∞(R) ≤ ∥F−1(K κ
bmax

)∥L1(R)

and

|F−1(K κ
bmax

)(x)| ≤ min
(

∥K κ
bmax

∥L1 ,
1
x2 ∥(K κ

bmax
)′′∥L1

)
= O

(∫
ds

1 + b2
max s2

)
· min(1, (

bmax

x
)2)

=
1

bmax
· min(1, (

bmax

x
)2), (2.12)

from which |||Kκ
bmax

|||L1(R)→L1(R), |||Kκ
bmax

|||L∞(R)→L∞(R) = O(1). We may therefore write

Kκ
bmax

= (1 + Kκ
bmax

)
(
−(κ + 1)! ∂2+κ

x + (−1)κ/2(2 + κ)b−(2+κ)
max

)
. (2.13)

(ii) For κ odd,∫ bmax

0
db |b|

1+κ
· F(Im fib)(s) = π

∫
+∞

0
db |b|

1+κ e−b|s|

= π (−∂2
s )(κ+1)/2(k1

bmax
(|s|)), (2.14)

where

k1
bmax

(|s|) =
1
|s|

(1 − e−bmax |s|). (2.15)

When |s| → ∞, k1
bmax (|s|) ∼ |s|−1; on the other hand, k1

bmax
(|s|)

s→0
∼ bmax

∑
k≥0

(−1)k

(k+1)! (bmax

|s|)k . Thus (−∂2
s )(κ+1)/2(k1

bmax
(|s|))

|s|→∞

∼ (−1)(κ+1)/2 |s|−1s−(1+κ)

(κ+1)! , and (−∂2
s )(κ+1)/2(k1

bmax

(|s|))
|s|→0
∼ (−1)(κ+1)/2 b2+κ

max
2+κ

. Therefore the previous analysis, from (2.10) to the line before
(2.13), remains valid, with (−1)κ/2, resp. s2+κ , replaced with (−1)(κ+1)/2, resp. |s|s1+κ , and
one obtains using (B.20):

Kκ
bmax

= (1 + Kκ
bmax

)
(
−(κ + 1)! iH∂2+κ

x + (−1)(κ+1)/2(2 + κ)b−(2+κ)
max

)
(2.16)

where H is the Hilbert transform, defined by the principal value integral

H f (x) :=
1
π

p.v.

∫
+∞

−∞

1
x − y

f (y) dy (2.17)

and Kκ
bmax

, defined by analogy with (i) as the convolution with respect to the inverse Fourier
transform of

K κ
bmax

(s) = (−1)(κ+1)/2 ((κ + 1)! |s|2+κ
+ (2 + κ)b−(2+κ)

max

)−1
K κ

bmax
(s) − 1, (2.18)

has operator norm O(1) on L1(R) and on L∞(R).



4116 J. Unterberger / Stochastic Processes and their Applications 128 (2018) 4104–4153

The above formulas are particular instances of Stieltjes decompositions, where h = h(a, b) is
allowed to be complex-valued and to depend on b.

Definition 2.1 (Upper Half-plane).

1. Let Π +
:= {z ∈ C | Im (z) > 0}.

2. For bmax > 0, let Π +

bmax
:= {z ∈ C | 0 < Im (z) < bmax }.

3. Let Π −
:= −Π +, Π −

bmax
:= −Π +

bmax
and Π := Π +

⊎ Π −, Πbmax := Π +

bmax
⊎ Π −

bmax
.

Definition 2.2. Let, for p ∈ [1, +∞] and bmax > 0,

L p(Πbmax ) := {h : Πbmax → C | h(z̄) = h(z) (z ∈ Π +

bmax
) and ∥h∥L p(Πbmax ) < ∞}, (2.19)

where

∥h∥L p(Πbmax ) :=

(∫
+∞

−∞

da
∫ bmax

−bmax

db |h(a, b)|p
)1/p

(p < ∞),

∥h∥L∞(Πbmax ) := sup
z∈Πbmax

|h(z)|.
(2.20)

We will be mostly interested in the extreme cases p = 1, p = ∞. Letting formally
bmax → +∞ one obtains in an obvious way the space L p(Π ) with its norm ∥ ∥L p(Π ). However,
we shall actually fix some finite value of bmax , say (for convenience only), 0 ≤ bmax ≤

1
2 ,

implying: ln(1/|b|) ≥ ln 2 > 0.

Definition 2.3 (Stieltjes Decomposition). Let κ = 0, 1, 2, . . .

1. Let h ∈ L1(Πbmax ). We say that f : R → R has Stieltjes decomposition h of order κ and
cut-off bmax on [−R, R] if, for all |x | ≤ R,

f (x) = (Cκh)(x) :=

∫
+∞

−∞

da
∫ bmax

−bmax

(−ib) db
|b|

κ

(1 + κ)!
fz(x)h(a, b). (2.21)

2. The function h : (a, b) ↦→ Kκ
bmax

( f )(a) is called the standard Stieltjes decomposition of
order κ and cut-off bmax of f .

Thanks to the symmetry condition, h(z̄) = h(z), (2.21) may be rewritten in the form

(Cκh)(x) = 2
∫

+∞

−∞

da
∫ bmax

0
db

|b|
1+κ

(1 + κ)!
Im [fz(x)h(a, b)] , (2.22)

from which it is apparent that f is indeed real-valued.
As already emphasized before, Stieltjes decompositions are not unique. In fact, it turns out to

be useful to introduce a larger family of decompositions depending on a further scale parameter,
ρ > 0. We shall give less details since we apply these to the functions Im fzT with Im zT > 0
only, and concentrate on the case κ = 0 for computations. For 0 < ρ ≤ bmax , we write

K κ
bmax ,ρ(s) :=

(∫ bmax

0
db b1+κ e−b/ρ

· F(Im (fib))(s)
)−1

(2.23)

(compare with (2.6)) and let as before

K0
bmax ,ρ : f ↦→ F−1(K κ

bmax ,ρ) ∗ f, (2.24)
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so that, for bT ̸= 0,

Im [fibT ](x) =

∫
+∞

−∞

da
∫ bmax

0
db bκ+1 e−b/ρ Im [fz(x)]K0

bmax ,ρ(Im fibT )(a). (2.25)

Then (compare with (2.8)) (K 0
bmax ,ρ)−1

= πk0
bmax

( 1
ρ

+ |s|). Thus (emphasizing only the

differences with K 0
bmax

= limρ→+∞K 0
bmax ,ρ) k0

bmax ,ρ(|s|)
s→0
∼ Cρ2 instead of b2

max , with C :=

1 − (1 + bmax/ρ)e−bmax /ρ bounded away from 0. Hence

K 0
bmax ,ρ(s) := (|s| + ρ−1)−2 K 0

bmax ,ρ − 1

= −
(1 + bmax (|s| + ρ−1))e−bmax (|s|+ρ−1)

1 − (1 + bmax (|s| + ρ−1))e−bmax (|s|+ρ−1)
(2.26)

is a O(e−
1
2 bmax (|s|+ρ−1)), defining a bounded operator on L1

∩ L∞ with operator norm

O
(∫

ds e−
1
2 bmax (|s|+ρ−1)

)
·

∫
dx min(1,

bmax

x
)2

= O(e−
1
2 bmax /ρ) (2.27)

(compare with (2.12)), so that K0
bmax ,ρ = F−1((|s| + ρ−1)2)∗, times (1+plus bounded pertur-

bation). More generally, it may be proved that (for some constant cκ ) Kκ
bmax ,ρ = cκF−1((|s| +

ρ−1)2+κ )∗, times (1+ bounded perturbation). On the other hand, letting f = Im [fzT ], with
zT = aT + ibT , bT > 0, we find using (B.4), (B.11)

F−1((|s| + ρ−1)2+κFIm [fzT ])(a) =

(
ρ−1

−
∂

∂bT

)2+κ ( bT

(a − aT )2 + |bT |
2

)
. (2.28)

Hence, letting

h(a, b) := e−b/ρKκ
bmax ,ρ(Im fzT )(a), (2.29)

we get:

∫
+∞

−∞

da
∫ bmax

−bmax

db h(a, b) = O(1)ρ
{

1
ρ2+κ

+
1

|bT |
2+κ

}
= O

(
1

ρ1+κ
(1 + O((

ρ

bT
)2+κ ))

)
(2.30)

which is minimal, of order

∥h∥L1(Πbmax ) ≈ b−1−κ
T , (2.31)

when ρ ≈ bT . Choosing ρ = bT /C for some large enough absolute constant C > 0, we further
obtain – specifically in the case κ = 0 – a positive function h, which can hence be interpreted as
a density. Also, one easily checks that, still with ρ ≈ bT ,

∥(a, b) ↦→ ln(1/|b|)h(a, b)∥L1(Πbmax ) ≈ ln(1/bT )b−1−κ
T (2.32)

if 0 < bT ≤
1
2 . On the other hand,

∥h∥L∞(Πbmax ) ≈ b−3−κ
T . (2.33)
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In Section 4, we consider the time-evolution of CκhT , where hT is essentially as in (2.34),

hT (a, b) := e−b/ρKκ
bmax ,ρ(χR Im fzT )(a), (2.34)

for some cut-off function (see Definition 3.3) essentially supported on the ball B(0, R) for some
fixed radius R > 0. An easy adaptation of the above arguments, and a use of (B.23) when κ

is odd in order to deal with the Hilbert transform, show that the above estimates (2.31), (2.32),
(2.33) remain correct, while now hT is O(1), independently of bT , far from the support, e.g. on(

(B(0, 2R))c
× [−bmax , bmax ]

)
∪

(
R × ([−bmax , bmax ] \ [− 1

2 bmax ,
1
2 bmax ])

)
.

3. Generators

The general purpose of the section is the following: for κ = 0, 1, 2, . . . fixed, we want to
write down an explicit time-dependent operator H(t) such that the right-hand side of (1.34) for
ft decomposed as

ft (x) =

∫
+∞

−∞

da
∫ bmax

−bmax

db (−ib)
|b|

κ

(1 + κ)!
fz(x) ht (a, b) (3.1)

(see Definition 2.3) is equal to∫
+∞

−∞

da
∫ bmax

−bmax

db (−ib)
|b|

κ

(1 + κ)!
fz(x)H(ht )(t; a, b) (3.2)

where H(ht )(t; a, b) ≡ (H(t)(ht ))(a, b).
Given the characteristic evolution in the z-coordinate found by Israelsson (recalled in Section

3.1) – which one may view as a deterministic Markov process – it is natural to think of the
function h as a density h(a, b)da db, and then to interpret H(t) as a Fokker–Planck operator,
whence (by duality) L(t) := (H(t))† as the generator of a random process (see Appendix A
for more). However, contrary to the harmonic case studied by Israelsson and Bender, in general
we obtain a truly random process, furthermore, a signed process, with h a signed function. For
lack of references on these notions, we shall refrain from developing this signed Markov process
interpretation, and solve instead the evolution equation

dht

dt
(a, b) = H(ht )(t; a, b) (3.3)

using semi-group theory.
We have been voluntarily been vague up to this point about the double dependency of H on the

integer index κ and the cut-off scale bmax . Why could not one just set κ = 0 and let bmax → +∞,
as does Israelsson? The reason is, we cannot handle properly the potential-dependent part of the
generator (save when V is order ≤ 2, which is the case considered in [9]) without introducing
various cut-offs and perturbative arguments – unless maybe if V is analytic (or even better,
polynomial), where another strategy is perhaps possible. Since we do not want to make this
assumption, we shall:

(1) (support issues) in practice replace V (x) by its Taylor expansion to order 2 around all
points in the support of the measures (X N

t )0≤t≤T and (X t )0≤t≤T and treat the Taylor
remainder as a perturbation. Since V is not bounded at infinity, it is important not
to Taylor expand around any point on the real line, but only on a compact interval;
choosing as compact interval the support is natural because the singular kernel term in
(1.34) vanishes outside. For brevity, we shall henceforth call support of the measure the
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random set
(
∪0≤t≤T supp(X N

t )
)

∪
(
∪0≤t≤T supp(X t )

)
and denote by R > 0 any number

such that the support of the measure is ⊂ [−R, R]. We rely on the bounds developed in
Section 5 to argue that the probability of the support not to be included in [−R, R] for some
large enough R is exponentially small in N when R is large enough. Then we naturally
decompose h ∈ L1(Πbmax ) as hint

+ hext where supp(hint ) ⊂ [−3R, 3R] × [−bmax , bmax ]
and supp(hext ) ⊂ (R \ [−2R, 2R]) × [−bmax , bmax ], for instance by writing h(a, b) =

χ̄R(a)h(a, b) + (1 − χ̄R(a))h(a, b), where χ̄R : R → [0, 1] is some smooth function such
that supp(χ̄R) ⊂ [−3R, 3R] and supp(1 − χ̄R) ⊂ R \ [−2R, 2R]. The action of H on hext

is very simple and can be added to the action of the remainder term Hnonlocal discussed
in (2).

(2) (varying κ) in order to be able to treat the part (thereafter denoted by Hnonlocal) of
the generator due to the remainder term as a perturbation, it is important to see that
Hnonlocalh(a, b) = O(|b|) when b → 0. This being the case, we may also consider
Hnonlocal as an operator intertwining a Stieltjes decomposition of order κ with a Stieltjes
decomposition of order κ + 1, leading to a modification of the scheme developed around
(3.1): namely, we want the right-hand side of (1.34) for ft decomposed as (3.1) for some
integer index κ to be equal to∫

+∞

−∞

da
∫ bmax

−bmax

(−ib) db
|b|

1+κ

(2 + κ)!
fz(x)Hκ+1,κ (ht )(t; a, b). (3.4)

Thus, instead of a single operator H0, we deal simultaneously with a family of operators
Hκ and a family of intertwining operators Hκ+1,κ

nonlocal , for κ = 0, 1, 2, . . . . These
intertwinings result in an expansion of the Green kernel explicited in (4.22). This strategy
yields optimal bounds in Section 4.

Let us collect by anticipation all the terms which will come out of the computations in Section 3.1
through Section 3.9. As a general rule, if H : L1([−3R, 3R] × [−bmax , bmax ]) ⊕ L1((R \

[−2R, 2R]) × [−bmax , bmax ]) → L1([−3R, 3R] × [−bmax , bmax ]) ⊕ L1((R \ [−2R, 2R]) ×

[−bmax , bmax ]) is an (unbounded) operator, we denote by

Hint
:= H

⏐⏐
L1([−3R,3R]×[−bmax ,bmax ])⊕0, Hext

:= H
⏐⏐
0⊕L1([−3R,3R]×[−bmax ,bmax ]) (3.5)

its restrictions to either factor, and H(int,int),H(int,ext),H(ext,int),H(ext,ext) its four block-
components, so that

H =

(
Hint

| Hext
)

=

(
H(int,int) H(ext,int)

H(int,ext) H(ext,ext)

)
. (3.6)

By explicit computation we show that

Hκ
=

(
Hκ

transport 0
0 0

)
+ Hκ

nonlocal; (3.7)

Hκ
transport := Hκ

0 +

2∑
k=0

Hκ,(k)
pot (3.8)

is a sum of 4 transport operators – with Hκ
0 coming from the

( 1
x

)
-kernel part (see Section 3.1),

and Hκ,(k)
pot , k = 0, 1, 2 (see Sections 3.3, 3.4, 3.5) from the Taylor expansion of the potential –,
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which are unbounded operators;

Hκ
nonlocal =

(
Hκ,(3)

pot + Hκ
bdry | Hκ,ext

pot

)
, (3.9)

is a sum of bounded operators. The operator Hκ,(3)
pot – coming from the third order Taylor

remainder for the potential – is introduced in Section 3.7. The operator Hbdry ≡ Hκ
h-bdry +

Hκ
v-bdry is itself a sum of boundary terms (see Section 3.9): contributions coming from

horizontal boundary [−3R, 3R] × {±bmax }, collected in Hκ
h-bdry, and contributions coming

from vertical boundary {±3R} × [−bmax , bmax ], collected in Hκ
v-bdry. The eight operators

Hκ
0 ,Hκ,(0)

pot ,Hκ,(1)
pot ,Hκ,(2)

pot ,Hκ,(3)
pot ,Hκ

h-bdry,Hκ
v-bdry,H

κ,ext
pot are defined resp. in (3.26), (3.41), (3.45),

(3.48), (3.64), (3.107), (3.111), (3.91).
We also write down expressions for Hκ+1,κ

nonlocal , namely, Hκ+1,κ,(3)
pot ,Hκ+1,κ

h-bdry ,Hκ+1,κ
v-bdry ,Hκ+1,κ,ext

pot ,
to be found resp. in (3.65), (3.106), (3.110), (3.92).

