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Abstract

We study sequences of empirical measures of Euler schemes associated to some non-Markovian SDEs:
SDEs driven by Gaussian processes with stationary increments. We obtain the functional convergence of
this sequence to a stationary solution to the SDE. Then, we end the paper by some specific properties of this
stationary solution. We show that, in contrast to Markovian SDEs, its initial random value and the driving
Gaussian process are always dependent. However, under an integral representation assumption, we also
obtain that the past of the solution is independent of the future of the underlying innovation process of the
Gaussian driving process.
© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

The study of steady state of dynamical systems is very important for many experimental
sciences like Physics, Chemistry, or Biology, since very often measure can only be obtained in
that regime. In the Markovian setting, the study of long time behavior and stationary solutions of

* Corresponding author. Tel.: +33 0 561559394,
E-mail addresses: serge.cohen@math.univ-toulouse.fr (S. Cohen), fabien.panloup @math.univ-toulouse.fr,
fpanloup @insa-toulouse.fr (F. Panloup).

0304-4149/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.spa.2011.08.001


http://www.elsevier.com/locate/spa
http://dx.doi.org/10.1016/j.spa.2011.08.001
http://www.elsevier.com/locate/spa
mailto:serge.cohen@math.univ-toulouse.fr
mailto:fabien.panloup@math.univ-toulouse.fr
mailto:fpanloup@insa-toulouse.fr
http://dx.doi.org/10.1016/j.spa.2011.08.001

S. Cohen, F. Panloup / Stochastic Processes and their Applications 121 (2011) 2776-2801 2777

dynamical systems is a classical domain of both Mathematics and Probability. Nevertheless, in
many situations the driving noise of the dynamical system has long range dependence properties
and the solution is not Markovian.

In this paper, we deal with an R4-valued process (X;)>o solution to the SDE of the following
form:

dX; = b(X,)dt + dZ, (1)

where (Z;);>0 is a continuous centered Gaussian process with ergodic stationary increments.
For this class of SDEs, our principal aim is to approximate some stationary solutions under some
mean-reverting assumptions on b and weak assumptions on (Z;),>¢ including ergodicity of the
discrete increments that will be made precise in the next section. Note that, since for any matrix
o, (Zt),zo = (0Z:)s>0 1s also a continuous centered Gaussian process with stationary ergodic
increments, SDEs of type (1) include the following ones: dX; = b(X;)dt + odZ;. However, we
can remark the main restriction: we do not consider the case where o is not constant. It allows
us on the one hand to avoid technicalities related to stochastic integration and on the other hand
to generalize some results of [7], when the driving noise is not a fractional Brownian motion.
Please note that, when b(x) = —ux, the solution of (1) is an Ornstein—Uhlenbeck type process,
where the driving process may be more general than a fractional Brownian motion (see [3] for
a study of fractional Ornstein—Uhlenbeck processes). We obtain bounds for a discrete version
of this generalized Ornstein—Uhlenbeck process, which are an important tool in our proofs and
which may have interest of their own (see Lemma 2).

In this work, our approach is quite different to that of [7]. Actually, we choose to first
approximate stationary solutions of an ergodic discrete model associated with (1). Then,
stationary solutions of the SDE are exhibited as limits of these stationary solutions. More
precisely, in a first step, we study a sequence of functional empirical occupation measures of an
Euler scheme (}_(,W) with step y > 0 associated with (1) and show under some mean-reverting
assumptions on b, that, when n — 400, this sequence has almost surely (a.s. later on) some
weak convergence properties to the distribution of a stationary Euler scheme with step y of the
SDE. Denoting these stationary solutions by ¥ (°>¥), we show in a second step, that (¥ (OO’V))),
is tight for the uniform convergence on compact sets and that its weak limits (when y — 0) are
stationary solutions to (1).

For a Markovian SDE, this type of approach is used as a way of numerical approximation of
the invariant distribution and more generally of the distribution of the Markov process when
stationary (see [17,10,11,13,16,15]). Here, even if the discrete model can be simulated, we
essentially use it as a natural way of construction of stationary solutions of the continuous model
and the computation problems are out of the scope of this paper.

In Section 2, we make the mathematical framework precise and we state our main results of con-
vergence to the stationary regime of SDE (1). Then, Sections 3-5 are devoted to the proof of the
main results. First, in Sections 3 and 4, we study the long time behavior of the sequence (X nyn=1
(when y is fixed) and the convergence properties (when n — +00) of the sequence of functional
empirical occupation measures of the continuous-time Euler scheme. We show that this sequence
is a.s. tight for the topology of uniform convergence on compact sets and that its weak limits are
stationary solutions to the “discretized” SDE. Second, in Section 5, we focus on the behavior of
these weak limits when y — 0. In Section 6, we give some properties of the stationary solution.
We first show that the initial random value and the driving process are dependent as soon as the
Gaussian process has dependent increments. However, assuming some integral representation of
Z (with respect to a white noise), we then prove that the past of the stationary solution that are
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built with our method, are independent of the future of the underlying innovation process of Z.
Please note that a similar result is also proven in the discrete case for the stationary Euler scheme
associated with the SDE. In Appendix, we obtain some control of the moment of the supremum
of a Gaussian process and a technical lemma showing that we can realize the stationary solutions
with the help of an innovation representation of the driving process.

2. Framework and main results

Before outlining the sequel of the paper, we list some notations. Throughout this paper,
Ry = [0, 0c0). We denote by C(R, RY) (resp. D(Ry, R?)) the space of continuous functions
(resp. cadlag functions) endowed with the uniform convergence topology on compact sets (resp.
Skorokhod (see e.g. [2])), and by ck R, RY), the set of kth differentiable functions. The
Euclidean norm is denoted by |.|. For a measure © and a pu-measurable function f, we set
w(f) = [ fdu. Finally, we will denote by C every non explicit positive constant. In particular,
it can change from line to line.

Let us first consider assumptions for the driving noise (Z;);>0 = (Z,1 e Z;" )r>0: We assume
that (Z;);>0 is a centered Gaussian process satisfying Zo = 0 and, for every i € {1,...,d}, we
denote by ¢; : R — R, the following function of (Z;)tzoz for every positive s, ,

El(Z] — Z))*] = ci(t — ).

Note that ¢; (0) = _0. For every i_ntf;ger n > 0, let us denote by A, = Z,,,, — Zn-1)y wheny >0
is fixed. Setting d);, (n) = IEI[A’1 Al +1] fori =1,...,1, we have:

n

; 1
¢, (n) = 5 leil+Dy) = 2¢i(ny) + ci((r = Dy)l. @)

We denote by (Z)) >0 the “discretized” Gaussian process defined by Zny = Zyy foreveryn > 0
and,

Z, = Z,,y vVt € [ny, (n+ 1)y).

We introduce assumption (Hj) on the functions ¢;,i € {1, ..., d}. More precisely, we impose

some conditions on the second derivative of ¢; near 0 and +oo which correspond respectively to

some conditions on the local behavior and on the memory of the process.

(Hy) Foreveryi € {1,...,d}, ¢; is continuous on R and C? on (0, +00). Moreover, there exist
a; € (0,2) and b; > 0 such that:

Ct ™ Vre(,1)

Ct™b vr>1. 3

lef ()] < {
Let us recall that for a fractional Brownian motion with Hurst index H, these assumptions are
satisfied with a; = b; = 2—2H. One can also check that (3) implies that in a neighborhood of 0,

t if a; € (0, 1),
ci®) <C{tlnt ifa; =1, 4)

274 ifa; e (1,2).
In particular, the sample paths of (Z;);>¢ are almost surely pontinuous. Furthermore, we derive
from assumption (Hy) that for every i € {1,...,d}, E[A]A}] — 0asn — +oc. Then, it

follows from [4] that (4A,),>1 is an ergodic sequence, i.e. that for every F : (]Rd)N — R such
that E[| F((A,)n=1)]] < 400,
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1 <& +
=D F((ADizk) = EIF((A)=1)] 5)
k=1
Let us now introduce some stability assumptions (Hz) and (H3) concerning the stochastic differ-
ential equation

where b : R? — R4 is a continuous function.

