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Abstract

This paper is devoted to the study of a certain type of martingale problems associated to general
operators corresponding to processes which have finite lifetime. We analyse several properties and in
particular the weak convergence of sequences of solutions for an appropriate Skorokhod topology setting.
We point out the Feller-type features of the associated solutions to this type of martingale problem. Then
localisation theorems for well-posed martingale problems or for corresponding generators are proved.
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1. Introduction

The theory of Lévy-type processes stays an active domain of research during the last
two decades. Heuristically, a Lévy-type process X with symbol ¢ : R?Y x RY — C is
a Markov process which behaves locally like a Lévy process with characteristic exponent
q(a, -), in a neighbourhood of each point a € R?. One associates to a Lévy-type process the
pseudo-differential operator L given by, for f € C°(RY),

Lf(a) = — / e““q(a, ) f(a)de, where f(a):= (m)™? f e ¢ f(a)da.
R4 R4

Does a sequence X" of Lévy-type processes, having symbols g,,, converges towards some
process, when the sequence of symbols g, converges to a symbol g? What can we say about the

* Corresponding author.
E-mail addresses: Mihai.Gradinaru@univ-rennes!.fr (M. Gradinaru), Tristan.Haugomat@univ-rennes!.fr
(T. Haugomat).

https://doi.org/10.1016/j.spa.2020.11.003
0304-4149/© 2020 Elsevier B.V. All rights reserved.


http://www.elsevier.com/locate/spa
https://doi.org/10.1016/j.spa.2020.11.003
http://www.elsevier.com/locate/spa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spa.2020.11.003&domain=pdf
mailto:Mihai.Gradinaru@univ-rennes1.fr
mailto:Tristan.Haugomat@univ-rennes1.fr
https://doi.org/10.1016/j.spa.2020.11.003

M. Gradinaru and T. Haugomat Stochastic Processes and their Applications 133 (2021) 129-165

sequence X™ when the corresponding sequence of pseudo-differential operators L, converges
to an operator L? What could be the appropriate setting when one wants to approximate a
Lévy-type process by a family of discrete Markov chains? This is the kind of question which
naturally appears when we study Lévy-type processes.

It was a very useful observation that a unified manner to tackle a lot of questions about
large classes of processes is the martingale problem approach (see, for instance, Stroock [21]
for Lévy-type processes, Stroock and Varadhan [22] for diffusion processes, Kurtz [18] for
Lévy-driven stochastic differential equations...). Often, convergence results are obtained under
technical restrictions: for instance, when the closure of L is the generator of a Feller process
(see Kallenberg [14] Thm. 19.25, p. 385, Thm. 19.28, p. 387 or Boéttcher, Schilling and
Wang [2], Theorem 7.6 p. 172). In a number of situations the cited condition is not satisfied. In
the present paper we try to describe a general method which should be the main tool to tackle
these difficulties and, even, should relax some of technical restrictions. We analyse sequences
of martingale problems associated to large class of operators acting on continuous functions
and we look to Feller-type features of the associated of solutions.

There exist many fundamental references where this kind of objects are studied. In a pioneer
work, Courrege [5] described the form of a linear operator satisfying the positive maximum
principle, as the sum of a second order differential operator and a singular integral operator,
and he made the connection with the infinitesimal generator of a Feller semigroup. At the same
period, Courrege and Priouret [6] studied a method of construction and of decomposition of
Markov processes with continuous paths, along increasing sequences of terminal hitting times,
by using the method of pasting together processes on overlapping open sets. Hoh and Jacob [12]
discussed the martingale problem for a large class of pseudo-differential operators, especially
the martingale problem for generators of Lévy type (see also the monograph of Jacob [13] on
Feller semigroups generated by pseudo-differential operators). The concept of the symbol of a
Markov process as a probabilistic counterpart of the symbol of a pseudo-differential operator
is often used. Hoh [10] studied a class of pseudo-differential operators with negative-definite
symbols which generate Markov processes and solved the martingale problem for this class of
pseudo-differential operators, assuming the smoothness of its symbol with respect to the space
variable (see also [11]). Kiihn [17] considered a pseudo-differential operator with continuous
negative definite symbol such that the martingale problem is well-posed on the space of smooth
functions. She proved that the solution of this martingale problem is a conservative rich Feller
process under a growth condition on the symbol. Bottcher and Schilling [3] gave a scheme to
approximate a Feller process by Markov chains in terms of the symbol of the generator of the
process (see also [3] for an application). Symbols are also used when studying SDE’s driven by
Lévy noises. Schilling and Schburr [20] computed the symbol of the strong solution of a SDE
driven by a Lévy process and having a locally Lipschitz multiplicative coefficient and proved
that this strong solution is a Feller process, provided the coefficient is bounded (see also [2]).
Kiihn [16] proved that if the coefficient of the SDE is continuous and satisfies a linear growth
condition then a weak solution, provided that it exists, is also a Feller process.

Let us briefly describe some of the ideas developed in the present paper. To begin with,
let us point out that the local Skorokhod topology on a locally compact Hausdorff space S
constitutes a good setting when one needs to consider explosions in finite time (see [9]).
Heuristically, we modify the global Skorokhod topology, on the space of cadlag paths, by
localising with respect to the space variable, in order to include the eventual explosions. The
definition of a martingale local problem follows in a natural way: we need to stop the martingale
when it exits from compact sets. Similarly, a stochastic process is locally Feller if, for any
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compact set of S, it coincides with a Feller process before it exits from the compact set. Let
us note that a useful tool allowing to make the connection between local and global objects
(Skorokhod topology, martingale, infinitesimal generator or Feller processes) is the time change
transformation. Likewise, one has stability of all these local notions under the time change.

We study the existence and the uniqueness of solutions for martingale local problems and we
illustrate their locally Feller-type features (see Theorem 4.5). Then we deduce a description of
the generator of a locally Feller family of probabilities by using a martingale (see Theorem 4.14.
Furthermore we characterise the convergence of a sequence of locally Feller processes in terms
of convergence of operators, provided that the sequence of martingale local problems are well-
posed (see Theorem 4.17) and without supposing that the closure of the limit operator is an
infinitesimal generator. We also consider the localisation question (as described in Ethier and
Kurtz [7], §4.6, pp. 216-221) and we give answers in terms of martingale local problem or
in terms of generator (Theorems 4.21 and 4.23). We stress that a Feller process is locally
Feller, hence our results, in particular the convergence theorems apply to Feller processes.
In Theorem 4.10 we give a characterisation of the Feller property in terms of the locally
Feller property plus an additional condition. As a first example, let us consider the simple
one-dimensional SDE, dX, = dB; + b(X,)dt driven by a standard Brownian motion with
b € C(R, R%). The associated martingale local problem associated to the operator defined for
compact supported smooth functions f,

1
Lf(x) = Ef”(X) + b(x) f'(x),

is well-posed by invoking the classical theory of Stroock and Varadhan [22] and the localisation
theorem. Moreover it can be proved by using the scale function (see [7]) that the solution is
Feller if and only if:

0 [e%)
/ b(y)dy = oo =/ b(y)~dy.
0

—00

Our results should be useful in several situations, for instance, to analyse the convergence
of a Markov chain towards a Lévy-type process under general conditions (improving the
results, for instance, Thm 11.2.3 from Stroock and Varadhan [22] p. 272, Thm. 19.28 from
Kallenberg [14], p. 387 or from Bottcher and Schnurr [3]). Two examples of applications
are briefly presented in Remarks 4.19 and 4.24. Complete development of some of these
applications and of some concrete examples (as the Euler scheme of approximation for Lévy-
type process or the connection between the Sinai’s random walk and the Brox diffusion
describing the evolution of a Brownian particle into a Brownian potential [4]) are the object
of a separate work [8]. Let us also note that in [8] we slightly modify the Brox’s diffusion
by considering the evolution of a Brownian particle in a very irregular potential getting in this
case another interesting example of a locally Feller process (see also Remarks 4.11 and 4.12
for other examples of locally Feller processes which are not Feller processes). The method
developed in the present paper should apply for other situations. In a work in progress, we
apply a similar method for some singular stochastic differential equations driven by «-stable
processes, other than Brownian motion.

The paper is organised as follows: in the next section we recall some notations and results
obtained in our previous paper [9] on the local Skorokhod topology on spaces of cadlag
functions, tightness and time change transformation. Section 3 is devoted to the study of
the martingale local problem: properties, tightness and convergence, but also the existence of
solutions. The most important results are presented in Section 4. In Sections 4.1 and 4.2 we
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give the definitions and point out characterisations of a locally Feller family and its connection
with a Feller family, essentially in terms of martingale local problems. We also provide two
corrections of a result by van Casteren [23] (see also [16], p. 2 and [17], p. 3603). In Section 4.3
we give a generator description of a locally Feller family and we characterise the convergence
of a sequence of locally Feller families. Section 4.4 contains the localisation procedure for
martingale problems and generators. We collect in the Appendix the most of technical proofs.

2. Preliminary notations and results

We recall here some notations and results concerning the local Skorokhod topology, the
tightness criterion and a time change transformation which will be useful to state and prove our
main results. Complete statements and proofs are described in an entirely dedicated paper [9].

Let S be a locally compact Hausdorff space with countable base. The space S could be
endowed with a metric and so it is a Polish space. Take A ¢ S, and we will denote by S2 > §
the one-point compactification of S, if S is not compact, or the topological sum S LI {A}, if
S is compact (so A is an isolated point). Denote C(S) := C(S, R), resp. C(54) := C(S4,R),
the set of real continuous functions on S, resp. on S A If Cy(S) denotes the set of functions
f € C(S) vanishing in A, we will identify

Co(S) = {f € C(S) | f(4)=0}.

We endow the set C(S) with the topology of uniform convergence on compact sets and Cy(S)
with the topology of uniform convergence.

The fact that a subset A is compactly embedded in an open subset U C S will be denoted
A€ U.If x € (§%)%+, we denote

§(x) =inf{t = 0] {x;}s= & S}

Here and elsewhere we denote Ry, :={t € R:7 >0} and R} :={r e R:¢ > 0O}.
Firstly, we introduce the set of cadlag paths with values in S4,

D(s4) = {x S IV i }

vVt > 0, x,_ = limg, x; exists in 54

endowed with the global Skorokhod topology (see, for instance, Chap. 3 in [7], pp. 116-147)
which is Polish.
Secondly, we proceed with the definition of a set of exploding cadlag paths

vVt > &E(x), x, = A4,
Dioe(S) = {x € (S | Vi =0, x, = lim,, x;,
Vi > 0 s.t. {x}5<r € S, x,— = limgy, x, exists

Consider d an arbitrary metric on S A A sequence (" )ken 10 Diee(S) converges to x if and
only if there exists a sequence (A*); of increasing homeomorphisms on R satisfying
Vi >0 s.t. {x}5<r €S, lim supd(xs,xkk) =0 and lim sup |)J§ — 5| =0.
k—00 g<t s k=00 g<p
It can be showed that D,.(S) endowed with this convergence is a Polish space (see Theorem
2.4, p. 1187, in [9]). The topology associated to this convergence is called the local Skorokhod
topology.
In fact the global Skorokhod topology is the trace (of the local) topology from Dje.(S) to
D(S4) and a sequence (x¥); from D(S4) converges to x € I(S?) for the global Skorokhod
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topology if and only if there exists a sequence (AX); in A such that

vt >0, klim sull)d(xs,xi‘k) — 0, and k]im supt) WS‘ —s5|=0.
—00 < s —00 <
We recover the usual Skorokhod topology on D(S2), as it is described, for instance, in §16
pp- 166—179 from [1]. Note that in Theorem 2.4, p. 1187, from [9] it is also proved, as for the
usual Skorokhod topology, that the local Skorokhod topology does not depend on d but only
on the topology on S.

