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Abstract

Peng (2008) proved the Central Limit Theorem under a sublinear expectation:
Let (Xi )i≥1 be a sequence of i.i.d random variables under a sublinear expectation Ê with Ê[X1] =

Ê[−X1] = 0 and Ê[|X1|
3] < ∞. Setting Wn :=

X1+···+Xn√
n

, we have, for each bounded Lipschitz
function ϕ,

lim
n→∞

⏐⏐⏐⏐Ê[ϕ(Wn)] − NG (ϕ)
⏐⏐⏐⏐ = 0,

where NG is the G-normal distribution with G(a) =
1
2 Ê[aX2

1], a ∈ R
In this paper, we shall give an estimate of the convergence rate of this CLT by Stein’s method under

sublinear expectations:
Under the same conditions as above, there exists a constant α ∈ (0, 1) depending on σ and σ , and

a positive constant Cα,G depending on α, σ and σ such that

sup
|ϕ|Lip≤1

⏐⏐⏐⏐Ê[ϕ(Wn)] − NG (ϕ)
⏐⏐⏐⏐ ≤ Cα,G

Ê[|X1|
2+α]

n
α
2

,

where σ 2
= Ê[X2

1], σ 2
= −Ê[−X2

1] > 0 and NG is the G-normal distribution with

G(a) =
1
2

Ê[aX2
1] =

1
2

(σ 2a+
− σ 2a−), a ∈ R.
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1. Introduction

The Central Limit Theorem is one of the most striking and useful results in probability and
statistics, and explains why the normal distribution appears in areas as diverse as gambling,
measurement error, sampling, and statistical mechanics. In essence, the Central Limit Theorem
in its classical form states that a normal approximation applies to the distribution of quantities
that can be modeled as the sum of many independent contributions, all of which are roughly
the same size.

Motivated by problems of model uncertainty in statistics, measures of risk and superhedging
in finance, Peng [10] introduced the notion of sublinear expectations. A random variable X in
a sublinear expectation space (Ω ,H, Ê) with Ê[|X |

3] < ∞ is called G-normally distributed if
for any independent copy X ′ of X and α, β ∈ R,

αX + βX ′ d
=

√
α2 + β2 X.

As known, if Ê is a linear expectation generated by a probability, a random variable X with
the above property is normally distributed. Suppose X is G-normally distributed under Ê. For
ϕ ∈ Cb,Lip(R), the collection of bounded Lipschitz functions on R, set NG[ϕ] = Ê[ϕ(X )]. We
call NG , a sublinear expectation on Cb,Lip(R), a G-normal distribution. Here, the function G,
defined by G(a) =

1
2 Ê[aX2], a ∈ R, characterizes the variances of X .

In the seminal paper [7], Peng S. proved the Central Limit Theorem under a sublinear
expectation, which is a milestone in the theory of sublinear expectations.

Theorem 1.1. Let (X i )i≥1 be a sequence of i.i.d random variables under a sublinear
expectation Ê with Ê[X1] = Ê[−X1] = 0 and Ê[|X1|

3] < ∞. Setting Wn :=
X1+···+Xn√

n ,
we have, for each ϕ ∈ Cb,Lip(R),

lim
n→∞

⏐⏐⏐⏐Ê[ϕ(Wn)] − NG(ϕ)
⏐⏐⏐⏐ = 0,

where NG is the G-normal distribution with G(a) =
1
2 Ê[aX2

1], a ∈ R.

Just like the linear case, this theorem mathematically justifies, at least asymptotically, the
G-normal distribution would be may be used to approximate quantities which can be formulated
as the sums of independent and identically distributed random variables under a sublinear
expectation. However, even though in practice sample sizes may be large, or may appear
to be sufficient for the purposes to handle, depending on that and other factors, the normal
approximation may or may not be accurate. It is here that the need for the evaluation of the
quality of the normal approximation arises.

For the linear case, Stein’s method, which made its first appearance in the ground breaking
work of Stein [13], is a powerful tool to estimate the error of normal approximation. The
cornerstone of Stein’s method is the Stein equation (refer to [1] for more details): For a standard
normally distributed random variable Z and given ϕ, solve the following equation for f ,

f ′(x) − x f (x) = ϕ(x) − E[ϕ(Z )]. (1.1)
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Then, for any random variable W , evaluate the left hand side of the Stein equation at W and
take the expectation, obtaining E[ϕ(W )] − E[ϕ(Z )].