(Hp): (i) There exists C > 0 such that |b(x)| < C(1 + |x]|) Vx € R4,

(i) There exist 8 € R and o > 0 such that

(x,b(x)) < B —alx|.

(H3) : b is a Lipschitz continuous function and there exist « > 0 and 8 > 0, such that Vx,

y € RY,

(b(x) = b(y).x —y) < p—alx —y.

When (H3) holds for 8 = 0, we will denote it by (H3 ¢).
Remark 1. The reader can check that (H3z) for some o > 0, 8 > 0 implies (H2)(ii) for some
0 <o’ <aand B > B by taking y = 0 in (H3z). As well, the fact that b is Lipschitz continuous
implies (H2)(i). One may argue that the Lipschitz assumption is too strong for our purpose but
we chose to keep this assumption for two reasons. First, this assumption is only needed for the

SDE in continuous time (i.e. the 2. of Theorem 1). Second, it is a convenient way to have the
sublinearity assumption (Hz)().

When b is a Lipschitz continuous function, it is obvious using Picard iteration arguments that
for any initial random variable £ a.s. finite there exists a unique solution (X;);>o to (6) such that
Xo = & which is adapted to the filtration o (¢, Z;, 0 < s < t). Then,

t
X, =£ +/ b(Xs)ds + Z;,, Vt>0. (7
0

Please note that the integral in (7) is always defined since the sample paths of (X;);>0 and (Z;);>0
are continuous.
Let us now define a stationary solution to (6).

Definition 1. Let » : R? — R be a continuous function. We say that (X;);>o is a stationary
solution to (6) if

t
(Xf — Xo - / b(Xs)ds) £ (Z)i=0. )
0 >0

where the equality is the equality of all finite dimensional margins, and if for every n € N, for
every0<ti < <---<ty,

L
Xty ooon Xpr) = Xy oo, Xy) VE>0,
where £ denotes the equality in distribution.

Remark 2. Since Z has in general no integral representation like the moving average
representation of the fractional Brownian motion



2780 S. Cohen, F. Panloup / Stochastic Processes and their Applications 121 (2011) 2776-2801

o H-l
Bu(r) = / (=" (Coyiaw,

we do not have any stochastic dynamical system in the sense of Definition 2.6 in [7] (see also
Proposition 3.11). Actually, our definition is closer to the classical definition of invariant measure
of Random Dynamical System (see [1,5]).

When (Z;);>0 is a Markovian process, for instance a Brownian motion, it is classical to have Xg
independent of Z, but in general we cannot have such independence as stated in Proposition 5
(see Section 6).

Definition 2. Let v denote a probability on R?. We say that v is an invariant distribution for (1)
if there exists a stationary solution (X,);>0 to (1) such that v = £(Xy).

Remark 3. The fact that Xo and (Z;);>0 may be dependent involves that uniqueness of the
invariant distribution does not imply uniqueness of stationary solutions to (8).

Let y be a positive number. We will now discretize equation (6) as follows:

{Y(n+1)y — Yny = )/b(Yny) + An-{-l Vn >0

E
Y=Y, Vtelny,(n+1y). (Ey)

We will say that (Y;),>0 is a discretely stationary solution to (E, ) is a solution of (E, ) satisfying:

L
(Yt1+k}/5 ey Yln-‘rk}/) = (Ytl’ ey Yln) V0 < n<---<ty, Vn,k e N.
We denote by (X ny) the Euler scheme defined by: Xo = x € R? and for everyn > 0
X1y = Xny +vb(Xny) + Anr. ©)
Then, we denote by (X )r>0 the stepwise constant continuous-time Euler scheme defined by:
X, = )_('ny vVt € [ny, (n+ 1)y).

The process (Xt)zzo is a solution to (E, ) such that Xo = x. For every k > 0, we define by

()_(t(yk))tzo the (yk)-shifted process: }_(t(yk) = Xykte-
Then, a sequence of random probability measures (P(")(w,da))nzl is defined on the
Skorokhod space D(R, R) by

1 n
'P(n-,)’)(a), da) = ; ;Si(y(kil))(w)7 (dOl)

where § denotes the Dirac measure. For r > 0, the sequence (P,(")(w, dy)),>1 of “marginal” em-
pirical measures at time # on R is defined by

n n
(n.7) 1 !
P[ ((,(), dy) == ;l ]; (S)—(t(y(k,l))(w) (dy) = ; ;Sxy(kfl)ﬂ(w)(dy)'

A weak limit of a set P C D(R,, R?) is a limit of any subsequence of P in D(R, RY). Let us
now state the main results.

Theorem 1. 1. Assume (Hy) and (Hz). Then, there exists yy > 0 such that for every y € (0, yo),
(P"Y)(w, da))p>1 is a.s. tight on D(R, RY). Furthermore, every weak limit is a discretely
stationary solution to (E, ).
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2. Assume (Hy) and (H3) and set
UPY (w) = {weak limits of (P (w, da))}.

Then, there exists y1 € (0, yo) such that U7 (w))y <y, is a.s. relatively compact for the uniform
convergence topology on compact sets and any weak limit when y — 0 of UV (w))y <y, isa
stationary solution to (6).

The previous theorem states existence of stationary solutions of (6), but one can wonder about
uniqueness of the solutions. We will only consider the special case when (Hz ) is enforced
which is called asymptotic confluence in the Markovian setting (by asymptotic confluence, we
mean that the distance in probability between two solutions starting from two different points x
and y tends to 0 when t — +4-00).

Proposition 1. Assume (Hp) and (H3z ). Then, there exists a unique stationary solution to
(6) and to Eq. (E,, ), when y is small enough.

The next corollary, whose proof is obvious is, nevertheless, useful.

Corollary 1. Assume (Hy) and (H3g). Denote by pn € PC Ry, RY)), the distribution
of the unique stationary solution to (1). Then lif P©Y)(w,da) denote a weak limit of
(P (@, do))p=1,

—0
dD(R+,Rd)(P(OO’Y)(w’ do), @) 750 as (10)

where dpgr +RY) denotes a distance on P(D(Ry, R?)) (endowed with the weak topology), the
set of probabilities on R%. In particular,

s (P (@, dy). v) 2250 as. (11)

where v is the unique invariant distribution of (6) and, dga is a distance on P(RY).
We will not study the rate of convergence relative to (11) in this paper.

Remark 4. We chose in this paper to work with the stepwise constant Euler scheme because this
continuous-time scheme is in a sense the simplest to manage. The default is that the previous
convergence result is stated for the Skorokhod topology. Replacing the stepwise constant Euler
scheme by a continuous-time Euler scheme built by interpolations would lead to a convergence
result for the topology of uniform convergence on compact sets.