We will always denote by X the canonical process on D(S Ay or on Dyee(S), without danger
of confusion. We endow each of ID(S4) and Dy,(S) with the Borel o-algebra F = o (X,, 0 <
s < oo) and a filtration F; := o(X;, 0 < s < t). As usual, we will always denote by PD(S2))
or P(Die(S)) the set of probability measures on ID(S4) or on Dj(S). We will always omit
the argument X for the explosion time £(X) of the canonical process. It is clear that £ is a
stopping time. Furthermore, if U C S is an open subset,

tV=inf{r>0|X,_¢Uor X, U} nE 2.1

is a stopping time.

There are several ways to localise processes, for instance one can stop when they leave
a large compact set. Nevertheless this method does not preserve the convergence and we
need to adapt this procedure in order to recover continuity. Let us describe our time change
transformation.

Consider a positive continuous function g € C(S, R, ) and following (2.1), we can write
{90} .
T (x)=1inf{r > 0| g(x;-) A g(x;) =0} A E(x).

For any x € D},.(S) and r € R, we denote

9(xy)
We define a time change transformation, which is F-measurable,
g- X: Dloc(S) - ]D)loc(S)

X = g-x,

s d
8(x) == inf{s >01s >t o / " zt}. 2.2)
0

as follows: for r € R

. {g#0}
XT(#OL ift! =1

X0 otherwise.

, XTW#OL exists and belongs to {g = 0}, 2.3)

(g-X) = {
The time change transformation will be a useful tool used to compare the local notions, as
local Skorokhod topology, martingale local problems or locally Feller processes, with the usual
(global) notions.

For any P € P(D}c(S)), we also define g - P the pushforward of P by x — g - x. Let us
stress that, 7,7 is a stopping time (see Corollary 2.3 in [9]). The time of explosion of g - X is
given by

0 if 717
£g-X) = { E

0 g(xu)

It is not difficult to see, using the definition of the time change (2.3), that

Vg1, 92 € C(S, Ry), Vx € Dioe(S), g1 - (g2 - x) = (g192) - X. 24
133

< & or X¢_ exists and belongs to {g = 0},
otherwise.



M. Gradinaru and T. Haugomat Stochastic Processes and their Applications 133 (2021) 129-165

In [9] Proposition 3.9, p. 1199, a connection between Dj,.(S) and D(S 4) was given. We
recall here this result because it will be employed several times.

Proposition 2.1 (Connection Between Dj,.(S) and D(S?)). Let S be an arbitrary locally
compact Hausdorff space with countable base and consider

P: S — PDuS))
a +— P,

a weakly continuous mapping for the local Skorokhod topology. Then for any open subset U
of S, there exists g € C(S, Ry) such that {g # 0} = U, foralla e S

g-P,(0<&<o0o= Xe_ existsinU) =1,
and the application

g-P: S - PO <& <00 = X¢_ exists in U})
a = g-P,

is weakly continuous for the global Skorokhod topology of D(S4).

Another useful result which we would like to recall from [9] is the following version of the
Aldous criterion of tightness: let (P,), be a sequence of probability measures on P(Djoc(S)).
If for all + > 0, ¢ > 0, and open subset U € S, we have:

limsup  sup  P,(d(X,, X5,) > ¢) = 0, (2.5)
n—o00 T1<1) g
rzg(rll-f—s)AmrU
then {P,}, is tight for the local Skorokhod topology (see Proposition 2.9, p. 1190, from [9]).
In (2.5) the supremum is taken over all F;-stopping times 1, 75.

Let (G;);>0 be a filtration of F containing (F;);>o. Recall that a family of probability
measures (P,)ues € P(Dioe(S))S is called (G,),-Markov if, for any B € F, a — P,(B) is
measurable, for any a € S, P,(Xg =a) =1, and for any B € F,a € S and 1) € R,

P, (Xi+)r € B | Gy) = Py, (B), P, —almost surely,

where P, is the unique element of P(Dj,.(S)) such that Po(§ = 0) = 1 and, as usual,
(X1y+): 1s the shifted process. If the latter property is also satisfied by replacing fy with any
(G;);-stopping time, the family of probability measures is (G;),-strong Markov. If G, = F, we
just say that the family is (strong) Markov. If v is a measure on S2 we set P, := [ Pyv(da).
Then the distribution of Xy under P, is v, and P, satisfies the (strong) Markov property.

To finish this section let us recall the following property of the time change stated in Remark
3.4, p. 1196, from [9], used several times in the present paper, but not in that one.

Proposition 2.2 (Strong Markov Property and Time Change). Consider g € C(S,R,) and
Poa € PMipe(SNS. If P, is a (Fiy)-strong Markov family, then (g - P,), is also
(Fi)s-strong Markov family.

For the sake of completeness we will provide the proof of Proposition 2.2 in Appendix A.2.

3. Martingale local problem

3.1. Definition and first properties

To begin with we recall the optional sampling theorem. Its proof can be found in
Theorem 2.13 and Remark 2.14. p. 61 from [7].
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Theorem 3.1 (Optional Sampling Theorem). Let (12, (G;);, P) be a filtered probability space
and let M be a cadlag (G;),-martingale, then for all (G, )-stopping times T and o, with T
bounded,

E[M: | Got]l = Mrro, P-almost surely.
In particular M is a (G, );-martingale. We denoted here G, ‘= Ng=0Gr1e.

All along the paper the operators from Cy(S) to C(S), will be denoted as a subset of
Co(S) x C(S), in other words its graph. This will be not a major notation constraint, since
in the following most of the operators are univariate.

Definition 3.2 (Martingale Local Problem). Let L be a subset of Cy(S) x C(S).

(a) The set M(L) of solutions of the martingale local problem associated to L is the set of
P € P (Doc(S)) such that for all (f, g) € L and open subset U € S:

U

INT
J X pev) — / g(X,)ds is a P-martingale (3.1)
0

with respect to the filtration (F;); or, equivalent, to the filtration (F,),. Recall that ¥
is given by (2.1). The martingale local problem should not be confused with the local
martingale problem (see Remark 3.3 for a connection).

(b) We say that there is existence of a solution for the martingale local problem if for any
a € S there exists an element P in M(L) such that P(Xg = a) = 1.

(c) We say that there is uniqueness of the solution for the martingale local problem if for
any a € S there is at most one element P in M(L) such that P(Xy = a) = 1.

(d) The martingale local problem is said well-posed if there is existence and uniqueness of
the solution.

Remark 3.3. (1) The hypothesis of continuity of g ensures the fact that (3.1) is adapted to
the (non-augmented) canonical filtration (F;),.

(2) By using the dominated convergence when U is growing towards S, and by the previous
definition (3.1), for all L C Cy(S) x C(S), (f,g) € LN (CO(S) X C;,(S)) and P € M(L), we
have that

INE
f (X)) — / g(X,)ds is a P-martingale.
0

Indeed, if (f,g) € Co(S) x Cup(S) the quantity in (3.1) is uniformly bounded. Hence, if
L C Cy(S) x Cp(S), the martingale local problem and the classical martingale problem are
equivalent.

(3) It can be proved that, for all L C Cy(S) x C(S), (f, g) € L and P € M(L) such that

P(& < oo implies {X,},¢ € §) =1,

we have

tNE
f(X,) — / g(X,)ds is a P-local martingale.
0
Indeed let us denote 2 = {E < oo implies {X}s<z € S } and introduce the family of stopping
times
ol =1V (Tl verveg), withU €S, T >0.
135
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To obtain the assertion, we remark that, almost surely on {2, X o7 X ’U, and, when 7 — oo
and U growing towards S, o7 grows to infinity.

(4) We shall see that the uniqueness or, respectively, the existence of a solution for the
martingale local problem when one starts from a fixed point implies the uniqueness or the
existence of a solution for the martingale local problem when one starts with an arbitrary
measure (see Proposition 3.14).

(5) Consider L C Cy(S) x C(S) and P € M(L). If (f,g) € L and U € S is an open subset,
then, by dominated convergence

E[f(Xy0) | Fo] = f(Xo) _ [ 1 f
tJo

U
P-ass.
g(X,)ds | ]:oj| —>a; g(Xp). ©

t

t—

Some useful properties concerning the martingale local problem are stated below:

Proposition 3.4 (Martingale Local Problem Properties). Let L C Cy(S) x C(S) be.
1. (Time change) Take h € C(S, Ry) and denote

bL = {(f.bg) | (f. 8) € L}. (3.2
Then, for all P € M(L),
h-Pe M®OHL). (3.3)
2. (Closure property) The closure with respect to Cy(S) x C(S) satisfies
M (span(L)) = M(L). (3.4)

3. (Compactness and convexity property) Suppose that D(L) is a dense subset of Cy(S),
where the domain of L is defined by

D(L) :={f € Co($) | 3g € C(S), (f. g) € L}.
Then M(L) is a convex compact set for the local Skorokhod topology.

The following result provides a continuity property of the mapping L +— M(L).

Proposition 3.5. Let L,, L C Cy(S) x C(S) be such that

V(f,g) €L, 3(fu &) € Lyn, such that f, <0, fo &n = 8- (3.5)
n—0oQ n—oo
Then:

1. (Continuity) Let P*, P € P (Dy,.(S)) be such that P" € M(L,) and suppose that {P"},
converges weakly to P for the local Skorokhod topology. Then P € M(L).

2. (Tightness) Suppose that D(L) is dense in Cy(S), then for any sequence P" € M(L,),
{P"}, is tight for the local Skorokhod topology.

The proofs of Propositions 3.4 and 3.5 are interlaced.

Proof of part 1 of Proposition 3.4. Take (f, g) € L and an open subset U € S. If 51 <
--- < 5 < s <t are positive numbers and ¢y, ..., ¢ € C(SA), we need to prove that

intV

bh-E |:<f(Xt/\rU) A ONTD) —f ’ (hg)(Xu)du> (pl(Xs|)"'§0k(Xxk):| =0. (3.0
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We will proceed in two steps: firstly we suppose that U € {h # 0}. Recalling the definition
(2.2), if we denote t, = 'C,h A TV, we have, for all 1 € R,

b Xinvx) = Xq CN))
and
iAtY (b-X) AtV (h-X) 7
/0 (hg)h - X,)du = /0 (bg)( Xy, )du = /0 g(X,)du. (3.8)

Hence by (3.7)-(3.8) and using the optional sampling Theorem 3.1

itV

h ‘E |:<f(Xtm:U) - f(XsArU) - / v (hg)(Xu)du) <P1(Xs1) t (pk(Xsk):|

—h-E [(f(xmw — (Xy0) — f

N1

U

(hg)(Xu)du> P1( X peU) - - §0k(XskmU):|

=E [(f(xf» ~ f(Xe) - f ' g(xu>du) 1(Xr,)) - ~<ok(xmk>] =0.

Secondly, we suppose that U & S. Recall that d is the metric on S and we introduce, for
n>1,U, ={aeU]|da{h=0}) > n'} Itis straightforward to obtain the following
pointwise convergences,

B XoacUn(p.x) -2 b XiacUpx)s

intUn(p-X) AtV (h-X)
/0 (h)(h - X,)du — /O (hg)(h - X,)du.

Therefore,
t/\rU"
Fopatn) = F(Xprtn) — /  B9(X,)du
intl
P ) = ) = [ 0t

Applying the first step to U, € {h # 0} and letting n — oo, by dominated convergence we
obtain (3.6). [

Proof of part 1 of Proposition 3.5. By using Proposition 2.1 we know that there exists
h € C(S, R%) such that Dyec(S) N ID(S 4Y has probability 1 under b - P” and under b - P and
such that b - P" converges weakly to b - P for the global Skorokhod topology of ID(S4). Let
us fix (f, g) and (f,, g,) arbitrary as in (3.5) and then we can modify § such that it satisfies
furthermore hg,, hg € Co(S) and hg, &) hg. Indeed, for instance, we can multiply h with a
function from C(S; R*) which is less than d(-, A)/(sup,y blg, — gI).