The objective of this paper is to introduce the ideas of Stein’s method to the nonlinear case.
The expected Stein equation for G-normal distribution would be

G( f ′′(x)) −
x
2

f ′(x) = ϕ(x) − NG[ϕ]. (1.2)

Unfortunately, for ϕ ∈ Cb,Lip(R), Eq. (1.2) generally does not have a solution. Therefore, the
first step is to find a substitute of the Stein equation.

For ϕ ∈ Cb,Lip(R), the function u(x, t) := NG[ϕ(x +
√

t ·)] is the unique viscosity solution
of the G-heat equation below

∂t u − G(D2
x u) = 0, (x, t) ∈ R × (0,∞),

u(x, 0) = ϕ(x),

where G(a) =
1
2NG[ax2], a ∈ R, is determined by the variances σ 2

:= NG[x2] and
σ 2

:= −NG[−x2]. So, if σ = σ = σ , NG is nothing but the classical normal distribution
N (0, σ 2).

Let Θ be a weakly compact subset of probability measures on (R,B(R)). For the sublinear
expectation N [ϕ] = supµ∈Θ µ[ϕ] on Cb,Lip(R) and a function φ ∈ Cb,Lip(R), set

w(t) = N [v(
√

1 − t ·, t)],

where v is the solution to the G-heat equation with initial value φ. Then w(1) = NG[φ],
w(0) = N [φ], and it can be shown that, for a.e. s ∈ (0, 1),

w′(s) =
1

1 − s
µs[G(φ′′

s (x)) −
1
2

xφ′

s(x)], (1.3)

where φs(x) = v(
√

1 − sx, s) and µs ∈ Θ with µs[φs] = N [φs]. From this, we get a substitute
of the Stein equation.

Step 1. NG[φ] − N [φ] =
∫ 1

0
1

1−sµs[G(φ′′
s (x)) −

1
2 xφ′

s(x)]ds.
Return to the linear case, i.e., σ = σ and Θ = {µ} is a singleton, the above formula will

reduce to the classical Stein equation (see Remark 4.2 for details).
Now the next task is to calculate the expectation on the right side of the equality (1.3).
Let α ∈ (0, 1). Suppose N [x] = N [−x] = 0 and N [|x |

2+α] < ∞. For φ ∈ C2,α
b (R) and

µ ∈ Θ with µ[φ] = N [φ], we have

Step 2.
⏐⏐⏐⏐µ[G(φ′′(x)) −

1
2 xφ′(x)]

⏐⏐⏐⏐ ≤ 2[φ′′]αN [|x |
2+α], where G(a) =

1
2N [a|x |

2], a ∈ R.

It merits to emphasize that the function G in Step 1 is determined by the variances of NG

and that the function G in Step 2 is determined by the variances of N . In other words, to
estimate NG[φ] − N [φ] applying Step 1 and Step 2 requires that NG and N have the same
variances.

Besides, note that φs(x) in the equality (1.3) is the solution to the G-heat equation.
Therefore, to apply the estimate in Step 2, we need the regularity properties of the G-heat
equation, which can be found in the literature on the partial differential equations (see Section 3
for details).

Step 3. [D2
xv(·, t)]α ≤ cα,G 1

t
1
2 +

α
2
|φ|Lip for some α ∈ (0, 1) and cα,G > 0.

Following these three steps, we give an estimate of the convergence rate of Peng’s Central
Limit Theorem.
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Under the same conditions as those in Theorem 1.1, there exists a constant α ∈ (0, 1)
depending on σ and σ , and a positive constant Cα,G depending on α, σ and σ such that

sup
|ϕ|Lip≤1

⏐⏐⏐⏐Ê[ϕ(
X1 + · · · + Xn

√
n

)] − NG(ϕ)
⏐⏐⏐⏐ ≤ Cα,G

Ê[|X1|
2+α]

n
α
2

,

where σ 2
= Ê[X2

1], σ 2
= −Ê[−X2

1] > 0 and NG is the G-normal distribution with

G(a) =
1
2

Ê[aX2
1] =

1
2

(σ 2a+
− σ 2a−), a ∈ R.

Here α is the Hölder exponent in Step 3, and Cα,G can be chosen as 4
1−α

cα,G with cα,G the
α-Hölder constant in Step 3.

In Section 2, we review the basic notions and results of sublinear expectations. In Section 3,
we introduce the regularity properties of the G-heat equation that will be used in this paper.
In Section 4, we shall generalize the idea of Stein’s method to the sublinear expectation
space, based on which we get the rate of convergence of Peng’s Central Limit Theorem. In
Section 5, we consider the CLT under sublinear expectations of a sequence of independent
random variables which may not be identically distributed.