Although Z is not supposed to have an explicit integral representation with respect to a Wiener
process, and that the setting of the Stochastic Dynamical System (in short SDS) of [7] seems
hard to use in our work, let us start a brief comparison of our results with those of [7] if (Z;);>0
is a fractional Brownian motion. First, our assumption (Hj3) is a stability assumption a little
stronger than (Ap) in [7]. Likewise, (H2)(i) and b Lipschitz continuous are similar to (Aj) for
N = 1 with Hairer’s notation. In [7], the Stochastic Dynamical System (SDS Definition 2.7)
and a Feller semigroup Q; ((2.4) in [7]) are defined on RY x C(R4, R?). The first marginal of a
stationary measure (4 on RYxC R4, R?) defined in Section 2.3 of [7] is what we call an invariant
measure in Definition 2. Moreover, P-¥) for large n and small y are natural approximations of
the stationary measures of [7].

3. Tightness of (P (@, da)),>1

The main result of this section is Proposition 2 where we show the first part of Theorem 1, i.e.
we obtain that (P (w, da)),>1 is a.s. tight for the Skorokhod topology on D(R+, R?) when y
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is sufficiently small. A fundamental step for this proposition is to obtain the a.s. tightness for the

sequence of initial distributions (P(()"’V) (w, da)),>1. This property is established in the following
lemma.

Lemma 1. Assume (Hy) and (Hy). Then, there exists yo > 0 such that for every y < yp,

sup — Z'XV(" 1)| < 400 a.s. (12)

n>1 n k=1

Proof. We have:
Xt 1yy 2 = 1 Xy I + 29 (Xny, B(X))) +2(Xy s Angr)
+ (P + 20 (bR, Anit) +14011 ).

Let ¢ > 0. Using assumption (H3)(i) and the elementary inequality |{u, v)| < %(Isul2 + |v/€]?)
(forevery u, v € R4 ), we have:

- 1
(Xny, Apg)| = 5 <8IXny| + —IAn+1| ) and

_ 1 —
|<b(Xny), App1) < E <8C(1 + |Xny|2) + E|An+1|2> .

It follows from assumption (Hy)(ii) that for every ¢ > 0,

Xty 1P < Xy 1P 427 (B = @l Xy 1) + p(y, )1+ [ Xy IP) + Cle, )| At P
where C(y, €) is a positive constant depending on y and ¢ and p(y, &) < C(e 4+ y&+y?). Then,
set & = 2 (for instance). For sufficiently small y, p(y, €) < ay /2. Hence, we obtain that there
exist B € R and @ > O such that Vn > 0

|A)_((n+1)y|2 = |)_(ny|2 + y(ﬁ - &l)_(ny|2) + C|An+1|2

< (1= y@)| Xy P+ Cr + 140111, (13)

Finally, by induction, one obtains for every n > 1:

n
Xy P < (1= y@)"[x]* + C Y (1 —y@)" (v + | Al
k=1

Hence, in order to prove (12), it is enough to show that for sufficiently small y,

n—1

k
sup— > > (A —ay) AP < +oo as. (14)
k=1 1=1

n>1 "N
But
n k
DY a—anhaP Z |Ac? Z(l ay) < cZ | Al < cZZm;f
k=1 I=1 i=1 k=
and it follows that it is in fact enough to show that

sup — Z(A )2 <400 as.Viefl,..., d}. (15)

n>1 N
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Now, by (5),

1 ¢ 2 n—+00 i

= (A == El(ADA,

n k=1
and (15) is satisfied. This completes the proof. [J
Proposition 2. Assume assumption (Hy) and (Hz). Then, there exists yy > 0 such that for every
Y < vo. (P"Y)(w, da)),>1 is a.s. tight on DR, RY).

Proof. We have to prove the two following points (see e.g. [2, Theorem 5.2]):
1. VT > 0, (19 (w, dy)) defined by

1 (@, dy) = Z Cap 186D (@),

k=1 t€[0,T]

is an a.s. tight sequence.
2. For every n > 0,

lim sup lim su E 1) k=1 =0 as.
5—>0p n—>+o§ n (op (X R
with

wy(x,8) = inf{max  sup |x; — x|}
) i=r s, telti tit1)

where the infimum extends over finite sets {#;} satisfying:

O=t<ti<---<t,=T and inf(t; —1t;_1) > 6.
i<r

In fact, since the process has only jumps at times ny with n € N, o/, (X%, 8) =0 when § < y.
It follows that the second point is obvious. Then, let us prove the first point. By induction, one
gets from (13) that, for every k > n,

k
Xy > < Xy P —y@* " +C Y A=y (v +1411).

I=n+1
This implies that
n+[T/y]
sup |)_(,(k_1)|2 = sup |)_(kV|2 < |)_(,1V|2 +C (1 + Z |A1|2> .
1€[0,T] ke{n,...n+T/y1) [k
Thus, if V(x) = |x|2, one can deduce:
| A kT
w(w, V) < —ZV(X(k l)y)+c<1+ oy |A,|2)
k=1 I=k+1

Irr 1nJr[T/y
< supP( y)(a) V)+C(1 + - [;i| sup — Z |Ak|2> <400 as

n>1 n>1N k=1

thanks to Lemma 1 and (15). Therefore, SUp,> | ,u(T") (w, V) < 400 a.s which implies that (,u(T")
(w, dy)) is a.s. tight on R (see e.g. 6, Proposition 2.1.6]). [
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4. Identification of the weak limits of (P"?)(w, do))n>1

In the following proposition, we show that every weak limit of (P"?)(w, da)),>1 is a.s. a
stationary Euler scheme with step y of SDE (6).

Proposition 3. Assume (Hy) and let P (w, da) denote a weak limit of (P"™?)(w, da))p=>1.
Then, a.s., P°Y)(w, da) is the distribution of a cadlag process denoted by Y °Y) such that,
a.s. in o,

DR, RY DR, ,R? o
(a) (Yl(;i’ly)),zo o= ) (Y,(oo’y)),zo for every | € N where ( = )denm‘es the equality in

distribution on D(R, Rd).
(b) N©Y) defined by

2
NP — g0 _yeen / " ) ds
0
is equal in law to ZV with t, =vylt/vl

Remark 5. It follows from the previous proposition that (Y,(oo’y))tzo is a discretely stationary
solution to (E).

Proof. (a) Let 7 denote a countable dense subset of R and SrK , a countable dense subset of
the space of continuous functions f : R” — R with compact support. It suffices to prove that
a.s.,Vr > 0, forevery f € S,K, forevery t1,...,t, € T,Vl € N,

/f(oz,],...,atr)P(OO”’)(a),da):/f(a,]Hy,...,a,,+ly)73(°°’y)(w,doz).

Since 7 and SrK are countable, we only have to prove that Vr > 0, for every f € SrK , for every
Hy....,t € T ,Vl €N,

/f(oc,l, o )P (0, da) = / F@uyttys s hi1) POV (@, da) as.  (16)
Letnow f € SK,l e Nandt,...,t € 7.On the one hand,
1 & _ _ _ B}
k—1) k—1) (k—1) (k—1)
;Z(f(x,l L XKDy f(X,IHV,...,X,rHy))
k=1

n

1<, - . 1 . i}
= Z SXg—1yy+ts o Xk—Dy+1,) — p Z SXa—14ny+e0 - s Xk=14Dy+1,)
k=1 k=1

-1 n+l
1 - - - _
= (Z FXg—Dytt> - Xk—1)yy+1,) — Z S Xx-1)y+1 > ..-,X(kl)y+z,)> ,
k=1

k=n+1

and this last term converges to 0 when n — 400 a.s. since f is bounded. On the other hand,
since P (w, da) denotes a weak limit of (P"¥)(w, da)),>1, there exists a subsequence
(ng(w))k>1 such that (P(”W”)”’)(a),da))kzl converges weakly to P*¥)(w,da) (for the
Skorokhod topology). This convergence implies in particular the finite-dimensional convergence.
Therefore,
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1S g e
;Zf(Xt(]k Dok 1))m/f(a,l,...,atr)P(oo*V)(w,da) as.
k=1