The kernels of these operators are denoted by the letter g, for instance,

Hκ
0 (h)(a, b) =

∫
+∞

−∞

daT

∫ bmax

−bmax

dbT gκ
0 (a, b; aT , bT )h(aT , bT ) (3.10)

and similarly for the other operators.
Let us simply state as general remark that the dependence on R of the bounds of the present

section will never be made explicit, since for the proof of our Main Theorem (see Section 4), we
shall simply fix R = R(T ), where R(T ) is a fixed radius depending only on the potential and on
the time horizon T , defined in Section 5.

3.1. The
( 1

x

)
-kernel part

(1.34) is easily solved by the characteristic method in the case V ≡ 0 for test functions f of
the form f (x) =

c
x−z . Up to conjugation we may assume that b := Im z > 0. This is done in

(Israelsson [9], Lemmas 2–4) – we need only subtract the trivial contribution of the harmonic
potential –:

Proposition 3.1 (See Israelsson [9]). Assume V ≡ 0. Then Eq. (1.34) with terminal condition
fT (x) =

c
x−z (Im z > 0) is solved as

f T
t (x) =

Ct

x − Z t
, (3.11)

where (Ct )0≤t≤T , (Z t )0≤t≤T solve the following ode’s,

d Z t

dt
= −

β

4
(M N

t (Z t ) + Mt (Z t )),
dCt

dt
= −

β

4
((M N

t )′(Z t ) + M ′

t (Z t ))Ct (3.12)

with terminal conditions ZT = z, CT = c. In particular,

Im
d Z t

dt
= −

β

4
⟨X N

t + X t , Im (fzT )⟩ ≤ 0. (3.13)

Obviously, the solution of Eq. (1.34) with terminal condition fT (x) =
c

x−z̄ is now f T
t (x) =

C̄t
x−Z̄t

.
The last inequality (3.13), a simple consequence of (B.5), implies that Z t moves away from

the real axis as t decreases, hence away from singularities. From the above and from general
properties of the Stieltjes transform of ρt (see Appendix B), one can deduce bounds for the
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displacement, as in [9]. First |M N
t (z)|, |Mt (z)| ≤ 1/bt , hence (letting Z t =: At + iBt , Bt > 0),

for some large enough constant C > 0,

BT ≤ Bt ≤

√
|BT |

2
+ C(T − t). (3.14)

Similarly, |At − AT | = O
(

T −t
BT

)
. Finally, β

4

(
|(M N

t )′(Z t )| + |(Mt )′(Z t )|
)

≤
|d Bt /dt |

Bt
=⏐⏐ d

dt (ln(Bt ))
⏐⏐, whence Ct ≤

Bt
BT

≤

√
|BT |

2
+ C(T − t) / BT . Summarizing: for a given

final condition z, |
d At
dt |, | d Bt

dt | ≤
β

2
1
Bt

≤
β

2
1
b is bounded along the characteristics, but may

become arbitrarily large when b → 0; |Bt − BT | ≤
√

C(T − t) is bounded independently
of b, while |At − AT | is not. On the other hand, starting from ZT far enough from the
support of (X N

t )0≤t≤T , (XT )0≤t≤T , e.g. |Re ZT | ≥ C R, where C > 1 and (by assumption)
supp(X N

t ), supp(X t ) ⊂ B(0, R), then (by (B.15)) |At | > C ′ R (1 < C ′ < C) for all t ∈ [0, T ],
whence |Ḃt |, | Ȧt | ≤

β

R < ∞, provided T < R2

β
(C − C ′).

Definition 3.2. Let L0 = L0(t) be the time-dependent operator defined by

(L0(t)φ)(a, b) = −
β

4

(
Re

[
(M N

t + Mt )(z)
]
∂aφ(a, b) + Im

[
(M N

t + Mt )(z)
]
∂bφ(a, b)

+ ((M N
t )′ + M ′

t )(z)φ(a, b)
)
. (3.15)

The motivation for this definition is the following. Let f T
t (x) =

Ct
x−Zt

as in Proposition 3.1.

Then ∂ f T
t

∂t

⏐⏐
t=T = (L0 fT )(T ; z) := (L0(T ) fT )(z). Take, more generally, a terminal condition for

(1.34) of the form

fT (x) =

∫
daT

∫
dbT

hT (aT , bT )
x − zT

. (3.16)

Then

∂ f T
t

∂t

⏐⏐
t=T =

∫
daT dbT (L0(

1
x − ·

)(zT )hT )(aT , bT )

=

∫
daT dbT fzT (x)(L†

0hT )(T, zT ), (3.17)

where (L†
0hT )(T ; zT ) = ((L0(T ))†hT )(zT ) is obtained from the adjoint of L0(T ). Thus L0, resp.

L†
0 may be considered as the generator of a – here deterministic – generalized Markov process

Z · = A· + iB·, resp. the associated Fokker–Planck generator, where generalized refers to the
supplementary order 0 term in L0(t) (second line of (3.15)), which has on top of that the nasty
property of not being even real-valued.

We now need some very general development, which we apply to L0 in this paragraph. Let
w : Π → R∗

+
be some weight function. The relation d

dt (wh) = w(Lw
0 (t))†h defines an operator

(Lw
0 (t))†,

(Lw
0 )†(t; a, b) := (wL0(t)w−1)†(a, b)

= −
β

4
w(a, b)−1 (

−∂a Re
[
(M N

t + Mt )(z)
]
− ∂b Im

[
(M N

t + Mt )(z)
]

+ ((M N
t )′ + M ′

t )(z)
)
w(a, b) (3.18)
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which is the adjoint of L0 with respect to the measure w(a, b)da db on Π . In other words, we
see that the solution (ht )0≤t≤T of the equation

∂ht

∂t
= (Lw

0 )†(t)ht (3.19)

with terminal condition hT is the density of Z · with respect to the measure w(a, b)da db.
Let us consider specifically the cases

w(a, b) := b |b|
κ , κ = 0, 1, 2, . . . (3.20)

for which we write

Lw
0 ≡ Lκ

0 . (3.21)

These cases allow a direct connection to Stieltjes decompositions of order κ with bmax = +∞,
namely: if

fT (x) = CκhT (x) =

∫
da
∫

+∞

0
db (−ib)

|b|
κ

(1 + κ)!
hT (a, b) fz(x) (3.22)

then

ft (x) := Cκht (x), (3.23)

where (ht )0≤t≤T is the solution of

∂ht

∂t
= (Lκ

0 )†(t)ht . (3.24)

The generator

Lκ
0 =

(
(b |b|

κ )−1L†
0b |b|

κ
)†

= |b|
1+κL0(|b|

1+κ )−1 (3.25)

is obtained from (3.15) by replacing the multiplicative term β

4 ((M N
t )′ + M ′

t )(z)φ(a, b) with
β

4

(
((M N

t )′ + M ′
t )(z) −

1+κ
b Im [(M N

t + Mt )(z)]
)
φ(t; a, b), from which

Hκ
0 (h)(t; a, b) := (Lκ

0 )†(t)(ht )(a, b)

=
β

4

(
∂a
[
Re

(
(M N

t + Mt )(z)
)

h(t; a, b)
]

+ ∂b
[
Im

(
(M N

t + Mt )(z)
)

h(t; a, b)
]

+

[
1 + κ

b
Im

(
(M N

t + Mt )(z)
)
− ((M N

t )′ + M ′

t )(z)
]

h(t; a, b)
)

. (3.26)

Consider the extended characteristics (zt , ct ) := (at + ibt , cκ
t ) of the operator Hκ

0 as in
Appendix A: they are defined as the solution of

dat

dt
=

β

4
Re (M N

t + Mt )(at + ibt ),
dbt

dt
=

β

4
Im (M N

t + Mt )(at + ibt ) (3.27)

dcκ
t

dt
=

β

4

(
1 + κ

bt
Im

[
(M N

t + Mt )(at + ibt )
]
+
(
(M̄ N

t )′ + M̄ ′

t

)
(at + ibt )

)
cκ

t . (3.28)

Here we used the fact that ∂a Re (M N
t + Mt )(z) = ∂b Im (M N

t + Mt )(z) = Re ((M N
t )′ + M ′

t )(z)
since z ↦→ (M N

t + Mt )(z) is holomorphic. Mind the sign changes with respect to Proposition 3.1:
characteristics of the dual operator Hκ

0 have reversed velocities with respect to those of L, with
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characteristic curves (Z t )0≤t≤T running backwards in time (see Appendix A for more details).
By convention, characteristics are killed upon touching the real axis.

Now it follows from (B.14) that Re (−τ (t, zt )) ≡ Re
(
−(cκ

t )−1 dcκ
t

dt

)
≤ 0 for κ ≥ 0, whence

(see Appendix A) Hκ
0 is a generator of a semi-group of L∞-contractions. Because the first line of

(3.26) is in divergence form, and the second line has positive real part, Hκ
0 is also the generator

of a semi-group of L1-contractions.
Let us now see what happens for R and bmax finite. It is clear that the cut-off does not change

the characteristic equations for (at + ibt , ct ). On the other hand, we get two supplementary
boundary terms. This can be proved as follows. Assume

fT (x) = CκhT (x) =

∫ 3R

−3R
daT

∫ bmax

−bmax

dbT (−ibT )
|b|

κ

(1 + κ)!
hT (aT , bT ) fzT (x). (3.29)

Then (coming back directly to the characteristics equations of Proposition 3.1)

−
β

4

∫∫
f ′

T (x) − f ′

T (y)
x − y

(X N
t (dy) + X t (dy))

= −
β

4

∫
+3R

−3R
daT

∫ bmax

−bmax

(−ibT ) dbT
|bT |

κ

(1 + κ)!

{
Im [(M N

T + MT )(zT )] (∂bT fzT )(x)+

Re [(M N
T + MT )(zT )] (∂aT fzT )(x)

}
hT (aT , bT ) + · · ·

=
β

4

∫
+3R

−3R
daT

∫ bmax

−bmax

(−ibT ) dbT
|bT |

κ

(1 + κ)!

{
∂bT

(
Im [(M N

T + MT )(zT )] hT (aT , bT )
)
+

∂aT

(
Re [(M N

T + MT )(zT )] hT (aT , bT )
)}

fzT (x) + · · ·

+ bdry (3.30)

where “· · · ” denote the contribution of the c-characteristics (which we can ignore), so (by
integration by parts) we get a boundary term bdry ≡ h-bdry0+ v-bdry0 on the support of the
measure, with

h-bdry0 = −
β

4
b1+κ

max

(1 + κ)!

∫
+∞

−∞

daT · χR(x) ·
(
Im [(M N

T + MT )(aT + ibmax )] ·

· faT +ibmax (x)h(aT , bmax ) − Im [(M N
T + MT )(aT − ibmax )]

× faT −ibmax (x)h(aT , −bmax )
)

(3.31)

and

v-bdry0 = −
β

4

∫ bmax

−bmax

(−ibT ) dbT
|bT |

κ

(1 + κ)!
· χR(x) ·

{
Re [(M N

T + MT )(3R + ibT )] ·

· f3R+ibT (x) h(3R, bT ) − Re [(M N
T + MT )(−3R + ibT )]

× f−3R+ibT (x) h(−3R, bT )
}
. (3.32)

3.2. The potential-dependent part: general introduction

Consider now the potential-dependent part in (1.34). Without further mention we fix for the
discussion R ≥ 1 and some arbitrary bmax ∈ (0, 1

2 ]. Generally speaking we want to write the
action of the operator V ′(x) ∂

∂x on a function f ≡ fT with Stieltjes decomposition of order κ
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on [−R, R]

f (x) =

∫
+∞

−∞

daT

∫ bmax

−bmax

dbT (−ibT )
|bT |

κ

(1 + κ)!
fzT (x)h(aT , bT ), |x | ≤ R (3.33)

(see Definition 2.3) . In principle (see below though) it may be done in the following way.

Definition 3.3 (Cut-offs). Let χR : R → R be a smooth cut-off function such that:

(i) χR ≡ 1 on [−R, R];
(ii) χR

⏐⏐
B(0, 3

2 R)c ≡ 0

and χ̄R be the function x ↦→ χR( x
2 ).

Definition 3.4 (g-kernel). Let, for κ, κ ′
= 0, 1, 2, . . .

gκ ′
;κ

pot (a, b; aT , bT ) := 1|b|<bmax

(−ibT )|bT |
κ

(1 + κ)!
Kκ ′

bmax

(
x ↦→ χR(x)V ′(x) f ′

zT
(x)
)

(a) (3.34)

with Kκ ′

bmax
as in (2.7).

In practice we are only interested in couples of indices (κ, κ ′
= κ) and (κ, κ ′

= κ + 1), and
let gκ

pot ≡ gκ;κ
pot . Let f be a function as in (3.33). Then, using the standard order κ ′ Stieltjes

decomposition with cut-off bmax of V ′(x) ∂
∂x (fzT (x)), we get

V ′(x)
∂

∂x
f (x) =

∫
+∞

−∞

da
∫ bmax

−bmax

db (−ib)
|b|

κ ′

(1 + κ ′)!
fz(x)∫

+∞

−∞

daT

∫ bmax

−bmax

dbT gκ ′
;κ

pot (a, b; aT , bT )h(aT , bT ), (3.35)

thus defining (unbounded) operators Hκ
pot ,H

κ+1;κ
pot : L1(Πbmax , daT dbT ) → L1(Πbmax , da db),

Hκ
pot (h)(a, b) =

∫
+∞

−∞

daT

∫ bmax

−bmax

dbT gκ
pot (a, b; aT , bT )h(aT , bT )

Hκ+1;κ
pot (h)(a, b) =

∫
+∞

−∞

daT

∫ bmax

−bmax

dbT gκ+1;κ
pot (a, b; aT , bT )h(aT , bT ).

However, these Stieltjes representations of the vector field V ′(x) ∂
∂x will be used directly only

when h = 0⊕hext has support in R\[−2R, 2R], producing the Hext -term. When h = hint
⊕0 has

support ⊂ [−3R, 3R], we separate first the Taylor expansion of order 2 of V ′(x) around aT , as
explained in (1.13) or (3.37), which is directly analyzed without further Stieltjes decomposition.

Let us discuss in details how we proceed when h = hint . As we have just mentioned, the first
step is to use a second-order Taylor-expansion of V ′ around aT for |aT | ≤ 3R and x ∈ supp(χR),
i.e. |x | ≤

3
2 R,

V ′(x) = V ′(aT ) + V ′′(aT )(x − aT ) + V ′′′(aT )
(x − aT )2

2
+ (x − aT )3WaT (x − aT ), (3.36)

where WaT is C7. Thus

V ′(x)
∂

∂x
= V ′(aT )∂x + V ′′(aT )(x − aT )∂x + V ′′′(aT )

(x − aT )2

2
∂x

+ (x − aT )3WaT (x − aT )∂x (3.37)
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makes four different contributions to the generator, Hκ
pot , κ = 0, 1, 2, 3, resp. called constant,

linear, quadratic and Taylor remainder term, plus some boundary contributions. Computations
show the following: Hκ,(k)

pot , k = 0, 1, 2, are directly of the adjoint form

h ↦→

(
(aT , bT ) ↦→ ∂aT (vhor (aT , bT )h(aT , bT )) + ∂bT (vvert (aT , bT )h(aT , bT ))

− τ (aT , bT )h(aT , bT )
)

(3.38)

with Re τ (·) ≤ 0, implying that they generate L1-contractions (see Appendix A, and recall that
we go backwards in time). As a nice feature of this problem, Hκ,(k)

pot , k = 0, 1, 2 also generate L∞-
contractions. Replacing the vector field χR(x)V ′(x)∂x in (3.34) by χR(x)(x −aT )3WaT (x −aT )∂x

produces a kernel g(3)
pot (a, b; aT , bT ) discussed in Section 3.8. As for the first three terms, they are

directly shown to be equivalent to the action of a transport operator (see Sections 3.3, 3.4, 3.5).
We sum up in Section 3.6 the contributions of the transport operators introduced in Sections 3.1,
3.3, 3.4 and 3.5. The operators Hκ,(3)

pot and Hκ,ext
pot are studied in Sections 3.7 and 3.8. Finally, the

contribution of the boundary terms is analyzed in Section 3.9.
The terms in Hnonlocal , on the other hand, do not generate neither L∞- nor L1-contractions.

Thanks to the horizontal and vertical cut-offs however, they are bounded, hence generate by
integration some exponentially increasing time factor eCR t , with CR depending on R.

