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Abstract

We study a backward stochastic differential equation (BSDE) whose terminal condition is an integrable
function of a local martingale and generator has bounded growth in z. When the local martingale is a
strict local martingale, the BSDE admits at least two different solutions. Other than a solution whose
first component is of class D, there exists another solution whose first component is not of class D and
strictly dominates the class D solution. Both solutions are Lp integrable for any 0 < p < 1. These
two different BSDE solutions generate different viscosity solutions to the associated quasi-linear partial
differential equation. On the contrary, when a Lyapunov function exists, the local martingale is a martingale
and the quasi-linear equation admits a unique viscosity solution of at most linear growth.
c⃝ 2012 Elsevier B.V. All rights reserved.
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0. Introduction

Let B = {Bt : t ≥ 0} be a standard d-dimensional Brownian motion defined on some
complete probability space (Ω , (Ft )t∈R+

, P). Here {Ft }t≥0 is the augmented natural filtration of
B which satisfies the natural conditions. Fix a real number T > 0. Consider a continuous adapted
process {X t : t ∈ [0, T ]} on (Ω , (Ft )t∈R+

, P) with value in Rd
+ such that each component of

X is a nonnegative local martingale. Here X may not necessarily be Markovian. We call X a
martingale, if all its components are martingales, otherwise X is a strict local martingale.
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Given a terminal function g : Rd
+ → R and a generator f : [0, T ] × Rd

+ × R × Rd
→ R, we

consider the following backward stochastic differential equation:

Yt = g(XT )+

 T

t
f (s, Xs, Ys, Zs) ds −

 T

t
Zs d Bs, 0 ≤ t ≤ T . (BSDE)

We look for progressively measurable processes (Y, Z) = {(Yt , Z t ) : t ∈ [0, T ]} such that they
satisfy the previous equation P-a.s. and every term in the equation is well defined. Such equation,
in the nonlinear case, is a special type of backward stochastic differential equations (BSDE)
introduced in [23]. Since then, BSDEs have been studied with great interest.

Let us briefly review existence and uniqueness results for BSDE solutions with different
integrability properties. When g(XT ) and { f (t, X t , 0, 0) : t ∈ [0, T ]}, which are called
parameters, are square integrable, Pardoux and Peng proved in [23] the existence and uniqueness
for the square integrable (L2-) solution of BSDEs with Lipschitz continuous generators. When
parameters are Lp with p ∈ (1, 2), the existence of Lp-solutions was established by El
Karoui et al. in [16], and later extended by Briand et al. in [8], where a uniqueness result
was also obtained. For only L1-integrable parameters, Peng studied a BSDE in [25] whose
generator is a sum of two functions in y and z respectively. This was extended to BSDEs whose
generator has strictly sublinear growth in z by Briand et al. in [8]. In this paper, existence and
uniqueness of solutions have been established in class D, i.e., the class of processes Y such that
{Yτ : τ is F -stopping time with value in [0, T ]} is uniformly integrable. However, all the above
results do not cover the following example, which motivates this study.

Consider the following stochastic differential equation (SDE):

d X t = −X2
t dWt , X0 = x > 0, (0.1)

where W is a standard 1-dimensional Brownian motion. This SDE admits a unique nonnegative
strong solution {X t : t ≥ 0}, which is the so called reciprocal 3-dimensional Bessel process. It is
well known that X is a strict local martingale and E[X2

T ] < ∞ (see (2.13) in [29, pp. 194]). Let
us consider the following BSDE with zero generator:

Yt = XT −

 T

t
Zs dWs, 0 ≤ t ≤ T . (0.2)

It follows from the martingale representation theorem that Y · = E[XT | F·] and its associated
integrand Z solve the previous BSDE. Moreover the Burkholder–Davis–Gundy inequality (see

e.g. Theorem 42.1 in [30, Chap. IV]) implies that both E[sup0≤t≤T Y
2
t ] and E[

 T
0 Z

2
s ds] are

finite. Therefore (Y , Z) is an L2-solution.
However, there is another obvious solution to (0.2). That is (Y, Z) = (X,−X2). To the

best of our knowledge, this solution has not been studied before. This solution solves (0.2),
but it does not satisfy integrability properties reviewed earlier. To begin with, E[

 T
0 Z2

s ds] =

E[
 T

0 (X
2
s )