1 1 S (k—1 S(k—1 n——+4o0o
and, . Z f(X,(IH),), e Xz(,+ly)) —_— / flogqay, ... O!z,<+ly)73(°°”’)(w, da) as.
k=1

Therefore, (16) follows.
(b) Let &, : D(Ry, RY) — D(R,, RY) be defined by:

t
=Y
(D) (@) =ar — —/ b(as)ds. (17)
0
Then, N©¥) = @V(Y(OO’V)). Let F : D(Ry, R?) — R be a bounded continuous functional:

E[F(N®")] = /F(diy(a))P(oo’V)(w,da)

= lim [ F(®,(@)P" @) (0, da). (18)
k—+o00
For every t > 0,
. . . ktt/y]
O,(XW) = (Z) . -2l )= ) A,
I=k+1

with the convention Z@ = 0. Thus, we derive from (18) that

ng

E[F(N®)] = lim L D FoG((ANizm)
=1

—+00 Nk e
where G : (RH)N — D(R4, R?) is defined by

]
G(Unnz1)i = ) ur Vi =0.
=1
Now, (A,)n>1 is an ergodic sequence (see (5)). As a consequence, a.s.,

k——+00

1 ng —
. Z FoG((ANizi) — E[F o G((A)i=1)] = E[F(Z")].
i=l1

The result follows. [
5. Convergence of (P*?)(w, do)) when y — 0

The aim of this section is to show that, a.s., (P (w, da)), is a.s. tight for the weak
topology induced by the topology of uniform convergence on D(R ., R?) and that its weak limits
when y — 0 are stationary solutions to (6). The main difficulty for this second part of the proof
of Theorem 1 is to show that (P (w, da)), is a.s. tight on R. For this step, we focus in
Lemma 2 on the particular case b(x) = —x (when (X;);>0 is an Ornstein—Uhlenbeck process)
where some explicit computations lead to a control of (PY) (@, da)),. Then, in Lemma 3,
we show that this control can be extended to SDEs whose drift term satisfies (Hs). Finally, we
establish the main result of this section in Proposition 4.
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Let y > 0. We denote by (X, ) the Euler scheme in the particular case b(x) = —x. We have
Yo = x and:

E(n+1)y =({1- )/)Eny + An—i—l Vn > 0.

Lemma 2. Assume (Hy) and let y € (0, 1). Then, (E[|Eny|2])n20 is a convergent sequence.
Denote by v(y) its limit. For every yg € (0, 1),

sup v(y) < 4o0.
7€(0,%0]
Proof. First, by induction,

n—1

Sy =1 =p)'x+ > (1= ) At
k=0

It follows that
d n—1 ) 2
Bl Sy 21 = (1 = ) x P+ ZE[(ZU - V>"A’n—k) }
i=1 k=0

Foreveryi € {1,...,d},

n—1 2 n—1n—1
E[(Z(l - y)kﬂﬁ;_k> ] =Y Y a-preia -k,
k=0

k=0 =0
where th‘; is defined by (2). Setting u = k 4+ and v = [ — k, we deduce that

2n—2 2n—2—u)Au

n—1 2
E[(Z(l - y)m;k) } =Y (d-p)" > ¢, (v), (19)
k=0 u=0

v=(u—2n-2))Vv(—u)

with x A y = min(x, y) and x V y = max(x, y). Then, with the definition of ¢, one can check
that

2n—2—u)Au Ci(]/) ifu=00ru=2n-2,

¢, (v) = {

with fl-y (x) =ci(y(x + 1)) — ci(yx). It follows from (19) that,

n—1 2 n—1
E[(Zﬂ - V>"A§;k> } = i)+ Y (1= )" f/ @) + Ra(y).
u=1

k=0

= () () £ (@n—2—u) Au) otherwise,

with
2n—1
Ru(y) = Y (A=) fl@n—=2—u)+ 1 =) ci(y),

n—2
=Y A= @+ 0=y ely).

u=-—1

Since ¢; is locally bounded and cl’.’ is bounded on [1, 4-00[, ¢; is a subquadratic function, i.e.

lei)| < C(1+ u>) Vu=>0.
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It follows that ff is also a subquadratic function. Then, using that for every u € {—1,...,
n—2}, (1 —ypy)» 2" < (1 —y)", we obtain that for every y € (0, 1), R,(y) — 0 as
n — 400.

Using again that fiy is a subquadratic function, we deduce that for every y € (0, 1), for every
iell,...,d},

n—1 ) 2 o0 +00 ]
E[(Z(l - i,_k> ] R wi(y) =) + (= )" fw)
k=0 u=1

and that w; (y) is finite. By a second order Taylor development, we have for every u > 1:

fiy(u) = yci(yu) + y2r(y,u) withr(y,u) = ¢/ (y(u+6y)), 6, €10,1].

Hence, using assumption (Hj), it follows that

“+00
wi(y) = ci(y) + Z y( =) [cjyw) + yr(y,w)] with |r(y, u)| < Cgi1(yu),

u=1
and, gi1(t) =1 “lyeo,1)) + t_bil{zz1}-

Let us now control the behavior of w;(y) when y — 0. First, for every y € (0, 1), for every
u>1,(1—y)* <exp(—yu). Then, since t > exp(—t), ¢ > g; () are non-increasing on R% ,
one deduces that for every u > 2,

yu

(L= 1) gin(yu) < / exp(—g (0,
yu—1)

Then,

“+o00

=) —-y)+ C)// exp(—1)gi,1(r)dr.
Y

+o0
> A=y ry.w

u=1

Using that @; < 2, we easily check that the right-hand side is bounded and tends to 0 when
y — 0. We now focus on the first term of w; (y). First, by assumption (Hy), for every ¢ > 0,

i)l < C(1 4 gin(1)) where gio(r) = t' %1 0.1y + £ 70 215y, (20)

with 61 € (0, 1) (resp. 62 € (0, 1)) if a; = 1 (resp. b; = 1) and §; = O (resp. 62 = 0) otherwise.
Second, using that (1 — y)* < C(1 — y)~ ' exp(—1) for every ¢ € [yu, y(u + 1)], one deduces
that

yu
/ exp(—t)r’dr ifp<0
yu—1)

y( =) yuw)’ =C 2y

1 yu+1)
l—,/ exp(—H)tPdr if p > 0.
—V Jyu

It follows from (20) and (21) that

lim sup
y—0

+00
Y v =) ciyu)

u=1

+00
< C/ exp(—1t) (1 + g,',z(t)) dr.
0

The right-hand member is finite. This completes the proof. [
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Lemma 3. Assume (Hy) and (H3) and denote by PV (w,da) a weak limit of (P"Y)
(w, da)). Then:

(i) With the notations of Proposition 3, there exists yo > 0 such that,

sup B [IY 7] < 400 as. (22)
O<y=<w

(i1) Assume (Hy) and (H3,0). Then, uniqueness holds for the distribution of stationary solutions
to (8). Similarly, there exists yo > 0 such that for every y < yp, uniqueness holds for the
distribution of discretely stationary solutions to (E, ).