3.3. Constant term

Inserting the constant operator V ′(aT ) ∂
∂x inside the Stieltjes decomposition

fT (x) =

∫
+3R

−3R
daT

∫ bmax

−bmax

(−ibT ) dbT |bT |
κ fzT (x)h(aT , bT ),

we get∫ 3R

−3R
daT

∫ bmax

−bmax

(−ibT ) dbT |bT |
κ V ′(aT ) f ′

zT
(x)h(aT , bT )

= −

∫ 3R

−3R
daT

∫ bmax

−bmax

(−ibT ) dbT |bT |
κ V ′(aT )

∂

∂aT
(fzT (x))h(aT , bT )

=

∫ 3R

−3R
daT

∫ bmax

−bmax

(−ibT ) dbT |bT |
κ fzT (x)

∂

∂aT

(
V ′(aT )h(aT , bT )

)
+ bdry (3.39)

where

bdry ≡ v-bdry(0)
pot = −

∫ bmax

−bmax

(−ibT ) dbT |bT |
κ

· χR(x) ·

·
(
V ′(3R) f3R+ibT (x) h(3R, bT ) − V ′(−3R) f−3R+ibT (x) h(−3R, bT )

)
(3.40)

is a vertical boundary term coming from integration by parts, which we shall not discuss till
Section 3.9.

This defines a new operator H(0)
pot in divergence form,

Hκ,(0)
pot (h)(aT , bT ) =

∂

∂aT

(
V ′(aT )h(aT , bT )

)
, (3.41)

with corresponding extended characteristics
dat

dt
= V ′(at ),

dbt

dt
= 0,

dcκ
t

dt
= V ′′(at ). (3.42)



4126 J. Unterberger / Stochastic Processes and their Applications 128 (2018) 4104–4153

3.4. Linear term

Proceeding as in the constant term case, we insert the operator V ′′(aT )(x − aT ) ∂
∂x inside the

Stieltjes decomposition of fT , getting∫
daT

∫ bmax

−bmax

(−ibT ) dbT |bT |
κ V ′′(aT )

[
(x − aT )∂x fzT (x)

]
h(aT , bT )

= −

∫
daT

∫ bmax

−bmax

(−ibT ) dbT |bT |
κ V ′′(aT ) · ∂bT (bT fzT (x)) h(aT , bT )

= bdry +

∫
daT

∫ bmax

−bmax

(−ibT ) dbT |bT |
κ

× fzT (x) V ′′(aT )(bT ∂bT + 1 + κ)h(aT , bT ), (3.43)

where

bdry ≡ h-bdry(1)
pot = −b2+κ

max

∫
daT V ′′(aT ) · χR(x)

·
(

faT +ibmax (x) h(aT , bmax ) − faT −ibmax (x) h(aT , −bmax )
)

(3.44)

is a horizontal boundary term coming from integration by parts. This defines an operator, Hκ,(1)
pot ,

Hκ,(1)
pot (h)(aT , bT ) =

(
∂bT bT + κ

)
(V ′′(aT )h(aT , bT )) (3.45)

with associated characteristics,
dat

dt
= 0,

dbt

dt
= V ′′(at )bt ,

dcκ
t

dt
= (1 + κ)V ′′(at )cκ

t . (3.46)

3.5. Quadratic term

Proceeding as in the previous paragraph, we insert the operator 1
2 V ′′′(aT )(x − aT )2 ∂

∂x inside
the Stieltjes decomposition. Since (x − aT )2 ∂

∂x = ∂x (x − aT )2
− 2(x − aT ), and

∂x
[
(x − aT )2fzT (x)

]
= 1 + b2

T ∂aT fzT (x),
−2(x − aT )fzT (x) = −2 − 2ibT fzT (x)

(3.47)

this term produces a new operator

Hκ,(2)
pot (h)(aT , bT ) =

1
2

(
−∂aT b2

T − 2ibT
)

(V ′′′(aT )h(aT , bT )). (3.48)

with associated characteristics
dat

dt
= −

1
2

V ′′′(at )b2
t ,

dbt

dt
= 0,

dcκ
t

dt
= −iV ′′′(at )bt cκ

t (3.49)

plus a vertical boundary term,

bdry ≡ v-bdry(2)
pot = −

∫ bmax

−bmax

(−ibT ) dbT |bT |
κ+2

· χR(x)

·
(
V ′′′(3R) f3R+ibT (x) h(3R, bT ) − V ′′′(−3R) f−3R+ibT (x) h(−3R, bT )

)
. (3.50)

The remaining term due to the constant 1
2 V ′′′(aT )(1 − 2) in (3.47), integrated with respect

to the measure |bT |
1+κdaT dbT , adds a time-independent constant C to ft , which however

disappears from the computations since: (i) the right-hand side of (1.34) features only f ′
t ;

(ii) d⟨Y N
t , C⟩ = dC = 0 in (1.8).
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3.6. Recapitulating: the transport contribution

We can now write down the action of the sum of our three transport operators,

Hκ
transport (t) := Hκ

0 (t) + Hκ,(0)
pot + Hκ,(1)

pot + Hκ,(2)
pot (3.51)

(note that only Hκ
0 depends on the time variable), defined respectively in (3.26), (3.41), (3.45) and

(3.48). Summing the contributions in (3.28), (3.42), (3.46) and (3.49), we obtain the following
equation for the characteristics on [−3R, 3R] × [−bmax , bmax ],

dat

dt
=

β

4
Re (M N

t + Mt )(at + ibt ) + V ′(at ) −
1
2

V ′′′(at )b2
t (3.52)

dbt

dt
=

β

4
Im (M N

t + Mt )(at + ibt ) + V ′′(at )bt (3.53)

dcκ
t

dt
=

[
β

4

(
1 + κ

bt
Im (M N

t + Mt )(at + ibt ) + ((M̄ N
t )′ + (M̄t )′)(at + ibt )

)
+ (2 + κ)V ′′(at ) − iV ′′′(at )bt

]
cκ

t . (3.54)

Let us make the following observations (see Section 3.1):

(i) t ↦→ |bt | increases, whence |bt | ≤ |bT | (0 ≤ t ≤ T ).
(ii) velocities are O(1) far from the support, e.g. on {|a| > C R} ∪ {|b| > bmax/2} (see

discussion below Proposition 3.1);
(iii) as is already true of each individual generator Hκ

0 , Hκ,(i)
pot (i = 0, 1, 2), the sum Hκ

transport (t)
generates a semi-group of L1-contractions. The same holds if one considers L∞- norms,
since the real part of (3.54) is positive.

As a side remark, we may choose T small enough so that characteristics (at +ibt )0≤t≤T started

at time T on the boundary
(
{±3R}× [−bmax , bmax ]

)
∪

(
[−3R, 3R]×{±bmax }

)
always remains

far from the support, in the sense of (ii).
Appendix A therefore implies:

Lemma 3.5. Let uT ∈ (L1
∩L∞)([−3R, 3R]×(0, bmax ]) and κ = 0, 1, 2 . . .. Then the backward

evolution equation du
dt = Hκ

transport (t)u(t), u
⏐⏐
t=T = uT (0 ≤ t ≤ T ) has a unique solution

u(t) := Utransport (t, T )uT , such that

∥ut∥L1([−3R,3R]×(0,bmax ]) ≤ ∥uT ∥L1([−3R,3R]×(0,bmax ]) (3.55)
∥ut∥L∞([−3R,3R]×(0,bmax ]) ≤ ∥uT ∥L∞([−3R,3R]×(0,bmax ]). (3.56)

In Section 4, we will separate (3.54) into its real and imaginary parts. Solving the (a, b)-
characteristics coupled with the real characteristic c̃κ ,

dc̃κ
t

dt
= Re

[
β

4

(
1 + κ

bt
Im (M N

t + Mt )(at + ibt ) + ((M̄ N
t )′ + (M̄t )′)(at + ibt )

)
+ (2 + κ)V ′′(at ) − iV ′′′(at )bt

]
c̃κ

t , (3.57)

one gets a backward evolution equation,
dũ
dt

= [Re Hκ
transport (t)]ũ(t), ũ

⏐⏐
t=T = ũT ≡ uT (0 ≤ t ≤ T ), (3.58)
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solved as ũ(t) := Ũtransport (t, T )ũT , such that

∥ũt∥L1([−3R,3R]×(0,bmax ]) ≤ ∥ũT ∥L1([−3R,3R]×(0,bmax ]) (3.59)

∥ũt∥L∞([−3R,3R]×(0,bmax ]) ≤ ∥ũT ∥L∞([−3R,3R]×(0,bmax ]). (3.60)

Assuming uT ≥ 0, ũ is simply the modulus of u,

ũt (a, b) = |ut (a, b)|. (3.61)

In particular, ũt ≥ 0. The adjoint evolution with generator (Re Hκ
transport )

† is sub-Markovian,
i.e. ũt is the density at time t of a (deterministic) time-reversed Markov ( Ãt , B̃t )0≤t≤T process
(whose trajectories run backwards w.r. to (at , bt )) with kernel p(t, ãt , b̃t ; s, ãs, b̃s) ≥ 0 (t ≤ s)
such that

∫
dã
∫

db̃ p(t, ã, b̃; s, ãs, b̃s) ≤ 1.

Remark. It is instructive to look at terms that would be produced by continuing the
Taylor expansion to infinity. Note that the boundary value of the operator Hκ,(2)

pot (h) vanishes
(Hκ,(2)

pot (h)(aT , bT = 0) ≡ 0 vanishes to order ≥ 1). It may be proven in general that the
contribution of order j vanishes to order ≥ j − 1. Summing up the whole series would yield
(up to κ-dependent terms)

dat

dt
=

∑
n=2p

V (n+1)(at )
n!

(ibt )n,
dbt

dt
= −i

∑
n=2p+1

V (n+1)(at )
n!

(ibt )n (3.62)

dct

dt
=

∑
n≥1

V (n+1)(at )
(ibt )n−1

(n − 1)!
. (3.63)

Note that, for V holomorphic, this is equivalent to the vector field V ′(Z t )∂Zt + V ′′(Z t ). However,
terms of order ≥ 3 also produce polynomials in x (instead of linear combination of fz(x),
z ∈ C\R). Integrating the generator would yield power series in x which are maybe controllable,
but this would require totally different techniques with respect to ours.

3.7. Main remainder term

We study in this subsection the g-kernels gκ ′
;κ,(3)

pot obtained by replacing χR(x)V ′(x) f ′
zT

(x)
with χR(x)(x − aT )3WaT (x − aT ) f ′

zT
(x) in Definition 3.4. We want to prove that the operators

Hκ,(3)
pot : h ↦→ Hκ,(3)

pot (h) :

(
(a, b) ↦→

∫ 3R

−3R
daT

∫ bmax

−bmax

dbT gκ,(3)
pot

× (a, b; aT , bT )h(aT , bT )
)

(3.64)

and

Hκ+1;κ,(3)
pot : h ↦→ Hκ+1;κ,(3)

pot (h) :

(
(a, b) ↦→

∫ 3R

−3R
daT

∫ bmax

−bmax

dbT gκ+1;κ,(3)
pot

× (a, b; aT , bT )h(aT , bT )
)

(3.65)

are bounded operators in L1(Πbmax ).
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Definition 3.6. For f ∈ Ck(R,R) and R > 0, let

∥ f ∥k,[−R,R] := sup
0≤ j≤k

sup
[−R,R]

| f ( j)
|. (3.66)

Lemma 3.7.

(i) |||Hκ+1;κ,(3)
pot |||L1(Πbmax )→L1(Πbmax ) = O(b−1

max∥V ′
∥8+κ,[−3R,3R]);

(ii) |||Hκ,(3)
pot |||L1(Πbmax )→L1(Πbmax ) = O(∥V ′

∥7+κ,[−3R,3R]).

The same estimates hold for the L∞-operator norms ||| · |||L∞(Πbmax )→L∞(Πbmax ).

As can be checked by looking at the details of the proof, norms ||| · |||L1(Πbmax )→L∞(Πbmax ) are
deduced from these by dividing by a volume factor Vol([−3R, 3R] × [−bmax , bmax ]) ≈ bmax ,
which follows from the fact that the kernel gκ ′

;κ,(3)
pot is regular on the diagonal.

We shall actually only prove the statement for |||Hκ+1;κ,(3)
pot |||L1→L1 . The proof of (ii) reduces

immediately to (i) by substituting κ → κ − 1 and taking into account the extra b-prefactor.

Remark. Had we Taylor expanded V ′ to order 2 instead of order 3, would we have obtained
an unbounded operator instead of Hκ+1;κ,(3), as testified by the bound (3.76) (with x2 instead
of x3 in the numerator, the integral would diverge in the limit bT → 0 for m = 3 + κ). On
the other hand, for the same reason, it is easy to see by looking at the details of the proof that
Hκ,(3)

: L1(Πbmax ) → L∞(Πbmax ) is bounded, typically because in (3.76) one obtains instead of

the L1-kernel x ↦→
bT

x2+b2
T

the bounded function x ↦→
b2

T
x2+b2

T
.

Proof. By definition,

gκ+1;κ,(3)
pot (a, b; aT , bT ) =

(−ibT )|bT |
κ

(1 + κ)!
Kκ+1

bmax

×
(
x ↦→ χR(x)(x − aT )3WaT (x − aT ) f ′

zT
(x)
)

(a).

We consider in the computations only the part gκ of the kernel gκ+1;κ,(3)
pot obtained by replacing

Kκ with the operators in factor of the bounded operator 1 + Kκ
bmax

in (2.13), (2.16). For some
numerical constants c1 = c1(κ), c2 = c2(κ),

gκ (a, b; aT , bT ) = (−ibT )|bT |
κ
{
c1[F−1(|s|3+κ )∗] + c2b−(3+κ)

max

}
(FaT +ibT )(x)

=: (−ibT )|bT |
κ (c1G1

aT +ibT
(x) + c2G2

aT +ibT
(x)), (3.67)

with x := a − aT and

FaT +ibT (y) := W̃aT (y)
y3

(y − ibT )2 (3.68)

where W̃aT (y) = χR(aT + y)WaT (y) has support ⊂ [− 9
2 R, 9

2 R] since |aT | ≤ 3R. Thus (3.65)
looks like a convolution formula in the coordinates a, aT – but not quite since W̃aT depends on
aT –, which leads us to use the following bound (where GaT +ibT := c1G1

aT +ibT
+ c2G2

aT +ibT
)

∥Hκ+1;κ,(3)(h)∥L1(Πbmax ) ≤ bmax

(
sup

(aT ,bT )∈[−3R,3R]×[−bmax ,bmax ]
|bT |

1+κ

×

∫
da |GaT +ibT (a − aT )|

)
∥h∥L1(Πbmax ) (3.69)
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whence

|||Hκ+1;κ,(3)
|||L1→L1 ≤ bmax

(
sup

(aT ,bT )∈[−3R,3R]×[−bmax ,bmax ]
∥ |bT |

1+κ GaT +ibT ∥L1

)
. (3.70)

We must therefore bound ∥ |bT |
1+κ GaT +ibT ∥L1 . The main issue, on which we shall now

concentrate, is to bound ∥ |bT |
1+κ G1

aT +ibT
∥L1([−5R,5R]); as shown later on, the missing terms are

less singular and may be bounded similarly. Thus from now on and till below (3.87), |aT | ≤ 3R,
|x | ≤ 5R and |a| := |x + aT | ≤ 8R are bounded.