2 ds] = ∞. If X2 was square-integrable,


·

0 X2
s dWs would be a martingale. This

implies X0 = E[XT ] which contradicts with the strict local martingale property of X .
Additionally, Y = X is clearly not of class D, otherwise X would be a martingale again.
Moreover E[sup0≤t≤T Yt ] = E[sup0≤t≤T X t ] = ∞, which implies E[(

 T
0 Z2

s ds)1/2] =

E[(
 T

0 (X
2
s )

2 ds)1/2] = ∞ from the Burkholder–Davis–Gundy inequality.
Nevertheless Lemma 2.3 shows that E[sup0≤t≤T Y p

t ] < ∞ for any p ∈ (0, 1). Hence

E[(
 T

0 Z2
s ds)p/2

] < ∞ follows from the Burkholder–Davis–Gundy inequality. Therefore (Y, Z)
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is one Lp (p ∈ (0, 1)) solution to (0.2). On the other hand, Jensen’s inequality entails that (Y , Z)
is also an Lp solution. Therefore there are at least two solutions to (0.2) inside the same class of
processes.

The previous example is closely related to the notion of g-martingales introduced in [25].
The BSDE solutions can be considered as nonlinear martingales because a solution to BSDE
with zero generator is given by conditional expectation of the terminal condition. In classical
theory, martingales are local martingales. Therefore to have a nonlinear theory which contains
the classical theory, it is necessary to extend the notion of local martingales into the framework
of BSDEs. In this paper, we regard solutions to (BSDE) as g-local martingales. When X is
a classical strict local martingale, other than the class D solution obtained in [8], there exists
another solution which is not of class D. We regard it as a g-strict local martingale. Example in
(0.2) is a special example of (BSDE).

Another motivation of this paper is to study the connection between (BSDE) and its associated
quasi-linear partial differential equation (PDE). When X is a diffusion whose dynamics is
d X t = σ(X t ) d Bt , the quasi-linear PDE associated to (BSDE) reads

−∂t u −
1
2

T r

σσ ′

∇
2u


− f (t, x, u,∇u σ) = 0, (t, x) ∈ [0, T )× (0,∞)d ,

u(T, x) = g(x), x ∈ (0,∞)d .

(PDE)

Since the dawn of the BSDE theory, close connections between BSDEs and quasi-linear PDEs
have been established (see e.g. [24,4]). These results may be seen as generalizations of the
celebrated Feynman–Kac formula. Since (BSDE) may have multiple solutions, it is natural to
expect multiple solutions to (PDE). Actually, when f vanishes, g has linear growth, and X is
a strict local martingale, multiple solutions to (PDE) (now a linear equation) has been observed
in [19]. See [15,7,6] for recent developments. In these studies, X being a martingale has been
shown to be the necessary and sufficient condition for the uniqueness of classical solutions, in the
class of at most linear growth functions, to valuation equations associated with local/stochastic
volatility models. However existing results treat PDEs with 1 or 2 spatial dimension and employ
the notion of classical solutions. When the equation is nonlinear, classical solutions are in general
not expected. Still one can work with viscosity solutions instead. However when X is a strict local
martingale, its volatility coefficient σ fails to be Lipschitz on the entire state space. Therefore
classical techniques in viscosity solutions need to be extended to treat local Lipschitz coefficients.
See [1,10] for recent developments in this direction.

Our work: Assume that g is nonnegative and has at most linear growth, f satisfies a
monotonicity condition in y and has bounded growth z. When X is a strict local martingale,
(BSDE) admits at least two solutions. The first component of one solution is of class D.
Theorem 1.4 shows that there exists another solution whose first component is not of class D and
is strictly larger than the class D solution. These two BSDE solutions induce different viscosity
solutions to (PDE). See Theorem 1.14. On the other hand, when a Lyapunov function exists, X is
a martingale, moreover Theorem 1.16 shows that (PDE) admits a unique viscosity solution in the
class of functions with at most linear growth. Contrast to the existing results on the uniqueness
of viscosity solutions for PDEs with global Lipschitz coefficients, the volatility coefficient of X
is assumed to be only locally Lipschitz continuous.

Multiple solutions of BSDEs have been observed by Bao et al. in [2]. Contrast to their source
of multiplicity, which is the multiple choices of boundary conditions for the associated PDE,
our multiple solutions are induced by the linear growth terminal condition and the strict local
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martingale property of X . When X does not explode to the boundary of its state space, no
boundary condition is needed for (PDE), multiple solutions still exist (see Theorem 1.14).