2. Basic notions of sublinear expectations

Here we review basic notions and results of sublinear expectations. The readers may refer
to [7–12] for more details.

Let Ω be a given set and let H be a linear space of real valued functions defined on Ω such
that for any X ∈ H and ϕ ∈ Cb,Lip(R), we have ϕ(X ) ∈ H. The space H is considered as our
space of random variables.

Definition 2.1. A sublinear expectation is a functional Ê : H → R satisfying

E1. Ê[X ] ≥ Ê[Y ], if X ≥ Y ;

E2. Ê[λX ] = λÊ[X ], for λ ≥ 0;

E3. Ê[c] = c, for c ∈ R;

E4. Ê[X + Y ] ≤ Ê[X ] + Ê[Y ], for X, Y ∈ H;

E5. Ê[ϕn(X )] ↓ 0, for X ∈ H and ϕn ∈ Cb,Lip(R), ϕn ↓ 0.

The triple (Ω ,H, Ê) is called a sublinear expectation space. For X ∈ H, set

N X [ϕ] = Ê[ϕ(X )], ϕ ∈ Cb,Lip(R),

which is a sublinear expectation on Cb,Lip(R). X follows the distribution N X , and we write
X ∼ N X . A functional N is a sublinear expectation on Cb,Lip(R) if and only if it can be
represented as the supremum expectation of a weakly compact subset Θ of probability measures
on (R,B(R)) (see [2]),

N [ϕ] = sup
µ∈Θ

µ[ϕ], for all ϕ ∈ Cb,Lip(R). (2.1)

Definition 2.2. Let (Ω ,H, Ê) be a sublinear expectation space. We say a random vector
X = (X1, . . . , Xm) ∈ Hm is independent of Y = (Y1, . . . , Yn) ∈ Hn if for any ϕ ∈ Cb,Lip(Rn+m)

Ê[ϕ(Y,X)] = Ê[Ê[ϕ(y,X)]|y=Y].
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In a sublinear expectation space, the fact that X is independent of Y does not imply that Y
is independent of X. We say (X i )i≥1 is a sequence of independent random variables, if X i+1

is independent of (X1, . . . , X i ) for all i ∈ N.

Definition 2.3. Let (Ω ,H, Ê) and (Ω̃ , H̃, Ẽ) be two sublinear expectations. A random vector
X in (Ω ,H, Ê) is said to be identically distributed with another random vector Y in (Ω̃ , H̃, Ẽ)
(write X d

= Y), if for any bounded Lipschitz function ϕ,

Ê[ϕ(X )] = Ẽ[ϕ(Y )].

3. Regularity estimates for the G-heat equation

In this section, we shall introduce a regularity result for the G-heat equation, which is crucial
to obtain the convergence rate in Peng’s Central Limit Theorem.

∂t u(x, t) − G(D2
x u(x, t)) = 0, (x, t) ∈ R × (0,∞), (3.1)

u(x, 0) = ϕ(x), (3.2)

where G(a) =
1
2 (σ 2a+

− σ 2a−) for some σ ≥ σ > 0.
Throughout this paper, we shall always suppose that σ > 0.
For regularity estimates of (more general) fully nonlinear partial differential equations, we

refer the readers to the papers by Kruzhkov [4], Krylov [5], Wang [14], and the book by
Lieberman [6] and the references therein. Here we only introduce a result that will be used in
this paper.

First of all, for any initial value ϕ ∈ Cb,Lip(R), the collection of bounded Lipschitz functions
on R, the G-heat equation has a unique classical solution. Furthermore, we have the following
interior regularity estimate:

There exists a constant α ∈ (0, 1) depending on σ and σ , and a positive constant cα,G
depending on α, σ and σ such that if u ∈ C2,1(R × (0,+∞)) is a solution to the G-heat
equation, we have

[D2
x u(·, 1)]α ≤ cα,G∥Du∥∞,R×[0,1]. (3.3)

Here, [ f ]α = supx,y∈R,x ̸=y
| f (x)− f (y)|

|x−y|α
and ∥v∥∞,R×[0,1] = sup(x,t)∈R×(0,1] |v(x, t)|.

Set vε(x, t) =
1
ε2 u(εx, ε2t) for ε ∈ (0, 1). Then vε is also a solution to the G-heat equation.

