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Abstract

We present a general framework for solving stochastic porous medium equations and stochastic
Navier–Stokes equations in the sense of martingale solutions. Following Krylov [N.V. Krylov, The selection
of a Markov process from a Markov system of processes, and the construction of quasidiffusion processes,
Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973) 691–708] and Flandoli–Romito [F. Flandoli, N. Romito,
Markov selections for the 3D stochastic Navier–Stokes equations, Probab. Theory Related Fields 140 (2008)
407–458], we also study the existence of Markov selections for stochastic evolution equations in the absence
of uniqueness.
c© 2008 Elsevier B.V. All rights reserved.

Keywords: Markov selection; Martingale solution; Stochastic porous medium equation; Stochastic Navier–Stokes
equation

1. Introduction

The purpose of this paper is twofold. First, we prove a general existence result of solutions
for a large class of stochastic partial differential equations (SPDE) of evolutionary type in the
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sense of Stroock and Varadhan’s martingale problem (see [17]). Second, because of the lack of
uniqueness in general, we construct almost sure (with respect to the time parameter) Markov
selections.

Recently, there has been a lot of interest in stochastic porous medium equations. Strong
solutions have been constructed for various classes of such equations e.g. in [9,6,15,3,4,18,
16] (see also [14]). Weak solutions, unique in an L2-sense, were constructed in [5,2]. In
all these papers, however, weak monotonicity conditions were imposed on the coefficients.
One aim of this paper is to modify and extend the classical work by Mikulevicius and
Rozovskii [13] on weak or martingale solutions for SPDE in such a way so as to include
stochastic porous medium equations without monotonicity conditions, but merely growth
restrictions on the coefficients and quite weak continuity assumptions (i.e. merely demi-
continuity). To this end, we suggest a general framework (cf. Section 4) which also comprises the
stochastic Navier–Stokes equations over a bounded domain in all dimensions with multiplicative
noise (which was, however, already covered in [13] under similar assumptions on the
coefficients).

On the other hand, without any at least local weak monotonicity conditions on the coefficients
one cannot expect to be able to prove uniqueness of martingale solutions. The least, however,
what one can expect is to prove the existence of Markov selections or so-called almost sure
Markov selections recently introduced by Flandoli and Romito in [8], generalizing the classical
work of Krylov [10], beautifully implemented in finite dimensions in [17]. In this celebrated
paper [8], the authors prove the existence of almost sure Markov selections in the case of
stochastic 3D Navier–Stokes equations (also showing that the “almost sure” can be dropped
for sufficiently regular additive noise). The second aim of our paper is to prove the existence of
such almost sure Markov selections in our general framework in Section 4 (cf. Theorem 4.7). As
applications, we recover the corresponding results in [8] for the stochastic 3D Navier–Stokes
equations (cf. Section 6), but also prove the existence of such selections for non-monotone
stochastic porous medium equations for the first time (see Section 5).

Our construction of almost sure Markov selections differs from that in [8] in the following
ways: Our abstract Markov selection theorem is stated in a Polish space so that it can be used
to deal with more general stochastic equations. Another main difference about the notion of
martingale solutions is that we avoid using the notion of “a.s. super martingale” from [8], which
would cause some unnecessary difficulties (as e.g. the lack of measurability of s 7→ E(·|Fs)(ω)

for the natural, not right-continuous filtration (Fs)s>0).
This paper is organized as follows: In Section 2, we state the abstract Markov selection

theorem in a Polish space, whose proof is given in Appendix A. In Section 3, under the
assumptions of existence and weak compactness of martingale solutions, we prove a theorem
about the existence of Markov selections for abstract SPDE of evolutionary type. In Section 4,
we give some concrete conditions for the coefficients of such SPDE so that the assumptions in
Section 3 are satisfied. In the next two sections, we apply our general results to non-monotone
stochastic generalized porous medium equations and stochastic 3D Navier–Stokes equations with
multiplicative noise. In Appendices A–C, for the reader’s convenience and completeness, we
include some proofs of theorems and lemmas used in the main text.

2. Abstract Markov selections

Let (X, ρX) be a Polish space. For fixed t > 0, let Ω t
:= C([t,∞);X) be the space of all

continuous functions from [t,∞) to X with the metric
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ρt (x, y) :=
∞∑

m=[t]+1

1
2m

(
sup

s∈[t,m]
ρX(x(s), y(s)) ∧ 1

)
.

Then (Ω t , ρt ) is a Polish space. For s > t , define the σ -algebra F t
s on Ω t by

F t
s := σ {x(r) : t 6 r 6 s},

and write

F t
:= ∨s>t F t

s .

Thus, we have a measurable space with filtration

(Ω t ,F t , (F t
s )s>t ).

If t = 0, we simply write

(Ω ,F , (Fs)s>0).

We remark Ω t can be regarded as a closed subset of Ω by setting

x(r) := x(t), r ∈ [0, t], x ∈ Ω t .

In this way, for any s > t > 0, Ω t
∈ Fs and

F t
s = Ω t

∩ Fs ⊂ Fs .

The shift operator Φt : Ω → Ω t defined by

Φt (x)(s) := x(s − t), s > t, (2.1)

establishes a measurable isomorphism between (Ω ,F , (Fs)s>0) and (Ω t ,F t , (F t
s )s>t ).

For a Polish space V let B(V) denote its Borel σ -algebra, and P(V) the set of all probability
measures on (V,B(V)). It is a classical fact that F t

= B(Ω t ), and P(V) is still a Polish
space with respect to the weak topology. The corresponding metric is denoted by dV. For each
P ∈ P(Ω t ), we may extend P to Ω by putting P(A) = P(Ω t

∩ A) for A ∈ F . In this
way, P(Ω t ) can be thought of as a subset of P(Ω). The shift operator Φt also establishes
an isomorphism between P(Ω) and P(Ω t ), i.e., if P ∈ P(Ω), then P ◦ Φ−1

t ∈ P(Ω t ); if
P ∈P(Ω t ), then P ◦ Φt ∈P(Ω).

The following lemma is easy.

Lemma 2.1. For t > 0, let P ∈ P(Ω t ) ⊂ P(Ω). Then for any non-negative F -measurable
random variable ξ

EP (ξ |Fs) = EP (ξ |F t
s ), s > t.

Proof. Since F t
s ⊂ Fs , we only need to prove that for any A ∈ Fs

EP (1A · ξ) = EP (1A · EP (ξ |F t
s )).

However this is true because P is concentrated on Ω t . �

Given P ∈P(Ω) and t > 0, we shall denote by P(·|Ft )(x) a regular conditional probability
distribution (abbreviated as r.c.p.d.) of P with respect to Ft . In particular, P(·|Ft )(x) is a
probability measure on (Ω ,F) and for any bounded F -measurable function f on Ω
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EP ( f |Ft ) =

∫
Ω

f (y)P(dy|Ft ), P-a.s. , (2.2)

and there exists a P-null set N ∈ Ft such that for any x 6∈ N (cf. [17, Theorem 1.1.8])

P ({y : y(s) = x(s), s ∈ [0, t]}|Ft ) (x) = 1. (2.3)

In particular, by (2.3) we can also consider P(·|Ft )(x) as a measure on (Ω t ,F t ), i.e.,

P(·|Ft )(x) ∈P(Ω t ). (2.4)

Below we shall do this without further comments.
Let us recall the following result (cf. [17, Theorem 6.1.2]).

Theorem 2.2. Fix t > 0. Let x 7→ Qx be a mapping from Ω to P(Ω t ) such that for any A ∈ F t ,
x 7→ Qx (A) is Ft -measurable, and for any x ∈ Ω

Qx (y ∈ Ω t
: y(t) = x(t)) = 1.

Then for any P ∈P(Ω), there exists a unique P ⊗t Q ∈P(Ω) such that

(P ⊗t Q)(A) = P(A), ∀A ∈ Ft , (2.5)

and for P ⊗t Q-almost all x ∈ Ω

Qx = (P ⊗t Q)(·|Ft )(x). (2.6)

Let B be another Polish space, which is continuously and densely injected into X. By
Kuratowski’s theorem, B is a Borel subset of (X, ρX) and B(B) = B ∩ B(X).

Definition 2.3. We say P ∈ PB(Ω) ⊂ P(Ω) is concentrated on the paths with values in B, if
there exists an A ∈ F with P(A) = 1 such that A ⊂ {x ∈ Ω : x(t) ∈ B,∀t > 0}.

Remark 2.4. As a subset of (P(Ω),dΩ ), (PB(Ω),dΩ ) is a separable metric space, but, may
be not complete. It is clear that B(PB(Ω)) =PB(Ω) ∩ B(P(Ω)).

Following [8, Definitions 2.4, 2.5], we introduce the following notions.

Definition 2.5. A family (Pb)b∈B of probability measures in PB(Ω), is called an almost sure
Markov family (resp. Markov family) if for any A ∈ F , b 7→ Pb(A) is B(B)/B([0, 1])-
measurable, and for each b ∈ B there exists a Lebesgue null set TPb ⊂ (0,∞) (resp. TPb = ∅)
such that for all t 6∈ TPb and Pb-almost all x ∈ Ω

Pb(·|Ft )(x) = Px(t) ◦ Φ−1
t .

In other words, for any bounded F t -measurable function f on Ω t∫
Ω t

f (y)Pb(dy|Ft )(x) = EPx(t)( f ◦ Φt ), Pb-a.s. x ∈ Ω .

By Comp(PB(Ω)) denote the space of all compact subsets of PB(Ω). Define a metric
d̃C (K1, K2) between two points K1, K2 ∈ Comp(PB(Ω)) by

d̃C (K1, K2) := inf{ε > 0 : K1 ⊂ K ε
2 , K2 ⊂ K ε

1 },
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where for any set K ∈ Comp(PB(Ω)), K ε
:= {y : dΩ (x, y) < ε, ∃x ∈ K }. We remark that for

any x, y ∈PB(Ω)

d̃C ({x}, {y}) = dΩ (x, y).

It is easy to see that (Comp(PB(Ω)), d̃C ) is a separable metric space, which will be endowed
with the Borel sigma algebra.

Definition 2.6. Let B 3 b 7→ C (b) ∈ Comp(PB(Ω)) be a measurable mapping. We say
(C (b))b∈B forms an almost sure pre-Markov family (resp. pre-Markov family) if for each
b ∈ B and P ∈ C (b), there exists a Lebesgue null set TP ⊂ (0,∞) (resp. TP = ∅) such that for
all 0 6 t 6∈ TP ,

1 (Disintegration) there is a P-null set N ∈ Ft such that for x 6∈ N ,

x(t) ∈ B, P(Φt (·)|Ft )(x) ∈ C (x(t));

2 (Reconstruction) for each mapping Ω 3 x 7→ Qx ∈ PB(Ω t ) satisfying the assumptions in
Theorem 2.2 such that there is a P-null set N ∈ Ft such that for all x 6∈ N

x(t) ∈ B, Qx ◦ Φt ∈ C (x(t));

then P ⊗t Q ∈ C (b).

We are now in a position to state the following abstract Markov selection theorem (cf. [8,
Theorems 2.8, 2.12]).

Theorem 2.7. Let (C (b))b∈B be an almost sure pre-Markov family (resp. pre-Markov family).
Suppose that for each b ∈ B, C (b) is non-empty and convex. Then there exists a measurable
selection B 3 b 7→ Pb ∈PB(Ω) such that Pb ∈ C (b) for each b ∈ B, and (Pb)b∈B is an almost
sure Markov family (resp. Markov family). We call (Pb)b∈B an almost sure Markov selection
(resp. Markov selection) of (C (b))b∈B.

Although the proof of this theorem is almost the same as that given in [8, Theorem 2.8]
(see also [17, Theorem 12.2.3]), for the reader’s convenience, the proof will be provided in
Appendix A.

3. Markov property for stochastic evolution equations

Let H be a separable Hilbert space, with inner product 〈·, ·〉H and norm ‖ · ‖H. Let X,Y be
two separable and reflexive Banach spaces with norms ‖ · ‖X and ‖ · ‖Y, such that

Y ⊂ H ⊂ X

continuously and densely. By Kuratowski’s theorem we have that Y ∈ B(H), H ∈ B(X) and
B(Y) = B(H) ∩ Y, B(H) = B(Y) ∩H. If we identify the dual of H with itself, then we get

X∗ ⊂ H∗ ' H ⊂ X.

In applications, X∗ is usually embedded in Y. The dual pair between X and X∗ is denoted by

X〈x, y〉X∗ , x ∈ X, y ∈ X∗.