Even though the generator f is assumed to have bounded growth in z, (BSDE) is related to
some special quadratic BSDEs, whose generator has quadratic growth in z, via the exponential
transform. As a result, explicit multiple solutions to these quadratic BSDEs are constructed in
Example 1.10. We refer readers to [21,9,5] for existence results of solutions to quadratic BSDEs
and [13] for uniqueness results.

The rest of the paper is organized as follows. After notation and definitions are introduced,
we present our main results in Section 1. Several examples are given in this section to illustrate
our results. Multiple BSDE solutions are constructed in Section 2. Existence and uniqueness of
viscosity solutions are proved in Section 3.

1. Main results

1.1. Notation and definitions

Throughout this paper, we fix the probability measure P. Every relationship between random
variables is understood in P-almost sure sense.

For any p > 0,S p denotes the class of real valued, adapted and càdlàg process
{Yt ; t ∈ [0, T ]} such that

∥Y∥S p := E[ sup
t∈[0,T ]

|Yt |
p
]
1∧1/p < +∞.

If p ≥ 1, ∥ · ∥S p is a norm on S p and if p ∈ (0, 1), (Y, Y ′) → ∥Y − Y ′
∥S p denotes a distance

on S p. Under this metric, S p is complete. We denote S ∞ the set of adapted bounded processes.
Denote by T[0,T ] the set of all F -stopping time τ such that 0 ≤ τ ≤ T . We call Y belongs to
the class D if the family


Yτ ; τ ∈ T[0,T ]


is uniformly integrable. Let M p denote the equivalent

class of predictable processes {Z t ; t ∈ [0, T ]} with values in Rd such that

∥Z∥M p := E

 T

0
|Zs |

2 ds

p/21∧1/p

< +∞.

For p ≥ 1,M p is a Banach space with this norm, and for p ∈ (0, 1),M p is a complete metric
space with the resulting distance.

The Euclidean norm is denoted as | · | regardless of dimension. Denote Br := {x ∈ Rd
+ : |x | <

r},B+
r := {x ∈ (0,∞)d : |x | < r}, and S+

r := {x ∈ (0,∞)d : |x | = r} for some r > 0. For
x ∈ Rd , x i is its i-component and x :=

d
i=1 x i . For the process X , we denote

X =

d
i=1

X i .

Let us recall what we mean by a solution to (BSDE).

Definition 1.1. A solution to (BSDE) is a pair (Y, Z) = {(Yt , Z t ) : t ∈ [0, T ]} of progressively
measurable processes with values in R×Rd such that P-a.s. t → Yt is continuous,

 T
0 |Z t |

2dt <

∞,
 T

0 | f (t, X t , Yt , Z t )| dt < ∞, and (BSDE) is satisfied.
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1.2. Existence of BSDE solutions

As in the Introduction, each component of X is a nonnegative local martingale. Hence both
X i , 1 ≤ i ≤ d, and X are supermartingales. The terminal function g is continuous, nonnegative,
and

K := sup


g(x)

1 + x
: x ∈ Rd

+


< ∞. (H1)

Hence 0 ≤ g(x) ≤ K (1 + x) for any x ∈ Rd
+. Combined with the supermartingale property of

X , (H1) implies g(XT ) ∈ L1. Since we focus on only integrable terminal conditions, we do not a
priori assume g(XT ) ∈ Lp for some p > 1. If the parameters are Lp-integrable for some p > 1,
existence and uniqueness of solutions in (S p,M p) have been established in [8].

For the generator, we assume that f is jointly continuous in all its variables. Moreover, there
exists a function H : [0, T ] × R+ → R+ such that

H is locally bounded on [0, T ] × R+, (H2.i)

r → H(t, r) is nondecreasing and concave. (H2.ii)

There exist constants ν and µ such that, for each (t, x, y, y′, z, z′) ∈ [0, T ] × Rd
+ × R × R ×

Rd
× Rd ,

| f (t, x, y, z)− f (t, x, y, z′)| ≤ ν|z − z′
|, (H3.i)

(y − y′)( f (t, x, y, z)− f (t, x, y′, z)) ≤ µ(y − y′)2, (H3.ii)

f (t, x, y, z) ≥ 0, (H3.iii)

f (t, x, 0, z) ≤ H(t, x). (H3.iv)

Remark 1.2. When g and f only depend on some components of X , sums on X i should be taken
only on these components. All results in this paper still hold. For simplicity of presentation, we
assume that both g and f depend nontrivially on all components of X .