So we have

[D2
xvε(·, 1)]α ≤ cα,G∥Dvε∥∞,R×[0,1].

Noting that

[D2
xvε(·, 1)]α = εα[D2

x u(·, ε2)]α

and

∥Dxvε∥∞,R×[0,1] ≤ ε−1
∥Dx u∥∞,R×[0,1],

we get

ε1+α[D2
x u(·, ε2)]α ≤ cα,G∥Dx u∥∞,R×[0,1].
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We summarize the above arguments in the following theorem.

Theorem 3.1. There exists a constant α ∈ (0, 1) depending on σ and σ , and a positive
constant cα,G depending on α, σ and σ such that if u ∈ C2,1(R× (0,+∞)) is a solution to the
G-heat equation, we have, for t ∈ (0, 1],

[D2
x u(·, t)]α ≤ cα,G

1

t
1
2 +

α
2
∥Dx u∥∞,R×[0,1]. (3.4)

For ϕ ∈ Cb,Lip(R), if u is the solution to the G-heat equation with initial value ϕ, we know
that u(·, t) is also uniformly Lipschitz continuous with

∥Dx u∥∞,R×[0,1] ≤ |ϕ|Lip.

Hence, we have the following immediate corollary of Theorem 3.1.

Corollary 3.2. There exists a constant α ∈ (0, 1) depending on σ and σ , and a positive
constant cα,G depending on α, σ and σ such that if ϕ ∈ Cb,Lip(R) with |ϕ|Lip ≤ 1, and u is
the solution to the G-heat equation with initial value ϕ, then we have

[D2
x u(·, t)]α ≤ cα,G

1

t
1
2 +

α
2
. (3.5)

4. Rate of convergence of Peng’s CLT

Let N [ϕ] = supµ∈Θ µ[ϕ] be a sublinear expectation on Cb,Lip(R), where Θ is a weakly
compact subset of probability measures on (R,B(R)). Sometimes, we also write N [ψ] for
supµ∈Θ µ[ψ] when ψ is a Borel measurable function such that supµ∈Θ µ[ψ] makes sense.
Throughout this article, we suppose the following additional property:

(H) limN→∞ N [|x |1[|x |>N ]] = 0.

Note that the condition (H ) is naturally satisfied if N [|x |
1+δ] < ∞ for some δ > 0.

Define ξ : R → R by ξ (x) = x . Sometimes, we write NG[ϕ], N [ϕ] and µ[ϕ] by
EG[ϕ(ξ )], E[ϕ(ξ )] and Eµ[ϕ(ξ )], respectively. For ϕ ∈ Cb,Lip(R), set Θϕ = {µ ∈ Θ :

Eµ[ϕ(ξ )] = E[ϕ(ξ )]}.

Lemma 4.1. For φ ∈ Cb,Lip(R), let v be the solution to the G-heat equation with initial value
φ and set φs(x) := v(

√
1 − sx, s). Then

NG[φ] − N [φ] =

∫ 1

0

1
1 − s

sup
µs∈Θs

Eµs [LGφs(ξ )]ds =

∫ 1

0

1
1 − s

inf
µs∈Θs

Eµs [LGφs(ξ )]ds,

(4.1)

where LGφs(x) = G(φ′′
s (x)) −

x
2φ

′
s(x), Θs = Θφs . Particularly, we have, for a.e. s ∈ (0, 1),

sup
µs∈Θs

Eµs [LGφs(ξ )] = inf
µs∈Θs

Eµs [LGφs(ξ )].
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Proof. Set w(s) = E[v(
√

1 − sξ, s)]. Then w(1) = NG[φ] and w(0) = N [φ]. By Lemma 2.4
in Hu, Peng and Song [3], we have, for s ∈ (0, 1),

∂+

s w(s) : = lim
δ→0+

w(s + δ) − w(s)
δ

=
1

1 − s
sup
µs∈Θs

Eµs [LGφs(ξ )]

and

∂−

s w(s) : = lim
δ→0+

w(s − δ) − w(s)
−δ

=
1

1 − s
inf

µs∈Θs
Eµs [LGφs(ξ )].