If κ is odd then |s|3+κ
= s3+κ is the Fourier symbol of a differential operator, otherwise

|s|3+κ
= sgn(s)s3+κ involves a further convolution by a singular kernel. Let us accordingly

distinguish two cases. But first of all we let, for ℓ ≥ 3 and |aT | ≤ 3R,

Cℓ := sup
3≤ℓ′≤ℓ

∥W̃ (ℓ′
−3)

aT
∥∞ (3.71)

and note that

Cℓ = O

(
sup

3≤ℓ′≤ℓ

sup
[−3R,3R]

|V (ℓ′
+1)

|

)
= O(∥V ′

∥ℓ,[−3R,3R]). (3.72)

More generally, if ℓ ≥ ℓ′
≥ ℓ′′

≥ 3 and r ≥ 0,

∥y ↦→ (W̃ (ℓ′′
−3)

aT
(y)yr )(ℓ′

−ℓ′′)
∥∞ = O(Cℓ). (3.73)

(i) (κ odd) First

∥ |bT |
1+κ G1

aT +ibT
∥L1(R) = O(C6+κ |bT |

1+κ )
3+κ∑
m=0

∫ 5R

−5R
dx

⏐⏐⏐⏐∂m
x

(
x3

(x − ibT )2

)⏐⏐⏐⏐ . (3.74)

Then

∂m
x

(
x3

(x − ibT )2

)
=

∑
p−q=1−m,p≤3,q≥2

Cm
p,q x p(x − ibT )−q (3.75)

for some coefficients Cm
p,q . If 3 ≤ m ≤ 3 + κ then |x p(x − ibT )−q

| = O( |x−ibT |
3−m

x2+|bT |2
) =

O( |bT |
3−m

x2+|bT |2
). Multiplying with respect to |bT |

1+κ and integrating, one gets (using bT ≤

bmax ≤ 1)

∥ |bT |
1+κ∂m

x

(
x3

(x − ibT )2

)
∥L1(R) ≤ C ′

|bT |
3+κ−m

∫
dx

bT

x2 + |bT |
2 = O(1). (3.76)

If m ≤ 2 then bT

⏐⏐⏐∂m
x

(
x3

(x−ibT )2

)⏐⏐⏐ = O(|bT |
|x |

3−m

x2+|bT |2
) = O(|x |

2−m). Thus ∥ |bT |
1+κ∂m

x(
x3

(x−ibT )2

)
∥L1([−5R,5R]) = O(|bT |

κ ) = O(1).
All together:

∥ |bT |
1+κ G1

aT +ibT
∥L1([−5R,−5R]) = O(C6+κ ). (3.77)

(ii) (κ even) Let, for 0 ≤ m ≤ 3 + κ ,

I (x) := p.v.(
1
x

) ∗

[
x ↦→ W̃ (3+κ−m)

aT
(x)∂m

x

(
x3

(x − ibT )2

)]
. (3.78)

We must bound |bT |
1+κ

∫
dx |I (x)|.
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We rewrite I (x) as the sum of two contributions (we refer to Appendix B without further
mention for computations and bounds related to the principal value integral), I (x) =:

Ireg(x) + Ising(x), where

Ireg(x) :=

∫
dy

W̃ (3+κ−m)
aT

(x) − W̃ (3+κ−m)
aT

(y)

x − y
∂m

x

(
x3

(x − ibT )2

)
(3.79)

and

Ising(x) :=

∫
dy W̃ (3+κ−m)

aT
(y)

∂m
x

(
x3

(x−ibT )2

)
− ∂m

y

(
y3

(y−ibT )2

)
x − y

. (3.80)

Using
⏐⏐⏐⏐ W̃ (3+κ−m)

aT (x)−W̃ (3+κ−m)
aT (y)

x−y

⏐⏐⏐⏐ ≤ ∥W̃ (4+κ−m)
aT

∥∞ ≤ C7+κ , and noting that, for |x | ≤ 5R, the

integral
∫

dy (· · · ) =
∫

B(x, 19
2 R)(· · · ) (by symmetry) simply produces an extra factor O(1),

one obtains, using (i)

|bT |
1+κ

∫
dx |Ireg(x)| = O(C7+κ ). (3.81)

Considering now Ising(x), we expand the numerator of (3.80) as in (3.75) and rewrite

x p(x − ibT )−q
− y p(y − ibT )−q

x − y
=

x p
− y p

x − y
(y − ibT )−q

+ x p (y − ibT )q
− (x − ibT )q

(x − y)(x − ibT )q (y − ibT )q

=

p−1∑
r=0

x p−1−r yr

(y − ibT )q
−

q∑
r ′=1

x p

(x − ibT )r ′

1
(y − ibT )q+1−r ′

. (3.82)

The integrals J1 :=
∫

dy
W̃ (3+κ−m)

aT (y)yr

(y−ibT )q , J2 :=
∫

dy
W̃ (3+κ−m)

aT (y)

(y−ibT )q+1−r ′ may be bounded using
(B.19) since q ≥ 2 ≥ 1 and q + 1 − r ′

≥ 1. Thus

|J1| = O(C8+κ ), |J2| = O(C8+κ ) (3.83)

Then
∫ 5R
−5R dx |x |

p−1−r
= O(1) and

|bT |
1+κ

∫
dx

|x |
p

|x − ibT |
r ′

= O(|bT |
(1+κ)−(r ′

−p−1)) = O(b2−r ′
+κ+p

max )

× (r ′
≥ p + 2) (3.84)

(note that 2 − r ′
+ κ + p ≥ 0);

|bT |
1+κ

∫ 5R

−5R
dx

|x |
p

|x − ibT |
r ′

≤ |bT |
1+κ

∫ 5R

−5R

dx
|x − ibT |

= O(b1+κ
max ln(1/bmax ))

× (r ′
= p + 1) (3.85)

|bT |
1+κ

∫ 5R

−5R
dx

|x |
p

|x − ibT |
r ′

≤ b1+κ
max

∫ 5R

−5R
dx |x |

p−r ′

= O(b1+κ
max ) (r ′

≤ p). (3.86)

All together, one obtains, summing all terms:

|bT |
1+κ

∫
dx |Ising(x)| = O(C8+κ ). (3.87)
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Let us now quickly deal with the missing terms. First

∥ |bT |
1+κ G2

aT +ibT
∥L1 ≤ b−2

max

∫
dx

|x |
3

|x − ibT |
2 |W̃aT (x)|

≤ b−2
max ∥W̃aT ∥∞

∫ 9
2 R

−
9
2 R

dx |x | = O
(
b−2

max C3
)
. (3.88)

Then one must bound |bT |
1+κ

∫
|x |≥5R dx |G1

aT +ibT
(x)|; because supp(W̃aT ) ⊂ [− 9

2 R, 9
2 R], this

contribution vanishes except if κ is even, see (ii) above, in which case (by integration by parts)

|bT |
1+κ

∫
|x |≥5R

dx |G1
aT +ibT

(x)| = |bT |
1+κ

∫
|x |≥5R

dx

×

⏐⏐⏐⏐⏐
∫ 9

2 R

−
9
2 R

dy p.v.(
1

(x − y)2 )F (2+κ)
aT +ibT

(y)

⏐⏐⏐⏐⏐
≤ |bT |

∫
|x |≥5R

dx O(
1
x2 ) ∥ |bT |

κ F (2+κ)
aT +ibT

∥L1([−5R,5R]). (3.89)

The integral ∥ |bT |
κ F (2+κ)

aT +ibT
∥L1([−5R,5R]) is (up to the replacement κ → κ − 1) exactly the one

which has been computed in case (i) above. Hence we find:

|bT |
1+κ

∫
|x |≥5R

dx |G1
aT +ibT

(x)| = O (C5+κ) . (3.90)

Since C3 ≤ C5+κ ≤ C6+κ ≤ C8+κ = O(∥V ′
∥8+κ,[−3R,3R]) and bmax ≤ 1, the sum of estimates

(3.77), (3.81), (3.87), (3.88), (3.90) is O(b−2
max∥V ′

∥8+κ,[−3R,3R]). □

3.8. Away from the support

We study in this subsection the g-kernels gκ ′
;κ,ext

pot obtained by assuming that h = hext , whence
|aT | ≥ 2R. We want to prove that the operators

Hκ,ext
pot : h ↦→

(
Hκ,ext (h) : (a, b) ↦→

∫
daT

∫ bmax

−bmax

dbT gκ,ext
pot (a, b; aT , bT )h(aT , bT )

)
(3.91)

and

Hκ+1;κ,ext
pot : h ↦→

(
Hκ+1;κ,ext (h) : (a, b) ↦→

∫
daT

∫ bmax

−bmax

dbT gκ+1;κ,ext
pot (a, b; aT , bT )h(aT , bT )

)
(3.92)

are bounded operators in L1(Πbmax ). We shall actually only prove the statement for Hκ+1;κ,ext
pot ,

and leave the similar proof of the statement for Hκ,ext
pot to the reader.

Lemma 3.8.

(i) |||Hκ+1;κ,ext
|||L1(Πbmax )→L1(Πbmax ) = O

(
b−1

max∥V ′
∥4+κ,[− 3

2 R, 3
2 R]

)
;

(ii) |||Hκ,ext
|||L1(Πbmax )→L1(Πbmax ) = O

(
∥V ′

∥3+κ,[− 3
2 R, 3

2 R]

)
.

The same estimates hold for the L∞-operator norms ||| · |||L∞(Πbmax )→L∞(Πbmax ).

As can be checked by looking at the details of the proof, norms ||| · |||L1(Πbmax )→L∞(Πbmax ) are
deduced from these by dividing by a volume factor Vol([−3R, 3R] × [−bmax , bmax ]) ≈ bmax ,
which follows from the fact that the kernel gκ ′

;κ,ext
pot is regular on the diagonal.
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Proof.

(1) (operator norm of Hκ+1;κ,ext
pot ) By definition,

gκ+1;κ,ext
pot (a, b; aT , bT ) = 1|b|<bmax 1|aT |≥2R

1
(1 + κ)!

(−ib)|bT |
κ

×Kκ+1
bmax

(χR V ′ f ′

zT
)(a). (3.93)

Note that, since |aT | ≥ 2R and supp(χR) ⊂ B(0, 3
2 R), the function χR V ′ f ′

zT
is regular

and bounded. Furthermore, for every n = 0, 1, . . . , ∥(χR V ′ f ′
zT

)(n)
∥∞ = O(∥V ′

∥n,[− 3
2 R, 3

2 R]

|aT |
−2) is integrable at infinity in aT .

We consider in the computations only the part gκ of the kernel gκ+1;κ,ext
pot obtained by

replacing Kκ with the operators in factor of the bounded operator 1 + Kκ
bmax

in (2.13),
(2.16), and distinguish the cases κ odd, κ even. Assume first κ is odd. Then

|gκ (a, b; aT , bT )|
= 1|b|<bmax 1|aT |≥2R O(|bT |

1+κ )
(⏐⏐(χR V ′ f ′

zT
)(3+κ)(a)

⏐⏐+ b−(3+κ)
max |(χR V ′ f ′

zT
)(a)|

)
= O

(
b1+κ

max∥V ′
∥3+κ,[− 3

2 R, 3
2 R] + b−2

max∥V ′
∥0,[− 3

2 R, 3
2 R]

)
|aT |

−2

1(a,b)∈[− 3
2 R, 3

2 R]×[−bmax ,bmax ]. (3.94)

Hence Hκ+1;κ,ext
pot is a bounded operator on L1(Πbmax ), with L1-operator norm

|||Hκ+1;κ,ext
pot |||L1→L1 = O

(
b1+κ

max∥V ′
∥3+κ,[− 3

2 R, 3
2 R] + |b|

−2
max∥V ′

∥0,[− 3
2 R, 3

2 R]

)
· Vol([−3R, 3R] × [−bmax , bmax ])

= O
(

b3+κ
max∥V ′

∥3+κ,[− 3
2 R, 3

2 R] + ∥V ′
∥0,[− 3

2 R, 3
2 R]

)
b−1

max . (3.95)

Assume now that κ is even. Then (using (3.94) and (B.23)) |gκ (a, b; aT , bT )| ≤ O(b−2
max

∥V ′
∥0,[− 3

2 R, 3
2 R] 1(a,b)∈[− 3

2 R, 3
2 R]×[−bmax ,bmax ])|aT |

−2, plus

1|b|<bmax O(|bT |
1+κ )

⏐⏐⏐⏐1|aT |≥2R p.v.(
1
x

) ∗ (χR V ′ f ′

zT
)(3+κ)(a)

⏐⏐⏐⏐
= 1|b|<bmax O(|bT |

1+κ )
⏐⏐⏐⏐1|aT |≥2R p.v.(

1
x2 ) ∗ (χR V ′ f ′

zT
)(2+κ)(a)

⏐⏐⏐⏐
= O(|bT |

1+κ )
[
1(a,b)∈[−3R,3R]×[−bmax ,bmax ] ∥1|aT |≥2R(χR V ′ f ′

zT
)(4+κ)

∥∞

+ 1(a,b)∈(R\[−3R,3R])×[−bmax ,bmax ]
1
a2 ∥1|aT |≥2R(χR V ′ f ′

zT
)(2+κ)

∥∞

]
. (3.96)

We conclude by multiplying by χ̄R + (1 − χ̄R) that Hκ+1;κ,ext
pot h = h̃int

+ h̃ext , where

∥h̃int
∥L1 ≤ O

(
b3+κ

max∥V ′
∥4+κ,[− 3

2 R, 3
2 R] + ∥V ′

∥0,[− 3
2 R, 3

2 R]

)
b−1

max ∥h∥L1 (3.97)

and

∥h̃ext
∥L1 ≤ O(b2+κ

max∥V ′
∥2+κ,[− 3

2 R, 3
2 R]) ∥h∥L1 . (3.98)
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(2) (operator norm of Hκ,ext
pot ) With respect to (3.95), (3.97) and (3.98), we remove one order of

differentiation and one power of b−1
max , and exchange parities. Thus

|||Hκ,ext
pot |||L1→L1 = O

(
b2+κ

max∥V ′
∥2+κ,[− 3

2 R, 3
2 R] + ∥V ′

∥0,[− 3
2 R, 3

2 R]

)
(3.99)

for κ even, while for κ odd, Hκ,ext
pot h = h̃int

+ h̃ext , with

∥h̃int
∥L1 ≤ O

(
b2+κ

max∥V ′
∥3+κ,[− 3

2 R, 3
2 R] + ∥V ′

∥0,[− 3
2 R, 3

2 R]

)
∥h∥L1 (3.100)

and

∥h̃ext
∥L1 ≤ O(b2+κ

max∥V ′
∥1+κ,[− 3

2 R, 3
2 R]) ∥h∥L1 . (3.101)

Remark. When bmax = +∞, the adjoint of Hκ,ext
pot or Hκ+1;κ,ext

pot is the generator of a signed
jump Markov process with good properties. Namely, for all aT , bT ,∫

+∞

−∞

da
∫

+∞

−∞

db gκ,ext
pot (a, b; aT , bT ) = 0 (3.102)

since K κ
+∞

(s = 0) = 0, hence Lκ,ext
pot := (Hκ,ext

pot )† may we written in the following form,

Lκ,ext
pot (φ)(aT , bT ) =

∫
+∞

−∞

da
∫

+∞

−∞

db (φ(a, b) − φ(aT , bT ))gκ,ext
pot

× (a, b; aT , bT ). (3.103)

For a bona fide Markov process, the function (a, b) ↦→ −gκ,ext
pot (a, b; aT , bT ) ≥ 0 would be

the jump rate from (aT , bT ) to (a, b), and one would have −
∫

da db gκ,ext
pot (a, b; aT , bT ) = 1.

Here g is a signed kernel, so the probabilistic interpretation fails stricto sensu. However, the L1

semi-group generated by Hκ,ext
pot has good properties because Hκ,ext

pot is a bounded operator (see
Section 4).

3.9. Boundary terms

Recall the horizontal boundary terms h-bdry0 (3.31), h-bdry(1)
pot (3.44), and the vertical

boundary terms, v-bdry0 (3.32), v-bdry(0)
pot (3.40) and v-bdry(2)

pot (3.50). We adopt the following
notations. First let

∂RΠbmax := ∂ ([−3R, 3R] × [−bmax , bmax ]) = ([−3R, 3R] × {±bmax }) ∪ ({±3R}

× [−bmax , bmax ]) , (3.104)

and, for h : [−3R, 3R] × [−bmax , bmax ] → C, let ∂Rh := h
⏐⏐
∂RΠbmax

be the restriction of h to the
boundary. Horizontal boundary terms h-bdry·

·
(where the dots stand for various lower and upper

indices) are of the form h-bdry·
·
(bmax ; ∂Rh) − h-bdry·

·
(−bmax ; ∂Rh); similarly, vertical boundary

terms v-bdry·
·
are of the form v-bdry·

·
(3R; ∂Rh) − v-bdry·

·
(−3R; ∂Rh).