Let T be the set of + € Ry such that h - P(X,—- = X,) = 1, so R;\T is countable. Let
s] < - < s < s <t belonging to T and consider ¢y, ..., ¢ € C(S?). By using 1 of
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Proposition 3.4 and the first part of Remark 3.3

t
h-E" |:<fn(Xt) — fa(X5) —/ (hgn)(Xu)du> 01(Xs,) - "‘Pk(Xsk)i| =0. (3.9
Noting that the sequences of functions f, and hg, converge uniformly, respectively to f
and hg, and since ¢y, ...¢; are bounded, it can be deduced that the sequence of functions

(fn(XD) — fu(Xy) — j;'(hg,,)(X,,)du)wl(Xsl)-~-<pk(Xsk) converges uniformly to the function
(f(XD—F(X)— [/ (hg)(X.)du)e1(X,,) - - - 9(X,,). This last function is continuous h-P-almost
everywhere for the topology of I(S4). Hence we can take the limit, as n — oo, in (3.9) and
we obtain that

b-E |:<f(Xz) - f(Xy) - / (f)g)(Xu)du) P1(Xy) - - (pk(Xsk):| =0. (3.10)

Since T is dense in Ry, since f, hg, ¢1, ..., ¢ are bounded, by right continuity of paths of
the canonical process, and by dominated convergence, (3.10) extends to s;,s,t € R,. Hence
h-P e M{(f, hg)}), so using (2.4) and part 1 of Proposition 3.4, P = (1/h)-h-P € M{(f, g)})-
Since (f, g) € L was chosen arbitrary, we have proved that P € M(L). O

Proof of part 2 of Proposition 3.4. It is straightforward that M(span(L)) = M(L). Let
P € M(L). We apply part 1 of Proposition 3.5 to the stationary sequences P* = P and
L, = span(L) and to span(L). Hence P € M(span(L)) and the proof is done. [

Proof of part 2 of Proposition 3.5. Take + € Ry and U € S an open subset. By using
Lemma 3.8 and considering X := U and U := {(a,b) € S x S | d(a, b) < &}, we have
Sup Pn(d(X‘L'l ) th) 2 8) E)o 01

=0 5§50
<ty +&)AtY ar

hence (2.5) is satisfied and the Aldous criterion applies (Proposition 2.9 in [9]). O

Proof of part 3 of Proposition 3.4. It is straightforward that M(L) is convex. To prove
the compactness, let (P"), be a sequence from M(L). We apply part 2 of Proposition 3.5
to this sequence and to the stationary sequence L, = L. Hence (P") is tight, so there exists
a subsequence (P"); which converges towards some P € P(IDj.(S)). Thanks to part 1 of
Proposition 3.5 we can deduce that P € M(L). The statement of the proposition is then
obtained since P(Dy.(S)) is a Polish space. [

We end this section with another property concerning martingale local problems:
Proposition 3.6 (Quasi-Continuity Property of the Martingale Local Problem). Let L be a
subset of Co(S) x C(S) and suppose that D(L) is a dense subset of Cy(S). Then for any P €

M(L), P is (F,1):-quasi-continuous. More precisely this means that for any (F;);-stopping
times T, 71, Ty...

X., — X. P-almost surely on [rn — T < oo}, (3.11)
n—o00 n—o0o
with the convention X o, := A. In particular, for any t > 0, P(X,_ = X;) =1,
P(Dye($) ND(SY)) = P(& € (0, 00) = X¢_ exists in $°) = 1.

Moreover, for any open subset U C S, we have P(tV < 0o = X, v ¢ U) = 1, where TV is
given by (2.1).
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Remark 3.7. Let us note that the quasi-continuity is needed to have X,v ¢ U a.s. even
if the process is right-continuous. For instance, the real Markov process X, = Xy + (B; —
[Xo + B;)1x,<1, with B a standard Brownian motion, is right-continuous and we have
X~y = Xolx,>1 which belongs to (—o0, 1), provided Xo < 1. ¢

The proof of the previous proposition is technical and is postponed to the Appendix A.l.
During this proof we use the result of the next lemma concerning the property of uniform
continuity along stopping times of the martingale local problem. Its proof is likewise postponed
to the Appendix A.l.

Lemma 3.8. Let L,, L C Cy(S) x C(S) be such that D(L) is dense in Cy(S) and assume the
convergence of the operators in the sense given by (3.5). Consider KC a compact subset of S
and U an open subset of S x S containing {(a, a)}.ecs. For an arbitrary (F;y);-stopping time
71 we denote the (F;4);-stopping time

t(n) = inf{r = o [ {(Xe, X))y EUJ

Then for each ¢ > 0 there exist ng € N and 6 > 0 such that: for any n > ny, (F;+);-Stopping
times t; < 1, and P € M(L,) satisfying E[(t, — '1:1)]l{xt1 exy] <8, we have

P(X;, ek, (1)) <m) <e¢,

with the convention X = A.
3.2. Existence and conditioning

Before giving the result of existence of a solution for the martingale local problem, let us
recall that X7 = X,,, for T a stopping time, and the classical positive maximal principle
(see [7], p.165):

Definition 3.9. A subset L C Cy(S) x C(S) satisfies the positive maximum principle if for all
(f,g) € L and ap € S such that f(ap) = sup,.g f(a) > 0 then g(ap) < 0.

The existence of a solution for the martingale local problem result will be a consequence
of Theorem 5.4 p. 199 from [7].

Theorem 3.10 (Existence). Let L be a linear subspace of Cy(S) x C(S).

1. If there is existence of a solution for the martingale local problem associated to L, then
L satisfies the positive maximum principle.

2. Conversely, if L satisfies the positive maximum principle and D(L) is dense in Cy(S),
then there is existence of a solution for the martingale local problem associated to L.

Remark 3.11. (1) A linear subspace L C Cy(S) x C(S) satisfying the positive maximum
principle is univariate. Indeed for any (f, g1), (f, g&2) € L, applying the positive maximum
principle to (0, go — g;) and (0, g; — g») we deduce that g; = g,.

(2) Suppose furthermore that D(L) is dense in Cy(S), then as a consequence of the second part
of Proposition 3.4 and of Theorem 3.10, the closure L in Co(S) x C(S) satisfies the positive
maximum principle, too. ¢
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Proof of Theorem 3.10. Suppose that there is existence of a solution for the martingale local
problem, let (f, g) € L and ag € S be such that f(ap) = sup,g f(a) > 0. If we take P € M(L)
such that P(Xy = ap) = 1, then, by the fifth part of Remark 3.3

1
g(ap) = tlgr(l) ;(E [f(X,0r0) | Fo] = flap)) <0,

so L satisfies the positive maximum principle.

Let us prove the second part of Theorem 3.10. Consider Loa countable dense subset of L
and Ly := span(Lo) There exists h € Co(S; R%) such that for all (f, g) € Lo hg € Cy, hence
L = Lo and hLo C Co(S) x Co(S). We apply Theorem 5.4 p. 199 in [7] to the univariate
operator hLy: for all a € S, there exists Pec P[D(S4)) such that P(XO = a) = 1 and for all

(f’ g) € hLO
f(X,) — / g(X)ds is a ﬁ-martingale.
0

We set P := %5(X%) the law of X¢ under P. Then P € P (Dioe(S) NID(S4)). Moreover, for
any (f,g) € hLo, open subset U € S, sy < --- <5 <s <tin Ry and ¢y, ..., ¢ € C(§4),

SAT

intV
E |:(f(X,Mu) — f(Xa0) — f g(Xu)dM) o1(Xg) - ¢k(Xsk)]

U

E [(f(xmw ~ - [ g(xu)du) o1 sok(Xsk)} 0
Hence P € M(HLy). To conclude we use the first two parts of Proposition 3.4:
ML) = M) = ML = |- Q1 Q e MbLo) .
So % ‘P € M(L) and the existence of a solution for the martingale local problem is proved. [

Remark 3.12. Since F is the Borel o-algebra on the Polish space Dj,.(S), we can use
Theorem 6.3, in [14], p. 107. So, for any P € P (Dy,(S)) and (F;;),-stopping time t, the

... e P-as. . .
regular conditional distribution Qy = % ((X,+,),20 | ]-"H) exists. It means that there exists

Q: DIOC(S) - P(Dloc(s))
by > Q.

such that for any A € F, Qx(A) is F;-measurable and
P((Xc4)i=0 € A| Fry) = Qx(A) P-almost surely. o

The following proposition contains a near result as Theorem 4.2, p. 184 in [7].

Proposition 3.13 (Conditioning). Take L C Cy(S) x C(S), P € M(L), and a (F;1),-stopping
time t. As in Remark 3.12 we denote Qx P:-g' fp((XH_,),zo i fr+), then

Qx € M(L), P-almost surely.

Proof. Let (f,g)beinL,s; <---<sp <s<tbeinRy, ¢,...,¢ bein C(S?)and U € §
be a open subset. Here and elsewhere we will denote by EQ+ the expectation with respect to
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Q.. Since
ILr<rUEQX I:(f(erU) — [(Xpev) — / v g(Xu)dM)<P1(Xs])' e on(X.vk)]
P-as ‘ (l‘+‘[)/\‘L’U
= ]1T<rUE|:(f(X(f+r)ArU) - f(X(s-ﬁ-t)/\tU) - / g(XM)dM)
(s+1)ATY
X(pl(Xs1+r) ce (ﬂk(XSk""T) fr+] Pés' 0,
we have
intV
P(EQ [ (£ (Xprt) = FXypet) = f (X)) g1 (X)) - ge(X)| #0)
<P(rY <t <¢). (3.12)

Let L be a countable dense subset of L, C be a countable dense subset of C(S4) and U, € S
be an increasing sequence of open subsets such that S = [ J, U,. Then Qx € M(L) if and
onlyifforall(f,g)eZ,keN,foranysl <. <s <s<tinQy, for any ¢y, ..., ¢ € C,
and for n large enough

tAnrUn

EQX I:(f(X[/\rUn) - f(Xs/\rUﬂ) - [

SATYN

$Xd)p1 (X)) i(X) | = 0.

Hence {Qx € M(L)} is in F;4 and by (3.12), P-almost surely Qy € M(L). O

Proposition 3.14. Set L C Cy(S) x C(S).

1. If there is uniqueness of the solution for the martingale local problem then for any
w € P(SA) there is at most one element P in M(L) such that %p(Xo) = .

2. If there is existence of a solution for the martingale local problem and D(L) is dense
in Co(S), then for any u € P(S?) there exists an element P in M(L) such that
L (Xo) = 1.

Proof. Suppose that we have uniqueness of the solution for the martingale local problem. Let
u be in P(S4) and P!, P> € M(L) be such that Zp1(X¢) = %p2(X() = . As in Remark 3.12
let Q!, Q2 : 524 — P(Dc(S)) be such that
1 2
QY "= L (X | F0), Q"2 Lo (X | F). (3.13)

Then, by Proposition 3.13, QL, Q2 € M(L) for j1-almost all a, so, by uniqueness of the solution
for the martingale local problem, Q! = Q2 for y-almost all a. We finally obtain, by (3.13),
P' = [ Qlu(da) = [ Q2u(da) = P2,

Suppose that we have existence of a solution for the martingale local problem and that D(L)
is dense in Cy(S). Thanks to the property 3 in Proposition 3.4, M(L) is convex and compact.
Hence the set

C :={u € P(5?) | 3P € M(L) such that %(Xo) = u}

is convex and compact. Since there is existence of a solution for the martingale local problem
we have {3, |a € S4} C Cso C=P(s4). O
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4. Locally Feller families of probabilities

In this section we will study a local counterpart of Feller families in connection with Feller
semi-groups and martingale local problems. The basic notions and facts on Feller semi-groups
can be found in Chapter 19 pp. 367-389 from [14].