Noting that w is continuous on [0, 1] and locally Lipschitz continuous on (0, 1) by the
regularity properties of the solution v of the G-heat equation, we have w′(s) = ∂+

s w(s) =

∂−
s w(s) for a.e. s ∈ (0, 1) and consequently

w(1) − w(0) =

∫ 1

0
∂+

s w(s)ds =

∫ 1

0
∂−

s w(s)ds. □

Remark 4.2. Suppose that G(a) =
1
2NG[ax2] =

1
2σ

2a is linear, i.e., NG = N (0, σ 2), and
that N is a linear expectation, i.e., Θ = {µ} is a singleton. Then (4.1) can be rewritten as

E[φ(Z )]− Eµ[φ(ξ )] = Eµ[
∫ 1

0

1
1 − s

(
σ 2

2
φ′′

s (ξ )−
ξ

2
φ′

s(ξ )
)

ds] = Eµ[
σ 2

2
g′′(ξ )−

ξ

2
g′(ξ )],

where g(x) =
∫ 1

0
1

1−sφs(x)ds and Z ∼ N (0, σ 2) under E . Since this equality holds for any
distribution µ, we have, by choosing µ = δx ,

E[φ(Z )] − φ(x) =
σ 2

2
g′′(x) −

x
2

g′(x), x ∈ R,

which is just the classical Stein Equation. Eq. (4.1) will be used as an analogue of the Stein
equation under sublinear expectations.

The next Lemma gives an estimate of the expectations on the right hand of Eq. (4.1).

Lemma 4.3. Let α ∈ (0, 1]. Suppose E[ξ ] = E[−ξ ] = 0 and E[|ξ |2+α] < ∞. For φ ∈ C2,α
b (R)

and µ ∈ Θφ , we have⏐⏐⏐⏐Eµ[
ξ

2
φ′(ξ ) − G(φ′′(ξ ))]

⏐⏐⏐⏐ ≤ 2[φ′′]αE[|ξ |2+α],

where G(a) =
1
2E[a|ξ |2], a ∈ R.

Proof. Taylor’s formula gives

φ(ξ ) = φ(0) + φ′(0)ξ +
1
2
φ′′(0)|ξ |2 + Rξ , (4.2)

φ′(ξ ) = φ′(0) + φ′′(0)ξ + R′

ξ , (4.3)

φ′′(ξ ) = φ′′(0) + R′′

ξ , (4.4)

with |Rξ | ≤
1
2 [φ′′]α|ξ |2+α , |R′

ξ | ≤ [φ′′]α|ξ |1+α and |R′′

ξ | ≤ [φ′′]α|ξ |α .
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Set A := E[φ(ξ )] = Eµ[φ(ξ )]. Then

A = E[φ(ξ )] = E[φ(0) + φ′(0)ξ +
1
2
φ′′(0)|ξ |2 + Rξ ]

≤ φ(0) + E[
1
2
φ′′(0)|ξ |2] + E[Rξ ]

≤ φ(0) + G(φ′′(0)) +
1
2

[φ′′]αE[|ξ |2+α],

and

A = E[φ(ξ )] = E[φ(0) + φ′(0)ξ +
1
2
φ′′(0)|ξ |2 + Rξ ]

≥ φ(0) + E[
1
2
φ′′(0)|ξ |2] − E[−Rξ ]

≥ φ(0) + G(φ′′(0)) −
1
2

[φ′′]αE[|ξ |2+α].

Therefore,⏐⏐⏐⏐A − φ(0) − G(φ′′(0))
⏐⏐⏐⏐ ≤

1
2

[φ′′]αE[|ξ |2+α].

Noting that A = Eµ[φ(ξ )] = φ(0) +
1
2φ

′′(0)Eµ[|ξ |2] + Eµ[Rξ ], we have⏐⏐⏐⏐1
2
φ′′(0)Eµ[|ξ |2]−G(φ′′(0))

⏐⏐⏐⏐ =

⏐⏐⏐⏐A−φ(0)− Eµ[Rξ ]−G(φ′′(0))
⏐⏐⏐⏐ ≤ [φ′′]αE[|ξ |2+α]. (4.5)

Now let us compute the expectation Eµ[ ξ2φ
′(ξ ) − G(φ′′(ξ ))]. By (4.3) and (4.4), we have

ξ

2
φ′(ξ ) − G(φ′′(ξ ))

=
ξ

2
(φ′(0) + φ′′(0)ξ + R′

ξ ) − G(φ′′(0) + R′′

ξ )

=
ξ

2
φ′(0) + [

1
2
φ′′(0)|ξ |2 − G(φ′′(0))] + [G(φ′′(0)) − G(φ′′(0) + R′′

ξ )] +
ξ

2
R′

ξ .