We remark that if x ∈ H, then

X〈x, y〉X∗ = 〈x, y〉H.
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Let E be a fixed countable dense subset of X∗ which will be chosen in each case.
Let (W (t))t>0 be a cylindrical Brownian motion in another separable Hilbert space U with

identity covariance. Let L2(U;H) be the space of all Hilbert–Schmidt operators from U to H
with inner product 〈·, ·〉L2(U,H) and norm ‖ · ‖L2(U,H).

Consider the following stochastic evolution equation:

dx(t) = A(x(t))dt + B(x(t))dWt , t > 0, x(0) = x0 ∈ H, (3.1)

where A : Y→ X and B : Y→ L2(U;H) are B(Y)/B(X) and B(Y)/B(L2(U;H))-measurable
respectively.

Let f : Y → R be a B(Y)/B(R)-measurable real function. Setting R̄ := R ∪ {∞}, we may
extend f to a B(X)/B(R̄)-measurable function on X by setting

f (x) = ∞, x ∈ X \ Y. (3.2)

In the following, we shall always use this extension if it is necessary, and keep the same notations
as in Section 2 such as Ω ,F and Ft . We now introduce the following notion of martingale
solution to Eq. (3.1).

Definition 3.1. Let x0 ∈ H. A probability measure P ∈P(Ω) is called a martingale solution of
Eq. (3.1) with initial value x0 if:

(M1) P(x(0) = x0) = 1 and for any n ∈ N

P

{
x ∈ Ω :

∫ n

0
‖A(x(s))‖Xds +

∫ n

0
‖B(x(s))‖2L2(U;H)ds < +∞

}
= 1;

(M2) for every ` ∈ E , the process

M`(t, x) := X〈x(t), `〉X∗ −
∫ t

0
X〈A(x(s)), `〉X∗ds

is a continuous square integrable Ft -martingale with respect to P , whose quadratic
variation process is given by

〈M`〉(t, x) :=
∫ t

0
‖B∗(x(s))(`)‖2Uds,

where the asterisk denotes the adjoint operator of B(x(s));
(M3) for any p ∈ N, there exist a continuous positive real function t 7→ Ct,p (only depending

on p and A, B), a lower semi-continuous functional N p : Y → [0,∞], and a Lebesgue
null set TP ⊂ (0,∞) such that for all 0 6 s 6∈ TP and all t > s

EP

(
sup

r∈[s,t]
‖x(r)‖2p

H +
∫ t

s
N p(x(r))dr

∣∣∣∣Fs

)
6 Ct−s,p · (‖x(s)‖

2p
H + 1). (3.3)

Remark 3.2. If a martingale solution P ∈ P(Ω) is concentrated on the paths that are right
continuous in H, then the exceptional set TP in (M3) is empty. In fact, letting t > s > 0, we
choose sn 6∈ TP with sn ↓ s. Then

EP

(
sup

r∈[sn ,t]
‖x(r)‖2p

H +
∫ t

sn

N p(x(r))dr

∣∣∣∣Fsn

)
6 Ct−sn ,p ·

(
‖x(sn)‖

2p
H + 1

)
.
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Taking conditional expectations with respect to Fs gives

EP

(
sup

r∈[sn ,t]
‖x(r)‖2p

H +
∫ t

sn

N p(x(r))dr

∣∣∣∣Fs

)
6 Ct−sn ,p ·

(
EP

(
‖x(sn)‖

2p
H |Fs

)
+ 1

)
.

Letting n → ∞ and using the dominated convergence theorem and the right continuity of
s 7→ x(s), we obtain

EP

(
sup

r∈[s,t]
‖x(r)‖2p

H +
∫ t

s
N p(x(r))dr

∣∣∣∣Fs

)
6 Ct−s,p ·

(
‖x(s)‖2p

H + 1
)
.

We make the following assumptions:

(H1) For each x0 ∈ H, there exists a martingale solution P ∈P(Ω) starting from x0 to Eq. (3.1)
in the sense of Definition 3.1. The set of all such martingale solutions is denoted by C (x0).

(H2) Let xn → x0 as n→∞ in H and Pn ∈ C (xn). Then for some subsequence nk , Pnk weakly
converges to some P ∈ C (x0).

Lemma 3.3. Under (H1) and (H2), the family (C (x0))x0∈H satisfies the disintegration property
in Definition 2.6.

Proof. Fix x0 ∈ H and P ∈ C (x0). Let TP be the exceptional set in (M2). We also fix
0 6 r 6∈ TP . Let Qr

x := P(·|Fr )(x) be an r.c.p.d. of P with respect to Fr . We want to show that
there is a P-null set N ∈ Fr such that for all x 6∈ N

Qr
x ◦ Φr ∈ C (x(r)).

That is, we need to check Qr
x ◦ Φr satisfies (M1)–(M3).

(M1). Setting

Ωn :=

{
x ∈ Ω :

∫ n

0
‖A(x(s))‖Xds +

∫ n

0
‖B(x(s))‖2L2(U;H)ds < +∞

}
and Ω ′ := ∩n∈N Ωn , by (2.2) and (2.4) we have

1 = P(Ω ′) =
∫
Ω

Qr
x (Ω
′
∩ Ωr )P(dx) =

∫
Ω

Qr
x (ΦrΩ ′)P(dx),

which together with (2.3) implies that for some P-null set N1 ∈ Fr and all x 6∈ N1

Qr
x ◦ Φr (Ω ′) = 1,

and

Qr
x ◦ Φr (y : y(0) = x(r)) = Qr

x (y : y(r) = x(r)) = 1.

(M2). Since E is countable, by (III) of Lemma B.3 there exists a P-null set N2 ∈ Fr such
that for all x 6∈ N2, Qr

x ◦ Φr satisfies (M2).
(M3). We choose ξ and η in Lemma B.2 as follows:

ξ(t, s) := sup
s′∈[s,t]

‖x(s′)‖2p
H +

∫ t

s
N p(x(s

′))ds′

and

η(t, s) := the right-hand side of (3.3).
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It is clear that for each 0 6 s 6 t , η(t, s) is Fs-measurable, and t 7→ η(t, s) is continuous,
t 7→ ξ(t, s) is increasing, and (iii) in Lemma B.2 holds. The integrability conditions on ξ and η
in Lemma B.2 follow from (M3), i.e.,

EP (ξ(t, 0)) 6 Ct,p · (‖x0‖
2p
H + 1), ∀t > 0.

Thus, by (III) of Lemma B.2 there exists a P-null set N3 ∈ Fr such that for all x 6∈ N3, Qr
x ◦Φr

satisfies (M3).
Finally, letting N := N1 ∪ N2 ∪ N3, we obtain the desired result. �

Lemma 3.4. Under (H1) and (H2), the family (C (x0))x0∈H satisfies the reconstruction property
in Definition 2.6.

Proof. Fix x0 ∈ H and P ∈ C (x0). Let TP be the exceptional set in (M2). We also fix
0 6 r 6∈ TP . Let Ω 3 x 7→ Qx ∈ PH(Ωr ) satisfying the assumptions in Theorem 2.2.
Suppose also that for some P-null set N ∈ Fr and all x 6∈ N

x(r) ∈ H, Qx ◦ Φr ∈ C (x(r)).

Our aim is to show

P ⊗r Q ∈ C (x0).

(M1). Since P agrees with P ⊗r Q on Fr ,

(P ⊗r Q)(y : y(0) = x0) = 1.

Let Ω ′ be as in Lemma 3.3. By (2.6) we have

(P ⊗r Q)(Ω ′) =
∫
Ω

Qx (ΦrΩ ′)P(dx) =
∫

N
Qx ◦ Φr (Ω ′)P(dx) = 1.

(M2) and (M3) for P ⊗r Q are direct consequences of Lemmas B.2 and B.3 and the fact that
P agrees with P ⊗r Q on Ft . �

We can now give our main result in this section.

Theorem 3.5. Under (H1) and (H2), (C (x0))x0∈H defined above admits a measurable almost
sure Markov selection. In this sense, there exists an almost sure Markov family (Px0)x0∈H for
Eq. (3.1).

Proof. By (H1) and Definition 3.1, it is clear that C (x0) is non-empty and convex for each
x0 ∈ H. Note that

L∞loc(R+;H) ∩ Ω ∈ F ,

and by (M3)

P(L∞loc(R+;H) ∩ Ω) = 1.

Since t 7→ x(t) is weakly continuous in H for any x ∈ L∞loc(R+;H) ∩ Ω , P is concentrated on
the paths with values in H, i.e, P ∈PH(F).

In (H2), taking xn = x0 gives that C (x0) ∈ Comp(PH(F)). By (H2) again, Remark 2.4
and [17, Lemma 12.1.8], x0 7→ C (x0) is a Borel measurable map of H into Comp(PH(F)).
Thus, by Lemmas 3.3 and 3.4, Theorem 2.7 implies the assertion. �
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4. Martingale solutions for stochastic evolution equations

In this section, we shall give conditions on A and B such that (H1) and (H2) hold. For this
purpose, we first introduce the following function class Aq , q > 1: A lower semi-continuous
function N : Y→ [0,∞] belongs to Aq if N (x) = 0 implies x = 0, and

N (cy) 6 cq N (y), ∀c > 0, y ∈ Y, (4.1)

and

{y ∈ Y : N (y) 6 1} is relatively compact in Y. (4.2)

Remark 4.1. We extend N to a B(X)/B([0,∞])-measurable function on X as done in (3.2) so
that

∫ t
0 N (x(s))ds is well defined for all x ∈ C([0,∞),X).

In this section we assume

X is a Hilbert space and X∗ ⊂ Y compactly. (4.3)

The assumptions on A and B are given as follows:

(C1) (Demi-Continuity) For any x ∈ X∗, if yn strongly converges to y in Y, then

lim
n→∞X

〈A(yn), x〉X∗ = X〈A(y), x〉X∗ ,

and

lim
n→∞
‖B∗(yn)(x)− B∗(y)(x)‖U = 0.

(C2) (Coercivity Condition) There exist λ1 > 0 and N1 ∈ Aq for some q > 2 such that for all
x ∈ X∗

X〈A(x), x〉X∗ 6 −N1(x)+ λ1(1+ ‖x‖2H).

(C3) (Growth Condition) There exist λ2, λ3, λ4 > 0 and γ ′ > γ > 1 such that for all x ∈ Y

‖A(x)‖γX 6 λ2 N1(x)+ λ3(1+ ‖x‖
γ ′

H ),

‖B(x)‖2L2(U;H) 6 λ4(1+ ‖x‖2H),

where N1 is as in (C2).

Remark 4.2. We note that because no monotonicity conditions are imposed, (C1)–(C3) above
are considerably weaker than the usual conditions to get strong solutions to Eq. (3.1) (cf. [14]).
We recall that demi-continuity is implied by hemi-continuity for weakly monotone maps (cf. [14,
Remark 4.1]).

Below we set

S := C([0,∞),X) ∩ Lq
loc(R+;Y)

and for p > 1

N p(x) := ‖x‖
2(p−1)
H ·N1(x), x ∈ Y.

It is clear that x 7→ N p(x) is still a lower semi-continuous function on Y.
The following two lemmas are well known (cf. [7,12]). For the reader’s convenience, the

proofs are provided in Appendix C.
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Lemma 4.3. Let (Pn)n∈N be a family of probability measures on Ω = C([0,∞),X). Assume
that X∗ is compactly embedded into H, and for some β > 0 and any T > 0

sup
n∈N

EPn

(
sup

t∈[0,T ]
‖x(t)‖H + sup

s 6=t∈[0,T ]

‖x(t)− x(s)‖X
|t − s|β

+

∫ T

0
N1(x(s))ds

)
<∞. (4.4)

Then (Pn)n∈N is tight in S.

Lemma 4.4. Under (4.3), there exists an orthonormal basis E := {`i , i ∈ N} ⊂ X∗ of H such
that for some κ > 0

‖Πn x‖X 6 κ‖x‖X, ∀n ∈ N, x ∈ X, (4.5)

where Πn is the projection operator defined by

Πn x :=
n∑

i=1
X〈x, `i 〉X∗`i , x ∈ X.

Below we shall fix this orthonormal basis E = {`i , i ∈ N} of H. Let us first verify assumption
(H2).

Theorem 4.5. Under (C1)–(C3), assume xn → x0 in H as n → ∞ and let Pn ∈ C (xn). Then
there exists a subsequence nk , and P ∈ C (x0) such that Pnk weakly converges to P.