These terms depend a priori on the restriction of h to ∂RΠbmax , which is incompatible with the
L1-norms. In order to avoid that, we replace faT ±ibmax with Cκ ′

(
(a, b) ↦→ Kκ ′

bmax
(fat ±ibmax )(a)

)
,

κ ′
= κ, κ + 1 so that

(h-bdry0 + h-bdry(1)
pot )(bmax ; ∂Rh) − (bmax ↔ −bmax )

= Cκ+1(Hκ+1;κ,h−bdry(∂Rh)) = Cκ (Hκ,h−bdry(∂Rh)) (3.105)



J. Unterberger / Stochastic Processes and their Applications 128 (2018) 4104–4153 4135

with Hκ+1;κ,h−bdry,Hκ,h−bdry
: L∞(∂RΠbmax ) → (L1

∩ L∞)(Πbmax ),

Hκ+1;κ
h-bdry (∂Rh)(a, b) =

∫ 3R

−3R
daT gκ+1;κ,

h-bdry (a, b; aT )∂Rh(aT , bmax ) − (bmax ↔ −bmax ) (3.106)

Hκ
h-bdry(∂Rh)(a, b) =

∫ 3R

−3R
daT gκ

h-bdry(a, b; aT )∂Rh(aT , bmax ) − (bmax ↔ −bmax ) (3.107)

and

gκ ′
;κ

h-bdry(a, b; aT ) = −

{
β

4
b1+κ

max

(1 + κ)!
Im [(M N

T + MT )(aT + ibmax )]

+ b2+κ
max V ′′(aT )

}
Kκ ′

bmax
(faT +ibmax )(a). (3.108)

Similarly, we replace f±3R+ib with Cκ ′
(

(a, b) ↦→ Kκ ′

bmax
(f±3R+ib)(a)

)
, κ ′

= κ, κ + 1 , so that

(v-bdry0 + v-bdry(0)
pot + v-bdry(2)

pot )(3R; ∂Rh) − (R ↔ −R)

= Cκ+1(Hκ+1;κ
v−bdry(∂Rh)) = Cκ (Hκ

v−bdry(∂Rh)) (3.109)

with Hκ+1;κ
v-bdry ,Hκ

v-bdry : L∞(∂RΠbmax ) → (L1
∩ L∞)(Πbmax ),

Hκ+1;κ
v-bdry (∂Rh)(a, b) =

∫ bmax

−bmax

dbT gκ+1;κ
v-bdry (a, b; bT )∂Rh(3R, bT ) − (R ↔ −R) (3.110)

Hκ
v-bdry(∂Rh)(a, b) =

∫ bmax

−bmax

dbT gκ
v-bdry(a, b; bT )∂Rh(3R, bT ) − (R ↔ −R) (3.111)

and

gκ ′
;κ

v-bdry(a, b; bT ) = −(−ibT )
{

β

4
|bT |

κ

(1 + κ)!
Re [(M N

T + MT )(3R + ibT )]

+ |bT |
κ V ′(3R) + |bT |

κ+2V ′′′(3R)
}

Kκ ′

bmax
(χ|R| f3R+ibT )(a). (3.112)

Lemma 3.9. Let κ ≥ 0 and κ ′
= κ, κ + 1. Then

(i) |||Hκ ′
;κ

h-bdry|||L∞(∂RΠbmax )→L∞(Πbmax ) = b−3−(κ ′
−κ)

max

{
O( 1

bmax
) + O(bmax∥V ′′

∥0,[−3R,3R]

}
and

|||Hκ ′
;κ

h-bdry|||L∞(∂RΠbmax )→L1(Πbmax ) = b−2−(κ ′
−κ)

max

{
O( 1

bmax
) + O(bmax∥V ′′

∥0,[−3R,3R]

}
;

(ii)

|||Hκ ′
;κ

v-bdry|||L∞(∂RΠbmax )→L∞(Πbmax )

= b−1−(κ ′
−κ)

max

{
O(

1
bmax

) + O(∥V ′
∥0,[−3R,3R])

+ O(b2
max∥V ′′′

∥0,[−3R,3R])
}

(3.113)

and

|||Hκ
v-bdry|||L∞(∂RΠbmax )→L1(Πbmax )
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= b−(κ ′
−κ)

max

{
O(

1
bmax

) + O(∥V ′
∥0,[−3R,3R])

+ O(b2
max∥V ′′′

∥0,[−3R,3R])
}

. (3.114)

As in the two previous subsections, L1-estimates and L∞-estimates differ only by a volume
factor ≈ bmax .

Proof.

(i) Immediate consequence of the bounds
⏐⏐Im [(M N

T + MT )(aT + ibmax )]
⏐⏐ ≤ 2/bmax , bmax

|V ′′(aT )| ≤ bmax∥V ′′
∥0,[−3R,3R] and |Kκ ′

bmax
(χRfaT ±ibmax )(a)| = O(b−(4+κ ′)

max ) O( 1
(1+|a|)2 ) (as

seen by using (2.13) when κ ′ is even, and (2.16), (B.23) when κ ′ is odd).
(ii) Immediate consequence of the bounds

⏐⏐Re [(M N
T + MT )(aT + ibmax )]

⏐⏐ ≤ 2/bmax , |V ′(3R)|
≤ ∥V ′

∥0,[−3R,3R], b2
T |V ′′′(3R)| ≤ b2

max∥V ′′′
∥0,[−3R,3R], and |Kκ ′

bmax
(χR f±3R+ibT )

(a)| = O(b−(2+κ ′)
max ) O( 1

(1+|a|)2 ). □

4. Gaussianity of the fluctuation process

In this section, we prove our Main Theorem (see Section 1.3), namely, we prove that the
finite-N fluctuation process (Y N

t )t≥0 converges weakly in C([0, T ], H−14) to a fluctuation process
(Yt )t≥0, which is the unique solution of a martingale problem that we solve explicitly in terms of
the solution of (1.34).

We fix once and for all: bmax =
1
2 .

Summarizing what we have found up to now and applying Proposition 1.3, we find for
κ = 0, 1, 2, . . .:

d⟨Y N
t , Cκht ⟩ =

1
2

(1 −
β

2
)⟨X N

t , (Cκht )′′⟩ dt +
1

√
N

∑
i

(Cκht )′(λi
t )dW i

t (4.1)

where (ht )t≤T is the solution of the evolution equation
dht

dt
= Hκ (t)h(t). (4.2)

On the other hand, the process (Y N
t )t≥0 is a solution of the following martingale problem:

if φ̄ = {φ j }1≤ j≤k is a family of test functions in C∞
c (R,R), F ∈ C2

b (Rk,R), then, letting
Fφ̄(Y N

·
) := F(⟨Y N

·
, φ1⟩, . . . , ⟨Y N

·
, φk⟩),

ΦT,N
t (Y N ) := Fφ̄(Y N

T ) − Fφ̄(Y N
t ) −

∫ T

t
ds L N

s Fφ̄(Y N
s ) (4.3)

is a martingale, where

L N
s Fφ̄(Y N

s ) :=

k∑
j=1

∂ Fφ̄

∂x j
(Y N

s )
(

⟨Y N
s ,

β

4

∫
φ′

j (·) − φ′

j (y)

· − y
(X t + X N

t )(dy) − V ′(·)φ′

j (·)⟩

+
1
2

(1 −
β

2
)⟨X N

t , φ′′

j ⟩

)
+

1
2

k∑
j,l=1

∂2
jl Fφ̄(Y N

s ) ⟨X N
t , φ′

jφ
′

l⟩ (4.4)

(see [9], p. 28–29).
We now use an exponential functional of the process to derive the limit law.
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Definition 4.1. For κ = 0, 1, 2, . . . and h ∈ (L1
∩ L∞)(Πbmax ), let

φh(Y N
t ) := ei⟨Y N

t ,Cκ h⟩. (4.5)

Itô’s formula implies as in ([9], p. 29)

dφht (Y
N

t ) = φht (Y
N

t )
(

1
2

i(1 −
β

2
)⟨X N

t , (Cκht )′′⟩ −
1
2
⟨X N

t , ((Cκht )′)2
⟩

)
dt, (4.6)

where (Cκht )0≤t≤T is the solution of (1.9) for N finite, from which for 0 ≤ t ≤ T (letting
formally N → ∞)

E[φhT (YT )
⏐⏐Ft ] = φht (Yt ) exp

(
1
2

∫ T

t

[
i(1 −

β

2
)
⟨
Xs, (Cκhs)′′

⟩
−
⟨
Xs, ((Cκhs)′)2⟩] ds

)
(4.7)

where (ht )0≤t≤T is now the solution of the asymptotic equation (1.10). Since hs , t ≤ s ≤ T are
linear in hT , the term in the exponential in (4.7) is a sum of a linear and a quadratic term in hT ,
giving resp. the expectation and the variance of a Gaussian process (see Israelsson, Section 2.6
for more details).

The strategy of the proof, following closely the proof in (Israelsson [9], Section 2), is the
following:

(A) find bounds for E[sups≤T |⟨Y N
s , φ⟩|], E[sups≤T |⟨Y N

s ,
∫

φ′(·)−φ′(y)
·−y X N

s (dy)⟩|] and
E[sups≤T |⟨Y N

s , V ′(·)φ′(·)⟩|] (see first line in (1.36) or (4.4));
(B) prove a tightness property for the family of processes Y N , implying the existence of a (non

necessarily unique) limit in law;
(C) prove that any weak limit Y of the (Y N )n≥1 satisfies the limit martingale problem, i.e.

ΦT
t (Y ) = Fφ̄(YT ) − Fφ̄(Yt ) −

∫ T

t
ds Ls Fφ̄(Ys) (4.8)

is a martingale, where

Ls Fφ̄(Ys) :=

k∑
j=1

∂ Fφ̄

∂x j
(Ys)

(
⟨Ys,

β

2

∫
φ′

j (·) − φ′

j (y)

· − y
X t (dy) − V ′(·)φ′

j (·)⟩+

+
1
2

(1 −
β

2
)⟨X t , φ

′′

j ⟩

)
+

1
2

k∑
j,l=1

∂2
jl Fφ̄(Ys) ⟨X t , φ

′

jφ
′

l⟩ (4.9)

(obtained formally from (4.4) by letting N → ∞);
(D) prove that there exists only one measure with given initial measure satisfying (4.9), and

that it is Gaussian, and satisfies (4.7).

To prove (C) one must essentially prove that (ΦT
t −ΦT,N

t )(Y N ) is small, since ΦT
t is continuous

(see [9], pp. 47–48).
The proof is borrowed from Israelsson, where it takes up a few pages, see [9]. The main

bound, compare with [9], Lemma 15, is the following “H8”-bound,

E[sup
s≤T

|⟨Y N
s , φ⟩|] ≤ CT ∥φ∥H8 , (4.10)
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The above H8-bound is obtained by integrating (1.36), namely,

E
[
sup
s≤T

|⟨Y N
s , φ⟩|

]
≤ C

(
E[|⟨Y N

0 , φ⟩|]

+

∫ T

0
ds E

[
|⟨Y N

s , V ′(·)φ′(·)⟩| + |⟨Y N
s ,

∫
φ′(x) − φ′(·)

x − ·
(X N

s (dx) + Xs(dx))⟩|
]

+

∫ T

0
ds E

[
|

∫
φ′′(x)X N

s (dx)|
]

+ E
[
sup
s≤T

|Ms |

])
(4.11)

where Ms :=
1

√
N

∫ s
0

∑N
i=1φ

′(λi
s)dW i

s is a martingale. All these terms are bounded as in [9],
Lemma 15, using easy, V -independent inequalities and the following fundamental estimate,

Lemma 4.2. There exists a constant C depending on T such that, for all t ≤ T ,

E[|⟨Y N
t , φ⟩|

2
] ≤ C∥φ∥

2
H7

, (4.12)

itself an immediate consequence of√
E[|⟨Y N

T , fz⟩|
2] ≡

√
E[|N (M N

t − Mt )(z)|2] ≤ C |b|
−6,

b := Im z ∈ [−bmax , bmax ]
(4.13)

see (4.15) .

Note the loss of regularity with respect to ([9], Lemma 14), where one has ∥φ∥H2 in the r.-h.s.
This changes the bounds in the course of the proof of ([9], Lemma 15), see in particular p. 43,
l. 5, where estimates are proved using Israelsson’s Lemma 8 for q = 2 (with q − 1 playing the
same rôle as our κ): the latter lemma yields (with our notations) a bound on ∥Kκ

bmax
( f )∥L1 in

terms of ∥ f ∥L1 + ∥ f ∥Hκ+2 , resp. ∥ f ∥L1 + ∥ f ∥Hκ+3 , depending whether κ is even, resp. odd;
because of the loss of regularity one must take κ = 5 (q = 6, same exponent as in (4.13)), hence
the “H8”=Hκ+3-bound.

The proof of (C), see [9], Lemmas 17 and 20, mainly depends on a bound for C(φ) :=

E
[
sup0≤s≤T

⏐⏐⏐⟨Y N
s ,
∫

φ′(·)−φ′(y)
·−y X N

s (dy)
⟩⏐⏐⏐]. Assume φ = Cκh, κ ∈ N; then C(φ) is bounded in

terms of the integral against the measure |b|
κ+1

|h(a, b)| da db on Πbmax of the random function
N (M N

t (z) − Mt (z))2, averaging to O( 1
N |b|

−12) by (4.13). Therefore the integral converges if
κ ≥ 11, and is bounded, as recalled in the previous paragraph, by O(1/N )∥φ∥H14 .

Then the tightness property (B) is proved using a lemma due to Mitoma [14] and the above
estimates (see [9], Section 2.4); the Sobolev space H−14 in our Main Theorem is such that
there exists a nuclear mapping H14 → H8 (see (4.10)), as follows from Treves [23], which
is a requirement in Mitoma’s hypotheses.

Finally, letting φi = C0hi , i = 1, . . . , k, (D) is proved by computing
E
[
exp i

(
⟨Yt1 , φ1⟩ + · · · + ⟨Ytk , φk⟩

)]
, 0 ≤ tk ≤ . . . ≤ t1 ≤ T by induction on k using the

assumed martingale property of the limit(s) and solving in terms of the time-evolved functions
hi (t), i = 1, . . . , k. For k = 2 we obtain (4.7).

So everything boils down to the proof of the above lemma.

Proof of Lemma 4.2. Let φ ∈ C∞
c . Consider its standard Stieltjes decomposition of order 5,

φ = C5h (take bmax =
1
2 ). Then (using (2.21) and Cauchy–Schwarz’s inequality)

|⟨Y N
t , φ⟩|

2
≤ ∥h∥

2
L2(Πbmax )

∫
Πbmax

da db b12(N |Mt (z) − M N
t (z)|)2 (4.14)
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and ∥h∥L2(Πbmax ) = O(∥φ∥H7 ) (as follows from the kernel representation (2.13) of the standard
Stieltjes decomposition, together with Parseval–Bessel’s formula). Hence (4.12) follows if we
can show that

E[|N (M N
T (z) − MT (z))|

2
] = E[|⟨Y N

T , fz⟩|
2
] ≤ Cb−12 (4.15)

for 0 < b := Im z ≤
1
2 ; compare with Israelsson [9], Proposition 1, where a much better bound

in O((ln(1 + 1/b)/b)2) is proved. Note, however, that there is, to the best of our understanding,
a flaw in Israelsson’s proof, see (4.51), whence (despite some efforts) we find in fact a bound in
O(b−12) in the harmonic case too. Further, introducing the stopping time

τ := inf{0 < t ≤ T : sup
1≤i≤N

|λi
t | > R(T )}, (4.16)

(and letting by convention τ ≡ T if sup0≤t≤T sup1≤i≤N |λi
t | ≤ R(T )), see Lemma 5.1, we have,

using the large deviation bound of Section 5, and the obvious deterministic bound M N
t (z) ≤

|Im (z)|−1,

E[|N (M N
T (z) − MT (z))|

2
] ≤ E[|N (M N

τ (z) − Mτ (z))|
2
] + Ce−cN N 2

|Im z|−2. (4.17)

So (4.15) holds provided we show that

E[|N (M N
τ (z) − Mτ (z))|

2
] ≤ Cb−12 (4.18)

where now by construction supi |λ
N ,i
t | ≤ R(T ) for all t ≤ τ , a support condition which is essential

for the subsequent computations.

Before we can do that, however, we need a long preliminary discussion. Indeed, Israelsson’s
proof of this fact in his Proposition 1 does not carry through immediately to the case of a general
V , because it relies in an essential way on the bounds on characteristics. As explained in the
Introduction though, the deterministic characteristics due to the

( 1
x

)
-potential, see Section 3.1,

to which we can safely add the other transport generators without much change, yield the most
singular contribution, so our strategy is to treat the non-local term Hnonlocal as a perturbation of
Htransport , by using a Green function expansion. Note however the twist here: the operators
Hκ

transport and Hκ
nonlocal are endomorphisms of L1(Πbmax ), but Hκ+1;κ

nonlocal intertwines in some
sense two different copies of L1(Πbmax ), with different mappings, Cκ , vs. Cκ+1 to L1(R). The
intertwining is not trivial, in the sense that bHκ+1;κ

nonlocal ̸= Hκ
nonlocal . This leads us to introduce the

following operator-valued matrices.

Definition 4.3.

1. Let L1[ε](Πbmax ) := (R[ε]/ε3) ⊗ L1(Πbmax ) ≃ ε0
⊗ L1(Πbmax ) ⊕ ε1

⊗ L1(Πbmax ) ⊕ ε2
⊗

L1(Πbmax ).
2. Let H[ε] : L1[ε](Πbmax ) → L1[ε](Πbmax ) be represented by the operator-valued matrix

H[ε] :=

(
H0

transport 0 0

H1,0
nonlocal H1

transport 0

0 H2,1
nonlocal H2

)
.