So, by (4.5),⏐⏐⏐⏐Eµ[
ξ

2
φ′(ξ ) − G(φ′′(ξ ))]

⏐⏐⏐⏐
=

⏐⏐⏐⏐Eµ[
1
2
φ′′(0)|ξ |2 − G(φ′′(0))] + Eµ[G(φ′′(0)) − G(φ′′(0) + R′′

ξ )] +
1
2

Eµ[ξ R′

ξ ]
⏐⏐⏐⏐

≤ [φ′′]αE[|ξ |2+α] +
1
2

[φ′′]ασ 2E[|ξ |α] +
1
2

[φ′′]αE[|ξ |2+α]

≤ 2[φ′′]αE[|ξ |2+α].

The last inequality holds since

E[|ξ |2]E[|ξ |α] ≤
(
E[|ξ |2×

2+α
2 ]

) 2
2+α

(
E[|ξ |α×

2+α
α ]

) α
2+α = E[|ξ |2+α]. □

Remark 4.4. We emphasize that the function G in Lemma 4.1 is determined by the variances
of NG and that the function G in Lemma 4.3 is determined by the variances of N . In other
words, to estimate NG[φ] − N [φ] applying these two lemmas requires that NG and N have
the same variances.
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With these preparations, we are now ready to prove the convergence rate of Peng’s Central
Limit Theorem under sublinear expectations.

Theorem 4.5. Let (X i )i≥1 be a sequence of i.i.d random variables under a sublinear
expectation Ê with Ê[X1] = Ê[−X1] = 0 and Ê[X2

1] = σ 2
≥ −Ê[−X2

1] = σ 2 > 0.
For ϕ ∈ Cb,Lip(R), let u be the solution to the G-heat equation with initial value ϕ. Setting
Wn :=

X1+···+Xn√
n , we have, for α ∈ (0, 1],⏐⏐⏐⏐Ê[ϕ(Wn)] − NG(ϕ)

⏐⏐⏐⏐ ≤ 2
∫ 1

0
[D2

x u(·, s)]αds
Ê[|X1|

2+α]

n
α
2

,

where NG is the G-normal distribution with G(a) =
1
2 Ê[aX2

1].

Proof. Let u(x, t) be the solution to the G-heat equation with u(x, 0) = ϕ(x). Assume∫ 1
0 [D2

x u(·, s)]αds < ∞ and Ê[|X1|
2+α] < ∞. For the other case, the result is trivial.

Fix n ∈ N. Set, for 1 ≤ i ≤ n,

ξi,n =
X i
√

n
, W0,n = 0, Wi,n =

i∑
k=1

ξk,n,

and, for 0 ≤ i ≤ n,

Ai,n = Ê[u(Wi,n, 1 −
i
n

)].

Then An,n = Ê[ϕ(Wn)], A0,n = NG[ϕ], and⏐⏐⏐⏐Ê[ϕ(Wn)] − NG[ϕ]
⏐⏐⏐⏐ ≤

n∑
i=1

⏐⏐Ai,n − Ai−1,n
⏐⏐ (4.6)

=

n∑
i=1

⏐⏐⏐⏐Ê[bi,n(Wi−1,n)] − Ê[ci,n(Wi−1,n)]
⏐⏐⏐⏐, (4.7)

≤

n∑
i=1

sup
x∈R

⏐⏐bi,n(x) − ci,n(x)
⏐⏐ (4.8)

where bi,n(x) = Ê[u(x +
Xi√

n , 1 −
i
n )] and ci,n(x) = EG[u(x +

ξ
√

n , 1 −
i
n )]. Here and below we

write EG[φ(ξ )] for NG[φ].
Let us now compute bi,n(x) − ci,n(x).
Set φ(y) := φx,i,n(y) = u(x +

y
√

n , 1 −
i
n ). Then ci,n(x) = NG[φ] and bi,n(x) = Ê[φ(X1)].

The latter, as a sublinear expectation on Cb,Lip(R), can be represented as

Ê[φ(X1)] = sup
µ∈Θ

µ[φ],

where Θ is a weakly compact subset of probabilities on R. In the sequel, we employ the
notations in Lemma 4.1. By this lemma, we have

ci,n(x) − bi,n(x) =

∫ 1

0

1
1 − s

sup
µs∈Θs

µs[LGφs]ds =

∫ 1

0

1
1 − s

inf
µs∈Θs

µs[LGφs]ds,
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where

φs(y) = EG[φ(
√

1 − sy +
√

sξ )]

= EG[u(x +

√
1 − s

n
y +

√
s
n
ξ, 1 −

i
n

)]

= u(x +

√
1 − s

n
y, 1 −

i
n

+
s
n

).