Proof. We divide the proof into four steps.
(Step 1): In this step we prove that (Pn)n∈N is tight in S. Recall that each Pn satisfies

(M1)–(M3). Define for each n ∈ N

Mn(t, x) :=
∞∑
j=1

M` j (t, x)` j − xn,

where M` j (t, x) is given in (M2). The process (t, x) 7→ Mn(t, x) is then a continuous H-valued
Ft -martingale with respect to Pn with initial value (due to (M1) and (M2))

Mn(0, x) = 0, Pn-a.s.,

and whose covariation operator process in H is given by

〈〈Mn〉〉(t, x) :=
∫ t

0
B(x(s))B∗(x(s))ds. (4.6)

In fact, set M (k)
n (t, x) :=

∑k
j=1 M` j (t, x)` j − Πk xn . By (M2), the process (t, x) 7→

M (k)
n (t, x) is a continuous H-valued Ft -martingale with respect to Pn . Note that by (C3) and

(M3) ∫ T

0
EPn‖B(x(s))‖2L2(U,H)ds 6 λ4

∫ T

0
EPn

(
‖x(s)‖2H + 1

)
ds < +∞.

By Burkholder’s inequality and (M2), we have for any l > k

EPn

(
sup

t∈[0,T ]
‖M (k)

n (t, x)− M (l)
n (t, x)‖2H

)
6 C

l∑
j=k

∫ T

0
EPn‖B∗(x(s))(` j )‖

2
Uds,
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which tends to zero as l, k go to infinity. Therefore, Mn(t, x) is a continuous H-valued Ft -
martingale, and by polarization

〈〈Mn〉〉(t, x) =
∑
i, j

〈M (i)
n ,M ( j)

n 〉(t, x)`i ⊗ ` j

=

∑
i, j

∫ t

0
〈B∗(x(s))(`i ), B∗(x(s))(` j )〉Uds`i ⊗ ` j ,

which gives (4.6).
Thus, the following equality holds in X

x(t) = xn +

∫ t

0
A(x(s))ds + Mn(t, x), Pn-a.s. (4.7)

By Hölder’s inequality, (C3) and (M3), (M1) for Pn we have

EPn

[
sup

s 6=t∈[0,T ]

(∥∥∥∥∫ t

s
A(x(r))dr

∥∥∥∥γ
X

/
|t − s|γ−1

)]
6 EPn

[∫ T

0
‖A(x(r))‖γXdr

]
6 EPn

[∫ T

0

(
λ2 N1(x(r))+ λ3(1+ ‖x(r)‖

γ ′

H )
)

dr

]
6 CT,γ ′(EPn‖x(0)‖γ

′

H + 1) = CT,γ ′(‖xn‖
γ ′

H + 1), (4.8)

where CT,γ ′ is independent of n.
Moreover, by (C3) and (M3), (M1) for Pn again, for any T > t > s > 0 and p ∈ N we have

EPn‖Mn(t, x)− Mn(s, x)‖2p
H 6 C pEPn

(∫ t

s
‖B(x(r))‖2L2(U;H)dr

)p

6 C p|t − s|p−1
∫ t

s
EPn‖B(x(r))‖2p

L2(U;H)dr

6 C p|t − s|p−1
∫ t

s
EPn (‖x(r)‖2p

H + 1)dr

6 C p,T |t − s|p(‖xn‖
2p
H + 1).

By Kolmogorov’s criterion, for any α ∈ (0, p−1
2p ) we get

EPn

(
sup

s 6=t∈[0,T ]

‖Mn(t, x)− Mn(s, x)‖2p
H

|t − s|pα

)
6 C p,T (‖xn‖

2p
H + 1). (4.9)

Combining (4.7)–(4.9) gives for β = 1− 1
γ

sup
n∈N

EPn

(
sup

s 6=t∈[0,T ]

‖x(t)− x(s)‖X
|t − s|β

)
<∞. (4.10)

Thus, by (M3) for Pn and Lemma 4.3, (Pn)n∈N is tight in S.
Without loss of generality, we assume that Pn weakly converges to some probability measure

P in S. We need to show P ∈ C (x0), i.e, P satisfies (M1)–(M3).
(Step 2): In this step we verify (M1) for P .
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By Skorohod’s representation theorem, there exist a probability space (Ω̃ , F̃ , P̃) and S-valued
random variables x̃n and x̃ such that:

(i) x̃n has the law Pn for each n ∈ N;
(ii) x̃n → x̃ in S, P̃-a.e., and x̃ has the law P .

First of all, noting that xn → x0 in H, by (M1) for Pn we have

P(x(0) = x0) = P̃(x̃(0) = x0) = lim
n→∞

P̃(x̃n(0) = xn) = lim
n→∞

Pn(x(0) = xn) = 1.

For p ∈ N and 0 6 s < t , set

ξp(t, s, x) := sup
r∈[s,t]

‖x(r)‖2p
H +

∫ t

s
‖x(r)‖2(p−1)

H N1(x(r))dr. (4.11)

Since N1 is lower semi-continuous on Y, it is easy to see that x 7→ ξp(t, s, x) is also lower
semi-continuous on S. By Fatou’s lemma, from (M3) and (M1) for Pn we have

EP (ξp(t, 0, x)
)
= EP̃ [ξp(t, 0, x̃)

]
6 lim

n→∞
EP̃ (ξp(t, 0, x̃n)

)
= lim

n→∞
EPn

(
ξp(t, 0, x)

)
6 C lim

n→∞
EPn

(
‖x(0)‖2p

H + 1
)

6 C lim
n→∞

(‖xn‖
2p
H + 1) < +∞. (4.12)

Thus, (M1) follows from (C3).
(Step 3): In this step we verify (M2) for P .
Fixing ` ∈ E , we want to show M`(t, x) in (M2) is a continuous Ft -martingale with respect

to P , whose square variation process is given by

〈M`〉(t, x) =
∫ t

0
‖B∗(x(s))(`)‖2Uds. (4.13)

Set for R > 0

G(1)
R (t, x) := X〈x(t), `〉X∗ · χR(X〈x(t), `〉X∗)

G(2)
R (t, x) :=

∫ t

0
X〈A(x(s)), `〉X∗ · χR(X〈A(x(s)), `〉X∗)ds,

where χR ∈ C∞0 (R) is a cutoff function with

χR(r) =

{
1, |r | 6 R
0, |r | > 2R.

(4.14)

Then for any t > 0, x 7→ G(i)
R (t, x), i = 1, 2 are bounded continuous functions on S. In fact, let

xn → x in S, then for every t > 0, xn(t)→ x(t) in X and∫ t

0
‖xn(s)− x(s)‖qYds → 0. (4.15)

Clearly,

lim
n→∞

G(1)
R (t, xn) = G(1)

R (t, x).
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Since y 7→ X〈A(y), `〉X∗ ·χR(X〈A(y), `〉X∗) is a bounded continuous function on Y by (C1), by
(4.15) we have

lim
n→∞

G(2)
R (t, xn) = G(2)

R (t, x).

Thus, by the dominated convergence theorem

lim
n→∞

EP̃
|G(i)

R (t, x̃n)− G(i)
R (t, x̃)| = 0, i = 1, 2. (4.16)

On the other hand, setting

G(1)(t, x) := X〈x(t), `〉X∗ ,

G(2)(t, x) :=
∫ t

0
X〈A(x(s)), `〉X∗ds,

by (4.8) we then have

lim
R→∞

sup
n

EP̃
∣∣∣G(2)

R (t, x̃n)− G(2)(t, x̃n)

∣∣∣
6 lim

R→∞
sup

n
EP̃

(∫ t

0
|X〈A(x̃n(s)), `〉X∗ | · 1{|X〈A(x̃n(s)),`〉X∗ |>R}ds

)
6 ‖`‖X∗ lim

R→∞
sup

n

[(∫ t

0
EP̃
‖A(x̃n(s))‖

γ

Xds

)1/γ

×

(∫ t

0
P̃(|X〈A(x̃n(s)), `〉X∗ | > R)ds

)(γ−1)/γ
]

6 ‖`‖X∗ lim
R→∞

sup
n

(∫ t

0
EP̃
‖A(x̃n(s))‖

γ

Xds

)/
Rγ−1

= ‖`‖X∗ lim
R→∞

sup
n

(∫ t

0
EPn‖A(x(s))‖γXds

)/
Rγ−1

= 0, (4.17)

and by (M3)

lim
R→∞

sup
n

EP̃
∣∣∣G(1)

R (t, x̃n)− G(1)(t, x̃n)

∣∣∣ = 0. (4.18)

Combining (4.12) and (4.16)–(4.18), we obtain

lim
n→∞

EP̃
∣∣∣G(i)(t, x̃n)− G(i)(t, x̃)

∣∣∣ = 0, i = 1, 2,

which due to the definition of M` in (M2) implies

lim
n→∞

EP̃
|M`(t, x̃n)− M`(t, x̃)| = 0. (4.19)

Let t > s and g be any bounded and real-valued Fs-measurable continuous function on S.
Using (4.19) we have

EP ((M`(t, x)− M`(s, x))g(x)) = EP̃ ((M`(t, x̃)− M`(s, x̃))g(x̃))

= lim
n→∞

EP̃ ((M`(t, x̃n)− M`(s, x̃n))g(x̃n))

= lim
n→∞

EPn ((M`(t, x)− M`(s, x))g(x)) = 0,
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where the last step is due to (M2) for Pn . The arbitrariness of g yields

EP (M`(t, x)|Fs) = M`(s, x). (4.20)

On the other hand, by BDG’s inequality and (C3), (M3) for Pn we have

sup
n

EP̃
|M`(t, x̃n)|

2p 6 C sup
n

EP̃
(∫ t

0
‖B∗(x̃n(s))(`)‖

2
Uds

)p

6 C sup
n

∫ t

0
EP̃

(
‖B∗(x̃n(s))(`)‖

2p
U

)
ds < +∞.

Since p > 1, by (4.19) we obtain

lim
n→∞

EP̃
|M`(t, x̃n)− M`(t, x̃)|2 = 0,

and by (C1)

lim
n→∞

EP̃
∣∣∣∣∫ t

0
‖B∗(x̃n(s))(`)− B∗(x̃(s))(`)‖2Udr

∣∣∣∣ = 0.

Thus, using the same method used for proving (4.20), we obtain

EP
(

M2
` (t, x)−

∫ t

0
‖B∗(x(s))(`)‖2Udr

∣∣∣∣Fs

)
= M2

` (s, x)−
∫ s

0
‖B∗(x(s))(`)‖2Udr,

which means that (4.13) holds.
(Step 4): In this step we verify (M3) for P .
Fix a p ∈ N. Since x̃n converges to x̃ in S, P̃-a.s., and Y ⊂ H, we also have this convergence

in L2
loc(0,∞;H). By (M3) for Pn , for any T > 0 we have

lim
n→∞

∫ T

0
EP̃
‖x̃n(s)− x̃(s)‖2p

H ds = 0.

So, by choosing a subsequence if necessary, there exists a Lebesgue null set T0 ⊂ (0,∞) such
that for all s 6∈ T0

lim
n→∞

EP̃
‖x̃n(s)− x̃(s)‖2p

H = 0. (4.21)

Let TPn be the exceptional set in (M3) for Pn . Set TP := ∪
∞

n=0 TPn ∪ T0. For any s 6∈ TP and
t > s, we need to prove

EP (ξp(t, s, x)|Fs
)
6 Ct−s,p · (‖x(s)‖

2p
H + 1), P-a.s.,

where ξp is defined by (4.11), which is equivalent to proving that for any Fs-measurable and
bounded continuous function g on Ω = C([0,∞),X)

EP [(ξp(t, s, x)
)

g(x)
]
6 Ct−s,p · EP

[
(‖x(s)‖2p

H + 1)g(x)
]
.
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By the lower semi-continuity of x 7→ ξp(t, s, x) we have

EP [(ξp(t, s, x)
)

g(x)
]
= EP̃ [(ξp(t, s, x̃)

)
g(x̃)

]
6 lim

n→∞
EP̃ [(ξp(t, s, x̃n)

)
g(x̃n)

]
= lim

n→∞
EPn

[(
ξp(t, s, x)

)
g(x)

]
(by (M3) for Pn) 6 Ct−s,p · lim

n→∞
EPn

[
(‖x(s)‖2p

H + 1)g(x)
]

= Ct−s,p · lim
n→∞
·EP̃

[
(‖x̃n(s)‖

2p
H + 1)g(x̃n)

]
(by (4.21)) = Ct−s,p · EP̃

[
(‖x̃(s)‖2p

H + 1)g(x̃)
]

= Ct−s,p · EP
[
(‖x(s)‖2p

H + 1)g(x)
]
,

which means that (M3) holds for P . �

In the following result, we prove the existence of martingale solutions to Eq. (3.1) under
(C1)–(C3).