4.1. Feller families of probabilities

Definition 4.1 (Feller Family). A Markov family (P,), € P(Di.(S))’ is said to be Feller if for
all f € Cy(S) and ¢ € R, the function
Lif: § — R
a = EJf(X)]
is in Cy(S). In this case it is no difficult to see that (T;), is a Feller semi-group on Cy(S) (see p.

369 in [14]) called the semi-group of (P,),. Its generator L is the set of (f, g) € Co(S) x Co(S)
such that, for all a € §

T f(a) — f(a) s )
t Hog ’

and we call it the (Cy x Cy)-generator of (P,),.

In [23] Theorem 2.5, p. 283, one states a connection between Feller families and martingale
problems. Unfortunately the proof given in the cited paper is correct only on a compact
space S. The fact that a Feller family of probabilities is the unique solution of an appropriate
martingale problem is stated in the proposition below. We will prove the converse of this result
in Theorem 4.9.

To give this statement we need to introduce some notations. For L C Cy(S) x Cy(S) we
define

L? :=span (L U {(15a,0)}) € C(S?) x C(S2). 4.1
We recall that we identified Co(S) by the set of functions f € C(S?) such that f(A) = 0. The
set of solutions M(L?) C P(Dic(S4)) of the martingale problem associated to L“ satisfies
VP e M(L?), P(Xpe S = X e D(S?)) =0.

Without loss of the generality, to study the martingale problem associated to L4 it suffices to
study the set of solution with S#-conservative paths:

M(L?) = MLY NPD(S?) = {P e M(L?) | P(Xo € $2) = 1}.
Indeed, the unique non-conservative solution of M(L4) is the process which leaves S4 at time
0. In fact M(L?) is the set consisting of P € P(D(S4)) such that for all (f,e)elL
t
f(Xy) —/ g(X,)ds is a P-martingale. “4.2)
0

The following result is well-known and, for the sake of completeness, we provide its proof
below:

Proposition 4.2. If (T;); is a Feller semi-group on Cy(S) with L its generator, then there is a
unique Feller family (P,), with semi-group (T;);. Moreover the martingale problem associate
to LA is well-posed and

M(L?) = {Py}ep(sa)-
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Remark 4.3. 1. For any P € M (L?) the distribution of X ** under P satisfies
Lo(X™) € ML) N PDie($)) € M(L).

Moreover if D(L) is dense in Cy(S), thanks to Proposition 3.6
M(L) = ML) N PDioc(S)).

So if D(L) is dense in Cy(S) there is existence of a solution for the martingale problem
associated to L if and only if there is existence of a solution to the martingale problem
associated to L“. Moreover the uniqueness of the solution for the martingale problem
associated to L# imply uniqueness of the solution for the martingale problem associated to L.
2. If § is compact and D(L) is dense in Cy(S) = C(S), then it is straightforward to obtain
M(L) = M(L?D). o

Proof of Proposition 4.2. The existence of a solution for the martingale problem is a
consequence of Theorem 3.10, see for instance the Hille—Yoshida theorem (Theorem 19.11,
p. 375 in [14]). Thanks to Proposition 3.13 and using chain rule for conditioning, to identify
the finite dimensional distributions of solutions solving the martingale problem, we need to
prove that

VP € M(L?), Vi = 0, Vf € D(L), E[f(X)] = E[T, f(Xo)].

Let0=1t) <--- <ty41 =1t be a subdivision of [0, ¢], then

N
E[f(X) | Fol = T: f(Xo) = ZE [Tty fXip) | Fo] = E [Ty, f(X0) | Fo)

i=0
N

=Y E[E[T, fXi, ) | F] = Ty f(X0) | o]
i=0

Moreover for each i € {0, ..., N}, using martingales properties for the first part and semi-
groups properties, in particular that 7; f € D(L) (see for instance Theorem 19.6, p. 372 in [14])
for the second,

Lit1
E[ T S X ) | B | = T S XD = B[ / LTy fX) = LTy f(X,)ds | 7, |

i

SO
N fit+1
ELf(X) = T f(X)l <E) f LTy, f(Xo) = LT f(X,)] ds.
i=0 Vi

By dominated convergence we can conclude. [

Before introducing the definition of a locally Feller family, let us state a result on an
application of a time change to a Feller family (see (2.3)):

Proposition 4.4. Let (P,), € P(Dy,(S))S be a Feller family with (Cy x Co)-generator L.
Then, for any g € Cp(S, RY), (g - Py, is a Feller family with (Cy x Co)-generator gL, taking
the closure in Cy(S) x Cy(S5).

Proof. Thanks to the property 1 in Proposition 3.4 and to Proposition 4.2, the result is only a
reformulation of Theorem 2, p. 275 in [19]. For the sake of completeness we give the statement
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of this result in our context: if L C Cy(S) x Cy(S) is the generator of a Feller semi-group, then
for any g € Cp(S, RY), gL is the generator of a Feller semi-group. [

4.2. Locally Feller families and connection with martingale problems

We are ready to introduce the notion of locally Feller family of probabilities. This is given
in the following theorem:

Theorem 4.5 (Definition of a Locally Feller Family). If (P,), € PMppe(S))5, the following four
assertions are equivalent:

1. (continuity) the family (P,), is Markov and a + P, is continuous for the local

Skorokhod topology;

(time change) there exists g € C(S, R%) such that (g - P,), is a Feller family;

3. (martingale) there exists L C Cy(S) x C(S) such that D(L) is dense in Cy(S) and (P,),
is the unique solution solving the martingale local problem for L:

N

VaeS, Pe ML) and P(Xg=a)=1<=P=P,;

4. (localisation) for any open subset U € S there exists a Feller family (f’a)a such that for
anya €S

b, (XTU) =%, (XTU) .

A family satisfying one of these equivalent conditions will be called a locally Feller family.
Moreover a locally Feller family (P,), is (F;1):-strong Markov and for all i € P(S?), P,
is quasi-continuous.

We give below the proof of Theorem 4.5 but first let us make some remarks.

Remark 4.6. A natural question is how can we construct locally Feller families? We give
here answers to this question.

(i) A Feller family is locally Feller.
(ii) If g € C(S,R}) and (P,), € PDioc(S))S is locally Feller, then (g - P,), is locally Feller.
This result is to be compared with the result of Proposition 4.4.
(ii1) If S is a compact space, a family is locally Feller if and only if it is Feller. This statement
is an easy consequence of the third part of the latter theorem and of Proposition 4.4.
(iv) As consequence of the first assertion in Theorem 4.5, if (Py), € P(Dioe(S))S is locally
Feller then the family

Uu — P(Dloc(’E]))
a — %X

is locally Feller in the space U. Indeed, it is straightforward to verify that, for any open
subset U C S, the following mapping is continuous,

DIOC(S) g DIOSSU)

X = X

x;, if s < t¥(x),

. o
A otherwise.

with X, := {
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Proof of Theorem 4.5. 1=2 Thanks to Proposition 2.1 there exists g € C(S, R%) such that
for all a € S2, g - P,(Dioc(S) N (S2)) = 1 and such that the mapping

4 = PDic(S) ND(S?))

a = g-P,

is weakly continuous for the global Skorokhod topology of ID(S4'). Moreover we can deduce
that (P,), is (F;+)-strong Markov by using the following result.

Lemma 4.7. Let (P)), € PDe(S))S be such that a — P, is continuous for the local
Skorokhod topology. Suppose that for all a € S?: P,(Xo = a) = 1 and there exists a dense
subset T, C Ry such that for any B € F and ty € T,

P, ((X,0+,), € B | .7-',0) = PX[O(B) P, -almost surely.
Then (P,), is a (F;1)-strong Markov family.

The proof of Lemma 4.7 is postponed in Appendix A.2 and we proceed with the proof of
Theorem 4.5. By Proposition 2.2 we can deduce that (g - P,), is (F;4),-strong Markov. Take
a € § and t € RY, we will prove that g - P,(X,- = X;) = 1. For any f € C(S4), s <t and
& > 0, by the Markov property

gPg-as.

QEE /+ f(Xu)du‘]-}] o« g-ExS[é /0 f(Xu)du].

Since a — g - P, is weakly continuous for the global topology and since x +—> % f(f f(X,)du
is continuous for the global topology,

gExE /:f(Xu)du] = g~EX,_[é /0 f(X,,)du].

By the triangle inequality and the dominated convergence theorem (see a similar reasoning
following (A.5) in Appendix A.2) we have

g'Ea

— 0,
s—>1

okt [ ron|E ] e w1 [ sxow] 5]

s<t

SO

0 E[L / | 7] T g B, E /O ).

g-Py-as.

Hence letting ¢ — 0 we deduce g- E, [f(X,) | F;-]
is also true for f2 so we deduce
0-E (f(X) = fXi)’ =g Ea[g-Ea[f7(X0) | Fio] = F2(X10)]
—29-E [f(Xio) (g -Ea [f(X) | Fi-] = f(X;-)] = 0.
Since f is arbitrary, taking a dense sequence of C(S4), we get g-P,(X,_ = X,) = 1. Finally,

for any + € R, and f e C(S4), since x — f(x;) is continuous for the global Skorokhod
topology on {X;_ = X}, the function

s4 R
a + g-E.f(X))

is continuous, so (g - P,), is a Feller family.

f(X,_). Since f is arbitrary, this
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2=3. Let L be the (Cy x Cy)-generator of (g - P,),, then, by Proposition 4.2, M(L) =
{8 Py} cpsa) so by the first part of Proposition 3.4 and by (2.4),

1
M (BL) = {PM}MEP(SA)'
3= 1. Thanks to 3 from Proposition 3.4, for the local Skorokhod topology,

{Paloes — S
P, = a
is a continuous injective function defined on a compact set, so a — P, is also continuous. Let
T be a (F;+),-stopping time and a be in S. As in Remark 3.12 we denote

Py-as.

Qx = %, ((Xr-n)tzo | ]:r+)~

By using Proposition 3.13, Qx € M(L), P,-almost surely, so Qx = Px_, P,-almost surely,
hence (P,), is (F;+);-strong Markov. The quasi-continuity is a consequence of Proposition 3.6
2=4. Take an open subset U € § and define for all a € §
~ A min
B,=h.P, where p=2"T108
mingy g
By Proposition 4.4, (ﬁ,)a is Feller, and moreover, since X g h-X )TU,
YaeS, %, (XTU) = %, (XTU) .

4=1. Let U, € S be an increasing sequence of open subsets such that S = | J, U,. For each
n € N there exists a Feller family (P}), such that

Vaes, %, (X)) =%y (x").
Denote P5° := P,, then thanks to Lemma A.1 stated in Appendix A.2 the mapping
(NU{oo}) x 824 = PDyee(S))
(n,a) — |

is continuous. We can conclude that (P{°), is a Markov family by using:

Lemma 4.8 (Continuity and Markov Property). Let
(NU{oo}) x 84 = P(Dye(S))

(n,a) > |

be a weakly continuous mapping for the local Skorokhod topology such that (P}), is a Markov
family for each n € N. Then (P°), is a Markov family.

The proof of this lemma is postponed one more time to Appendix A.2. The proof of
Theorem 4.5 is now complete. [J

Since a locally Feller family on S4 is also Feller we can deduce from Theorem 4.5 a
characterisation of Feller families in terms of martingale problem. The following theorem is
the converse of Proposition 4.2 and provide a first correction of Theorem 2.5, p. 283 in [23]
(see also [16], p. 2 and [17], p. 3603).