3. Let Ev: L1[ε](Πbmax ) → L1(Πbmax ) be the evaluation mapping,

Ev(ε0
⊗ h0

+ ε1
⊗ h1

+ ε2
⊗ h2)(a, b) = h0(a, b) + bh1(a, b) + b2h2(a, b). (4.19)

The (2, 2)-coefficient H2 – the sum H2
transport + H2

nonlocal – is coherent with the truncation.
Another possibility (also coherent with Lemma 4.4, but introducing pointless complications)
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would be to consider the un-truncated infinite-dimensional matrix

H̃[ε] :=

⎛⎜⎜⎜⎜⎝
H0

transport 0 0 0 · · ·

H1,0
nonlocal H1

transport 0 0 · · ·

0 H2,1
nonlocal H2 0 · · ·

0 0 H3,2
nonlocal H3

transport 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

⎞⎟⎟⎟⎟⎠acting on L̃1[ε](Πbmax ) ≡ R[ε] ⊗ L1(Πbmax ),

with evaluation mapping Ev(
∑

j≥0ε
j
⊗ h j )(a, b) =

∑
j≥0b j h j .

Lemma 4.4. Let (ht )0≤t≤T ∈ L1[ε](Πbmax ) be the solution of the time-evolution problem
dht
dt = H[ε](t)ht with terminal condition hT ≡ ε0

⊗ hT .
Then ft := C0

◦ Ev(ht ) solves (1.34) with initial condition C0(hT ).

Proof. By definition. □

Thus our time-evolution operator is H[ε]. Let Htransport [ε] :=

(
H0

transport 0 0

0 H1
transport 0

0 0 H2
transport

)

and Hnonlocal[ε] :=

(
0 0 0

H1,0
nonlocal 0 0

0 H2,1
nonlocal H2

nonlocal

)
. The Green function first-order expansion then

reads as follows,

U [ε](t, T ) = Utransport [ε](t, T ) −

∫ T

t
ds U [ε](t, s)Hnonlocal[ε](s)

× Utransport [ε](s, T ), (4.20)

U [ε](t, T ), resp. Utransport [ε](t, T ) being the Green kernels (or evolution operators) obtained
by integrating the time-inhomogeneous evolution systems generated by H[ε], resp. Htransport [ε],
i.e. u(t) = U [ε](t, T )u(T ), resp. utransport (t) = Utransport [ε](t, T )utransport (T ), solves the linear
equation du(t)

dt = H[ε](t)u(t), resp. dutransport
dt = Htransport [ε](t)utransport (t). We shall actually

require a second-order expansion of the Green kernel, obtained by iterating (4.20),

U [ε](t, T ) = Utransport [ε](t, T ) −

∫ T

t
ds

× Utransport [ε](t, s)Hnonlocal[ε](s)Utransport [ε](s, T )

+

∫ T

t
ds
∫ s

t
ds ′ U [ε](t, s ′)Hnonlocal[ε](s ′)Utransport [ε](s,′s)

×Hnonlocal[ε](s)Utransport [ε](s, T ). (4.21)

Thus (considering a terminal condition hT ≡ ε0
⊗ hT )

(Ev ◦ U [ε](t, T ))(hT )(a, b) = U 0
transport (t, T )hT (a, b)

− b
∫ T

t
ds U 1

transport (t, s)H1,0
nonlocal(s)U 0

transport (s, T )hT (a, b)

+ b2
∫ T

t
ds
∫ s

t
ds ′ U 2(t, s ′)H2,1

nonlocal(s
′)U 1

transport (s,
′s)H1,0

nonlocal(s)

× U 0
transport (s, T )hT (a, b). (4.22)
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Define

∥ f ∥(L1∩L∞)(Πbmax ) := sup
(
∥ f ∥L1(Πbmax ), ∥ f ∥L∞(Πbmax )

)
(4.23)

and, for an operator H : (L1
∩ L∞)(Πbmax ) → (L1

∩ L∞)(Πbmax ),

|||H|||(L1∩L∞)(Πbmax ) := sup
∥ f ∥(L1∩L∞)(Πbmax )=1

∥H f ∥(L1∩L∞)(Πbmax ). (4.24)

From the estimates proved in Section 3, that is, from Lemma 3.5 on the one hand, and
Lemmas 3.7, 3.8, 3.9 on the other, we know that, for all κ ∈ N and 0 ≤ t ≤ s:

|||U κ
transport (t, s)|||L1(Πbmax )→L1(Πbmax ), |||U

κ
transport (t, s)|||L∞(Πbmax )→L∞(Πbmax ) ≤ 1; (4.25)

|||Hκ+1;κ
nonlocal |||(L1∩L∞)(Πbmax )→(L1∩L∞)(Πbmax ) = O(∥V ′

∥8+κ,[−3R,3R]), (4.26)

|||Hκ
nonlocal |||(L1∩L∞)(Πbmax )→(L1∩L∞)(Πbmax ) = O(∥V ′

∥7+κ,[−3R,3R]). (4.27)

Hence

Lemma 4.5. Let T > 0 fixed, and 0 ≤ t ≤ s ≤ T . Then

|||U κ (t, s)|||(L1∩L∞)(Πbmax )→(L1∩L∞)(Πbmax ) ≤ ec∥V ′
∥7+κ,[−3R,3R]t (4.28)

for some constant c > 0.

Proof. Results from (4.27), Tanabe [22], Theorem 4.4.1 (construction of fundamental solutions
of temporally inhomogeneous equations) and Proposition 4.3.3 (bounded perturbations of
generators of “stable” strongly continuous semi-groups, here of Hκ

transport by Hκ
nonlocal). □

Proof of (4.18). We start from Itô’s formula (1.8),

d⟨Y N
t , ft ⟩ =

1
2

(1 −
β

2
)⟨X N

t , f ′′

t ⟩dt +
1

√
N

N∑
i=1

f ′

t (λi
t )dW i

t (4.29)

where

fτ (x) =
χR(x)
x − zτ

, zτ ≡ z, (4.30)

represented as (Cκhτ )(x) for some κ (to be chosen later), with hτ ≥ 0 defined as in (2.28), and
ft satisfies the finite-N evolution equation (1.9). Recall (see (2.31), (2.33)) that ∥hτ∥L1(Πbmax ) ≈

1/b1+κ
τ , ∥hτ∥L∞(Πbmax ) ≈ 1/b3+κ

τ .
Integrating, we must bound three terms:

(1) (initial condition) E|⟨Y N
0 , f0⟩|

2;
(2) (drift term) E

(∫ τ

0 dt |⟨X N
t , f ′′

t ⟩|
)2;

(3) (“martingale term”) E
(

1
√

N

∫ τ

0 dt
∑N

i=1 f ′
t (λi

t )dW i
t

)2

where ft = Cκht .
Bounding (1) is easy. We use the 0-th order Stieltjes decomposition,



4142 J. Unterberger / Stochastic Processes and their Applications 128 (2018) 4104–4153

f0(x) = (C0h0)(x) =
∫

da
∫ bmax
−bmax

(−ib) db fz(x) h0(a, b), together with the Cauchy–Schwarz
inequality, and obtain as in (4.14)

|⟨Y N
0 , f0⟩|

2
≤ ∥h0∥

2
L2(Πbmax )

∫
Πbmax

da db b2(N |M0(z) − M N
0 (z)|)2. (4.31)

We use the obvious L1
− L∞-bound, ∥h0∥

2
L2(Πbmax )

≤ ∥h0∥L1(Πbmax )∥h0∥L∞(Πbmax ), and
Lemma 4.5,

∥h0∥L1(Πbmax )∥h0∥L∞(Πbmax ) ≤ C∥hτ∥
2
(L1∩L∞)(Πbmax ) ≤ C ′/b6

τ (4.32)

with C, C ′ are constants depending on T , R ≡ R(T ) and ∥V ′
∥7,[−3R,3R].

There remains to bound the integral in the r.-h.s. of (4.31), using our Assumption (iii)
on the initial measure, see (1.38). We split

∫
Πbmax

(· · · ) into
∫

[−2R,2R]×[−bmax ,bmax ](· · · ) +∫
(R\[−2R,2R])×[−bmax ,bmax ](· · · ). The integral over [−2R, 2R] × [−bmax , bmax ] is O(1). As for the

integral over z ∈ (R \ [−2R, 2R]) × [−bmax , bmax ], we first remark that

N |M N
0 (z) − M0(z)| = ⟨Y N

0 , χRfz⟩ (4.33)

and

χR(x)fz(x) =

∫
da′

∫ bmax

−bmax

(−ib′) db′
1

x − z′
K0

bmax
(χRfz)(a′) (4.34)

with (see (2.13)) K0
bmax

(χRfz)(a′) = O( 1
|a|

)O( 1
1+|a′|

2 ). Hence (using Cauchy–Schwarz’s inequal-
ity and (1.38) once again)

E
∫

|a|>2R
da

∫
|b|<bmax

db b2
(

N |M N
0 (z) − M0(z)|

)2

≤ C E
∫

(R\[−2R,2R])×[−bmax ,bmax ]

b2 da db
|a|

2

⏐⏐⏐⏐∫ da′

∫ bmax

−bmax

db′
N |b′

| |M N
0 (z′) − M0(z′)|

1 + |a′|
2

⏐⏐⏐⏐2
≤ C ′

∫
da′

1 + |a′|
2

∫ bmax

−bmax

db′ E[(N |b′
| |M N

0 (z′) − M0(z′)|)2] = O(1). (4.35)

All together we have proved: E|⟨Y N
0 , f0⟩|

2
= O(b−6

T ).
The bound for (2) is essentially pathwise, but more subtle and relies on our perturbative
expansion for the Green kernel, which yields the optimal exponent of 1/bτ . Main term is obtained
by replacing f ′′

t in (2) with (C0ut )′′, where ut := Utransport (t, τ )hτ . By assumption hτ ≥ 0, so
(see (3.58)) ũt := Ũtransport (t, τ )hτ = |ut | ≥ 0 for 0 ≤ t ≤ τ , and these terms may be bounded
as in Israelsson in a probabilistic way, by using the characteristic estimates proved in Section 3.

First (using |(fz)′′(x)| ≤
2

|x−z|3
≤

2
|b|

1
|x−z|2

), we have pathwise∫ τ

0
dt |⟨X N

t , (C0ut )′′⟩| ≤

∫ τ

0
dt
⏐⏐⏐⏐⟨X N

t ,

∫
da
∫ bmax

−bmax

db |b||(fz)′′(x)|ũt (a, b)
⟩⏐⏐⏐⏐

≤ 2
∫ τ

0
dt
∫ 3R

−3R
da
∫ bmax

−bmax

db
1
b

Im (M N
t (z)) ũt (a, b)

≤ 2
∫ τ

0
dt
∫ 3R

−3R
da
∫ bmax

−bmax

db
1
b

Im
[
(M N

t + Mt )(z)
]
ũt (a, b)
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= 2
∫ τ

0
dt
∫ 3R

−3R
da
∫ bmax

−bmax

db ∂b

[
Im
[
(M N

t + Mt )(z)
]
ũt (a, b)

]
ln(1/|b|)

+ bdry1 (4.36)

where

bdry1 := −2
∫ τ

0
dt
∫ 3R

−3R
da

[
Im (M N

t + Mt )(a + ibmax )ũt (a, bmax )

− (bmax ↔ −bmax )] ln(1/|bmax |) (4.37)

is a boundary term.
Now, we compare the first term in the r.-h.s. of (4.36) to

8
β

∫ 3R

−3R
da
∫ bmax

−bmax

db (ũτ (a, b) − ũ0(a, b)) ln(1/|b|)

≡
8
β

∫ τ

0
dt

d
dt

(∫ 3R

−3R
da
∫ bmax

−bmax

db ũt (a, b) ln(1/|b|)
)

. (4.38)

The main terms in 8
β

d
dt ũt (a, b) are those due to the ( 1

x )-kernel,

2
[
∂a
(
Re (M N

t + Mt )(z)ũt (a, b)
)
+ ∂b

(
Im (M N

t + Mt )(z)ũt (a, b)
)]

.

The horizontal drift term ∂a Re (M N
t + Mt ) vanishes by integration by parts up to a boundary

term,

bdry2 := 2
∫ τ

0
dt
∫ bmax

−bmax

db ln(1/|b|)

×
[
Re (M N

t + Mt )(3R + ib)ũt (3R + ib) − (R ↔ −R)
]

(4.39)

(note that Re (M N
t + Mt )(±3R + ib) = O(1/R) is bounded), while the vertical drift term is

identical to (4.36). The other terms in Htransport (t), see (3.52), (3.53),

∂a

(
(V ′(a) −

1
2

V ′′′(a)b2)ũt (a, b)
)

+
(
∂b
(
V ′′(a)bũt (a, b)

))
+ bdry (4.40)

contribute respectively: yet another boundary term,

bdry3 :=
8
β

∫ τ

0
dt
∫ bmax

−bmax

db ln(1/|b|)

×

[
(V ′(3R) −

1
2

V ′′′(3R)b2)ũt (3R, b) − (R ↔ −R)
]

; (4.41)

and
8
β

∫ τ

0
dt
∫ 3R

−3R
da V ′′(a)

∫ bmax

−bmax

db ũt (a, b)

= O

(
sup

[−3R,3R]
|V ′′

|

)
ec∥V ′

∥7,[−3R,3R]T
∥uT ∥L1(Πbmax ) (4.42)

by Lemma 4.5, plus a boundary term,

bdry4 :=
8
β

∫ τ

0
dt
∫ 3R

−3R
da V ′′(a)

[
bmax ln(1/|bmax |)ũt (a, bmax )

− (bmax ↔ −bmax )] , (4.43)
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and also the integral over the domain [−3R, 3R] × [−bmax , bmax ] of ( 8
β

ln(1/|b|) times the
boundary terms of Section 3.9. Finally, the contribution of the c̃-characteristic is known from the
contraction property to be of the form 8

β

∫ τ

0 dt
∫ 3R

3R da
∫ bmax
−bmax

db σt (a, b)ũt (a, b) ln(1/|b|) ≥ 0
with σt (·, ·) ≥ 0, hence positive.

Using the (L1
∩L∞)-bound of ũt , one sees that all boundary terms are O(1)∥uτ∥(L1∩L∞)(Πbmax )

= O(|bτ |
−3), times some derivative of V , ∥V ( j)

∥0,[−3R,3R], j = 1, 2, 3, times possibly∫ bmax
−bmax

db ln(1/|b|) = O(1). But, actually, we have a much better bound for T small enough:
because hτ (z) is O(1), independent of bτ , far from the support [−R, R] × {0}, say, on
Πbmax \

(
[−2R, 2R] × [− 1

2 bmax ,
1
2 bmax ]

)
, we shall have

∥ut∥L∞(∂RΠbmax ) = O(1) (4.44)

for all t ∈ [0, τ ], as explained in the side remark before Lemma 3.5. Anticipating on the
next terms featuring in the second-order expansion of the Green kernel (see (4.45)), it is
easy to see that H1,0

nonlocal(s)us , whence U 1
transport (t, s)(|H1,0

nonlocal(s)us |) and U 2(t, s ′)H2,1
nonlocal(s

′)
U 1

transport (s
′, s)H1,0

nonlocal(s)us too, enjoy the same property (4.44). Incidentally, this implies
∥h0∥L1(Πbmax )∥h0∥L∞(Πbmax ) ≤ C∥hτ∥L1(Πbmax )∥hτ∥L∞(Πbmax ) ≤ C ′/b4

τ instead of C ′/b6
τ in (4.32).