Theorem 4.6. Assume (C1)–(C3). For each x0 ∈ H, there exists a martingale solution P ∈
P(Ω) starting from x0 to Eq. (3.1) in the sense of Definition 3.1.

Proof. We shall use Galerkin’s approximation to prove this theorem, and divide the proof into
three steps.

(Step 1): Let {`i , i ∈ N} be the orthonormal basis of H in Lemma 4.4. Let

Hn := span{`1, . . . , `n} ⊂ X∗ ⊂ Y ⊂ H ⊂ X.

Define the operators An : Hn → Hn and Bn : Hn → L2(U,Hn) as follows:

An(x) := Πn A(x), Bn(x) := Πn B(x).

Then we have by (C2)

〈An(x), x〉Hn 6 −N1(x)+ λ1(1+ ‖x‖2Hn
), x ∈ Hn, (4.22)

and by (C3)

‖Bn(x)‖
2
L2(U,Hn)

6 λ4(1+ ‖x‖2Hn
), x ∈ Hn . (4.23)

Consider the following finite-dimensional SDE in Hn

dxn(t) = An(xn(t))dt + Bn(xn(t))dW (t), xn(0) = Πn x0. (4.24)

Set

Ω (n)
:= C([0,∞),Hn)

and

F (n)
t := B(C([0, t],Hn)), F (n)

:= ∨t>0 F (n)
t .

By Theorem C.3 in Appendix C, there exists a probability measure Pn ∈ P(Ω (n)) such that
(M1) and (M2) hold. The generic point in Ω (n) is denoted by xn .
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(Step 2): We now prove that (M3) holds for each Pn with TPn = ∅. Fixing p ∈ N and
t > s > 0, we need to prove

EPn
(
ξp(t, s, xn)|F (n)

s

)
6 Ct−s,p · (‖xn(s)‖

2p
H + 1), Pn-a.s., (4.25)

where ξp is defined by (4.11), and t 7→ Ct,p is some positive continuous real function
independent of n.

First of all, by (M2) the following equality holds in Hn

xn(t) = Πn x0 +

∫ t

0
An(xn(r))dr + Mn(t, xn), (4.26)

where Mn(t, xn) is a continuous Hn-valued F (n)
t -martingale with respect to Pn , whose

covariation operator process in Hn is given by

〈〈Mn〉〉(t, xn) :=

∫ t

0
Bn(xn(s))B

∗
n (xn(s))ds.

Using Itô’s formula twice we have

‖xn(t)‖
2
Hn
= ‖Πn x0‖

2
H + 2

∫ t

0
〈An(xn(s)), xn(s)〉Hn ds

+

∫ t

0
‖Bn(xn(s))‖

2
L2(U;Hn)

ds +
∫ t

0
〈xn(s), dMn(t)〉Hn ,

and

‖xn(t)‖
2p
H = ‖xn(s)‖

2p
H + 2p

∫ t

s
‖xn(r)‖

2(p−1)
H 〈An(xn(r)), xn(r)〉Hn dr

+ p
∫ t

s
‖xn(r)‖

2(p−1)
H ‖Bn(xn(r))‖

2
L2(U;Hn)

dr

+ 2p(p − 1)
∫ t

s
‖xn(r)‖

2(p−2)
H ‖B∗(xn(r))(xn(r))‖

2
Udr

+M (p)
n (t, xn)− M (p)

n (s, xn),

where M (p)
n (t, xn) is a continuous real-valued F (n)

t -martingale with respect to Pn , whose
quadratic variation process is given by

〈M (p)
n 〉(t, xn) := 4p2

∫ t

0
‖xn(r)‖

4(p−1)
H ‖B∗n (xn(r))(xn(r))‖

2
Uds.

By (4.22) and (4.23) we have

‖xn(t)‖
2p
H 6 ‖xn(s)‖

2p
H + 2p

∫ t

s
‖xn(r)‖

2(p−1)
H (−N1(xn(r))+ λ1(1+ ‖xn(r)‖

2
H))dr

+ p(2p − 1)λ4 ·

∫ t

s
‖xn(r)‖

2(p−1)
H (1+ ‖xn(r)‖

2
H)ds

+M (p)
n (t, xn)− M (p)

n (s, xn)

6 ‖xn(s)‖
2p
H − 2p

∫ t

s
N p(xn(r))dr + C p

∫ t

s
(‖xn(r)‖

2p
H + 1)ds

+M (p)
n (t, xn)− M (p)

n (s, xn). (4.27)
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Put

g(t) := EPn

(
sup

r∈[s,t]
‖xn(r)‖

2p
H |F (n)

s

)
.

By Corollary B.4 and Young’s inequality we have

EPn

(
sup

r∈[s,t]
|M (p)

n (r, xn)− M (p)
n (s, xn)||F (n)

s

)

6 C pEPn

[(∫ t

s
‖xn(r)‖

4(p−1)
H ‖B∗n (xn(r))(xn(r))‖

2
Udr

)1/2
∣∣∣∣∣F (n)

s

]

6 C pEPn

[
sup

r∈[s,t]
‖xn(r)‖

p
H

(∫ t

s
(‖xn(r)‖

2p
H + 1)dr

)1/2
∣∣∣∣∣F (n)

s

]

6
1
2

g(t)+ C pEPn

(∫ t

s
(‖xn(r)‖

2p
H + 1)dr |F (n)

s

]
6

1
2

g(t)+ C p

∫ t

s
(g(r)+ 1)dr.

Thus, taking first supremums and then conditional expectations with respect to F (n)
s for both

sides of (4.27), we obtain

g(t)+ 2pEPn

(∫ t

s
N p(xn(r))dr

∣∣∣∣F (n)
s

)
6 ‖xn(s)‖

2p
H +

1
2

g(t)+ C p

∫ t

s
(g(r)+ 1)dr, (4.28)

and furthermore

g(t) 6 2‖xn(s)‖
2p
H + 2C p

∫ t

s
(g(r)+ 1)dr.

By Gronwall’s inequality, we obtain

g(t) 6 g(t)+ 1 6 e2C p(t−s)(2‖xn(s)‖
2p
H + 1),

which gives the desired estimate (4.25) due to (4.28).
(Step 3): We remark that Ωn = C([0,∞),Hn) is a closed subset of Ω . We extend Pn to a

probability measure P̂n on (Ω ,F) by setting

P̂n(A) := Pn(A ∩ Ωn), A ∈ F .

In particular, by (4.25) we also have

EP̂n
(
ξp(t, s, x)|Fs

)
6 Ct−s,p · (‖x(s)‖

2p
H + 1).
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We now show that (P̂n)n∈N is tight in S. As in the proof of Step 1 in Theorem 4.5, we only
need to prove that for some β > 0 and any T > 0

sup
n∈N

EP̂n

(
sup

s 6=t∈[0,T ]

‖x(t)− x(s)‖X
|t − s|β

)

= sup
n∈N

EPn

(
sup

s 6=t∈[0,T ]

‖xn(t)− xn(s)‖X
|t − s|β

)
<∞. (4.29)

By (C3), (4.5) and (4.25) we have

EPn

[
sup

s 6=t∈[0,T ]

(∥∥∥∥∫ t

s
An(xn(r))dr

∥∥∥∥γ
X

/
|t − s|γ−1

)]

6 EPn

[∫ T

0
‖An(xn(r))‖

γ

Xdr

]
6 κγEPn

[∫ T

0
‖A(xn(r))‖

γ

Xdr

]
6 CγEPn

[∫ T

0

[
N1(xn(r))+ (‖xn(r)‖

γ ′

H + 1)
]

dr

]
6 CT,γ ′ ,

and similar to (4.9), for any p ∈ N and α ∈ (0, p−1
2p )

sup
n∈N

EPn

(
sup

r 6=t∈[0,T ]

‖Mn(t, xn)− Mn(s, xn)‖
2p
H

|t − r |pα

)
<∞. (4.30)

Observing (4.26) we obtain (4.29).
Without loss of generality, we may assume that P̂n weakly converges to some probability

measure P̂ in S. As in the proof of Theorem 4.5 we then show P̂ satisfies (M1)–(M3). �

Thus we obtain the following main result in this section.

Theorem 4.7. Under (C1)–(C3), there exists an almost sure Markov family (Px0)x0∈H to
Eq. (3.1).

5. Stochastic generalized porous medium equations

Let O be a bounded open subset of Rd with smooth boundary. For k > 0 and p > 1, let
W k,p

0 (O) be the usual Sobolev space on O with Dirichlet boundary conditions. The norm in

W k,p
0 (O) is denoted by ‖ · ‖k,p. The dual space of W k,p

0 (O) is given by W−k,p′(O), where
p′ = p

p−1 . The following Sobolev embeddings hold (cf. [1]):

W k,p
0 (O) ⊂ Cm(O), 0 6 m < k − d/p. (5.1)

By Poincarè’s inequality, one has for x ∈ W 1,2
0 (O)∫

O
|x(u)|2du 6 ρO

∫
O
|∇x(u)|2du. (5.2)

An equivalent norm in W 1,2
0 (O) is thus given by

‖x‖1,2 =

(∫
O
|∇x(u)|2du

)1/2

. (5.3)
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We shall use this norm below, as well as the notations

∂i :=
∂

∂ui
, ∂2

i j =
∂2

∂ui∂u j
,

and the usual Einstein summation convention.
Let {W k(t); t > 0, k ∈ N} be a sequence of independent standard Brownian motions, and l2

the Hilbert space of all square summable real number sequences. Consider the following quasi-
linear SPDE with Dirichlet boundary condition:

dx(t) =
[
∂2

i j a
i j (u, x(t))+ ∂i b

i (u, x(t))+ c(u, x(t))
]

dt + σi (u, x(t))dW i (t),

x(t, u) = 0, (t, u) ∈ R+ × ∂O,
x(0) = x0 ∈ L2(O),

(5.4)

where a, b, c and σ are continuous functions from O×R to R2d ,Rd ,R and l2 respectively with
respect to the second variable, and satisfy for some fixed q > 2 and all u ∈ O, r ∈ R:

∂r ai j (u, r)ξiξ j > −κa,0 · |r |
q−2
|ξ |2, ξ ∈ Rd , (5.5)

‖a··(u, r)‖R2d 6 κa,1 · (|r |
q−1
+ 1), (5.6)

‖∂ j a
· j (u, r)‖Rd + ‖b·(u, r)‖Rd 6 κa,b · |r |

q−1
+ κ ′a,b · |r |

q
2 , (5.7)

|c(u, r)| 6 κc,1 · |r |
q−1
+ κc,2 · (|r | + 1), (5.8)

‖σ(u, r)‖l2 6 κσ · (|r | + 1), (5.9)

where all κ with subscripts are strictly positive constants, and

κa,b

2

(
1+

q2ρO
4

)
+
κc,1 · q2ρO

4
6
κa,0

2
. (5.10)

In the following we take

Y := Lq(O), H := L2(O)

and

X∗ := W d+2,2
0 (O), X := W−d−2,2(O).

Then (4.3) holds.
Define the functional N1 on Y as follows:

N1(y) :=


κ0

q2

∫
O
|∇(|y(u) |

q
2−1 y(u))|2du if |y|

q
2−1 y ∈ W 1,2

0 (O),

+∞, otherwise.

Then

Lemma 5.1. N1 is lower semi-continuous on Y, and the set {y ∈ Y : N1(y) 6 1} is relatively
compact in Y. In particular, N1 ∈ Aq .