Theorem 4.9 (Feller Families — First Characterisation). Let (P,), € P[Dc(S))S be, the
following assertions are equivalent:
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1. (P,), is Feller;

2. the family (P,), is Markov, P, € P(D(S?)) for any a € S, and S* > a — P, is
continuous for the global Skorokhod topology;

3. there exists L C Cy(S) x Co(S) such that D(L) is dense in Cy(S) and

Vae S, PeMJ(L?) and PXg=a)=1<=P=P,.
We recall that P 4 is defined by Po(Vt >0, X, = A) = 1.
Proof. Thanks to Proposition 3.6 a Feller family in P(Dj,.(S)) continues to be Feller also
in P(D(S4)), so a family (P,), € P(Dioc(S))’ is Feller if and only if the family (P,), €
’P(ID)(SA))SA is Feller. Since S° is compact, using the third point of Remark 4.6, this is also

equivalent to say that (P,),cg4 is locally Feller in § 4 Hence the theorem is a consequence of
Theorem 4.5 applied on the space S4 and to Proposition 4.2. [

The following theorem provides a new relationship between the local Feller property and
the Feller property. With the help of Theorem 4.5 we obtain another correction of Theorem
2.5 p. 283 from [23] by adding the missing condition (4.3) (see again [16], p. 2 and [17],
p. 3603).

Theorem 4.10 (Feller Families — Second Characterisation). Let (P,), € P(D,(S))S be, the
following assertions are equivalent:

1. (P,), is Feller;
2. P,). is locally Feller and

VvVt >0, VK C S compact set, P, (X, € K) _Z 0; 4.3)

3. P,). is locally Feller and
vVt >0, YK C S compact set, Pa(‘L’S\K <t A S) — 0.

a—>A

Proof. 1=2. Take a compact K C S and ¢ > 0. There exists f € Cy(S) such that f > 1g.
Since the family is Feller,

Pu(X; € K) = Eo[f(X))] — 0.
2=>3. Take an open subset U &€ § such that K C U and define
v = infls = 0 {(Xo. Xlozuzs & U U (S\K) x (S\K)) .

By the third assertion of Theorem 4.5, and applying Lemma 3.8 to K = K, U = U? U
((S\K) X (S\K)), 71 :=0and 1, := #, we get the existence of N € N such that

t
su Pb<‘L' < —) < 1.
be[g N

By Theorem 4.5, P, is quasi-continuous for any a € S, so P,(X,s\xk € KU{A}) = 1. Denoting
[7] the smallest integer larger or equal than the real number r, we have

Pu(EIk eEN, k<N, Xy € U) > Pa(tS\K <EAE Xpyoipeinesik) € U)
= Eu I:]l{TS\K<l/\§}EXTS\K [X_y € U]Is:thl"tleTS\K'l_TS\K:I
> Pa(tS\K <ItA S)[l —supP(z < tN_l)],
bek
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50
- Yo P, (X y-—1 € U)
T 1 —sup,cx Po(r <tNT)

3= 1. Consider f € Cy(S), t > 0 and ¢ > 0. There exists a compact subset K C S such that
| fllxke < e, and an open subset U € S such that K C U and

Pa(rs\K <tAE) — 0, asa— A.

sup P, (r5\K

agU

<tné)<e.

Employing the second assertion of Theorem 4.5 we see that there exists g; € C(S; R%) such
that (g; - P,), is Feller. Since U € S, there exists g € Cp(S, R%) such that g := g9, satisfies
g € C(S, (0, 1]) and g(a) = 1, for a € U. Applying Proposition 4.4 to g, we obtain that (g-P,),
is Feller. Then for any a € §

[Ealf(X)] = Eol f((g- X)) < Eo[|f(X) — f(g- X)) Lizv ]
= Ea[lf(Xt)| ]l{rU<;}] + Ea[|f((9 X))l 1{IU<[}]'

By Theorem 4.5, P, is quasi-continuous, so P,(X v € U) = 1, we have
Ea[| /[0 2| = B[ 1w B o [/, o]
L] R M (76 ST B

R T (VG STL TSN

<l s;gPa(rs\’( <t AE)+ I fllke < UIf+ De,

and
Ea[1£8 X0l 1oy | = Ea[ 10 By [1£6 - X1, o]
= B[ L0 cEx o [0 X ]y ]

+ E, [1{rU<t}EXTU [If(g- Xx)“l{rS\szs}]\m_fv]

=7l SEBPa(TS\K <t A8+ fllke = (IfII + De.

Hence

|Eo[f(X01 = Eal f((g - X)01] < 201 f Il + De,

s0, since a — E,[f((g- X);)] is in Cy(S), letting ¢ — 0 we deduce that a — E,[ f(X;)] is in
Co(S), hence (P,), is Feller. [

Remark 4.11. There exist processes which are locally Feller, but not Feller. We recall here
two examples, the first provided by [15], p. 157 (see also [2], p. 52 or [17], p. 3603) and the
second by [20], p. 1379 (see also [16], p. 3). A third example is given in Remark 4.12. The
first example is the (deterministic) process

x; = sgn(xp)(2t + xo_2)71/2, t>0
which is the unique solution of the ODE
t >0, starting from x.

. 3
X = —Xx;,
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This process is locally Feller as the unique solution of the martingale problem, but the
associated semi-group does not satisfy the Feller property, since limyg) oo Ey, [f(X/)] =
f(1/5/21) # 0, for f a suitable continuous positive function vanishing at infinity. The second
example is the strong solution of the stochastic integral equation

t
X, =x0— / X,_dNy, t >0, where N is a standard Poisson process.
0

Again this process is locally Feller as the unique solution of the martingale problem, but
the associated semi-group does not satisfy the Feller property. Indeed, it can be shown that
im0 Exy [f(X:)] # O, for f a suitable continuous positive function vanishing at infinity
(see [20], p. 1379 for details). <

Remark 4.12. One can ask what is the connection between locally Feller family (process) and
a Markov family of probabilities whose associated semi-group maps Cy,(S), the set of bounded
continuous functions on S, into Cy(S)? We will call this kind of family C(S)-Feller. Here is
an example of family C,(S)-Feller which is not locally Feller. Define a Markov family on R
as follows: let e; and e, be two independent exponential random variables with expectation 1,
and define, for t > 0:

X() if X()E{—l,o,l},
. -1 .
Xe=10 Kol oy jgxor1-n + Xo Locr—ey jaxoi-1-n<essaxor-1-n 10 < [Xol <1,
Xolice,/x01-1) if 1 < |Xol.

This process jumps to X, ! with intensity |X;|~! — 1, provided 0 < |X,| < 1, and jumps to 0
with intensity |X,| — 1, provided 1 < |X,;|. We can see that its semi-group is given by:

fx) if x e {—1,0, 1},

f(x)e_(lxlil_l)t + f(x_l)(l — e_(|"|71—1)f)e—(|xr1—1)t

T, f(x)= + £(0)(1 — e*(lx\_lfl)f)2

if 0 < x| <1,

F)e= =D £0)(1 —emI=Dn) if 1 < |x|.

Since 7; maps Cp(R) to Cy,(R), the family is C,(R). But the Feller family is not tight in the
neighbourhood of Xy = 0, so the process is not locally Feller.

Finally, we recall an example already given in [9], p.1184, of a locally Feller process which
is not a Feller process. Consider the ODE

Y =0-0x* >0, xoeR.

For any initial condition x(, the unique maximal solution is the deterministic process
2 | -1 00, if xo € [0, 2),
X, = <3 —t+ —) before tpa = 1 — 1 —=2/x9, ifxg>2,
Xo 14+ /T=2/x, ifxo<0,
and x, := A, after ty,x. This trajectory is not continuous with respect to the initial condition

in the neighbourhood of xy = 2, hence the process is not Cy(R)-Feller. Clearly, the process is
not Cy(R)-Feller since it explode in finite time. ¢
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4.3. Generator description and convergence

In this subsection we analyse the generator of a locally Feller family:

Definition 4.13. Let (P,), € P(D.(S))° be a locally Feller family. The (Cy x C)-generator
L of (P,), € P(Di,c(85)) is the set of functions (£, g) € Co(S) x C(S) such that for any a € S
and any open subset U € S

U

INT
f(X, \u) — / g(X,)ds is a P,-martingale.
0

We provide in Proposition 4.16 that, for Feller families, the (Cy x C)-generator is the
extension of the (Cy x Cgp)-generator. Some authors call it the “extended generator”. In the
following we will always recall the space of which the graph of operator is a subset.

Theorem 4.14 (Generator’s Description). Let (P,), € P(D,c(S))S be a locally Feller family
and L its (Cy x C)-generator. Then D(L) is dense, L is a univariate closed sub-vector space,

M(L) = {PM}MG'P(SA)’

L satisfies the positive maximum principle and does not have a strict linear extension satisfying
the positive maximum principle. Moreover for any (f, g) € Co(S) x C(S) we have equivalence
between:

1. (f,g) e L;

2. for all a € S, there exists an open set U C S containing a such that
tim (B, [ £0X,,.0)] - f@) = (@
3. for all open subset U € S and a € U

1
lim — (B, [£(X,0e0)] = /(@) = gl@.

t—0t

Proof. Let us denote by Zz the set of (f, g) € Co(S) x C(S) satisfying the statement 2 and Z3
the set of (f, g) € Co(S) x C(S) satisfying the statement 3.

Thanks to the third assertion of Theorem 4.5 and Proposition 3.14, we have M(L) =
{Pu},cp(sa) and D(L) is dense. By the point 2 of Proposition 3.4, L is a closed linear subspace.
The fourth part of Remark 3.3 allows us to conclude that L is univariate, L satisfies the positive
maximum principle, and L C 23

It is straightforward that Ls C L,. Thanks to Theorem 3.10, L does not have strict linear
extension satisfying the positive maximum pnnmple We already proved that L C Ls C L,
and it can be verlﬁed by using its definition, that L, satisfies the positive maximum principle.
Hence L2 L = L3 O

Remark 4.15. One can ask, as in Remark 4.6, how can we obtain the generator of a locally
Feller family? A similar statement of first one in the cited remark is Proposition 4.16. The
second one is straightforward: if g € C(S, R}) and if L is the (Cy x C)-generator of (P,),,
then gL is the (Cy x C)-generator of (g-P,),, as we can see by using | from Proposition 3.4. ¢
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Proposition 4.16. Let (P,), € P(D;o(S))S be a Feller family, Ly its (Cy x Co)-generator and
L its (Cy x C)-generator. Then taking the closure in Cy(S) x C(S)

Lo = LN (Co(S) x Co(S)), and L = L.

Proof. Firstly, we have Lo C LN (Co(S)x Co(S)) by Proposition 4.2. Hence LN(Co(S)x Co(S))
is an extension of L satisfying the positive maximum principle, so by a maximality result
(a consequence of Hille—Yoshida’s theorem, see for instance Lemma 19.12, p. 377 in [14]),
Lo=LnN (CO(S) X CO(S)).

Secondly, take (f, g) € L. Let h € C(S, R7) be a bounded function such that hg € Cy(S).
Thanks to Proposition 4.4 the (Cy x Cgp)-generator of (h - P,), is hLg O(S)XCO(S). Moreover the

(Co x C)-generator of (h - P,), is HL. Hence applying the first step to the family (h - P,), we
deduce that
—7—Co(S)xCo(S)

hLo = (L) N (Co(S) x Co(S)).
s (f.bg) € AL "V and (£, 9) e T,V Y. O

Theorem 4.17 (Convergence of Locally Feller Family). For n € N U {oo}, let (P}), €
PDipe(S)S be a locally Feller Sfamily and let L, be a subset of Co(S) x C(S). Suppose that

forany n € N, L, is the generator of (P)),, suppose also that D(L) is dense in Cy(S) and
M(Leo) = (P} ep(say-
Then we have equivalence between:

1. the mapping

(NU{oo}) x P(S4) = P Dpc(S))
(n, ) > P,

is weakly continuous for the local Skorokhod topology;
2. for any ay,a € S such that a, — a, Py converges weakly for the local Skorokhod
topology to PS°, as n — 0o,

¢
3. for any (f, g) € L, there exist (f,, g,) € L, such that f, = f, &n BN g.
n—0o0 n—oo

Remark 4.18. (1) For Feller processes a convergence theorem of same type could be deduced
by using the previous result and some argument to get tightness for global Skorokhod topology
from tightness for local Skorokhod topology (see also Remark 2.12, p. 1191 in [9]).