Consider now the left-hand side of (4.38). Considering the adjoint evolution, we get a time-
reversed sub-Markov process ( Ãt , B̃t ) with kernel p(s, ãs; t, z̃t ), s ≤ t (see Section 3.6). Since
t ↦→ |B̃t | decreases, we obtain⏐⏐⏐⏐∫ da

∫ bmax

−bmax

db ũ0(a, b) ln(1/|b|)
⏐⏐⏐⏐ =

∫
daτ

∫
dbτ uτ (aτ , bτ )∫

da0

∫
db0 p(0, ã0, b̃0; τ, aτ , bτ ) ln(1/|b̃0|)

≤

∫
daτ

∫
dbτ ln(1/|bτ |)uτ (aτ , bτ ) = O(ln(1/|bτ |)b−1

τ ) (4.45)

by the log-estimate (2.32). So much for the contribution of U 0
transport to (2), which we have shown

to be overall O((b−3
τ )2) = O(b−6

τ ), and even O((ln(1+1/bτ )/bτ )2) for T small enough, as in [9].
We now use the second-order expansion of the Green kernel (4.22). The second term in the

expansion,

v(a, b) :=

∫ τ

t
ds U 1

transport (t, s)H1,0
nonlocal(s)U 0

transport (s, τ )hτ (a, b) (4.46)

leads to a development similar to (4.36):∫ τ

0
dt |⟨X N

t , (C0vt )′′⟩|

≤

∫ τ

0
dt
⏐⏐⏐⏐⟨X N

t ,

∫ 3R

−3R
da
∫ bmax

−bmax

db b2
|(fz)′′(x)|

×

∫ τ

t
ds(U 1

transport (t, s)|H1,0
nonlocal(s)us |)(a, b)⟩

⏐⏐⏐⏐
≤ 2

∫ τ

0
ds
[∫ s

0
dt
∫ 3R

−3R
da
∫ bmax

−bmax

db |Im (M N
t + Mt )(z)|ũs

t (a, b)
]
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= −2
∫ τ

0
ds
[∫ s

0
dt
∫ 3R

−3R
da
∫ bmax

−bmax

db ∂b
[
Im (M N

t + Mt )(z)ũs
t (a, b)

]
b
]

+ bdry′

1 (4.47)

where ũs
t (a, b) := Ũ 1

transport (t, s)(|H1,0
nonlocal(s)us |)(a, b) (≥ 0), which we compare to∫ τ

0
ds
[

8
β

∫ 3R

−3R
da
∫ bmax

−bmax

db (ũs
s(a, b) − ũs

0(a, b))b
]

≡

∫ τ

0
ds
[

8
β

∫ s

0
dt

d
dt

(∫ 3R

−3R
da
∫ bmax

−bmax

db ũs
t (a, b)b

)]
. (4.48)

The right-hand side in (4.48) decomposes in the same way as explained below (4.40) — but
with κ = 1 now . Compared to the main term studied in the previous two pages, ln(b) has been
replaced with b (which may simply be bounded by a constant, b ≤

1
2 ), so logarithms disappear in

the estimates, while the replacement of us by |H1,0
nonlocal(s)us | produces the supplementary factor

|||H1,0
nonlocal(s)|||(L1∩L∞)(Πbmax ) = O(1). The total contribution to (2) is therefore O(b−6

τ ) or even
O((ln(1 + 1/b)/b)2) as for the main term.

The last term in the Green kernel expansion,

w(a, b) :=

∫ τ

t
ds
∫ s

t
ds ′ U 2(t, s ′)H2,1

nonlocal(s
′)U 1

transport (s,
′s)H1,0

nonlocal(s)

× U 0
transport (s, τ )hτ (a, b), (4.49)

leads now to a third contribution which is bounded in a very simple way,∫ τ

0
dt
⏐⏐⏐⟨X N

t , (C0wt )′′⟩
⏐⏐⏐ ≤

∫ τ

0
dt
⏐⏐⏐⟨X N

t ,

∫ 3R

−3R
da
∫ bmax

−bmax

db |b|
3
|(fz)′′(x)|

×

∫ τ

t
ds
∫ s

t
ds ′

⏐⏐⏐U 2(t, s ′)H2,1
nonlocal(s

′)

× (U 1
transport (s

′, s)H1,0
nonlocal(s)us)(a, b)

⏐⏐⏐⟩⏐⏐⏐. (4.50)

Since |b|
3
|(fz)′′(x)| = O(1), (4.50) is simply bounded in the end for arbitrary T by

∥uτ∥(L1∩L∞)(Πbmax ) = O(|b−3
τ |), times the product of the (L1

∩ L∞)(Πbmax )- operator norms
|||U i

transport (·, ·)|||, |||H
i+1,i
nonlocal(·)||| (i = 0, 1) figuring in the integral, yielding once again a total

contribution O(b−6
τ ), or (for T short enough) O((ln(1 + 1/b)/b)2) to (2).

We finally proceed to bound the “martingale term” (3).
A caveat is required here: for finite N , ft (·) is not Ft -measurable, since it is obtained by

integrating the ordinary differential equation with random coefficients (1.9) backwards from time
τ to time t . Hence

E
[( 1

√
N

N∑
i=1

Ii (τ )
)2]

, Ii (τ ) :=

∫ τ

0
dt f ′

t (λi
t )dW i

t (4.51)

cannot be bounded by E
∫ τ

0 dt ( f ′
t (λi

t ))
2 using standard tools of stochastic calculus. By the

way, this points out to a mistake in the proof of the estimate for E[|N (M N
T (z) − MT (z))|2]

given in Proposition 1 of Israelsson’s article. Our arguments below yield a bound in O(1/b12)
independently of V – in particular in the harmonic case, instead of the bound in O((ln(1 +

1/b)/b)2) found by Israelsson. See remark at the end of this section for some after-thoughts.
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The correct way to cope with the stochastic integral Ii (τ ) (4.51) is the following. Since
s ↦→ f ′

s (λ) is C1 for λ fixed, it can be considered as the non-adapted finite variation part of
a semi-martingale, in the extended definition briefly mentioned below Definition (1.17) of [20],
Chapter 4. Hence the integration-by-parts lemma of standard differential calculus holds, and we
can rewrite Ii (τ ) as

∫ τ

0 ds f ′

0(λi
s)dW i

s −
∫ τ

0 dt Ji (t), where

Ji (t) :=

∫ τ

t

∂ f ′
t

∂t
(λi

s)dW i
s . (4.52)

Then, considering the standard Stieltjes decomposition of ht of order κ = 3 this time (which
turns out in the end of the ensuing computations to be the minimum possible order yielding finite
results in the neighborhood of the real axis),

f ′

t (λi
s) =

∂

∂x
C3(ht )(x) =

∫
da
∫ bmax

−bmax

db (−ib) |b|
3(fz)′(λi

s)ht (a, b) (4.53)

and

Ji (t) =

∫
da
∫ bmax

−bmax

db (−ib) |b|
3(H(t)ht )(a, b)J z

i (t), (4.54)

where the stochastic integral

J z
i (t) :=

∫ τ

t
(fz)′(λi

s)dW i
s (4.55)

is now a standard (i.e. non-anticipative) Itô integral, whence (using primed integration variables
t ′, a′, b′ for Ii ′ (τ ) in the averaged squared quantity E

[
(
∫ τ

0 dt
∑

i Ji (t))(
∫ τ

0 dt ′
∑

i ′ Ji ′ (t ′))
]
)

E[J z
i (t)J z′

j (t ′)] = δi, j

∫ τ

max(t,t ′)
ds (fz)′(λi

s)(fz′ )′(λi
s). (4.56)

The first step consists in transferring to the f′z-factors the derivatives ∂a, ∂b coming from the action
of Htransport (t) on ht . We concentrate on the most singular terms coming from Hκ

0 (t), namely,
(Hκ

0 (t)ht )(a, b) =
β

4

[
∂a(Re (Mt + M N

t )(z))h(t; a, b) + ∂b(Im (Mt + M N
t )(z))h(t; a, b)

]
+ · · · ,

where the missing order 0 part (· · · ) is as in (3.26). Integrating these two terms w.r. to the measure∫
da db (−ib)|b|

3 f′z(λ
i
s) yields by integration by parts −

β

4

∫
da (−idb) ht (a, b)

(
±b4Re (Mt +

M N
t )(z)f′′z (λi

s) ± iIm (Mt + M N
t )(z)∂b

(
b4f′z(λ

i
s)
))

.
For finite N , H(t)ht (·) is random and not Ft -measurable, hence
E
[
(H(t)ht (a, b)H(t ′)ht ′ (a′, b′))(J z

i (t)J z′

i ′ (t ′))
]

may not directly be bounded using (4.56) (see
Remark below). Instead, we use the bounds

|ht (a, b)|, |ht ′ (a′, b′)| = O(∥hτ∥L∞(Πbmax )) = O(b−3−κ
τ ) = O(b−6

τ ) (4.57)

|b4Re (Mt + M N
t )(z)| = O(|b|

3), ∥f′′z ∥∞ ≤ |b|
−3 (4.58)

and

E
⏐⏐⏐∑

i,i ′

∫ τ

t
f′′z (λi

s)dW i
s

∫ τ

t ′
f′z′ (λi ′

s )dW i ′
s

⏐⏐⏐
≤

[
E
(∑

i

∫ τ

t
f′′z (λi

s)dW i
s

)2]1/2[
E
(∑

i ′

∫ τ

t ′
f′z′ (λi ′

s )dW i ′
s

)2]1/2
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=

[∑
i

E
∫ τ

t
ds |f′′z (λi

s)|
2
]1/2[∑

i ′

E
∫ τ

t ′
ds |f′z′ (λi ′

s )|
2]1/2

≤
1
2
E
[( b

b′

)3∑
i

∫ τ

t
ds |f′′z (λi

s)|
2
+

(
b′

b

)3∑
i

∫ τ

t ′
ds |f′z′ (λi

s)|
2
]

=
N
2
E
[( b

b′

)3 ∫ τ

t
ds ⟨X N

s , (f′′z )2
⟩ +

(
b′

b

)3 ∫ τ

t
ds ⟨X N

s , (f′z′ )2
⟩

]
= O(N (|bb′

|)−3). (4.59)

Considering instead the terms of the type 4b3f′z(λ
i
s) coming from ∂b(b4f′z(λ

i
s)), or those coming

from the missing order 0 part (· · · ) above, leads to the same scaling in b, b′ when b, b′
→ 0, as

can easily be seen, while terms coming from the bounded operator Hnonlocal or from the time 0
contribution

∫ τ

0 ds f ′

0(λi
s)dW i

s are less singular. Thus we finally find, as expected:

E
[( 1

√
N

N∑
i=1

Ii (τ )
)2]

≤

(∫ 3R

−3R
da

∫ bmax

−bmax

db O(b−6
τ )
)2

= O(b−12
τ ), (4.60)

plus an O(1)-contribution coming from (H(t)ht )ext . □

Remark. Israelsson’s bounds in O((ln(1 + 1/b)/b)2) are recovered if one (somewhat carelessly
and out of the blue!) replaces ft , solution of the finite-N evolution equation (1.9), with the
deterministic solution f ∞

t of the asymptotic evolution equation (1.10). Namely, in that case, Itô’s
formula applies, see (4.51). Using |(fz)′(x)| ≤

1
|b|

1
|x−z| and (B.12), we get, letting f ∞

t = C0(h∞
t )

and I ∞

i (τ ) :=
∫ τ

0 dt ( f ∞
t )′(λi

t )dW i
t :

E
[( 1

√
N

N∑
i=1

I ∞

i (τ )
)2]

=

∫ τ

0
dt |⟨X N

t , ((C0h∞

t )′)2
⟩|dt

≤

∫ τ

0
dt
∫

da
∫ bmax

−bmax

db ·

∫
da′

∫ bmax

−bmax

db′
|ht (a, b)||ht (a′, b′)|

× |⟨X N
t , |b f ′

z (·)| |b′ f ′

z′ |(·)⟩|

≤

∫ τ

0
dt
∫

da
∫ bmax

−bmax

db ·

∫
da′

∫ bmax

−bmax

db′
|ht (a, b)||ht (a′, b′)|⟨X N

t , b2
|( f ′

z (·))|2⟩

≤ sup
0≤t≤τ

(∫
da′

∫ bmax

−bmax

db′
|ht (a′, b′)|

)
·

∫ τ

0
dt

×

(∫
da
∫ bmax

−bmax

db
1
b

Im M N
t (z)|ht (a, b)|

)
. (4.61)

The second factor in (4.61) is bounded exactly like the drift term (2), while the first one is just
∥ht∥L1(Πbmax ). All together, I ∞(τ ) is bounded by O(b−6

τ ), or even by O(ln(1 + 1/bτ )/b2
τ ) for T

small enough.

A way to improve our poor estimates (4.60) would be to separate ht into h∞
t plus a O(1/N )

fluctuation δh∞
t , whose contribution to (4.18) would be hopefully O(1/N ) times some inverse

power of b, and would therefore vanish when N → ∞. However, the time-evolution of δh∞
t

is a priori governed by the Jacobian of (1.10) around h∞
t , whose characteristics are obtained

by linearizing those of the transport operator Htransport . Alas, the linearization of the already
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singular characteristics of H0, see Proposition 1.3, leads to an exponential factor of the type
exp

(
c
∫

dt ((M N
t )′′(Z t ))+(M ′′

t (Z t ))
)

, which is exponentially large for small |b| near the points x
of the real axis at which Mt (x ±i0) is not differentiable, e.g. near the end points of the support for
a standard density of the semi-circle type 1

π

√
2 − x2 (a > 0), with associated Stieltjes transform

Mt (z) = −z +
√

z2 − 2, see (1.29).

5. Large deviation bound for the support of the measure

As a key technical argument required for the convergence of our scheme, we prove in this
section the following bound for the probability that the support of the measure is large. Since the
number N of eigenvalues varies in this section, we emphasize the N -dependence of the process
when we judge it necessary by writing λ

N ,i
t instead of λi

t .

Lemma 5.1 (Large Deviation Bound). Assume the large deviation estimate (1.37) for the initial
support holds, namely, P[maxi=1,...,N |λ

N ,i
0 | > R0] ≤ C0e−c0 N for some constants R0, c0, C0 > 0.

Let T > 0. There exist some radius R = R(T ) and constant c, depending on V and R0, c0 but
uniform in N, such that

P

[
sup

0≤t≤T
sup

i=1,...,N
|λN ,i

t | > R

]
≤ Ce−cN . (5.1)

The principle of the proof was obligingly provided by a referee. It relies on uniform-in-time
moment bounds for the empirical measure, and on a comparison principle for sde’s.

First, we use as an input moment bounds proved in the case V = 0 by induction on
p = 1, 2, . . . , εN in Anderson–Guionnet–Zeitouni [1]. Let (λ̃N ,i

t )t≥0, i = 1, . . . , N be the
solution of the modified system of coupled stochastic differential equations with zero potential,

dλ̃N ,i
t =

1
√

N
dW i

t +
β

2N

∑
j ̸=i

dt

λ̃
N ,i
t − λ̃

N , j
t

, i = 1, . . . , N (5.2)

with initial condition λ̃
N ,i
0 ≡ λ

N ,i
0 coinciding with that of (1.1), and X̃ N

t :=
1
N

∑N
i=1δλ̃

N ,i
t

be

the corresponding random point process. Under Ω0 :

(
maxi=1,...,N |λ

N ,i
0 | ≤ R0

)
, an event of

probability 1 − C0e−c0 N , eq. (4.3.45) in [1] holds, namely,

E
[

1Ω0 sup
0≤t≤T

∫
X̃ N

t (dx) |x |
p
]

≤ R1(T )p. (5.3)

(An explicit expression for the constants ε and R1(T ), depending on R0, can be obtained by
following computations on p. 274, as a consequence of Lemma 4.3.17.) The above bound
implies E

[
1Ω0 sup0≤t≤T supi=1,...,N |λ̃

N ,i
t |

p
]

≤ N R1(T )p and then (by Markov’s inequality),

letting R2(t) := eR1(t),

P[1Ω0 sup
0≤t≤T

sup
i=1,...,N

|λ̃N ,i
t | > R2(T )] ≤ Ne−εN . (5.4)

Then, one compares the two eigenvalue processes (λi
t )0≤t≤T and (λ̄i

t )0≤t≤T , adapting the argument
given in [1], Lemma 4.3.6. Let E N ,i

t := λ
N ,i
t − λ̄

N ,i
t − αt (α > 0). Subtracting the sde’s for the
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two processes, one gets

d E N ,i
t

dt
= −

β

2N

∑
j ̸=i

E N ,i
t − E N , j

t

(λN ,i
t − λ

N , j
t )(λ̄N ,i

t − λ̄
N , j
t )

− (V ′(λN ,i
t ) − V ′(λ̄N ,i

t )) − V ′(λ̄N ,i
t ) − α. (5.5)

Whatever the ordering chosen for the eigenvalues, the denominator in (5.5) is always > 0
because eigenvalues never cross. We assume that the event Ω :

(
maxi=1,...,N |λ

N ,i
0 | ≤ R0

)
∩(

sup0≤t≤T supi=1,...,N |λ̄
N ,i
t | ≤ R2(T )

)
is realized, an event of probability 1 − e−c1 N ; then

|V ′(λ̄N ,i
t )| is bounded uniformly in N , i , and t ≤ T by some constant C2 depending on V ;

we assume α > C2. Initially, E N ,i
0 ≤ R0 + R2(T ), i = 1, . . . , N by construction. Assume that

there exists some t < T and i such that E N ,i
t ≥ R3(T ) := R0 + R2(T ) + 1, and let tmin > 0

be the first time at which one such inequality holds, so that E N ,i
tmin = R3(T ) for some i , while

E N , j
t < R3(T ) for t < tmin and j = 1, . . . , N . But then E N ,i

tmin − E N , j
tmin ≥ 0 for all j ̸= i , and

(by convexity of V ) V ′(λN ,i
tmin ) − V ′(λ̄N ,i

tmin ) ≥ 0. Hence
d E N ,i

tmin
dt < 0: a contradiction. Reversing the

signs of the inequalities, one proves similarly that λ̃
N ,i
t − λ

N ,i
t − αt ≤ R3(T ). Concluding: with

high probability, sup0≤t≤T supi=1,...,N |λ
N ,i
t | ≤ R0 + 2R2(T ) + C2T + 1. □
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Appendix A. Generalized transport operators

Many operators in this article are of the following type,

Ht f (x) =

∑
k

vk(t, x)∂xk f (x) + τ (t, x) f (x) (A.1)

with f : Ω → R, where Ω is a domain in Rd (in practice, we need only consider Ω = Π ±),
and v(t, ·) a vector field, resp. τ (t, ·) a function, on Ω . Let us call such operators generalized
transport operators.