Proof. (i)
Step 1: Let ()_(ny) and (X, ) be defined by:
Xo = x, Xty = Xny +yb(Xny) + Apy1 and, (23)
2o = x, Yty = Zny — ¥y + Ant1
with A, = Z,, — Z(;—1)y- Then,
IX 1)y — E(n+])y|2
=Xy = Sy I+ 27 (0Kny) + Sy, Xy = Zny) + 72 16(Ky) + Sy
<1 Xny = Zuy 1> + 27 (0Xny) = b(Zay), Xy = Zny) + 27216 (Ky) = b(Zy)
+2y (0(Zny) + Enys Xy = Sy} + 272 10(Zy) + Sy 17
On the one hand, using that b is Lipschitz continuous and assumption (H3), one obtains:

Y(b(Xny) = b(Zny)s Xy — Zny) + 27216 (X)) — b(Zn))1?
=7 (B+ 1%y = Ty P—a+Cp)). 24)

On the other hand, using that b is a sublinear function and the elementary inequality (u, v) <
1/2(eul? + €|v]?) (with u = b(Xny) + Xpy, v = Xyy — Xy and € = a/2), one also has:

Y (0 En) + Znys Xny = Zny) + 272 16(Eny) + Sy 1P
= 751Ky = TP+ Cy (1 +150 P, (25)
Therefore, the combination of (24) and (25) yields for sufficiently small y:
Xty = Bty P < A= @) Xuy = Ty P+ Cy (1 + 15y 1)
where & is a positive number. Then, it follows from Lemma 2,
ElX a1y = Sty 1< (1= @n)ENXny — Sy 1+ By

where 8 does not depend on y. By induction, we obtain:

+00
SUpE[| X,y — Ty IP1 < By Y (1 —ay)* = foio
nz1 k=0 o

Finally, since

Ell %0y ] < 2 (B0 Xny = Ty 1+l 5y ).
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it follows from Lemma 2 that there exists yy > 0 such that

sup supE[|X,, *] < +o0. (26)
O<y=yonz1
Step 2: First, since sup,-; X 30 | [Xu—1), > = supnzlpé"’y)(a), [x|?) < 400 as. (by
Lemma 1), the fact that P°>") (w, de) is a.s. a weak limit of P"¥) (w, der) implies that

Ew[|Yé°°’V>|2] < 400 as.
By Proposition 3(b), there exists a.s. a Gaussian process Z® with the same distribution as the
driving process of the SDE such that

Yooty = Ya " +yb (") + Aui 27)

with A, = Zp, — Z¢ ), -
the sequence (Y,E;O’y)) is stationary. Let now ()_(ﬁy) be constructed as in (23) with sequence (A4,)
of (27). By (26), the lemma will be true if we are able to show that for sufficiently small y,

Moreover, by Remark 5, ]Ew[|Y,f;i°”’) 2] does not depend on n since

limsup Eo[| X5, — Y577 "] < € (28)
n—400
where C does not depend on y. The process of the proof of (28) is quite similar to Step 1. First,
using assumption (Hz), one checks that:

Xwsny = Yoe i P < Xy — Y57V —ay + Cy) + By as.

For sufficiently small y, ay — Cy? > ya/2. Setting @ = «/2, one derives from an induction
that:

n—1
EollXainy — Yooy 21 = (1= &) Eo[1X§ — Y™ P14+ By Y (1 —éy)* — g.
k=0
This concludes the proof of (i).
(ii) First, we prove uniqueness for the distribution of a stationary solution to SDE (6): let
(Yr,1)>0 and (¥;2);>0 be some stationary solutions to (6) driven respectively by Z I and Z2.
We want to show that for every T > 0, for every bounded Lipschitz! continuous functional F :
C([0,T], R > R,

E[F(Y;1,0 <t <T)]=E[F(Y;2,0=<t<T)]. (29)

Let (X ;‘ ) and (X ;‘ ») be some solutions to (6) starting from x and built with the previous driving

processes Z! and Z2, respectively. First, since b is Lipschitz continuous, a classical argument
shows that weak uniqueness holds for solutions to (6) starting from any deterministic x € R¢.
As a consequence, Xfl and X fz have the same distribution on C(R, R4 ). Thus, using that Y
and Y are stationary, we obtain that for every s > 0:

E[F(Y, D] = E[F(Y.2)] = E[F(Y144,1,0 <t < T)] - E[F(X;, ;.0 <t < T)]

+E[F (X1 0<t<T)] = E[F(Y152,0 <t <T)].

1 For the standard distance § defined for every «, B € C([0, T], Rd) by (o, B) = sup,¢(o, 7] lot — Bt -
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Since F is a bounded Lipschitz continuous functional, it follows that for every s > 0,

2
[E[F(Y.)]—E[F(Y.)ll <CY E[ sup [V, — X} |All
i=1 tels,s+T]

In order to obtain (29), it is now enough to prove that

§—>—+00

sup|Y;; — X7 ;| —— 0 as,i=12 (30)

t>s
Set V,i =Y. — X;ﬁi|2. We have:

AV =2(b(Y1.i) — b(X} ). Yri — X;;)dr.
Thus, it follows from (H3z) with 8 = 0 and from the Gronwall lemma that,

Yei — X717 < (Yo — x)? exp(—2a). 31)
Therefore,

fgp |Yii — X;‘)i|2 < (Yo —x)? exp(—2as) ) as., i=1,2.

>s

This concludes the proof of the uniqueness for the distribution of a stationary solution to (6).
For Eq. (E, ), the proof is a straightforward adaptation of the previous one. Details are left to the
reader. [

Remark 6. Note that from the preceding proof (see e.g. (30)), we can deduce that when
Assumption (Hjz,) holds, we can couple (X7);>0 with a stationary solution (Y;) such that
| X —Y;| = 0ast — 4o0. This property implies in particular the convergence in distribution
of (X;) to the invariant distribution of the SDE.

Proposition 4. Assume (Hy) and (H3). Then, there exists yo > 0 such that a.s. (P (w,
da))y e,y is relatively compact for the topology of uniform convergence on compact sets.
Furthermore, any weak limit of (PO (@, da))y e,y (When y — 0) is the distribution of
a stationary solution to SDE (6).

Proof. Step 1: A.s. tightness of (P (w, da)): for w € §2, we recall that ¥ (>7) is a cadlag
process with distribution P(*?)(w, der). According to Theorem VI.3.26 of [9], we have to show
the two following points:

e For every T > 0, there exists yp > O such that

limsup sup P( sup |Y,(oo’y)| > K)=0. (32)
K—+400ye(0,0] t€[0,T]

e For every positive T, ¢ and n, there exist § > 0 and yp > 0 such that for every y < yp,
P( sup YOV x| 26 <. (33)

=0, USRS

First, we focus on (32). Let K > 0. By Proposition 3, we have:

T
P( sup Y7 > K) <P (177 + / (Y7 |ds + sup |Z)|> K ).
tel0,T] 0 t€l0,T]
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Using the Markov inequality, it follows that

P( sup Y 7| > K)
tel0,7T]

1
<— (EHY&""’”H +CT  sup  ElY" |1+ E[ sup |Zt|]>.
K nef0,...[T/y1) 1€[0,T]
Now, since (Yy)) is a stationary sequence and sup, ¢ 7 |Z;| is integrable (see Proposition 8),
one obtains:
C
PCsup (Y7 > K) < — (1+E0Y™71).
1€[0,T1] K

where C does not depend on y. Finally, the first point follows from Lemma 3.
Let us now prove (33). In fact, using for instance proof of Theorem 8.3 of [2], it is enough to
show that for every positive ¢, n and T, there exist § > 0 and yp > 0 such that for every y < yp:

1
“P( sup Y7~y =e) <y Vy <pand0<r<T. (34)
t<s<t+$8

By the Markov inequality, we have for every p > 1:

2 s 2
(00.7) _ p(00.y) 2 B (o)
P sup |Y, =Yy =] <|-) E |b(Yy ") |ds
1<s<t+8 e .