(2) An improvement with respect to the classical result of convergence Theorem 19.25, p. 385,
in [14], is that one does not need to know that L, is the generator of the family, but only the
fact that the martingale local problem is well-posed. Let us point out that it is, in general, not
known that L. is a generator. <

Proof of Theorem 4.17. It is straightforward that 1=-2. The implication 3=>1 is a consequence
of Proposition 3.5.
We prove that 2=>3. We can suppose that L, is the generator of (P;°),. It is straightforward
to obtain that
(NU{oo}) x 84 = P (Diee(S))
(n,a) — P’
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is weakly continuous for the local Skorokhod topology. Thanks to Proposition 2.1, on the
connection between Di(S) and D(S4), there exists h € C(S, R?%) such that, for any n €
NU {oo} and a € S,

b - P (Dioe(S) ND(S)) = 1,
and the mapping
(NU{oo}) x 84 — P (D(54)
(n,a) — h-P’

is weakly continuous for the global Skorokhod topology. Thanks to Theorem 4.9, (P}), is a
Feller family, for all n € N U {oo}. From Remark 4.15 and Proposition 4.16 we deduce that:
hL, N (CO(S) X CO(S)) is the (Cy x Cp)-generator of (P)), forn e N, hL,, N (CO(S) X CO(S))
is the (Cy x Cp)-generator of (P5°), and

Co(S)xC(S)

BLo N (Co(S) x Co(S)) =bLoo.

Take arbitrary elements a, aj,as ... € SAand 1,8, t... € R, such that @, — a and ¢, — ¢,
then b - P; converges weakly for the global Skorokhod topology to b - PZ°. By Theorem 4.5,
b - PS° is quasi-continuous, so h - PS°(X,_ = X;) = 1. Hence, for any f € Cy(S)

b B LF(X,)] —> b EXLA(X)).
From here we can deduce that, for any ¢t > 0

lim supsup |h - EJ[f(X)]—b-EZX[f(X,)]| = 0.

n—=>00 <t aes

Here and elsewhere we denote by E! the expectation with respect to the probability measure
P’. Hence by Trotter-Kato’s theorem (cf. Theorem 19.25, p. 385, [14]), for any (f, g) €
BLooN(Co(S)xCo(S)) there exist (f,, ) € HL,N(Co(S)xCo(S)) such that (f;, &) — (f,9),
so it is straightforward to deduce statement 3. [J .

Remark 4.19. We present here an application of Theorem 4.17. Let us denote by Y the discrete
time canonical process on (S )N and we endow (S2)N with the canonical o-algebra. A family
(Po) € P ((SH)N )S is said to be a discrete time locally Feller family if there exists an operator
T : Co(S) — Cp(S), called transition operator, such that for any a € S: P,(Yp =a) =1 and

VneN, VfeCyS), Ei(f(Ynt1) Yo, ... ) =Ly,2)Tf(Yy) Pg-as. 4.4

We set, for u € P(S4), P, = f P,1(da), where P the probability defined by Pa(Vr €
N, Y, = A) = 1. The following result can be thought as an improvement of Theorem 19.28,
p- 387 in [14]:

Theorem (Discrete-Time Approximation). Let L be a subset of Cy(S) x C(S) with D(L) a dense
subset of Cy(S), such that the martingale local problem associated to L is well-posed, and let
Po)e € PDpe(8))S be the associated continuous time locally Feller family. For each n € N
we introduce (P)), € PUSNS g discrete time locally Feller family having the transition
operator T,. Denote by L, the operator (T, — id)/¢e,, where (g,), is a sequence of positive
constants converging to 0. There is equivalence between,
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P .

PDpoc(S))
) =5 Py,

(a) for any ji,, w € P(S?) such that u, — pn weakly, ,Zpﬁn ((YLt/an)t

P Dioc(5))
) =

(b) for any a,,a € S such that a,, — a, fpzn ((YLt/anJ)t P,;

(c) for any f € D(L), there exists a sequence (f,), € Co(SN such that fa C0—>(S) f,

—00
c(s)

L,f, — Lf.
n—oo

The detailed proof of this result is developed in §3 from [8] and it is based on the application
of Theorem 4.17. Furthermore, this theorem is useful to deduce a characterisation of the
convergence towards Lévy-type operators, and also a classical Donsker’s type theorem which
allows to simulate Lévy-type processes (see also [8]). ¢

4.4. Localisation for martingale problems and generators

We are interested to the localisation procedure. More precisely, assume that I/ is a covering
of S by open sets and let (Pfl’)a6 s.ueu be a doubly indexed probability family, such that: for
eachU e U, (Pg)a is a locally Feller family, and, for all U}, U, e Y and a € §

2 v (XTUINU2> =2, (XIUIMU2>.
P, P,

We wonder if there exists a locally Feller family (P,), such that for all U e f and a € §

D‘ZPH (XTU) = ng (XTU) ?
An attempt to give an answer to this question needs to reformulate it in terms of generators of
locally Feller families. This reformulation is suggested by the following:
Proposition 4.20. Let L1, L, C Cy(S) x C(S) be such that D(L;) = D(L,) is dense in Cy(S)
and take an open subset U C S. Suppose that

— the martingale local problem associated to L is well-posed, and,
— for all a € U there exists P2 € M(L,) with P2(Xg =a) = 1.

Then
VP2 € M(Ly), 3P' e M(L)), %m (X”) = L (X”) 4.5)
if and only if
Y(f, 8) € Lo, gu =L Hiu.
We postpone the proof of this proposition and we state two results of localisation.
Theorem 4.21 (Localisation for the Martingale Problem). Let L be a linear subspace of
Co(S) x C(S) with D(L) dense in Cy(S). Suppose that for all a € S there exist a neighbourhood

V of a and a subset L of Cy(S) x C(S) such that the martingale local problem associated to
L is well-posed and such that

(el (foel)={f.em | (fe)eL}. (4.6)

Then the martingale local problem associated to L is well-posed.
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Proof. Thanks to Theorem 3.10, to prove the existence of a solution for the martingale local
problem it suffices to prove that L satisfies the positive maximum principle. Let (f, g) € L
and a € § be such that f(a) = max f > 0. Then there exist a neighbourhood V' of a and a
subset L of Co(S) x C(S) such that the martmgale local problem associated to L is well- posed
and (4.6). In particular, by Theorem 3.10, L satisfies the positive maximum principle and so

g@)=Lf() <0.

To prove the uniqueness of the solution for the martingale local problem, we take P!, P?> ¢
M(L) and an arbitrary open subset V &€ S. By hypothesis and using the relative compactness
of V, there exist N € N, open subsets Uy, ..., Uy C S and subsets Ly, ..., Ly C Co(S)*xC(S)
such that V & Un U,, such that for all 1 <n < N the martingale local problem associated to
L, is well-posed and such that

[(f gu) | (f.9) e L} ={(f.gu) | (f.8) € L,)}.

At this level of the proof we need a technical but important result:

Lemma 4.22. Let U be an open subset of S and L be a subset of Co(S) x C(S) such that D(L)
is dense in C(S) and the martingale local problem associated to L is well-posed. Then there
exist a subset Lo of L and a function Ho of C(S, Ry) with {hy # 0} = U such that L =1L,
such that HoLo C Co(S) x Co(S) and such that: for any h € C(S, Ry) with {§ # 0} = U and
sup,cy(h/ho)(a) < oo, the martingale problem associated to (hLo)? is well-posed in D(S4).
Recall that (hLo)? is defined by (4.1) and that the associated martingale problem is defined
by (4.2).

We postpone the proof of this lemma to the Appendix (see Appendix A.3) and we proceed
with the proof of our theorem.

Applying Lemma 4.22, there exist a subset D of Cy(S) and a function § of C(S, R,) with
{h # 0} = V such that for all 1 < n < N: L, = L, p, BL, 1p C Co(S) x Co(S) and
the martingale problem associated to (hL,, | D)A is well-posed. Denote Ly := D x {0} and
UN*t! .= §4\V. We may now apply Theorem 6.2 and also Theorem 6.1 pp. 216-217, in [7]
to HL,p and (U,)1<n<n+1 and we deduce that the martingale problem associated to (hL D)2 is
well-posed. Hence h - P! = - P? so

Lo (XT ) = Lo (XT).

We obtain the result by letting V to grow towards S. This ends the proof of the theorem except
to the proof of Lemma 4.22 which is postponed to Appendix A.3. [

Theorem 4.23 (Localisation of Generator). Let L be a linear subspace of Cy(S) x C(S) Lvith
D(L) dense in Co(S). Suppose that for all subsets V € S there exists a linear subspace L of
Co(S) x C(S) such that L is the generator of a locally Feller family and

[(fam I (foeLl)={(f.em)|(f.8) €L}
Then L is the generator of a locally Feller family.

Proof. Thanks to Theorem 4.21 the martingale local problem associated to L is well-posed, let
(PS°), the locally Feller family associate to L. Let Lo, be the generator of (P2°),. Let U, € S
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be an increasing sequence i open subsets such that S = |, U, and let L, C Cy(S) x C(S)
be such that for all n € N, L, is the generator of a locally Feller family (P7}), and

{(fogw) | (f.9) € L} ={(f. 8w,) | (/. 8) € Lu}. 47
Then by using Proposition 4.20, foralln e Nand a € §
Lo (XTU"> = L (X’U"> : (4.8)

At this level we use a result of localisation of the continuity stated and proved in Appendix A.2,
Lemma A.l. Therefore, by (4.8) the mapping
(NU{o0}) x 84 = PDiee(S))
(n,a) > P’
is weakly continuous for the local Skorokhod topology. Hence by Theorem 4.17, for any
f € D(Lo) there exists a sequence (f,), € D(L)N such that (fus Lunfu) — (f, Lo f), sO
n—o00o

by (4.7) (fu, Lfy) — (f, Loof). Hence L = L is the generator of a locally Feller family.
The proof of the theorem is complete except for the proof of Proposition 4.20. [

Proof of Proposition 4.20. Suppose (4.5). For each a € U, take an open subset V C U,
P! € M(L,) and P?> € M(L>) such that a € V € S and P'(Xy = a) = P>(Xy = a) = 1. By
using the fifth part of Remark 3.3 we have for each (f, g) € L,
.1 o1
g(@) = lim —(E*[f(X,.,1)] = f@) = lim — (E' [£(X,,01)] = f@) = L1 f(@).

For the converse, by Lemma 4.22 there exists h € C(S, Ry) with {h # 0} = U such that the
martingale local problem associated to hL; = hL, is well-posed. Take P> € M(L,) and let
P! € M(L)) be such that Zp1(X¢) = %2 (Xo), then h-P', h-P?> € M(hL1)so h-P! = -P?
and hence (4.5) is verified. [

Remark 4.24. We present here an application of Theorem 4.23 by using symbols. We say
that a function ¢ : R? x RY — C is bi-continuous and negative definite if (a, o) — ¢q(a, @)
is continuous and, for each a € RY, o —> q(a, o) is negative definite. Then, for f € CSO(Rd),
the formula

—q(a, V) f(a) = — / dei“'“q(a,a)f(a)da, where  f(a) == (2m) ¢ / de*i““ f(a)da.
R R

defines a pseudo-differential operator —g(-, V) which maps CSO(R”’ ) into C(R?) and it satisfies
the positive maximum principle. The following result can be thought as an improvement of
Theorem 11.2.3, p. 272, in [22]:

Theorem (Well-Posedness and Localisation Under Ellipticity). Let g : R x R — C be a

bi-continuously negative definite function satisfying the following ellipticity condition:
VaeRY 38,7 >0, Va eRY, |g(a,a)| = Blo|".