It is well-known how to solve PDEs generated by generalized transport operators, i.e. of the
type

∂ ft

∂t
(x) = Ht ft (x) (A.2)

with terminal condition fT ≡ f . Namely, let yt ≡ ΦT
t (y) (called: characteristics of (A.2)) be

the solution of the ode dyt
dt = v(t, yt ) with terminal condition yT = y. One checks immediately

that

ft (y) = ct f (ΦT
t (y)), ct := exp

(
−

∫ T

t
τ (ys) ds

)
(A.3)

is a solution. In particular, supp( ft ), t ≤ T is the inverse image of supp( f ) by ΦT
t ; so, if v

⏐⏐
∂Ω

is
inward on the boundary of some domain Ω containing the support of fT , then supp( fT ) ⊂ Ω
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for all t ≤ T . In the article we actually refer either to the basis trajectory y· = a· + ib· or to the
“extended” trajectory (a· + ib·, c·) as characteristics.

The Jacobian of the ode, Jt :=
dyt
dy , solves the linearized ode d Jt

dt = ∇v(t, yt )Jt with
terminal condition JT = Id. In particular (letting | · | denote the determinant), d

dt

⏐⏐
t=T |Jt | =

Tr(∇v(T, y)) = ∇ · v(T, y). The time-variation of the L1-norm of ft is
d
dt

⏐⏐
t=T

∫
dy | ft (y)| =

∫
dy

(
Re

d
dt

ct (y)
)

| f (y)| −

∫
dy

(
d
dt

⏐⏐
t=T |Jt |

)
| f (y)|

=

∫
dy (Re τ (T, y) − Tr(∇v(T, y))) | f (y)|; (A.4)

it vanishes when Re c = Tr(∇v), in particular when

Ht =

(∑
k

vk(t, x)∂xk

)†

= −

∑
k

vk(t, x)∂xk − ∇ · v(t, x) (A.5)

is in divergence form, i.e. is the adjoint of a transport operator. Thus Ht is the generator of a
strongly continuous semi-group of contractions of L1(R), see e.g. [19], chapter 1. The latter
observation extends to the case when Ht =

(∑
kvk(t, x)∂xk

)†
− τ (t, x) with τ (t, ·) ≤ 0, in the

sense that
∫

dy | ft (y)| ≤
∫

dy | fT (y)| for 0 ≤ t ≤ T .

Appendix B. Stieltjes transforms

We collect in this section some definitions and elementary properties concerning Stieltjes
transforms. We make use of the Fourier transform normalized as follows,

F( f )(s) =

∫
+∞

−∞

f (x)e−ixs dx (B.1)

with inverse F−1(g)(x) =
1

2π

∫
g(s)eixs ds.

Let, for z = a + ib ∈ C \ R

fz(x) =
1

x − z
, x ∈ R. (B.2)

For fixed b ̸= 0, fz(x) may be seen as a convolution kernel Kb,

Kb(x − a) =
1

(x − a) − ib
. (B.3)

Note that

Im (fz)(x) =
b

|x − z|2
=

b
(x − a)2 + b2 , Re (fz)(x) =

x − a
(x − a)2 + b2 . (B.4)

In particular,

Im (fz)(x) ≥ 0 (b > 0). (B.5)

Many estimates are based on the simple remark that∫
b

(x − a)2 + b2 dx = π (b > 0) (B.6)

is a constant. The Plemelj formula,

1
x − i0

= p.v.

(
1
x

)
+ iπδ0 (B.7)
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implies the following boundary value equations for Kb,

lim
b→0+

∫
dy Kb(x − y)φ(y) − lim

b→0−

∫
dy Kb(x − y)φ(y) = 2iπφ(x) (B.8)

lim
b→0+

∫
dy Kb(x − y)φ(y) + lim

b→0−

∫
dy Kb(x − y)φ(y) = 2 p.v.

∫
dy

x − y
φ(y). (B.9)

Then:

F fz(s) = 2iπe−b|s|−ias1s<0 (b > 0), −2iπeb|s|−ias1s>0 (b < 0) (B.10)

hence (for b > 0)

F(Im (fz))(s) = πe−b|s|−ias, F(Re (fz)) = −iπ sgn(s)e−b|s|−ias . (B.11)

Properties of the Stieltjes transform of ρt .
Let Mt (z) := ⟨X t , fz⟩ (b := Im z > 0). Then:

Im (Mt (z)) = ⟨X t ,
b

(x − a)2 + b2 ⟩; (B.12)

|Mt (z)| = |⟨X t ,
1

(x − a) − ib
⟩| ≤ 1/b; (B.13)

|M ′

t (z)| = |⟨X t ,
1

((x − a) − ib)2 ⟩| ≤
1
b
⟨X t ,

b
(x − a)2 + b2 ⟩ =

1
b

Im (Mt (z)). (B.14)

When |a| ≫ R, we get much better estimates, e.g.

|Mt (z)| ≤ 2/|a|, |a| ≥ 2R. (B.15)

On the other hand, if b → 0 and a ∈ supp(X t ), then Mt (z) may diverge in general. In
particular,

|Re (Mt (z))| ≤ C∥ρt∥∞ ln(R/b) (b ≤
R
2

, |a| ≤ 2R). (B.16)

However, if ρt is bounded then Im (Mt (z)) ∈ [0, π∥ρt∥∞]; and Re (Mt (z)) = O(1) if the space
derivative of the density, ρ ′

t , is bounded.
Some distributions.

Let φ ∈ C∞
c be a smooth function supported on [−r, r ], and b > 0. Let

⟨fib, φ⟩ :=

∫
dy

φ(y)
y − ib

. (B.17)

Then

⟨fib, φ⟩ = φ(0)
∫ r

−r

dy
y − ib

+ i
∫ r

−r
dy (φ(y) − φ(0))

b
y2 + |bT |

2

+

∫ r

−r
dy

y(φ(y) − φ(0))
y2 + b2 (B.18)

is O(∥φ∥∞ +r∥φ′
∥∞) since: |

∫ r
−r

dy
y−ib | ≤

∫
dy b

y2+b2 = O(1), and |
y(φ(y)−φ(0))

y2+b2 | ≤ ∥φ′
∥∞. Hence

(as seen by integration by parts), y ↦→ (y − ib)−n (n ≥ 1) is a distribution of order n, namely,⏐⏐⏐⏐∫ dy
φ(y)

(y − ib)n

⏐⏐⏐⏐ = O(∥φ(n−1)
∥∞ + r∥φ(n)

∥∞). (B.19)
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The
( 1

x

)
-kernel and its family.

It is known that

F−1(s ↦→ sgn(s)F f (s))(x) = iH f (x) :=
i
π

p.v.

∫
+∞

−∞

1
x − y

f (y) dy (B.20)

defined for a compactly supported f ∈ C1 either as i
π

limε→0+

∫
|x−y|>ε

1
x−y f (y) dy or as

i
π

∫ f (y)− f (x)
x−y dy, from which by differentiating

F−1(s ↦→ |s|F f (s))(x) = −
1
π

p.v.

∫
+∞

−∞

1
(x − y)2 f (y) dy. (B.21)

For a function f supported on [−R, R], we have the following bounds:⏐⏐⏐⏐p.v.

∫
1

x − y
f (y) dy

⏐⏐⏐⏐ = 1|x |≤2R

⏐⏐⏐⏐∫ x+3R

x−3R

f (y) − f (x)
x − y

dy
⏐⏐⏐⏐+ 1|x |>2R

⏐⏐⏐⏐∫ R

−R

f (y)
x − y

dy
⏐⏐⏐⏐

= 1|x |≤2R O(R∥ f ′
∥∞) + 1|x |>2R O(∥ f ∥∞ R/|x |), (B.22)

and similarly⏐⏐⏐⏐p.v.

∫
1

(x − y)2 f (y) dy
⏐⏐⏐⏐ = 1|x |≤2R

⏐⏐⏐⏐∫ x+3R

x−3R

f ′(y) − f ′(x)
x − y

dy
⏐⏐⏐⏐

+ 1|x |>2R

⏐⏐⏐⏐∫ R

−R

f (y)
(x − y)2 dy

⏐⏐⏐⏐
= 1|x |≤2R O(R∥ f ′′

∥∞) + 1|x |>2R O(∥ f ∥∞ R/x2). (B.23)

References
[1] G.W. Anderson, A. Guionnet, O. Zeitouni, An Introduction to Random Matrices, in: Cambridge Studies in

Advanced Mathematics, vol. 118, Cambridge University Press, 2010.
[2] M. Bender, Global fluctuations in general β Dyson Brownian motion, Stochastic Process. Appl. 118 (6) (2008)

1022–1042.
[3] D. Benedetto, E. Cagliotti, J.A. Carrillo, M. Pulvirenti, A non-Maxwell steady distribution for one-dimensional

granular media, J. Stat. Phys. 91 (1998) 979–990.
[4] J. Carrillo, R. McCann, C. Villani, Kinetic equilibration rates for granular media and related equations: entropy

dissipation and mass transportation estimates, Rev. Mat. Iberoam. 19 (2003) 971–1018.
[5] M. Duits, On global fluctuations for non-colliding processes, arxiv.org/abs/1510.08248.
[6] F.J. Dyson, A Brownian-motion model of the eigenvalues of a random matrix, J. Math. Phys. 3 (1962) 1191–1198.
[7] P.J. Forrester, Log-Gases and Random Matrices, Princeton University Press, 2010.
[8] R.J. Goldston, P.H. Rutherford, An Introduction to Plasma Physics, IOP Publishing, 1995.
[9] S. Israelsson, Asymptotic fluctuations of a particle system with singular interaction, Stochastic Process. Appl. 93

(2001) 25–56.
[10] K. Johansson, On fluctuations of eigenvalues of random Hermitian matrices, Duke Math. J. 91 (1) (1998) 15166204.
[11] S. Li, X.-D. Li, Y.-X. Xie, Generalized Dyson Brownian motion, McKean-Vlasov equation and eigenvalues of

random matrices, arxiv.org/abs/1303.1240. On the Law of Large Numbers for the empirical measure process of
Generalized Dyson Brownian motion, arxiv.org/abs/1407.7234.

[12] A.F. Macedo, A.M.S. Macêdo, Brownian motion ensembles of random matrix theory: A classification scheme and
an integral transform method, Nuclear Phys. B 752 (2006) 439–475.

[13] M.L. Mehta, Random Matrices, Academic Press, 1991.
[14] I. Mitoma, Tightness of probabilities on C([0, 1];S ′) and D([0, 1];S ′), Ann. Probab. 11 (4) (1983) 989–999.
[15] T. Nagao, P.J. Forrester, Multilevel dynamical correlation functions for Dyson’s Brownian model of random

matrices, Phys. Lett. A 247 (1998) 42–46.
[16] F. Otto, The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential

Equations 26 (2001) 101–174.

http://refhub.elsevier.com/S0304-4149(18)30008-5/sb1
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb1
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb1
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb2
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb2
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb2
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb3
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb3
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb3
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb4
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb4
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb4
http://arxiv.org/abs/1510.08248
http://arxiv.org/abs/1510.08248
http://arxiv.org/abs/1510.08248
http://arxiv.org/abs/1510.08248
http://arxiv.org/abs/1510.08248
http://arxiv.org/abs/1510.08248
http://arxiv.org/abs/1510.08248
http://arxiv.org/abs/1510.08248
http://arxiv.org/abs/1510.08248
http://arxiv.org/abs/1510.08248
http://arxiv.org/abs/1510.08248
http://arxiv.org/abs/1510.08248
http://arxiv.org/abs/1510.08248
http://arxiv.org/abs/1510.08248
http://arxiv.org/abs/1510.08248
http://arxiv.org/abs/1510.08248
http://arxiv.org/abs/1510.08248
http://arxiv.org/abs/1510.08248
http://arxiv.org/abs/1510.08248
http://arxiv.org/abs/1510.08248
http://arxiv.org/abs/1510.08248
http://arxiv.org/abs/1510.08248
http://arxiv.org/abs/1510.08248
http://arxiv.org/abs/1510.08248
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb6
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb7
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb8
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb9
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb9
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb9
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb10
http://arxiv.org/abs/1303.1240
http://arxiv.org/abs/1303.1240
http://arxiv.org/abs/1303.1240
http://arxiv.org/abs/1303.1240
http://arxiv.org/abs/1303.1240
http://arxiv.org/abs/1303.1240
http://arxiv.org/abs/1303.1240
http://arxiv.org/abs/1303.1240
http://arxiv.org/abs/1303.1240
http://arxiv.org/abs/1303.1240
http://arxiv.org/abs/1303.1240
http://arxiv.org/abs/1303.1240
http://arxiv.org/abs/1303.1240
http://arxiv.org/abs/1303.1240
http://arxiv.org/abs/1303.1240
http://arxiv.org/abs/1303.1240
http://arxiv.org/abs/1303.1240
http://arxiv.org/abs/1303.1240
http://arxiv.org/abs/1303.1240
http://arxiv.org/abs/1303.1240
http://arxiv.org/abs/1303.1240
http://arxiv.org/abs/1303.1240
http://arxiv.org/abs/1303.1240
http://arxiv.org/abs/1407.7234
http://arxiv.org/abs/1407.7234
http://arxiv.org/abs/1407.7234
http://arxiv.org/abs/1407.7234
http://arxiv.org/abs/1407.7234
http://arxiv.org/abs/1407.7234
http://arxiv.org/abs/1407.7234
http://arxiv.org/abs/1407.7234
http://arxiv.org/abs/1407.7234
http://arxiv.org/abs/1407.7234
http://arxiv.org/abs/1407.7234
http://arxiv.org/abs/1407.7234
http://arxiv.org/abs/1407.7234
http://arxiv.org/abs/1407.7234
http://arxiv.org/abs/1407.7234
http://arxiv.org/abs/1407.7234
http://arxiv.org/abs/1407.7234
http://arxiv.org/abs/1407.7234
http://arxiv.org/abs/1407.7234
http://arxiv.org/abs/1407.7234
http://arxiv.org/abs/1407.7234
http://arxiv.org/abs/1407.7234
http://arxiv.org/abs/1407.7234
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb12
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb12
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb12
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb13
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb14
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb15
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb15
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb15
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb16
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb16
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb16


J. Unterberger / Stochastic Processes and their Applications 128 (2018) 4104–4153 4153

[17] F. Otto, C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality,
J. Funct. Anal. 173 (2000) 361–400.

[18] L. Pastur, M. Shcherbina, Eigenvalue Distribution of Large Random Matrices, in: Mathematical Surveys and
Monographs, vol. 171, American Mathematical Society, 2011.

[19] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, in: Applied Mathe-
matical Sciences, vol. 44, Springer-Verlag, 1983.

[20] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer, 1991.
[21] L. Rogers, Z. Shi, Interacting Brownian particles and the Wigner law, Probab. Theory Related Fields 95 (4) (1993)

555–570.
[22] H. Tanabe, Equations of Evolution, in: Monographs and Studies in Mathematics, vol. 6, Pitman, 1979.
[23] F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, 1967.
[24] J. Unterberger, Global fluctuations for 1D log-gas dynamics: the stationary regime (in preparation).
[25] B. Valko, B. Virag, Continuum limits of random matrices and the Brownian carousel, Invent. Math. 177 (2009)

463–508.
[26] C. Villani, Optimal Transport, Old and New, Springer-Verlag, Berlin, 2009.

http://refhub.elsevier.com/S0304-4149(18)30008-5/sb17
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb17
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb17
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb18
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb18
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb18
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb19
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb19
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb19
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb20
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb21
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb21
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb21
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb22
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb23
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb25
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb25
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb25
http://refhub.elsevier.com/S0304-4149(18)30008-5/sb26

	Global fluctuations for 1D log-gas dynamics
	Introduction and statement of main results
	Introduction
	Notations and basic facts
	Main result and outline of the article

	Stieltjes decompositions
	Generators
	The  ( 1x ) -kernel part
	The potential-dependent part: general introduction
	Constant term
	Linear term
	Quadratic term
	Recapitulating: the transport contribution
	Main remainder term
	Away from the support
	Boundary terms

	Gaussianity of the fluctuation process
	Large deviation bound for the support of the measure
	Acknowledgments
	Generalized transport operators
	Stieltjes transforms
	References