4

2\? - -
+<—) E| sup |Z)—-2Z!]P (35)
€ s€[t,1+8]
On the one hand,
MV [ /la+8)/v] o) 2
00, 00,
E (/ |b(Ys V)|ds) <E[| > Wb
! |\ k=l1/y]
[ /Lt+8)/v] [(t+8)/v] (o)
00,
<E|l D v|[ X v
L\ k=lt/7] k=[t/y]
thanks to the Cauchy—Schwarz inequality. Now, when y is sufficiently small
[(t+8)/v]
Z y <26.
k=[t/y]

Therefore, using also the fact that b has sublinear growth yields:

143 2
E[(/ |b<Y§°°’”)|ds)}sca2 I+ sp ENYSTP
t

< CE (L +E[Y 7)) (36)

thanks to the stationarity of (Y,f;o’y))nzo.



2792 S. Cohen, F. Panloup / Stochastic Processes and their Applications 121 (2011) 2776-2801

On the other hand, we deduce from the stationarity of the increments of (Z;),;>0 that

E| sup [Z] —Z/|P|<E| sup |Z;—ZI|P| <E[ sup |Z"].
| selr.148] selt,t+8] s€[0,8]

Thus, by Proposition 8 (see Appendix), for sufficiently large p,

E| sup |z} —Z/|P|<cCs'tr (37)
| selt,1+5]

where p is a positive number.
Then, the combination of (35)—(37) yields for sufficiently small y:

t<s<t+§

IP)( sup |YI(OO,)/) _ YS(OOJ’)| > 8) < C82A(1+,0)

and (33) follows from Lemma 3.

Step 2: We want to show that, a.s., any weak limit P(w, dar) of (P> (w, da)), when y — 0
(for the uniform convergence topology) is the distribution of a stationary process. Let f : R" —

R be a bounded continuous function and let #+ > Oand #1,...,¢ suchthat0 < ¢ < --- < t;.
Denoting by (¥;):>0, a process with distribution P (w, do), we have to show that:
Elf (Y460 Y1)l = ELf Yy, ..o Y )] (38)

First, since P(w, do) is a weak limit of (P¥)(w, da)),, there exist some sequences (¥)n>0

and (Y 7)), such that L(Y (7)) = PO14) (0, dar) and (Yl(oo’y")) converges weakly to
(Y;) for the weak topology induced by the uniform convergence topology on compact sets on
DR, RY). In particular,

n s/n +
ELf (Y, v 2 R F(Y,, .., V)] and, (39)
ELF O Y 2 B (s Vi) (40)
since £, = yult/yn] — t when n — +00. Now, by Proposition 3,
f(Y(OO Vi) . Ytiooy)/n))] E[f(Y[(]o-{(-)[yn , thftyn))] Vn > 1.

(38) follows.
Step 3: Let @ : D(Ry, RY) — D(R, RY) be defined by

t
($(0)); = — g — fo b(ay)ds.

With the notations of Step 2, we want to show that ¥ := (¥;);>0 is a solution to (6), i.e. $(Y) is
equal in law to Z := (Z;);>0. Let (y,) and (Y(W*V"))nzo be defined as in Step 2. Then, since ¢
is continuous for the uniform convergence topology on compact sets,

Py @) "ZE° ¢ (y), 41)

for the weak topology induced by the uniform convergence topology on compact sets. Therefore,
we have to prove that

n——+00

fP(Y(OO Vn)) Z, (42)



S. Cohen, F. Panloup / Stochastic Processes and their Applications 121 (2011) 2776-2801 2793

for this topology. With the notations of Proposition 3,

t
@(Y(OO»Vn)) — N(OO»Vn) + R where Rtyn — _/ b(YS(OO»Vn))dS' (43)
t
=¥n

First, since b is sublinear and r — 1, < vy, we have for every 7' > 0:

IRI"| < Cyn(14+ sup |Y")) Vie[0,T].
1€[0.7)
Now, in Step 1, we showed that (sup,¢[o, 7 IY,(OO’V)|)),€(0,,,O) is tight on R. It follows easily that
sup |Rty"| n——+00
te[0,T]

Therefore, one derives from (41) and (43),

0 in probability VT > 0.

N (00 ym) RO ().
Then, it follows from Proposition 3 that N (°>"#) is a convergent sequence of Gaussian processes

such that N(©°:n) £ Zn_ This implies the finite-dimensional convergence to (Z;),;>¢ and con-
cludes the proof. [J

6. Properties of the stationary solution

In this section, we give some properties of the stationary solution. In Section 6.1, we prove that
the random initial value of a stationary solution can only be independent of a Gaussian noise with
independent increments. In Section 6.2, we prove that however, an independence property holds
between the past of the stationary solution and the future of the so-called innovation process.

6.1. Dependence between Xy and Z

Proposition 5. Let Xo and (Z;);>0 denote the random initial value and the driving process of a
stationary solution to (6). Then, if Xo is independent of (Z;):>0, then (Z;);>0 has independent
increments. As a consequence, Z = QW where W is a standard d-dimensional Brownian motion
and Q is a deterministic matrix.

Proof. Let X = (X;);>0 be a stationary solution to (6) and assume that X is independent of
Z = (Z;)1>0. First, note that for every t > 0, Z,,. — Z, = ¥ (X,4.), where ¥ : C(Ry, RY) —
C(R., RY) is defined for every a € C(R,, R?) by

r
Y(a) = —ap —/ b(ag)ds Vi >0,
0

is continuous. Then, since (X;) is stationary, it follows that for every bounded continuous
functional F' (for the topology of uniform convergence on compact sets), for every s > 0, for
every ¢t > 0, and every bounded continuous function f : RY - R,

E[(f(Xo) — E[f(X0)D F(Zs4u — Zs, u = 0)] = E[(f(X;) — E[f (X)) F (W (Xt45+))]
=E[(f(X) —ELf (X)) F(Zi+s+u — Zi+s,u = 0)].
Since X is independent of Z,

E[(f(Xo) — E[f(X0)D) F(Zs4u — Zs,u = 0)] = 0.
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This implies that
Elf(XOF(Ztgs4u — Zt,u =2 0)] = E[f (XDIE[F(Zt1s4+u — Zigs, u = 0)].

One deduces that for every s, ¢ > 0, such that 0 < s < ¢, X, is independent of (Z;4+, — Z)u>0-
As a consequence, for every positive u, ¢, for every i, j € {1, ..., d},

E(Z!(Z],, — Z))]

= (E[X;<Z{+u - zZH1- fo E[b' (X)(Z],, — Z)dv — E[X{(Z],, — Z] )]) :

= (E[X;]E[Z; = Z - / E[b' (X)IE[Z],, — Z]1dv — E[X{]E[Z],, — Z] ]) ,
0
=0.
Since Z is a centered Gaussian process, it clearly implies that Z has independent increments.  [J

6.2. Independency of the past of the stationary solution with respect to the future of the
innovation

In order to ensure a physical sense to the stationary solutions built with our discrete approach,
it may be important to check that for every ¢t > 0,0(X;,0 < s < t) does not depend on
the innovation generated by the future of the Gaussian process Z after ¢ (see below for a
precise definition). In the simple case where Z is a Brownian motion (whose increments are
independent), it is natural to define the innovation after ¢ as the o-field generated by the
increments of the Brownian motion after ¢. Then, a stationary solution of an SDE driven by
Z is meaningless if o (X5, 0 < s < ¢) is not independent of the increments of Z after 7. This is
the case for (X;);>¢ defined by

“+0o0
Xl = _/ et_SdZS
t

which is a stationary solution (in the sense of Definition 1) to dX; = X,ds+dZ, but whose initial
value Xy = — f0+°° e *dZ depends on all the future of Z (Note that (X;);>0 does not satisfy
Assumption (Hj3)). Thus, the aim of this section is to show that our construction of stationary
solutions as weak limits of ergodic Euler schemes does not generate such a type of stationary
solutions.