Proof. Let yn converge to y in Y = Lq(O). For the lower semi-continuity of N1, we need to
prove

N1(y) 6 lim
n→∞

N1(yn).
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Without loss of generality, we assume supn∈N N1(yn) < +∞. Noticing that as n→∞∫
O

∣∣∣|yn(u)|
q
2−1 yn(u)− |y(u)|

q
2−1 y(u)

∣∣∣2 du

=
q2

4

∫
O
|y(u)− yn(u)|

2

∣∣∣∣∣
∫ 1

0
|y(u)+ s(yn(u)− y(u))|

q
2−1ds

∣∣∣∣∣
2

du

6 Cq

∫
O

(
|y(u)− yn(u)|

2
|y(u)|q−2

+ |yn(u)− y(u)|q
)

du → 0,

we get

|y|(q−2)/2 y ∈ W 1,2
0 (O) and N1(y) < +∞,

as well as by (5.3)∫
O

∣∣∣∇(|y(u)| q2−1 y(u))
∣∣∣2 du = sup

x∈X∗,‖x‖1,261

∣∣∣∣∫
O
|y(u)|

q
2−1 y(u) ·∆x(u)du

∣∣∣∣
= sup

x∈X∗,‖x‖1,261
lim

n→∞

∣∣∣∣∫
O
|yn(u)|

q
2−1 yn(u) ·∆x(u)du

∣∣∣∣
6 lim

n→∞
sup

x∈X∗,‖x‖1,261

∣∣∣∣∫
O
|yn(u)|

q
2−1 yn(u) ·∆x(u)du

∣∣∣∣
6 lim

n→∞

∫
O

∣∣∣∇(|yn(u)|
q
2−1 yn(u))

∣∣∣2 du,

which gives the lower semi-continuity of N1.
Let {yn, n ∈ N} be a sequence in Y such that N1(yn) 6 1. Since W 1,2

0 (O) is compactly
embedded into L2(O) (cf. [1]), there exists a subsequence nk such that

lim
k,l→∞

‖|ynk |
q
2−1 ynk − |ynl |

q
2−1 ynl‖L2(O) = 0.

Noting the following elementary inequality: for some Cq > 0

|r − r ′|
q
2 6 Cq ||r |

q
2−1 r − |r ′ |

q
2−1 r ′|, r, r ′ ∈ R,

we obtain

lim
k,l→∞

‖ynk − ynl‖Y = lim
k,l→∞

‖ynk − ynl‖Lq (O) = 0. �

Define for x ∈ Y = Lq(O)

A(x) := ∂2
i j a

i j (·, x(·))+ ∂i b
i (·, x(·))+ c(·, x(·)) ∈ X

and

B(x) := σ(·, x(·)) ∈ L2(l
2
;H).

Lemma 5.2. Assume that (5.5)–(5.10) hold. Then (C1)–(C3) hold for A and B defined above.
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Proof. We divide the proof into three steps.

(Step 1): Let x ∈ X∗ = W d+2,2
0 (O) and yn converge to y in Y = Lq(O). Note that by (5.1)

X〈A(yn)− A(y), x〉X∗ =
∫

O
(ai j (u, yn(u))− ai j (u, y(u))) · ∂2

i j x(u)du,

−

∫
O
(bi (u, yn(u))− bi (u, y(u))) · ∂i x(u)du,

+

∫
O
(c(u, yn(u))− c(u, y(u))) · x(u)du

6 C‖x‖C2(Ō)

∫
O
|a(u, yn(u))− a(u, y(u))|du,

+C‖x‖C1(Ō)

∫
O
|b(u, yn(u))− b(u, y(u))|du,

+C‖x‖C(Ō)

∫
O
|c(u, yn(u))− c(u, y(u))|du

=: I (n)1 + I (n)2 + I (n)3 .

For I (n)1 , by (5.6) we have for all n ∈ N∫
O
|a(u, yn(u))− a(u, y(u))|

q
q−1 dx 6 C

∫
O
(|yn(u)|

q−1
+ |y(u)|q−1

+ 1)
q

q−1 dx

6 C
∫

O
(|yn(u)|

q
+ |y(u)|q + 1)du 6 C,

which implies that {|a(·, yn(·)) − a(·, y(·))|, n ∈ N} is uniformly integrable, and so by the
continuity of a in r

I (n)1 → 0.

Similarly, by (5.7) and (5.8)

I (n)2 + I (n)3 → 0,

and by (5.9)

‖B∗(yn)(x)− B∗(y)(x)‖l2 6
∫

O
‖σ(u, yn(u))− σ(u, y(u))‖l2 · |x(u)|du → 0.

Thus, (C1) holds.

(Step 2): For x ∈ X∗, noting

∂ j a
i j (u, x(u)) = (∂r ai j )(u, x(u))∂ j x(u)+ (∂ j a

i j )(u, x(u)),

by (5.5), (5.7) and (5.8) we get
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X〈A(x), x〉X∗ = −
∫

O

[
(∂r ai j )(u, x(u))∂ j x(u)+ (∂ j a

i j )(u, x(u))
]
· ∂i x(u)du

−

∫
O

bi (u, x(u)) · ∂i x(u)du +
∫

O
c(u, x(u)) · x(u)du

6 −κa,0

∫
O
|x(u)|q−2

|∇x(u)|2du + κa,b

∫
O
|x(u)|q−1

· |∇x(u)|du

+ κ ′a,b

∫
O
|x(u)|

q
2 · |∇x(u)|du +

∫
O

(
κc,1|x(u)|

q
+ κc,2(|x(u)|

2
+ |x(u)|)

)
du.

By Poincare’s inequality (5.2) we have∫
O
|x(u)|qdu 6 ρO

∫
O
|∇(|x(u) |

q
2−1 x(u))|2du

=
q2ρO

4

∫
O
|x(u)|q−2

|∇x(u)|2du. (5.11)

By Young’s inequality we have

κa,b

∫
O
|x(u)|q−1

· |∇x(u)|du 6
κa,b

2

∫
O

[
|x(u)|q−1

· |∇x(u)|2 + |x(u)|q
]

du

6
κa,b

2

(
1+

q2ρO
4

)∫
O
|x(u)|q−1

· |∇x(u)|2du.

Hence, by relations (5.10) and (5.11), for some C > 0 we get

X〈A(x), x〉X∗ 6 −
κa,0

4

∫
O
|x(u)|q−2

|∇x(u)|2du + C
∫

O
(|x(u)|2 + 1)du

= −N1(x)+ C(‖x‖2H + 1).

Thus, (C2) holds.
(Step 3): Since ∂2

i j and ∂i are bounded linear operators from W−d,2(O) to X = W−2−d,2(O),
by (5.1), we have for γ = q

q−1 and x ∈ Y

‖A(x)‖γX 6 C(‖∂2
i j a

i j (·, x)‖γX + ‖∂i b
i (·, x)‖γX + ‖c(·, x)‖γX)

6 C(‖a(·, x)‖γ
−d,2 + ‖b(·, x)‖γ

−d,2 + ‖c(·, x)‖γ
−d,2)

6 C(‖a(·, x)‖γ
L1(O)

+ ‖b(·, x)‖γ
L1(O)

+ ‖c(·, x)‖γ
L1(O)

)

6 C‖|x |q−1
+ 1‖γ

L1(O)
6 C(‖x‖q

Lq−1(O)
+ 1)

6 C(‖x‖qLq (O)
+ 1) 6 C · (N1(x)+ 1),

where the last step is due to (5.11).
On the other hand, we have

‖B(x)‖2L2(l2;H) =
∫

O
‖σ(u, x(u))‖2l2du

6 C
∫

O
(|x(u)|2 + 1)du

= C(‖x‖2H + Vol(O)).

Thus, (C3) holds and the proof is complete. �
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Combining Lemmas 5.1 and 5.2 and Theorem 4.7, we obtain:

Theorem 5.3. Assume (5.5)–(5.10). For each x0 ∈ L2(O), there exists a martingale solution
Px0 ∈P(Ω) to Eq. (5.4) in the sense of Definition 3.1 such that for any T > 0

EPx0

(
sup

t∈[0,T ]
‖x(t)‖2L2(O)

+

∫ T

0
N1(x(s))ds

)
< +∞.

Moreover, there exists an almost sure Markov selection (Px0)x0∈L2(O) for Eq. (5.4).

Below we discuss the existence of Markov selections in two situations. Let us first see the
simple case of q = 2.

Theorem 5.4. Assume that (5.5)–(5.9) hold with q = 2, as well as that

|∂r a(x, r)| 6 κ0, ∀(x, r) ∈ O × R.

Then for each x0 ∈ L2(O), there exists a martingale solution Px0 ∈ P(Ω) to Eq. (5.4) in the
sense of Definition 3.1 such that t 7→ x(t) ∈ L2(O) is continuous and for any T > 0

EPx0

(
sup

t∈[0,T ]
‖x(t)‖2L2(O)

+

∫ T

0
‖∇x(s)‖2L2(O)

ds

)
< +∞.

Moreover, there exists a Markov selection (Px0)x0∈L2(O).

Proof. By Remark 3.2, we only need to prove that for q = 2, every martingale solution is path
continuous in H = L2(O). By Itô’s formula due to Krylov and Rozovskii [11], it is enough to
show that the operator A maps W 1,2

0 (O) into W−1,2(O), because then, the following equality
holds in W−1,2(O)

x(t) = x0 +

∫ t

0
A(x(s))ds + M(t, x), Px0 -a.s.,

where M(t, x) is a continuous L2(O)-valued square integrable martingale as defined in (Step 1)
of Theorem 4.5.

For any x, y ∈ W 1,2
0 (O), we have

|X〈A(x), y〉X∗ | =

∣∣∣∣− ∫
O

[
(∂r ai j )(u, x(u))∂ j x(u)+ (∂ j a

i j )(u, x(u))
]
· ∂i y(u)du

−

∫
O

bi (u, x(u)) · ∂i y(u)du +
∫

O
c(u, x(u)) · y(u)du

∣∣∣∣
6 C

∫
O
(|∇x(u)| + (|x(u)| + 1)) · |∇ y(u)|du

+ C
∫

O
(|x(u)| + 1) · |∇ y(u)|du + C

∫
O
(|x(u)| + 1) · y(u)du

6 C(‖x‖1,2 + 1) · ‖y‖1,2.

Hence, for each x ∈ W 1,2
0 (O), A(x) is a bounded linear functional on W 1,2

0 (O), i.e., A(x) ∈

W 1,2
0 (O)∗ = W−1,2(O). The proof is complete. �
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Next for the case q > 2, we consider the following type of equation

dx(t) =
[
∆(|x(t)|q−2x(t))+ c(u, x(t))

]
dt + σi (u, x(t))dW i (t).

We shall follow the method in [16, Theorem 2.8] to prove that any martingale solution of this
equation is path right continuous. Thus, we obtain a Markov selection by Remark 3.2.

Theorem 5.5. Consider the above equation, and assume that (5.8) and (5.9) hold with q > 2.
For each x0 ∈ L2(O) and each martingale solution Px0 ∈ P(Ω) to Eq. (5.4) in the sense of
Definition 3.1, P is concentrated on the paths that are right continuous in L2(O). In particular,
there exists a Markov selection (Px0)x0∈L2(O).

Proof. Below we choose a special triple, namely:

V = Lq(O) ⊂ W−1,2(O) =: H0 ' H∗0 =: W
1,2
0 (O) ⊂ (Lq(O))∗ = V∗,

and consider a family of equivalent norms in H0

‖x‖ε :=
∫

O
|(I − ε∆)−1/2x(u)|2du, ε > 0,

where ' is understood via the Riesz map R := I − ε∆.
The Hilbert space (H0, ‖ · ‖ε) will be written as Hε

0. It is clear that for any x ∈ H

‖x‖ε 6 ‖x‖H and lim
ε↓0
‖(I − ε∆)−1x − x‖H = ‖x‖H.

It is well known that I − ε∆ : W 1,2
0 (O)→ (Lq(O))∗ can be extended to a linear isometry from

L
q

q−1 (O) to (Lq(O))∗ such that for any y ∈ L
q

q−1 (O) and x ∈ Lq(O) (cf. [14])

V〈x, (I − ε∆)y〉V∗ =
∫

O
x(u) · y(u)du.

Thus, we have

V〈x, A(x)〉V∗ = −
1
ε

∫
O
|x(u)|qdu +

1
ε
V[x, |x(·)|

q−2x(·)]V∗ + V[x, c(·, x(·))]V∗

6 −
1
ε
‖x‖qLq +

1
ε

∫
O
|(I − ε∆)−1x(u)| · |x(u)|q−1du

+

∫
O
|(I − ε∆)−1x(u)| · |c(u, x(u))|du

6 −
1
ε
‖x‖qLq +

1
ε
‖(I − ε∆)−1x‖Lq · ‖|x(u)|q−1

‖Lq∗

+C‖(I − ε∆)−1x‖Lq · ‖1+ |x(u)|q−1
‖Lq∗

6 −
1
ε
‖x‖qLq +

1
ε
‖x‖Lq · ‖|x(u)|q−1

‖Lq∗

+C‖x‖Lq · (1+ ‖|x(u)|q−1
‖Lq∗ )

6 C(1+ ‖x‖qLq ). (5.12)

As in (Step 1) of Theorem 4.5, the following equality holds in V∗

x(t) = x0 +

∫ t

0
A(x(s))ds + M(t, x), Px0 -a.s., (5.13)
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where M(t, x) is a continuous H-valued square integrable Ft -martingale with respect to Px0 ,
whose square variation process is given by

〈M〉(t, x) :=
∫ t

0
‖B(x(s))‖2L2(l2;H)ds.