Then the martingale local problem associated to —q(-, V) is well-posed.

Let us sketch the proof of this result. Take ayp € R? and & > 0. Set ¥ () := g(ao, @) and

q(a, a), if la —ag| < &/2,
ge(a, o) := 1 (2 —2la —apl/e)q(a, ) + 2la —apl/e — DY (@), if &/2 <|a—ao| <e,
I/f(a), if € < |a—a0|.
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Thanks to Theorem 4.23, to get the result it suffices to prove that, for ¢ small enough, the
martingale local problem associated to —g,.(-, V) is well-posed. Clearly —y(V) is the generator
of a positive semi-group on (Co(RY) NL*(RY), || - [loc + || - ll2). We prove that —g,(-, V) is a
small perturbation of —y(V), or, more precisely we show that

® NYVS =g,V f Nl < Q)Y (V) f = e, V) f lloo

and

%) YV f =g, V)flloo < Q)™ 2Ca(@) (¥ (V)" + D) f a2,

where n is an appropriate integer, C € (0, 0o0) is a constant depending on n, 8, n, and

) lg(a, o) — q(ao, @)
w(e) = sup 5
a,acR9, la—agp|<e 1 + |O(|
decreases to 0, as ¢ — 0. We deduce that —g.(-, V) is the generator of a semi-group on

Co(R?) N L*(RY) hence in particular the generator of a Feller semi-group. The inequality (%)
is a simple consequence of Holder’s inequality. To get (x%x) we can write,

St Lo
- "+1 .
e N (VAR X
Thanks to Plancherel theorem, [|[(¥"+1) fll» = 27)~4/?||(¥(V)"+1) f ||, and by the ellipticity
hypothesis, since the real part of v is positive,
V@ —g:a. @) _ w@E)d+ o)
Y +1 17 TV (B e —1)

— 2. I+l )2
To get (xx) we choose n := [(4 +d)/2n] + 1 and we set C* := fR"(W) do.

Va e RY, n e N*, |[Y(V)f(a) = gc(a, V) f(a)] < ‘
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Appendix. Proof of technical results

A.l. Proofs of Proposition 3.6 and Lemma 3.8

Proof of Lemma 3.8. Take a metric p on S and ay € I, then there exists &y > 0 such that
B(ay, 4¢p) € S and {(a, beS*|laek, pla,b) < 380} C U. Define

1, if p(a, ap) < &,
f@ =10, if p(a, ap) > 2o,
2 K8 if g < pla, ag) < 260,

Then
feCyS), 0<f<1, VaceBa,e), fla)=1 and {f # 0} C B(a, 3s0).

Take n > 0 be arbitrary. There exist (f, g) € L and a sequence (f,, g,) € L, such that
Il f — fIl <n and the sequence (f,, g,), converges to (f, g) for the topology of Cy(S) x C(S).
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Consider t; < 15, (F;4),-stopping times and take n € N. Assume that P € M(L,). For ¢ < 3¢
we denote

0, = inf{t > 1 ‘t >&or sup p(Xq, Xg) > 8}.
Ty <s<t

If V € S is an open subset such that V O B(ay, 4¢¢), if t > 0 and & < 3¢y, we can write

E [ﬁl(Xt/\rV/\ag/\rz)]l{Xq EB(flo,Eo)ﬁ’C}]

tATY Ao ATy
| (A + [ X5 ) Lix, et ok
t

INAZN
>E [f(X,MVM, )]l[XfleB(ag,so)ﬂ)C}] — 1 = fall (A1)
AtV Aoty
+E / 8n(X5)dsLix,, eBag.conK)
tATV ATy

> P(X,, € Blag,. ) NK) —P(t AtV <11 <&)—n—|f— ful
—E[(r - i, et 18nll Bag.4e0)-

Splitting on the events {0, > 1o}, {0. <t ATV An}and {t ATV <0, < 1)

E [ foXune? ngene) g Blan.coni
<P(X:, € Blap,e)) NK, 0. > 1) +n+f = ful (A2)
+ E[fn(Xaa)]l[x,leB(ao,sO)}] +P(X, €K, t<n)+n+1f— full.
Hence by (A.1) and (A.2),
P(XT1 € B(ap, g0) N K, (1)) < rz) < P(XfI € B(ap,e0) NI, o, < rz)
<3 +31f = ful +P(t ATV <1 < &) +E[(12 — t)Lix exy] - 18]l Bag.e0)
+E[ fu(Xo)Lix,, eBapeon] + P(Xr €K, 1 < 7).

Since the limit lim,43¢, X, exists and it belongs to SA\B(XT1 , 3809) we have

lim sup E[fn(Xog)]l{x,] eBag.co) ] < I full Bag,260)¢
e13eq

<Wf = Ll +01F = £+ 1 F I sao2eor < If = full +8.
S0
P(X; € Blap.e0) NK, t(r)) < 0) <4n+4|f — fill +P(t AT’ <11 <§)
+E[( — lix,, ext] - 18l Baagasg) + P(Xz, € K, 1 < 12).
Letting 1 — oo and V growing to S, P(t AtV < 11 < &) tends to 0, hence
P(X:, € B(ap, £0) NK, (1)) < 1)
<4n+4lf — full + El(v2 — 1)Lix,, exy] - 180 ll Beag,4e0) + P(X, €K, 1 = 00).

So letting n — oo, E[(1, — Tl)]l{xrl exy] — 0 and n — 0, we deduce that for each ¢ > 0
there exist nyp € N and § > 0 such that: for any n > ng, (F;+);-stopping times 7; < 7, and
P € M(L,) satistying E[(7; — TI)H{XTI eky] < & we have

P(X. € B(ap,e0) N K, (1)) < 12) < &.
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We conclude since gy was arbitrary chosen in K and by using a finite recovering of the compact
K. O

Proof of Proposition 3.6. Step 1: we prove the (F;.),-quasi-continuity before the explosion
time &. Let 1,, T be (F;4),-stopping times and denote T, := inf,,>, T, T := SUp,cy Tn and

A lim,_, » Xz,, if the limit exists,
’ A, otherwise.
Let d be the metric on S2 and take ¢ > 0, r > 0 and an open subset U € S. Since

lim E[TAtatl =T, Atntl] =0,
n—0oQ

by Lemma 3.8 applied to K := U and U = {(a, b)ye §?|d(a,b) < 8} we get
P(Xzpine0 € Uy d(Xz pine0s Xeppev) = &) — 0.
Hence
PT<tntl, dXz. Xz)>e)=P(T <T =<t A1V, d(Xz. X?) = ¢)
< P(Xz unev €U, d(Xz pnets Xzpninet) = €).
Letting n — oo on the both sides of the latter inequality we obtain that
P(T<tntY, d(A Xz)>¢)=0.
Then, successively if t — oo, U growing to S and ¢ — 0 it follows that
P(T < o0, {X,};<+ €S, A # Xz)=0.
We deduce
P(X,n%XT, T, r;; T <00, {Xsls<r € S)

n—00

=P(A#Xz, 7, — 1=T <00, {X;},<z €S) =0. (A.3)

Step 2: we prove that P(Dj,(S) NID(S4)) = 1. Let K be a compact subset of S and take an
open subset U € S containing K. For n € N define the stopping times

oo =0,
Ty = il’lf{l >0y | {Xs}onfsft @ S\K} )
On1 = inf {1 > 7, | {Xi}g<o=r E U}

Let V, € S\K be an increasing sequence of open subset such that S\K = |, Vi, and denote
k= inf{t > o | {Xslop=s<t & Vk}. Then, by (A.3)

P(ngﬁéxm, Ty < 00, {X,}ser, € S) _o,

k— o0
so {1, < &} = {X,, € K}P-almost surely. Thanks to Lemma 3.8 applied to X := K and
U =U?U((S\K) x (S\K))

supP(X., € K, 0,41 < Ty +6) —> 0.

neN e—>0
For ¢ > 0,
P(S <00, {Xsls<¢ €S and Vt <&,3s5 € [t,§), X, € K)
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< P(En,Vm >n, T, <&<TtTy —{—s) < supP(tn <&E<r1y —l—s)
neN

<supP(X,, € K, 041 < Ty +6),
neN

so letting ¢ — 0 we obtain
P(S <00, {Xsls<t € Sand Vt < &,35 €[1,8), X, € K) =0. (A.4)
Letting K growing towards S, we deduce from (A.4) that P(]DJIOC(S) N ID)(SA)) = 1.
Step 3. Let 1, T be (F;4)-stopping times. By the first step X,, — X.P-a.s. on
n—o0

{tn — 7 <00, {X,}s<r €S},

n—oo

by the second step this is also the case on
{Tn — 1 =£& <00, {Xs}y<r & S},
n—oo

and this is clearly true on {rn — 7> }, so the proof is done. [
n—oo

A.2. Proofs of auxiliary results used to define locally Feller families

We provide here proofs of Lemmas 4.7 and 4.8, the statement and the proof of Lemma A.1,
but also the proof of Proposition 2.2, all used during the proof of Theorem 4.5.

Proof of Lemma 4.7. Let t be a (F,;),-stopping time, let a € S be and let F' be a bounded
continuous function from D,(S) to R. For each n € N* chose a discrete subspace T, C T,
such that (t,t +n~']NT" is not empty for any ¢ € R*, and define

T, c=min{r €T} |t <1}.
Hence 7, is a (F;),-stopping time with value in T, so

E, [F ((Xr,l+z)[) | ]:fn] = Ex, F P,-almost surely.
1

Sincet <1, <1+4+n"
have

Ey [Eq [F (Xe1)) | Ferl = Eq [F ((Xyi0)t) | Fr, ]
< Ey |Eo [F (Xe1:)0) | Fril = Eo [F (Xeq))) | Fo, ]
+ Eo |F (Xe)) = F (Xg,500)| -

On the right hand side, the first term converges to O (see, for instance, Theorem 7.23, p. 132
in [14]) and the second term converges to 0 by dominated convergence. Hence

E,[F (X:4)) | Fr4l =Ex, F P -almost surely,

on {t < oo} and a — P, is continuous, lim, . Ex, F =Ex F. We

(A5)

so (P,), is a (F;4),-strong Markov family. U

Lemma A.1 (Localisation of Continuity). Set S an arbitrary metrisable topological space,
consider U, C S, an increasing sequence of open subsets such that S = |, U,. Let
P)an € PMipe(SNSN be such that
1. for each n € N, a — PJ is weakly continuous for the local Skorokhod topology,
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2.foreachn§manda€§
Lo (Xf””) = L (Xf””) . (A.6)
Then there exists a unique family (P3°), € P(]D)IOC(S))E such that for any n € N and a € S
Lo (Xf"") = Lo (Xf””) . (A7)

Furthermore the mapping

(NU{oo)) x5 = PDu(S))

(n,a) — P! (A-8)

is weakly continuous for the local Skorokhod topology.