This section is divided in two parts. We focus successively on the discrete case, i.e. on the
stationary solutions to (E, ) and on the continuous case, i.e. to the stationary solutions to (6).
Oppositely to the rest of the paper, we will need in the two following parts to introduce series
or integral representations in order to define the innovation of (4,,) and Z, respectively. We will
also assume thatd = 1.

The discrete case. Assume that (A,),>1 is a purely non-deterministic sequence. Then, by
Theorem 3.2 of [8], there exists a sequence of real numbers denoted by (ak, ) )k>0 such that
(An)n>1 admits the following representation:

+00
A, = Zak’y%.n_k a.s., Vn > 1, (44)
k=0

where (§x)rc7, 1s a sequence of i.i.d. centered real-valued Gaussian variables such that Var(§;) =
1. The sequence (§x)rcz is then called the underlying innovation process associated with
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(An)n>1. Under the assymptions of Theorem 1, we know that for y small enough, there exists a
stationary distribution P° on RN to the recursive equation

Xty — Xny = ¥b(Xny) + Apy1 Vn > 0. (45)

By Lemma 4 in the Appendix, this stationary distribution P°? can be realized as k1 (i1),
where 1] denotes the probability measure on R x RZ defined by (56) such that its projection on
the second coordinate is £((£,),cz), and where «; is defined in (54). From now on, we denote
this stationary solution by (X ;C;O’V)),,Zo. In the next proposition, we show that for y small enough,

the past of (X ,(g,o’y))nzo is independent of the future of this innovation process.

Proposition 6. Assume (Hy) and (H3 ¢). Let yo > O such that the conclusions of Theorem 1 hold
fory < yy and denote by P> the unique stationary distribution on RY to (45). Let (X ,C,X;,’y),,zo
denote the realization of P> on R x RZ defined previously. Then, for y small enough, for
everyn > 0, a()_((()oo’y), e, )_(,(,?,O’V)) is independent of o (&, k > n + 1).

Remark 7. For the sake of simplicity, we stated Proposition 6 under (H3z o) which ensures
uniqueness of the distribution of the stationary solution. However, adapting the arguments of the
proof to subsequences, it could be possible to show that, under (Hy) and (H3) only, there exists
Yo > 0 such that for every y < yp, a.s., every weak limit of P (w, da) (as n — +00) is the
distribution of a stationary solution to (E, ) that satisfies the preceding independence property.
Note that the same type of remark holds for Proposition 7.

Proof. It is enough to prove that for every integers Ny and N, such that N» > Nj, for every
bounded continuous functions H; and H>,

ELH (X", XS Ha vy E)]
= E[H (X(‘,m’y) L XSNIOELH Eny s E)]. (46)

In order to make use of our previous convergence results, we first write ()_(,EC;O’V), Ek>1 as a

function of a stationary sequence (X (c0.) S (oo y)) k>0: we denote by (I:ZV) the recursive equation
on R? defined for every n > 0 by
{)__((n+l)y - _)_(ny = )/b_()_(ny) +oAup
S(n—i—l)y - Sny = _VSny +&nt1-
Ss y)a solution to (Ey) starting from a deterministic point (x, s),
Ykt ;k+.) the yk-shifted
process. Now, one observes that assumptions (Hjy) and (H3 ) are satisfied on R2 for (X, Sp)
with b(x,s) = (b(x), —s) and A, = (A,, &,). Hence, by Theorem 1.1 and the uniqueness

induced by Assumption (H3 o), there exists yp > 0 such that for every y < yp, a.s., for every
bounded continuous functional F : D(R, Rd) — R,

We will also denote by (Xny,
by ((x*, SS ))r>o0 the induced stepwise constant process and by (XS

1 1 = = —+
;ZF<X;C’(k—l)+.’S)S’(k—1)+') = PV(F) (47)
k=1

where 75(‘?*7’) is the unique distribution of a (discretely) stationary solution that we denote by
(X©7) §(°0.¥)) Thus, on the one hand, since (6k)ke(N1+1,.... Ny} 1s clearly a continuous function
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G of (S;io’y))okaNz, we deduce that a.s.,

E[H <X5°°'” XN Ha Ny - E)]

= Jim ZHl(Xy(k D Xy ueren)) 2GS gy - Syemtwy)

n—>+oo n

lim Z Hi(XS g1y oo X gy V2 Gy - e 14wy).- (48)

n——+oon

On the other hand, by (47) and the fact that (§;)>1 is a stationary sequence, we also have

E(H (X§, . XN B Hy (641 - 6]

= lim Z H; (Xy(k INERRER) }_(;(k_l_;,_Nl))E[HZ(ék—t-Nl e Eem1en)] as. (49)

n—+oon
Setting
¢k, Niyx) = Hi(X3 o oo, XS gpy,) and Ak, No) = Hy Gk Ny 415 - -5 Sk M)
we deduce from (48) and (49) that (46) is true if

n——+00

1 n
—Z;(k— 1, Ni,x) (A(k — 1, No) — E[A(k — 1, N»)]) 0 as. (50)
n

k=1
We use a martingale argument. Set Hy; = o (&, k € Z,k < £). Since A(k, N2) is a Hyyn,-
measurable random variable independent of Hy y, and that ¢(k, Ny, x) is Hy4n, -measurable,
we can write:

n Nr—1
(k - 1? N] ) x)
S EEZ LTS -1, Ny — BAG -1, N = Y M
k=1 k Pyt
1
where for every £ € {Ny + 1, ..., N2}, (M%), is a centered (Hy,—1+¢)n>1-adapted martingale
defined by:

B SR

X (E[Ak — 1, No)/Hi+¢] — E[A(k — 1, N2) /Hiqe—1]) -

Forevery £ € {N1+1, ..., N2}, (M,‘f),,zl is clearly bounded in L? since H; and H, are bounded.
Thus, setting a; = 1/k and

br(w) = ¢k — 1, N1, x) (E[A(k — 1, N2)/Hivel — E[AGk — 1, N2) /Hire-11)

we deduce that the series Y agby(w) is a.s. convergent and (50) follows from the Kronecker
lemma. [

The continuous case. We assume in this part that, Z admits the following representation:

t
z,:/ fi(s)dW, as.Vt>0 (51)

where (W;);cr is a two-sided standard Brownian motion such that Wy = 0 and for every
teR, f; e L*(R,R).
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Following Lemma 4 in the Appendix, the distribution of a stationary solution (X;);>o to (6)
can be realized as x3(u2), where uy denotes the probability measure on R x C(R, R) defined
in Lemma 4 such that its projection on the second coordinate is L£((W;),cRr), and where «» is
defined in (55). In the next proposition, we show that the past of the stationary solution (X;);>0
is independent of the future of the underlying innovation process of Z.

Proposition 7. Assume (Hy) and (H3 ). Assume that the representation (51) holds for Z. Let
P denote the unique distribution on C(Ry, R) of a stationary solution. Let (X;):>0 denote the
realization on R x C(R, R) of P defined in Lemma 4. Then, for everyt > 0,0 (X;,0 <s <t)
is independent of o (Wsy; — Wy, s > 0).