Therefore

[D2
yφs]α = (

1 − s
n

)1+
α
2 [D2

x u(·, 1 −
i
n

+
s
n

)]α.

Now Lemma 4.3 gives⏐⏐⏐⏐bi,n(x) − ci,n(x)
⏐⏐⏐⏐ ≤

∫ 1

0

2
1 − s

[D2
yφs]αds × Ê[|X1|

2+α]

=

∫ 1

0

2(1 − s)
α
2

n1+
α
2

[D2
x u(·, 1 −

i
n

+
s
n

)]αds × Ê[|X1|
2+α]

≤

∫ 1

0

2

n1+
α
2

[D2
x u(·, 1 −

i
n

+
s
n

)]αds × Ê[|X1|
2+α]

=
2

n
α
2

∫ 1−
i−1

n

1−
i
n

[D2
x u(·, s)]αds × Ê[|X1|

2+α].

Hence,⏐⏐⏐⏐Ê[ϕ(Wn)] − NG[ϕ]
⏐⏐⏐⏐ ≤

n∑
i=1

sup
x∈R

⏐⏐bi,n(x) − ci,n(x)
⏐⏐

≤
2

n
α
2

∫ 1

0
[D2

x u(·, s)]αds × Ê[|X1|
2+α]. □

Corollary 4.6. Let (X i )i≥1 be a sequence of i.i.d random variables under a sublinear
expectation Ê with Ê[X1] = Ê[−X1] = 0 and Ê[X2

1] = σ 2
≥ −Ê[−X2

1] = σ 2 > 0. Setting
Wn :=

X1+···+Xn√
n , then there exists a constant α ∈ (0, 1) depending on σ and σ , and a positive

constant Cα,G depending on α, σ and σ such that

sup
|ϕ|Lip≤1

⏐⏐⏐⏐Ê[ϕ(Wn)] − NG(ϕ)
⏐⏐⏐⏐ ≤ Cα,G

Ê[|X1|
2+α]

n
α
2

,

where NG is the G-normal distribution with G(a) =
1
2 Ê[aX2

1].

Here α is the Hölder exponent in Theorem 3.1, and Cα,G can be chosen as 4
1−α

cα,G with
cα,G the α-Hölder constant in the same theorem.

Proof. The conclusion follows immediately from Theorem 4.5 and Corollary 3.2. □

5. Non-identically distributed Case

In this section, we consider the normal approximation for an independent but not necessarily
identically distributed sequence of random variables. To do so, we first introduce some
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notations. For a random variable X in a sublinear expectation space with σ 2
:= Ê[X2] ≥

−Ê[−X2] =: σ 2 > 0, set β :=
σ
σ

and σ :=
σ+σ

2 . Now we can use β, σ to characterize
the variances of a random variable X in a sublinear expectation space. For example, we
shall write Nβ(0, σ 2) for the G-normal distribution NG , and write Nβ for Nβ(0, 1). Clearly,
N1(0, σ 2) = N (0, σ 2), the classical normal distribution.

In this section, we shall fix the ratio β ≥ 1 of variances as a constant and call σ 2 the
variance. We write Gβ for the function G with σ =

2
1+β

and σ =
2β

1+β
. So the Gβ-normal

distribution is Nβ .

Theorem 5.1. Let (ξi )1≤i≤n be a sequence of independent random variables under a sublinear
expectation Ê. We suppose further that, for each 1 ≤ i ≤ n, ξi has finite variance σ 2

i and mean
0, i.e., Ê[ξi ] = Ê[−ξi ] = 0. Setting W := ξ1 + · · · + ξn and σ 2

:= Σ n
i=1σ

2
i , then there exists a

constant α ∈ (0, 1) depending on β, and a positive constant Cα,β depending on α, β such that

sup
|ϕ|Lip≤1

⏐⏐⏐⏐Ê[ϕ(
W
σ

)] − Nβ(ϕ)
⏐⏐⏐⏐ ≤ Cα,β sup

1≤i≤n

{
Ê[|ξi |

2+α]

σ 2+α
i

(
σi

σ
)α

}
.

Here α is the Hölder exponent in Theorem 3.1, and Cα,β can be chosen as 4
1−α

cα,Gβ with
cα,Gβ the α-Hölder constant in the same theorem.