By Itô’s formula and (5.12) we get for any t > r

‖x(t)‖2ε = ‖x(r)‖
2
ε + 2

∫ t

r
V[x(s), A(x(s))]V∗ds

+ 2
∫ t

r
〈x(s), dM(s, x)〉Hε +

∫ t

r
‖B(x(s))‖2L2(l2;Hε0)

ds

6 ‖x(r)‖2ε + C
∫ t

r
(1+ ‖x(s)‖qV)ds

+ 2
∫ t

r
〈x(s), dM(s, x)〉Hε +

∫ t

r
‖B(x(s))‖2L2(l2;H0)

ds. (5.14)

Note that by BDG’s inequality and the dominated convergence theorem

EPx0

∣∣∣∣∣ sup
t∈[0,T ]

∫ t

0
〈x(s), dM(s, x)〉Hε −

∫ t

0
〈x(s), dM(s, x)〉H

∣∣∣∣∣
= EPx0

∣∣∣∣∣ sup
t∈[0,T ]

∫ t

0
〈(I − ε∆)−1x(s)− x(s), dM(s, x)〉H

∣∣∣∣∣
6 3EPx0

(∫ T

0
‖(I − ε∆)−1x(s)− x(s)‖2H · ‖B(x(s))‖

2
L2(l2;H)ds

)1/2

→ 0 as ε ↓ 0.

Hence, there exist a Px0 -null set N and some subsequence εk such that for all x 6∈ N

lim
εk→0

∫ t

0
〈x(s), dM(s, x)〉Hεk =

∫ t

0
〈x(s), dM(s, x)〉H, ∀t > 0.

Taking firstly limits εk ↓ 0 for both sides of (5.14), and then t ↓ r , we get for Px0 -almost all
x ∈ Ω and any t > r

lim
t↓r
‖x(t)‖H 6 ‖x(r)‖H.

On the other hand, by the weak continuity of x(t) in H we have

lim
t↓r
‖x(t)‖H > ‖x(r)‖H.

Hence, t 7→ ‖x(t)‖H is right continuous, and therefore also t 7→ x(t) in H. �

6. Stochastic Navier–Stokes equations

In this section, we want to apply Theorem 4.7 to the following d-dimensional stochastic
Navier–Stokes equation in a bounded domain O ⊂ Rd with smooth boundary:

du(t) = [∆u(t)− (u(t) · ∇)u(t)+∇ p(t)+ f(x,u(t))] dt

+
[
∇ p̃i (t)+ hi (x,u(t))

]
dW i

t , (6.1)
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subject to the incompressibility condition

div u(t) = 0, (6.2)

Dirichlet boundary condition

u(t, x) = 0, (t, x) ∈ R+ × ∂O, (6.3)

and with the initial condition

u(0) = u0, (6.4)

where p(t, x) and p̃i (t, x) are unknown scalar functions, u is the velocity vector, f and h are
respectively functions from O × Rd to Rd and Rd

× l2, continuous with respect to the second
variable, and satisfy for some κ0 > 0 and g ∈ L2(O)

|f(x,u)| + ‖h(x,u)‖l2 6 κ0 · |u| + g(x), ∀(x,u) ∈ O × Rd . (6.5)

Let C∞0,σ (O)d be the space of all smooth d-dimensional vector fields on O with compact

supports in O and divergence free. The completion of C∞0,σ (O)d in W k,p
0 (O)d will be denoted

by Wk,p
0,σ (O).

Below we choose

Y = H =W0,2
0,σ (O)

and

X = (W2+d,2
0,σ (O))∗, X∗ =W2+d,2

0,σ (O).

Then (4.3) holds.

Let P be the orthogonal projection operator from L2(O)d onto H. We define the operators A
and B as follows: for u ∈ C∞0,σ (O)

A(u) := P[∆u] − P[(u · ∇)u] + P[f(·,u)]

and

B(u) := P[h(·,u)].

Then

Lemma 6.1. For any u, v ∈ C∞0,σ (O), we have

‖P[∆u] − P[∆v]‖X 6 C‖u− v‖H,

‖P[(u · ∇)u] − P[(v · ∇)v]‖X 6 C(‖u‖H + ‖v‖H) · ‖u− v‖H.

In particular, we can extend the operators A and B to H such that for u ∈ H, A(u) ∈ X and
B(u) ∈ L2(l2

;H).
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Proof. We only prove the second assertion, the first can be proved analogously. By the Sobolev
embedding theorem we have

‖P[(u · ∇)u] − P[(v · ∇)v]‖X
= sup

w∈C∞0,σ (O):‖w‖2+d,261
|〈P[(u · ∇)u] − P[(v · ∇)v],w〉H|

= sup
w∈C∞0,σ (O):‖w‖2+d,261

|〈∇(u⊗ u− v⊗ v),w〉H|

= sup
w∈C∞0,σ (O):‖w‖2+d,261

|〈u⊗ u− v⊗ v,∇w〉H|

6 C

 sup
w∈C∞0,σ (O):‖w‖2+d,261

‖∇w‖C(Ō)

 · ‖|u⊗ u− v⊗ v|‖L1(O)

6 C(‖u‖H + ‖v‖H) · ‖u− v‖H. �

Thus, we can write the system (6.1)–(6.4) in the following abstract form:

du(t) = A(u(t))dt + B(u(t))dW (t), u(0) = u0. (6.6)

In order to use Theorem 4.7, we define the functional N1 on Y as follows:

N1(u) :=

{
‖∇u‖2L2(O)

, if u ∈W1,2
0,σ (O),

+∞, otherwise.

As in the proof of Lemma 5.1, we can prove that N1 ∈ A2. The following is the main result in
this section.

Theorem 6.2. Assume (6.5). Then there exists an almost sure Markov family (Pu0)u0∈H for
Eq. (6.6).

Proof. By Theorem 4.7, it suffices to check (C1)–(C3) for the above A and B.
For (C1), using Lemma 6.1, as in the proof of (Step 1) in Lemma 5.2, we can prove the

demi-continuity of A and B.
For (C2), noting that for u ∈ X∗

X〈P[(u · ∇)u],u〉X∗ = 〈P[(u · ∇)u],u〉H = 〈(u · ∇)u,u〉L2 = 0,

by (6.5) we have

X〈A(u),u〉X∗ = −N1(u)+ 〈f(·,u),u〉L2 6 −N1(u)+ C(‖u‖2H + 1).

For (C3), it is clear that by Lemma 6.1

‖A(u)‖X 6 C(‖u‖2H + 1)

and

‖B(u)‖L2(l2;H) 6 C(‖u‖H + 1).

This completes the proof. �
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Appendix A. Section 2

A.1. Proof of Theorem 2.7

For each f ∈ Cb(X) and λ > 0, we define

Lλf (t, x) :=
∫
∞

t
e−λs f (x(s))ds, t > 0, x ∈ Ω t

and

Jλf (P) := EP (Lλf (0, ·)), P ∈P(Ω).

It is clear that

Lλf (t, x) = e−λt Lλf (0,Φ
−1
t (x)), x ∈ Ω t . (A.1)

For each b ∈ B, we define

Mλ
f (b) := sup

P∈C (b)
Jλf (P)

and

C λ
f (b) := {P ∈ C (b) : Jλf (P) = Mλ

f (b)}. (A.2)

Lemma A.1. Let (C (b))b∈B be an almost sure pre-Markov family (resp. pre-Markov family)
with C (b) non-empty and convex. Then for any f ∈ Cb(X) and λ > 0, (C λ

f (b))b∈B is still an

almost sure pre-Markov family (resp. pre-Markov family) with C λ
f (b) non-empty and convex.

Proof. Since Lλf (0, ·) ∈ Cb(Ω), the map P 7→ EP (Lλf (0, ·)) = Jλf (P) is linear and continuous
with respect to weak convergence. By the compactness and convexity of C (b), we know
C λ

f (b) ∈ Comp(PB(Ω)) is non-empty and convex. By [17, Lemma 12.1.7], the map b 7→ C λ
f (b)

is measurable.
We now prove the disintegration and reconstruction properties for (C λ

f (b))b∈B. Fix a b ∈ B
and P ∈ C λ

f (b) ⊂ C (b). Let TP ⊂ (0,∞) be the corresponding exceptional set of P . We also
fix a t 6∈ TP .

Let P(·|Ft )(x) be an r.c.p.d. of P with respect to Ft . Define

N1 := {x : x(t) 6∈ B} ∪ {x : x(t) ∈ B, P(Φt (·)|Ft )(x) 6∈ C (x(t))},

and

N2 := {x ∈ N c
1 : P(Φt (·)|Ft )(x) 6∈ C λ

f (x(t))}.

By the disintegration property for (C (b))b∈B, one knows that N1 ∈ Ft and P(N1) = 0. So,
by [17, Lemma 12.1.9], N2 ∈ Ft . We want to show that P(N2) = 0.
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By the measurable selection theorem (cf. [17, Theorem 12.1.10]), there is a measurable map
b 7→ Rb so that Rb ∈ C λ

f (b) for all b ∈ B. Define

Qx :=


P(·|Ft )(x), x 6∈ N1 ∪ N2,

Rx(t) ◦ Φ−1
t , x ∈ N2,

δx , x ∈ N1,

where δx is the Dirac measure concentrated on x .

By the reconstruction property for (C (b))b∈B, we have P ⊗t Q ∈ C (b). Hence,

Jλf (P) = Mλ
f (b) > Jλf (P ⊗t Q)

(by (2.5)) = EP
(∫ t

0
e−λs f (x(s))ds

)
+ EP ⊗t Q

(
Lλf (t, ·)

)
(by (2.2)) = Jλf (P)−

∫
Ω

∫
Ω

Lλf (t, y)P(dy|Ft )(x)P(dx)

(by (2.2), (2.5) and (2.6))+
∫
Ω

∫
Ω

Lλf (t, y)Qx (dy)P(dx).

Thus, by the definition of Qx and P(N1) = 0 we have

0 >
∫

N2

∫
Ω

Lλf (t,Φt y)Ry(t)(dy)P(dx)−
∫

N1∪N2

∫
Ω

Lλf (t, y)P(dy|Ft )(x)P(dx)

= e−λt
∫

N2

[∫
Ω

Lλf (0, y)Rx(t)(dy)−
∫
Ω

Lλf (0,Φ
−1
t y)P(dy|Ft )(x)

]
P(dx),

that is,∫
N2

[
Jλf (Rx(t))− Jλf (P(Φt (·)|Ft )(x))

]
P(dx) 6 0. (A.3)

On the other hand, for each x ∈ N2, by the definition of N2 we have P(Φt (·)|Ft )(x) 6∈
C λ

f (x(t)), and in view of Rx(t) ∈ C λ
f (x(t))

Jλf (P(Φt (·)|Ft )(x)) < Mλ
f (x(t)) = Jλf (Rx(t)),

which together with (A.3) gives

P(N2) = 0.

The disintegration property for (C λ
f (b))b∈B now follows.

Let us now look at the reconstruction property for (C λ
f (b))b∈B. Let x 7→ Qx be a mapping

from Ω to PB(Ω) and satisfy the assumptions in Theorem 2.2. Assume that there is a P-null set
N ∈ Ft such that for all x 6∈ N

x(t) ∈ B, Qx ∈ C λ
f (x(t)) ◦ Φ−1

t .
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By the reconstruction property for (C (b))b∈B, we have P ⊗t Q ∈ C (b). Moreover, by the above
calculations we have

Jλf (P ⊗t Q)− EP
(∫ t

0
e−λs f (x(s))ds

)
= EP ⊗t Q(Lλf (t, ·))

=

∫
Ω

EQx (Lλf (t, ·))P(dx) = e−λt
∫
Ω

Lλf (Qx ◦ Φt )P(dx)

> e−λt
∫
Ω

Lλf (P(·|Ft )(x) ◦ Φt ) P(dx)

=

∫
Ω

∫
Ω

Lλf (t, y)P(dy|Ft )(x)P(dx) = EP (Lλf (t, ·)),

that is

Jλf (P ⊗t Q) > Jλf (P).