Proof. Let + > 0. It is enough to show that for every T > 0, for every bounded Lipschitz
continuous functionals H; : C([0, ¢], ]Rd) — Rand H, : C([0, T], Rd) — R
EH (X5, 0=s =) Hy(Wyys —W;,0 <5 = T)]
=E[Hi(Xs,0 =5 < DHIE[Hy(Wiys — W, 0 <5 < T)]. (52)

As in the proof of Proposition 6, we introduce (X, S;) that is a stationary solution to

dS[ - _S[dt + dW[

where W denotes the underlying innovation process of the representation (51). Following the
second part of the Appendix (see Lemma 4), we can assume that (X;, S;) is built on RZxC(R, R).
Assumptlons (Hy) and (H3 ) are satisfied on R? for (X;, S;) with b(x s) = (b(x), —s) and
Z, = (Z;, Wy). Let yp and y; € (0, yp) such that Theorem 1 holds for every y < y;. Denote
by PO the (unique) stationary distribution of (E »). Denote by (X ?o’y, S'too 7 (>0 the stationary
solution built on R? x C(R, R). Using that

Wigs = Wi, 0 <5 < T) = (¢(Ss+1))se[0.7]

where qg(a) is defined by

S

P(a)s = ay — ap +/ o, du,

0

we deduce from Proposition 4 and from the continuity of ¢ for the uniform topology (on compact
sets) that

E[H (Xs,0 =s <) Hy(Wy15 — W;, 0 <5 < T)]

= yhino E[H (X770 <5 < 6)Ha(d(Ss) )sero, )]

Now, setting &, = Wy, — W(,,—1),, we derive from the definition of the discretized equation that
(3]
@ST s = Z & + Ro(y.1.5)
k_[)’/]—s—l
where

IRy 1.9 =t +5 =145 )55 — @ —1,)5 <2y sup |57
uel0,t+T]
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Since (S“’V)ye(o,y]] is tight for the uniform topology on compact sets, it follows that

—0
sup |Ru(y.t,s)| 2= 0 in probability.
5€[0,T]
Thus, using that H> is Lipschitz continuous, we deduce that
E[H (X5,0 <s < t) Hy(Wyqs — W, 0 <5 < T)]
_ 5
= lim E | Hy (X7, 0<s <1)Hp &
y—)
k=|L [+1
[V}Jr 5€[0,T]
As well,

E[H\(X;,0 <5 < 0] = lim E[H, (X577, 0<s <1)]
y~>

and,
]
E[H(Wiss = Wi 05 <)) = imE | Hy Y&
k=[§]+1
s€[0,T]

By the previous convergences, it is now enough to show that for sufficiently small y,

4]

E|HiXT,0<s <l || Y &
k=[$]+l s€[0,T]
]
=E[H(X7, 0 <s <nIE | H Y &

k:[é]_H s€[0,T]

The sequel of the proof follows the lines of that of Proposition 6. We leave it to the reader. [
Appendix

In the Appendix, we give the proof of two technical results.

Proposition 8. Assume that (Z;);>¢ satisfies (Hy). Then, for every T > 0, for every r > 0,
E[supte[O,T] |Z;|"] < 400. Moreover, there exist p > 1 and Ty > 0 such that for every T < Ty,

E[ sup |Z|P1 < CT™ withp > 0.
t€[0,T]

Proof. First, note that it is enough to prove the result for every coordinate Z/ with j € {1, ..., £}.
Therefore, it is in fact enough to prove that the results are true for any one-dimensional
centered Gaussian process with stationary increments and variance function (c(¢));>¢ satisfying
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(Hj). Then, forevery t > Oand ¢ > 0, c(¢) = ]E[Z,z] and denote by D(T, ¢) the Dudley integral
defined by

D(T, &) = fg(log(N(T, W) 2du,
0

where, for u > 0,
N(T,u) =inf{n > 1,3s1,...,s, suchthatVvr € [0,T],3i € {1,...,n}
with y/c(t — 5;) < u}.

By the Dudley Theorem (see e.g. Theorem 1 of [14, p 179]), for every T > O,

E[ sup |Z|] <2E[ sup Z] < CD(T,/(T)) withé(T) = sup c(t). (53)
t€[0,7T] te(0,7T] t€[0,7T]

Let us control the right-hand member. By assumption (Hy) and (4), for every § € (0, 1),
¢(8) < C8* where C does not depend on & and
w € (0, 1] (depending on the value of ay). It follows that, for u > 0,
N(T,u) < CTu?",

where C does not depend on T. For ¢ > 0 small enough,

e ) 1/2
D(T, ¢) 5/ log(CT) + =log(u)| du < Ce|log(e)|'/?.
0 0
It follows from (53) that there exists Tp > O such that for T < Ty
E[ sup |Z|] < C@(T))'"?log(c(T))["/?
t€[0,7T]

IA

CTH?|1og(T)|"2.
Then by Corollary 3.2 in [12] E[supte[oj] |Z¢]"] < 400 forevery T > 0 and every r > 0 and
E[ sup |Z:|"] < CT#/?|log(T)|"",
t€[0,T]

for T < Tp. One can choose p big enough to prove the second inequality in the Proposition. [J

In this last part of the Appendix, we specify the constructions of the stationary solutions when
(An)n>1 and (Z;);>0 admit the representations (44) and (51), respectively. Let us first denote
by Pt the distribution of the innovation sequence & = (§,),ez and by Pw the Wiener measure
where W = (W;),cRr is a two-sided standard Brownian motion.

Letx; : R x RZ - RN and ks : R x C(R,R) — C(R,,R) be respectively defined by:
(k1 (x, (Enlnez))o = x, (k2 (x, (Wp)rer))o = x,

+00
(k1 (x, Gnnez)nt1 = (k1(x, E))n + yb((k1(x, §))n) + Zak,yén_k

k=0
for every n > 0, (54)
and,

t

t
(k2 (x, W)y = x +/ b2 (x, W))sds +/ Ji(s)dW;. (55)
0 —00
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Note that «; is well-defined w2-a.s. for all measure o such that P,y = Pw (where P, denotes
the projection of the probability on the second coordinate) since b is a Lipschitz continuous
function. We are now ready to state that there exist 1 and w, such that the stationary solutions
to the discretized and continuous equations (when they exist) can be realized on (R x IR{Z, “w1)
and (R x C(R, R), uy), respectively.

Lemma 4. (i) Assume that (A,),>1 admits the representation (44). Let ‘P be a probability on
RN that denotes the distribution of a stationary solution to the discrete recursive equation

)?(n-H)y — ‘)_(")’ = Vb()_(ny) + An—H Vn > 0.

Then, there exists a probability u; on R x RZ with Poju; = Pg such that k(1) = P.

(ii) Assume that (Z;);>0 admits the representation (51). Let P be a probability on C(R4, R)
that denotes the distribution of a stationary solution to (6). Then, there exists a probability
w2 on R x C(R, R) with Py = Pw such that ko(j42) is a stationary solution to (6) with
distribution P.

Proof. (i) First, let ¢; : RN — R x RY be defined by
d1 ((xn)nz()) = (xo, (an)nzl) with 8, = x, — x,—1 — Vb(xn—l)'

By construction v; = ¢ (P) defines a probability on R x RN with Povi = L((A,)n>1) and
such that if (X, (An)n>1) has distribution vy, then the induced Euler scheme has distribution
P. Let 1 (., dx) denotes the conditional distribution of X given (A,),>1. Let R : RZ — RN
denote the function defined by R((€x)nez) = (75 ak,yEn—k)n>1. Then, define pj on R x RZ
by

pi(dx, d§) = w1 (R(§, dx)) @ Pg(d§). (56)

Setting 7~€(x, &) = (x, R(&)), it follows from the very definition of 1] that 7~€(u1) =v;.Asa
consequence, k1(u1) = P. This completes the proof.
(ii) The proof of the second point is similar and is left to the reader. [
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