Before giving the proof of this lemma let us recall that in Theorem 2.11, p. 1190, in [9],
one obtains an improvement of the Aldous criterion of tightness stated in (2.5). More precisely
a subset P C P (Dyc(S)) is tight if and only if

Vit >0, Ve >0, Vopen U € S, sup sup P(R >¢) — 0, (A9)
PeP Ts=nsn 60
3<(rp+8)Aaracl

where the supremum is taken along 7; stopping times and with

d( X7, X)) Nd( Xy, Xpy) 0 <1 <19,
R:=1 dX,_, X)) Nd(Xy,, Xgy) if0 <1 =1,
d(Xr]erz) if T1 =0.

Proof of Lemma A.l1. The uniqueness is straightforward using that X i converge to X
pointwise for the local Skorokhod topology as n — oo.

Let us prove that for any compact subset K C S, the set {P? | a € K, n € N} is tight. If
U & § is an arbitrary open subset, there exists N € N such that U C Uy. Consider ¢ and ¢ two
strictly positive real numbers. By the continuity of a — P, the set {PZ laeK, 0<n<N }
is tight, so using the characterisation (A.9) we have

sup sup P)(R>¢) — 0.
0<n<N T1<1p<13 §—0
aek

3=(1] +5)AtArU

Since U C Uy, foralln > N and a € K,
Loy (X)) = %y (7).

hence
sup sup P/(R > &) = sup sup P/(R>¢) — 0.
neN, aek  1=n=y 0<n<N  1<n=13 ndY
i3<(ry+8)atacl A€k oo <(r) +8)AtATY

So, again by (A.9), {PZ laeK, ne N} is tight.

Hence, if a € S, then the set {P7}, is tight. Fix such a, there exist an increasing sequence
@(k) and a probability measure P;° € P(Dyo.(S)) such that Pﬁ(k) converges to P2° as k — oo.
Fix an arbitrary n € N, there exists kg € N such that ¢(kg) > n and U, € Uyg,. Thanks to
Proposition 2.1, there exists g € C(S, Ry) such that Uy, = {g # 0} and such that g - P;*
converges to g - PS° weakly for the local Skorokhod topology, as k — oo. By using (A.6) we
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have, for each k > ko, g - P4® =g . P?* 50 g- PX=g- P?% Hence we deduce

fpgo <Xrun) = ff(ko) <Xtun) = fpg (XIUH> .

P

Let us prove that the mapping in (A.8) is weakly continuous for the local Skorokhod
topology. Since we already verified the tightness it suffices to prove that: for any sequences
ny € NU {oo}, a; € S such that ng — oo and ay —> a € S as k — oo and such that the
sequence PZ,’(C converges to P € P(Do(S)), then P = P°. Fix an arbitrary N € N, there exists
ko € N such that nyy > N and Uy € U,,ko. As previously, by using Proposition 2.1 again, there

exists g € C(S, Ry) such that U, = {g # 0}, g- P,¢ converges to g-P and g- PZﬁO converges

to g-P,"°, as k — oco. Thanks to (A.7) g-Pik = g-P,° for k > ko, s0 g-P = g-P," = g-P®.
This yields

2o (X)) = Zom (™)),

and letting N — oo we obtain that P =P;°. [

Proof of Lemma 4.8. Using Proposition 2.1, there exists g € C(S,R?}) such that for all
(n,a) € (NU{oo}) x §2, P!(De(S) N D(S?)) = 1 and such that (n,a) — P! is weakly
continuous for the global Skorokhod topology from D(S4). For all n € N, by Lemma 4.7,
(P7), is (Fi4)-strong Markov, so, by Proposition 2.2, (g - P}), is (F,1);-strong Markov.

Take a € S and denote T, = {t € Ry |g-PP(X,- = X,) = 1}, so T, is dense in R;.
Let t € T, be and consider F, G two bounded function from D(S4) to R continuous for the
global Skorokhod topology, we want to prove that

9 EX[F (i) G (Xin))] = 8- EF[ 9 EXIFIG (X000 |- (A.10)
For any n € N, by the Markov property we have

8- E[F (X)) G (Xin)) | = 8- B2 9 B4, [FIG (X000 |- (A1D)
The mappings

DS4) — R and DS4) — R
x> F((X4s)s) G ((Xins)s) x > g-EP[FIG ((xias)s)

are continuous on the set {X,_ = X,} for the global topology. Hence, since g - E! converges
to g - E2° weakly for the global topology and g - P2°(X,— = X;) = 1, we have

8- E[F (X100 G (Xir)) | — 0+ EF[F (X200 G (X000 . (A.12)

9-E;[a- EXIFIG (X100 | — 0-EF[a- EXIFIG (X)) (A13)

Since (1, b) — g - P} is continuous for the global topology, using the compactness of § A we
have

sup |g-ElF —g-EXF| — 0. (A.14)
aeSA n—oo

We deduce (A.10) from (A.11)-(A.14) and so
g- EZO[F ((Xi1s)s) |.7-",] =g- E‘)’(‘;[F], g - P2°-almost surely,

so, by Lemma 4.7, (g - P3°), is (F;4),-strong Markov. Applying Proposition 2.2 to (g - PS°),
and 1/g, and using (2.4), we deduce that (PS°), is (F;4);-strong Markov. [
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To be complete, we finally provide the

Proof of Proposition 2.2. Let us first verify that if (P,), is a (F;),-strong Markov family, then
(g-P,), is a (F,),-Markov family, for any g € C*°(S, R, ), where

C*S,Ry):={g: S — R, | {g =0} is closed and g is continuous on {g # 0}} .

Recall that by (2.3) (g - X); = X5, where ¢ 2 is the solution of 77 = 8(X o) (see also

Remark 3.2, p. 1195, in [9]). Then clearly (g-X); € F,o and {(@-X) # Xr,g} € F,o. Moreover
it is straightforward to prove that

(g-X) # Xttg implies that g((g- X);) =0, and (g- X;4.)s 1S constant,
and

(g-X) = Xr,g implies that (g - X;1e)s = (g - th‘3+.)s-
Assume that (P,),cs is a (F;),-strong Markov family. Using the latter remarks, for any ¢ € R,
a € S2 and B € F, we can write, P,-a.s.,

Po (@ Xira) € B Fg) =Pu((9- Xisad € B g X, = X, | Frg)

+P, (@ Xira)s € B, g+ X # X,g | Fo)
=P, (9 (Xos) € B | Fyo) Ligwmx g1 + P (@ X0 € B Fyg) Ligoxiin
= thlg(g X €B)=g Pyx,(B).

Hence (g - P,)qes is a (F;),-Markov family.
If (P,), is a (F;+),-strong Markov family, then for any (]:(f,g)Jf );-stopping time o,

W<ty=|Jlo<q ¥ <t}eF,
q€Q+
so 72 is a (F;+),-stopping time. Using the same argument as before we obtain that (g - P,), is
a (F;+),-strong Markov family. [J

A.3. Proof of Lemma 4.22

Before proving Lemma 4.22 let us note that thanks to Propositions 2.1 and 2.2, if (P,), €
PDioc(S))S is locally Feller then for any open subset U C S there exists hy € C(S, R,) such
that U = {hy # 0} and (h - P,), is locally Feller. This fact does not ensure that the martingale
local problem associated to hoL is well-posed as is stated in Lemma 4.22. During the proof
we will use two preliminary results.

Lemma A.2. Let L be a subset of Cy(S) x C(S) such that D(L) is dense in Cy(S) and U
be an open subset of S, then there exist a subset Ly of L and a function b, of C(S, Ry) with
{bo # 0} = U such that L = Ly, such that hoLy C Co(S) x Co(S) and such that: for any
h € C(S,Ry) with {h # 0} = U and sup,.y(h/ho)a) < oo and any P € M, ((hLO)A),
PX=X")=1.
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Proof. Take L, a countable dense subset of L and let d be a metric on S2. For any n € N*
there exist M, € N and (a,.n)1<m<m, € (S?\U)M" such that

My
SN\U ¢ | Bl@nm,n™.

m=1
For each 1 <m < M, there exist (f,.m, gn.m) € Lo such that
[1—n1'14+n""] ifd(a, An.m) > 2n~ L,
fam@ € [-n" 1+n7"]  ifn~! <d(a,anm) =2n"",
[-n~' 071 if n=! < d(a, aym).
Take ho € Co(S, Ry) with {hy # 0} = U, such that hog € Cy(S) for any (f, g) € Ly and such
that for any n € N* and 1 <m < M,

1
190l Beay . an-1) 1 8n.m Il < o

Hence L = Lo and hLy C Co(S) x Co(S). Let h € C(S,R,) be such that {§ # 0} = U and
C = sup,.y(h/ho)a) < oo. Let P € M, ((hL)A) be such that there exists a € S4\U with
P(Xy = a) = 1. We will prove that

PVs >0, X, =a)=1. (A.15)
Take t € R, and n € N. There exists m < M, such that d(a, a, ;) < % If we denote
T = TB(a,3n*1)’
then
INT
E[fn,m(Xt/\t)] = fn,m(a) +E |:/ h(Xs)gn,m(Xs)dsi|
0

14+1¢C
< fam(@) + t”h||B(an,m,4n*1)”gn,m Il < P

Since P(T <0 =>d(X;,a)> %) = 1, by 3.6 in the proof of Proposition 3.4, we have
E[fn,m(Xt/\t)] = E[fnﬁm(xt)]l[tgr]] + E[fn,m(Xt)]l{t<r]]
1 1 1
>(1--)Pr=<H—--Pe<t)=P <1)— —,
n n n
SO

2+1C
Pr <1 <=1
n

Hence we obtain

241tC
P(Vs €[0,1], d(X;,a) <3/n) =Pt <7)>1— + .
n

By taking the limit with respect to n and ¢ we obtain (A.15).
To complete the proof let us consider an arbitrary P € M. ((hL¢)?). As in Remark 3.12
we denote
P-as.
Qx = % ((XTU+t)tZO | ]:rU) .
Thanks to Proposition 3.13 P-almost surely Qx € M ((hL)A), and thanks to 3.6 from
Proposition 3.4 P-almost surely Qx(Xg = a) = 1 witha = X, € SA\U on {t¥ < oo}.
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By using the previous case and by applying (A.15) we get that P-alnl}ost surely Qx (Vs >
0,X,=a)=1, witha =X, € SA\U on {t¥ <oo}. Hence P(X = X" )=1. O

Lemma A.3. Let L be a subset of Cy(S) x Co(S) such that the martingale problem associated
to L is well-posed. Then the martingale problem associated to L* is well-posed if and only if
P(X = X’S) =1 for all P € M.(L?) (in other words P € P(D;,c(5))) .

Proof. Assume that the martingale problem associated to L2 is well-posed and take P €
M(LA). Then L(X™") € Mc(L?), so by uniqueness of the solution P = .%(X™") and so
P(X = X’S) = 1. For the converse, let P!, P> € M (L?) be such that Zp1(Xo) = Lp2(Xo).
Then P!, P? € P(Die(S)) so P!, P> € M(L), hence P! =P%2. [

Proof of Lemma 4.22. Let Ly and hy be as in Lemma A.2 and take h € C(S, R;) with
{h # 0} = U and sup,.;;(h/ho)a) < oo. The existence of a solution for the martingale
problem associated to (hLy)? is given by the existence of a solution for the martingale problem
associated to L. Let P',P? € M.((hL¢)?) be such that Zpi1(Xo) = Zp2(Xp). Thanks to
Lemmas A.2 and A.3, for an open subset V & U, there exist g € C(S,R}) and a dense
subset L; of Ly such that g(a) = h(a) for any a € V, tL; C Cy(S) x Co(S) and the
martingale problem associated to (gL;)? is well-posed. Hence we may apply Theorem 6.1
p. 216 from [7] and deduce that Zp: (X’V) = fpz(X’V). Letting V growing towards U we
deduce that $P1(XTU) = fpz(XTU) and so, since P/(X = XTU) = 1fori € {1, 2}, we conclude
that P! = P>, [J
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