We have therefore shown that P ⊗t Q ∈ C λ
f (b) by P ∈ C λ

f (b), which completes the proof. �

Lemma A.2. Let C be a convex and closed subset of the Polish space (P(Ω),dΩ ). Let
(Ω̂ , F̂ , P̂) be another probability space, and Ω̂ 3 ω̂ 7→ Pω̂ ∈ C an F̂/(P(Ω))-measurable
mapping. Then∫

Ω̂
Pω̂(·)P̂(dω̂) ∈ C .

Proof. First of all, it is easy to see that

P(·) :=
∫
Ω̂

Pω̂(·)P̂(dω̂) ∈P(Ω).

By [14, Lemma A.1.4], there exists a sequence of Pn
ω̂
∈ C only taking a finite number of values

such that for each ω̂ ∈ Ω̂

dΩ (P
n
ω̂
, Pω̂) ↓ 0 as n→∞. (A.4)

In particular, Pn
ω̂

has the following form

Pn
ω̂
=

Nn∑
j=1

µ j · 1Λ j (ω̂),

where µ j ∈ C , and Λ j ∈ F̂ , Λ j ∩ Λi = ∅, i 6= j .
By the convexity of C , one knows that

Pn
:=

∫
Ω̂

Pn
ω̂
(·)P̂(dω̂) =

Nn∑
j=1

µ j · P̂(Λ j ) ∈ C .

On the other hand, by (A.4) and the dominated convergence theorem, we have for any f ∈ Cb(Ω)

lim
n→∞

EPn
( f ) = lim

n→∞

∫
Ω̂

EPn
ω̂ ( f )P̂(dω̂) =

∫
Ω̂

lim
n→∞

EPn
ω̂ ( f )P̂(dω̂) = EP ( f ).

Now the assertion follows by the closedness of C . �
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Proof of Theorem 2.7. Let (σn)n∈N be a dense subset of (0,∞) and (ϕn)n∈N a dense subset of
Ub(X), where Ub(X) is the space of bounded and uniformly continuous functions on X equipped
with the supremum norm. Let (λn, fn)n∈N be an enumeration of (σn, ϕm)n,m∈N. For each b ∈ B,
set C0(b) = C (b), and define inductively

Cn+1(b) = C λn
fn
(b),

where C λn
fn
(b) is defined by (A.2) in terms of Cn(b).

By Lemma A.1, each (Cn(b))b∈B is an almost sure pre-Markov family with non-empty convex
values. Since Cn+1(b) ⊂ Cn(b), it is clear that for each b ∈ B,

C∞(b) := ∩n Cn(b) ∈ Comp(PB(Ω)),

and (C∞(b))b∈B is still an almost sure pre-Markov family with non-empty convex values. Thus,
if we can show that C∞(b) has only one element for each b ∈ B, the result then follows.

Claim: For any b ∈ B, P, Q ∈ C∞(b) and bounded measurable function f on X,

EP ( f (x(t))) = EQ( f (x(t))), ∀t > 0. (A.5)

Suppose that P, Q ∈ C∞(b). By the definition of C∞(b), we have for all n,m ∈ N

EP
(∫
∞

0
e−λn t fm(x(t))dt

)
= EQ

(∫
∞

0
e−λn t fm(x(t))dt

)
.

Since (λn)n∈N is dense in R+, it follows from the uniqueness of the Laplace transform that

EP ( fm(x(t))) = EQ( fm(x(t))), ∀t > 0, m ∈ N.

By a monotone class argument, we obtain (A.5).
In the following, we fix b ∈ B and P1, P2

∈ C∞(b), and prove P1
= P2. Let TP i be the

exceptional set corresponding to P i . We only need to prove that for any 0 6 t1 < t2 < · · · <
tn <∞ with ti 6∈ TP1 ∪ TP2 and any bounded measurable functions fi on X

EP1
( f1(x(t1)) · · · fn(x(tn))) = EP2

( f1(x(t1)) · · · fn(x(tn))).

Suppose the above equality holds for n. Let Gn = σ {x(ti ) : i = 1, . . . , n}. Then

P1
= P2 on Gn .

By the disintegration property for P i , there are Ni ∈ Ftn with P i (Ni ) = 0 such that for all
x 6∈ Ni ,

x(tn) ∈ B and P i (Φtn (·)|Ftn )(x) ∈ C∞(x(tn)).

On the other hand, since Gn ⊂ Ftn , there are Ai ∈ Gn with P i (Ai ) = 0 such that for all
x 6∈ Ai

P i (·|Gn)(x) =
∫
Ω

P i (·|Ftn )(y)P
i (dy|Gn)(x).

Since

0 = P i (Ni ) =

∫
Ω

P i (Ni |Gn)(x)P
i (dx),

there are Bi ∈ Gn with P i (Bi ) = 0 such that for all x 6∈ Bi

P i (Ni |Gn)(x) = 0.
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Set Ci = Ai ∪ Bi ∈ Gn . For x 6∈ Ci , we have

P i (Φtn (·)|Gn)(x) =
∫

N c
i

P i (Φtn (·)|Ftn )(y)P
i (dy|Gn)(x)

by (2.3) =
∫

N c
i ∩{y:y(tn)=x(tn)}

P i (Φtn (·)|Ftn )(y)P
i (dy|Gn)(x).

If x(tn) 6∈ B, then N c
i ∩ {y : y(tn) = x(tn)} = ∅. So, for x 6∈ Ci and x(tn) 6∈ B

P1(Φtn (·)|Gn)(x) = P2(Φtn (·)|Gn)(x) = 0.

For x 6∈ Ci and x(tn) ∈ B, noting that for y ∈ N c
i ∩ {y : y(tn) = x(tn)}

P i (Φtn (·)|Ftn )(y) ∈ C∞(y(tn)) = C∞(x(tn))

and by the convexity and compactness of C∞(b) as well as by Lemma A.2, we get

P i (Φtn (·)|Gn)(x) ∈ C∞(x(tn)).

Set Ñ := C1 ∪ C2 ∈ Gn . By the induction hypothesis we have

P1(Ñ ) = P2(Ñ ) 6 P2(C1)+ P2(C2) = P1(C1)+ P2(C2) = 0.

By the above Claim, we have for x 6∈ Ñ∫
Ω

fn+1(y(tn+1))P
1(dy|Gn)(x) =

∫
Ω

fn+1(y(tn+1))P
2(dy|Gn)(x),

i.e.,

EP1( fn+1(x(tn+1))|Gn) = EP2( fn+1(x(tn+1))|Gn).

The proof is thus completed by induction. �

Appendix B. Section 3

We need the following three lemmas in Section 3 about regular conditional probabilities,
whose proof idea comes from [17, Theorem 1.2.10] and [8, Proposition B.4].

Lemma B.1. Let P ∈ P(Ω) and ξ ∈ L1(Ω ,F , P). For r > 0, let Qr
x := P(·|Fr )(x) be an

r.c.p.d. of P with respect to Fr . Then for s > r , there exists a P-null set Ns,ξ ∈ Fr such that for
all x ∈ N c

s,ξ

EP (ξ |Fs) = EQr
x (ξ |Fs) = EQr

x (ξ |F r
s ), Qr

x -a.s. (B.1)

Proof. For A ∈ Fr and B ∈ Fs , by (2.2) we have∫
A

EQr
x (1BEP (ξ |Fs))P(dx) =

∫
A

EP (1BEP (ξ |Fs)|Fr )P(dx)

= EP (1A · 1B · EP (ξ |Fs))

= EP (1A · 1B · ξ) =

∫
A

EQr
x (1Bξ)P(dx)

=

∫
A

EQr
x (1BEQr

x (ξ |Fs))P(dx).
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Hence, there is a P-null set NB ∈ Fr such that for all x 6∈ NB

EQr
x (1BEP (ξ |Fs)) = EQr

x (1BEQr
x (ξ |Fs)).

Since Fs is countably generated, by a monotone class argument, we may find a common P-null
set Ns,ξ ∈ Fr such that for all x 6∈ Ns,ξ and B ∈ Fs

EQr
x (1BEP (ξ |Fs)) = EQr

x (1BEQr
x (ξ |Fs)).

The first equality in (B.1) now follows. The second equality is straightforward by Lemma 2.1
and (2.4). �

Lemma B.2. Let D := {(t, s) : 0 6 s 6 t < ∞}. Let ξ, η : D → R+ be two measurable
processes on (Ω ,F). Given P ∈ P(Ω) and r > 0, let Qr

x := P(·|Fr )(x) be an r.c.p.d. of P
with respect to Fr . Suppose that:

(i) for each s > 0, the map t 7→ ξ(t, s) is a.s. increasing, and t 7→ η(t, s) is a.s. right
continuous, η(t, s) is Fs-measurable for any t > s;

(ii) for each (t, s) ∈ D,

ξ(t, s), η(t, s) ∈ L1(Ω ,F , P)

and

ξ(t, ·), η(t, ·) ∈ L1(0, t; L1(Ω ,F , P));

(iii) for any x ∈ Ω and t > s > r

ξ(t, s,Φr x) = ξ(t − r, s − r, x)

and

η(t, s,Φr x) = η(t − r, s − r, x),

where Φ is defined by (2.1).

Then the following three statements are equivalent:

(I) There is a Lebesgue null set Tr ⊂ (r,∞) such that for any r 6 s 6∈ Tr and t > s

EP (ξ(t, s)|Fs) 6 η(t, s), P-a.s.

(II) For some P-null set N ∈ Fr and each x ∈ N c, there is a Lebesgue null set Tr,x ⊂ (r,∞)
such that for any r 6 s 6∈ Tr,x and any t > s

EQr
x (ξ(t, s)|F r

s ) 6 η(t, s), Qr
x -a.s.

(III) For some P-null set N ∈ Fr and each x ∈ N c, there is a Lebesgue null set Tr,x ⊂ (0,∞)
such that for any 0 6 s 6∈ Tr,x and any t > s

EQr
x◦Φr (ξ(t, s)|Fs) 6 η(t, s), Qr

x ◦ Φr -a.s.

Moreover, Tr = ∅ ⇔ Tr,x = ∅.

Proof. (I)⇒ (II). Fix t > r . For B ∈ Ft , by Lemma B.1 we have

ζ(x, s) := EQr
x (1B · EQr

x (η(t, s)− ξ(t, s)|F r
s ))

= EQr
x (1B · EP (η(t, s)− ξ(t, s)|Fs)).
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Recalling that conditional expectations with respect to F r
s have cadlag versions in s and by a

monotone class argument, one easily sees that

(x, s) 7→ ζ(x, s) is F × B([r, t])-measurable.

Hence, for any T ∈ B([r, t]), A ∈ Fr and B ∈ Ft , we have by Fubini’s theorem∫
A

∫ t

r
EQr

x (1T · 1B · EQr
x (η(t, s)− ξ(t, s)|F r

s ))ds P(dx)

=

∫
A

∫ t

r
1T · EQr

x (1B · EP (η(t, s)− ξ(t, s)|Fs))ds P(dx)

=

∫ t

r
1T · EP

(
1A · EP (1B · EP (η(t, s)− ξ(t, s)|Fs)|Fr )

)
ds

=

∫ t

r
1T · EP

(
1A∩B ·

[
η(t, s)− EP (ξ(t, s)|Fs)

])
ds > 0.

As in the proof of Lemma B.1, since B([r, t]) and Ft are countably generated, by a monotone
class argument we may find a common P-null set Nt ∈ Fr such that for all x ∈ N c

t and any
T ∈ B([r, t]), B ∈ Ft∫ t

r
EQr

x (1T · 1B · EQr
x (η(t, s)− ξ(t, s)|F r

s ))ds > 0.

Hence, there exists a Lebesgue null set Tt,x ⊂ [r, t] such that for all s 6∈ Tt,x ,

EQr
x (η(t, s)− ξ(t, s)|F r

s ) > 0, Qr
x -a.s.,

i.e.,

EQr
x (ξ(t, s)|F r

s ) 6 η(t, s), Qr
x -a.s.

Let Qr be the set of all rational points in (r,∞). Set N := ∪t∈Qr Nt , then N ∈ Fr is a P-null
set. For each x ∈ N c, set Tr,x := ∪t∈Qr Tt,x . Let t > s > r with s 6∈ Tr,x . Choose a sequence of
points tn in Q such that tn ↓ t . By (i) and Fatou’s lemma, we then obtain

EQr
x (ξ(t, s)|F r

s ) 6 EQr
x

(
lim

n→∞
ξ(tn, s)|F r

s

)
6 lim

n→∞
EQr

x (ξ(tn, s)|F r
s )

6 lim
n→∞

η(tn, s) = η(t, s), Qr
x -a.s.