Proof. The proof is adapted from that of Theorem 4.5.
Set, for 1 ≤ i ≤ n,

t0 = 0, ti =
Σ i

k=1σ
2
k

σ 2 , W0 = 0, Wi =

i∑
k=1

ξk

σ
.

and, for 0 ≤ i ≤ n,

Ai = Ê[u(Wi , 1 − ti )],

where u(x, t) is the solution to the standard Gβ-heat equation with u(x, 0) = ϕ(x).
Then An = Ê[ϕ(Wn)], A0 = Nβ[ϕ], and⏐⏐⏐⏐Ê[ϕ(Wn)] − Nβ[ϕ]

⏐⏐⏐⏐ ≤

n∑
i=1

⏐⏐Ai − Ai−1
⏐⏐ (5.1)

=

n∑
i=1

⏐⏐⏐⏐Ê[bi (Wi−1)] − Ê[ci (Wi−1)]
⏐⏐⏐⏐, (5.2)

≤

n∑
i=1

sup
x∈R

⏐⏐bi (x) − ci (x)
⏐⏐ (5.3)

where bi (x) = Ê[u(x +
ξi
σ
, 1− ti )] and ci (x) = Eβ[u(x +

σi ξ
σ
, 1− ti )]. Here and below we write

Eβ[φ(ξ )] for Nβ[φ].
Let us now compute bi (x) − ci (x).
Set φ(y) := φx,i (y) = u(x +

σi y
σ
, 1 − ti ). Then ci (x) = Nβ[φ] and bi (x) = Ê[φ( ξi

σi
)]. The

latter, as a sublinear expectation on Cb,Lip(R), can be represented as

Ê[φ(
ξi

σi
)] = sup

µ∈Θ
µ[φ],
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where Θ is a weakly compact subset of probabilities on R. In the sequel, we employ the
notations in Lemma 4.1. By this lemma, we have

ci (x) − bi (x) =

∫ 1

0

1
1 − s

sup
µs∈Θs

µs[LGβφs]ds =

∫ 1

0

1
1 − s

inf
µs∈Θs

µs[LGβφs]ds,

where

φs(y) = Eβ[φ(
√

1 − sy +
√

sξ )]

= Eβ[u(x +
√

1 − s
σi

σ
y +

√
s
σi

σ
ξ, 1 − ti )]

= u(x +
√

1 − s
σi

σ
y, 1 − ti + s

σ 2
i

σ 2 ).

Therefore

[D2
yφs]α = (

σ 2
i

σ 2 (1 − s))1+
α
2 [D2

x u(·, 1 − ti + s
σ 2

i

σ 2 )]α

≤ cα,Gβ (
σ 2

i

σ 2 (1 − s))1+
α
2 (1 − ti + s

σ 2
i

σ 2 )−( 1
2 +

α
2 ).

Now Lemma 4.3 gives, noting that Gβ(a) =
1
2 Ê[a( ξi

σi
)2],⏐⏐⏐⏐bi,n(x) − ci,n(x)

⏐⏐⏐⏐ ≤

∫ 1

0

2
1 − s

[D2
yφs]αds ×

Ê[|ξi |
2+α]

σ 2+α
i

≤ 2cα,Gβ
σ 2

i

σ 2

∫ 1

0
(
σ 2

i

σ 2 (1 − s))
α
2 (1 − ti +

σ 2
i

σ 2 s)−( 1
2 +

α
2 )ds ×

Ê[|ξi |
2+α]

σ 2+α
i

≤ 2cα,Gβ (
σ 2

i

σ 2 )1+
α
2

∫ 1

0
(1 − ti +

σ 2
i

σ 2 s)−( 1
2 +

α
2 )ds ×

Ê[|ξi |
2+α]

σ 2+α
i

= 2cα,Gβ
σ αi

σ α

∫ 1−ti−1

1−ti
s−( 1

2 +
α
2 )ds ×

Ê[|ξi |
2+α]

σ 2+α
i

.

Hence,⏐⏐⏐⏐Ê[ϕ(Wn)] − Nβ[ϕ]
⏐⏐⏐⏐ ≤

n∑
i=1

sup
x∈R

⏐⏐bi,n(x) − ci,n(x)
⏐⏐

≤ 2cα,Gβ

∫ 1

0
s−( 1

2 +
α
2 )ds sup

1≤i≤n

{
Ê[|ξi |

2+α]

σ 2+α
i

(
σi

σ
)α

}
=

4cα,Gβ
1 − α

sup
1≤i≤n

{
Ê[|ξi |

2+α]

σ 2+α
i

(
σi

σ
)α

}
. □
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