Lastly, we need to show r 6∈ Tr,x . This can be done as above by taking s = r and without
integrating with respect to s.

(II)⇒ (I) is completely the same as (I)⇒ (II) by reversing the arguments.
(II)⇔ (III) is direct from (iii). Indeed, for any A ∈ Fs−r

EQr
x◦Φr (1A · ξ(t − r, s − r)) = EQr

x (1Φr A · ξ(t − r, s − r),Φ−1
r (·))

= EQr
x (1Φr A · ξ(t, s)) 6 EQr

x (1Φr A · η(t, s))

= EQr
x (1Φr A · η(t − r, s − r),Φ−1

r (·))

= EQr
x◦Φr (1A · η(t − r, s − r)).

This completes the proof. �
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The following lemma can be proved as Lemma B.2 (cf. [17, Theorem 1.2.10]).

Lemma B.3. Let (M(t))t>0 and (K (t))t>0 be Ft -adapted real-valued processes on (Ω ,F)
which satisfy for x ∈ Ω , t > r > 0

M(t,Φr x) = M(t − r, x), K (t,Φr x) = K (t − r, x).

Given P ∈ P(Ω) and r > 0, let Qr
x := P(·|Fr )(x) be an r.c.p.d. of P with respect to Fr .

Assume that for each t > 0, EP (K (t)) < +∞. Then the following statements are equivalent:

(I) (Mt ,Ft , P)t>r is a continuous martingale with square variation process (K (t))t>r .
(II) There exists a P-null set N ∈ Fr such that for all x 6∈ N, (Mt ,Ft , Qr

x )t>r is a continuous
martingale with square variation process (K (t))t>r .

(III) There exists a P-null set N ∈ Fr such that for all x 6∈ N, (Mt ,Ft , Qr
x ◦ Φr )t>0 is a

continuous martingale with square variation process (K (t))t>0.

As a consequence, we have the following BDG’s inequality under conditional expectations:

Corollary B.4. Let (Mt ,Ft , P)t>r be a continuous square integrable martingale with Mr = 0.
Then

EP

(
sup

s∈[r,t]
|Ms ||Fr

)
6 4
√

2 · EP
(
〈M〉1/2t |Fr

)
, P-a.s.

Appendix C. Section 4

C.1. Proof of Lemma 4.3

Before proving Lemma 4.3, we prepare two useful lemmas.

Lemma C.1. Let N ∈ Aq for some q > 1. Then for any ε > 0, there exists an Rε > 0 such that
for any x, y ∈ Y with N (x),N (y) < +∞

‖x − y‖qY 6 ε(N (x)+N (y))+ Rε‖x − y‖qX. (C.1)

Proof. Suppose that the assertion is false, then there exists an ε0 > 0 such that for any n ∈ N,
there are xn, yn ∈ Y with N (xn),N (yn) < +∞ such that

‖xn − yn‖
q
Y > ε0(N (xn)+N (yn))+ n‖xn − yn‖

q
X.

Since N (x) = 0 implies x = 0, we have

N (xn)+N (yn) > 0.

Set

x̃n := xn/(N (xn)+N (yn))
1/q

ỹn := yn/(N (xn)+N (yn))
1/q .

Then

‖x̃n − ỹn‖
q
Y > ε0 + n‖x̃n − ỹn‖

q
X > ε0. (C.2)
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By (4.1) and (4.2) we have that {x̃n, n ∈ N} and {ỹn, n ∈ N} are relatively compact in Y. Hence,
there exist a subsequence nk and x̃, ỹ ∈ Y such that

lim
k→∞
‖x̃nk − x̃‖Y = 0, lim

k→∞
‖ỹnk − ỹ‖Y = 0.

Thus,

lim
k→∞
‖x̃nk − ỹnk − x̃ + ỹ‖Y = 0.

On the other hand, dividing both sides of (C.2) by n and then taking limits, we obtain that

lim
n→∞
‖x̃n − ỹn‖X = 0.

Therefore, x̃ − ỹ = 0 and

lim
k→∞
‖x̃nk − x̃nk‖Y = 0.

From (C.2), we then get the contradiction 0 > ε0. �

Lemma C.2. Let N ∈ Aq for some q > 1, and K a subset of Ω = C([0,∞),X). If for any
n ∈ N, K is equi-continuous in C([0, n];X) and

sup
x∈K

sup
t∈[0,n]

‖x(t)‖H + sup
x∈K

∫ n

0
N (x(s))ds < +∞. (C.3)

Then K ⊂ S = C([0,∞),X) ∩ Lq
loc(0,∞;Y), and relatively compact in S.

Proof. Let x ∈ K . By Remark 4.1 and (C.3), there exists a Lebesgue null set T ⊂ [0,∞) such
that for all t 6∈ T

x(t) ∈ Y, N (x(t)) < +∞.

By (C.1) we have

‖x(t)‖qY 6 εN (x(t))+ Rε‖x(t)‖
q
X.

Hence x ∈ Lq
loc(0,∞;Y), and K ⊂ S.

In order to prove the compactness of K in S, it is enough to prove that K is relatively compact
in Sn := C([0, n],X) ∩ Lq(0, n;Y) for every n ∈ N. Let {xk, k ∈ N} be any sequence in K . By
(C.3) we have

sup
k∈N

sup
t∈[0,n]

‖xk(t)‖H < +∞.

Since X∗ is compactly embedded in Y, we also have that H ' H∗ ⊂ Y∗ is compactly
embedded in X. By a diagonalization method, we may extract a subsequence xkl such that for
any rational points t ∈ [0, n]

lim
l,m→∞

‖xkl (t)− xkm (t)‖X = 0.

By the equi-continuity of {xkl , l ∈ N}, we further have

lim
l,m→∞

sup
t∈[0,n]

‖xkl (t)− xkm (t)‖X = 0,
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which together with (C.1) and (C.3) also yields

lim
l,m→∞

∫ n

0
‖xkl (t)− xkm (t)‖

q
Ydt = 0.

Hence, there exists an x ∈ Sn such that

lim
l→∞

sup
t∈[0,n]

‖xkl (t)− x(t)‖X + lim
l→∞

∫ n

0
‖xkl (t)− x(t)‖qYdt = 0,

which completes the proof. �

Proof of Lemma 4.3. Fix ε > 0. For any n ∈ N, by (4.4) we may choose Rn sufficiently large
such that

Pn

{
x ∈ Ω : sup

t∈[0,n]
‖x(t)‖H + sup

s 6=t∈[0,n]

‖x(t)− x(s)‖X
|t − s|β

+

∫ n

0
N1(x(s))ds > Rn

}
6 ε/2n .

We set

K :=
⋂
n∈N

{
x ∈ Ω : sup

t∈[0,n]
‖x(t)‖H

+ sup
s 6=t∈[0,n]

‖x(t)− x(s)‖X
|t − s|β

+

∫ n

0
N1(x(s))ds 6 Rn

}
.

Then K is a compact subset of S by Lemma C.2. Moreover,

sup
n

Pn(K
c) 6 ε.

Hence (Pn)n∈N is tight in S.

C.2. Proof of Lemma 4.4

It is well known that there exists a self-adjoint operator Λ on H such that D(Λ) = X∗ and

〈Λx,Λx〉H ∼ ‖x‖
2
X∗ .

On the other hand, since X∗ ⊂ H is compact, the spectrum of Λ is discrete, i.e., there are
eigenvalues 0 < λk ↑ ∞ and normalized eigenfunctions {`i , i ∈ N} ⊂ X∗ in H such that

Λ`i = λi`i ,

and {`i , i ∈ N} is a complete orthonormal basis of H. Thus, the spaces X∗ and X can be
characterized respectively by

X∗ =

{
x =

∑
i

ai`k :
∑

i

λ2
i |ai |

2 < +∞

}
,

and

X =

{
x =

∑
i

ai`i :
∑

k

|ai |
2

λ2
i

< +∞

}
.

The result now follows.
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C.3. Martingale solution for SDE with coercivity drift in finite dimension

Consider the following SDE in Rd :{
dx(t) = b(x(t))dt + σ(x(t))dW (t),
x(0) = x0 ∈ Rd ,

(C.4)

where b : Rd
→ Rd and σ : Rd

→ L2(U,Rd) are continuous functions.
We have:

Theorem C.3. Assume that there is a constant C > 0 such that for any x ∈ Rd

〈x, b(x)〉Rd 6 C(1+ |x |2), ‖σ(x)‖L2(U,Rd ) 6 C(1+ |x |). (C.5)

Then there exists a martingale solution P ∈ P(Ω) to Eq. (C.4) satisfying (M1) and (M2) of
Definition 3.1, where Ω := C(R+;Rd).

Proof. Define for n ∈ N

bn(x) := χn(x)b(x), σn(x) := χn(x)σ (x),

where 0 6 χn ∈ C∞0 (R
d) is a cutoff function with

χn(x) =

{
1, |x | 6 n
0, |x | > 2n.

Then bn and σn are bounded continuous functions and satisfy

〈x, bn(x)〉Rd 6 C(1+ |x |2), ‖σn(x)‖L2(U,Rd ) 6 C(1+ |x |), (C.6)

where C is independent of n.
It is well known (cf. [17]) that there exists a probability measure Pn ∈ P(Ω) such that

Pn(x(0) = x0) = 1 and

Mn(t, x) := x(t)− x0 −

∫ t

0
bn(x(s))ds, x ∈ Ω ,

is a continuous square integrable Ft -martingale with square variation process

〈Mn〉(t, x) =
∫ t

0
tr(σ ∗n (x(s))σn(x(s)))ds.

By Itô’s formula and (C.6), we have

|x(t)|2 = |x0|
2
+ 2

∫ t

0
〈x(s), bn(x(s))〉Rd ds

+

∫ t

0
tr(σ ∗n σn)(x(s))ds + 2

∫ t

0
x(s)dMn(s)

6 |x0|
2
+ C

∫ t

0
(1+ |x(s)|2)ds + 2

∫ t

0
x(s)dMn(s).

Taking expectations by Gronwall’s inequality, we obtain for any T > 0

sup
t∈[0,T ]

EPn |x(t)|2 6 Cx0,T .



B. Goldys et al. / Stochastic Processes and their Applications 119 (2009) 1725–1764 1763

On the other hand, by BDG’s inequality and Young’s inequality we have

EPn

(
sup

t∈[0,T ]
|x(t)|2

)
6 Cx0,T + CEPn

(
sup

t∈[0,T ]

∣∣∣∣∫ t

0
x(s)dMn(s)

∣∣∣∣
)

6 Cx0,T + CEPn

(∫ T

0
‖σ ∗n (x(s))x(s)‖

2
Uds

)
6 Cx,T + CEPn

(
sup

t∈[0,T ]
|x(t)|2

∫ T

0
‖σn(x(s))‖

2
L2(U,Rd )

ds

)

6 Cx0,T +
1
2

EPn

(
sup

t∈[0,T ]
|x(t)|2

)
+ C

∫ T

0
(EPn |x(s)|2 + 1)ds.

Hence

EPn

(
sup

t∈[0,T ]
|x(t)|2

)
6 Cx0,T .

Set for any R > 0

τ n
R := inf{t : |x(t)| > R}.

Then

sup
n

Pn{τ
n
R < T } 6

Cx0,T

R2 .

Moreover, as in deriving (4.10), we have for some β ∈ (0, 1)

sup
n

EPn

(
sup

s 6=t∈[0,T ]

|x(t ∧ τ n
R)− x(s ∧ τ n

R)|

|t − s|β

)
6 CR .

So, for any δ, ε > 0 and R > 0

sup
n

Pn

{
sup

|t−s|6δ,s,t∈[0,T ]
|x(t)− x(s)| > ε

}

6 sup
n

Pn

{
sup

|t−s|6δ,s,t∈[0,T ]
|x(t)− x(s)| > ε, τ n

R > T

}

+ sup
n

Pn{τ
n
R < T } 6

CR · δ

ε2 +
Cx0,T

R2 ,

which implies that for any T > 0

lim
δ→0

sup
n

Pn

{
sup

|t−s|6δ,s,t∈[0,T ]
|x(t)− x(s)| > ε

}
= 0.

Therefore, (Pn)n∈N is tight. Without loss of generality, we assume that Pn weakly converges to
a probability measure P on C(R+;Rd). For example, as in (Step 2) and (Step 3) of Theorem 4.5,
one can easily show that P satisfies (M1) and (M2) of Definition 3.1. �
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[4] V. Barbu, G. Da Prato, M. Röckner, Stochastic porous media equation and self-organized criticality, Indiana Math.

J. (in press).
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