Remark 1.3. Since both g and f are nonnegative, one can expect that we are interested to find
solutions with nonnegative first component. Assumptions (H3.ii) and (H3.iv) combined yield that
f (t, x, y, z) ≤ µy + H(t, x) for (t, x, y, z) ∈ [0, T ] × Rd

+ × R+ × Rd . Hence f has bounded
growth in z. This assumption, together with the assumptions on H , will facilitate the construction
of (BSDE) solutions and imply that their first component is inside the following class.

Let us define a class of continuous adapted processes:

C :=


Y : 0 ≤ Yt ≤ C


K

1 + X t


+ E

 T

t
H(s, X s) ds

 Ft


for any t ∈ [0, T ]


,

where C = e(µ∨0)T . For a solution (Y, Z) to (BSDE) such that Y ∈ C, Proposition 2.4 shows
that (Y, Z) ∈ (S p,M p) for any p ∈ (0, 1). We are now ready to present the first main result.

Theorem 1.4. Let (H1)–(H3) hold.

(i) There exists a solution (Y , Z) to (BSDE) such that Y ∈ C and Y is of class D.
(ii) For any other solution (Y ,Z) to (BSDE) such that Y ∈ C,Yt ≥ Y t for any t ∈ [0, T ].
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Define g(x) := K (1 + x)− g(x). Assume that g satisfies the following assumptions:

g(X ·) is a supermartingale on [0, T ], (H4.i)

there exists a nondecreasing univariate continuous function G : R+ → R+

such that g(x) ≤ G(x) and lim
r→∞

G(r)/r = 0. (H4.ii)

(iii) Then when X is a strict local martingale on [0, T ], there exists another solution (Y, Z) such
that Y ∈ C and Y· ≥ K


X · − E[X T | F·]


+ E[g(XT ) | F·], but Y is not of class D,

moreover Y0 > Y 0.

Remark 1.5. The existence of different solutions to the same BSDE implies that the comparison
result for BSDE solutions fails in class C. To restore the comparison in C, one can assume

K

1 + X ·


+ E

 T

·

H(s, X s) ds

 F·


∈


p>1

S p.

Indeed, this condition yields Y ∈


p>1 S p for any Y ∈ C. Then the comparison result for
solutions in class C follows from Proposition 5 in [9]. It should be pointed out that this condition
already excludes strict local martingales X .

Remark 1.6. The solution whose first component is of class D is unique, if the following
additional assumption on f is satisfied: there exist two constants γ ≥ 0 and β ∈ (0, 1) such
that

| f (t, x, y, z)− f (t, x, y, 0)| ≤ γ (µy + H(t, x))β ,

for all (t, x, y, z) ∈ [0, T ] × Rd
+ × R+ × Rd .

This follows from Theorem 6.2 in [8]. Note that the above assumption is trivially satisfied if f
does not depend on z.

It has been observed in [15] that linear (PDE) admits an uncountable family of different
solutions when X is a strict local martingale. This translates to an uncountable family of different
solutions to the associated BSDE which has zero generator. This phenomenon can be extended
to BSDEs with nonzero generators as follows.

Corollary 1.7. Let (H1)–(H4) hold. Assume that f is Lipschitz in y and does not depend on
z. Then (BSDE) admits a family of solutions (Y α, Zα)α∈[0,1] with (Y 0, Z0) = (Y , Z) and
(Y 1, Z1) = (Y, Z), moreover {Y α}α∈[0,1] is nondecreasing sequence in C such that {Y α0 }α∈[0,1]

is strictly increasing.

Let us now illustrate Theorem 1.4 in the following three examples. The first example gives a
class of terminal conditions which satisfy (H4). This class contains call option payoffs in financial
applications. In the second example, solutions Y and Y are constructed explicitly when the
generator vanishes. The third example presents multiple solutions to a quadratic BSDE. BSDEs
in last two examples actually admit uncountable families of different solutions because their
generators satisfy assumptions in the previous corollary.

Example 1.8 (Assumption (H4)). Assumptions (H4.i) and (H4.ii) hold when g(x) = G(x) for a
convex univariate function G : R+ → R+ such that limr→∞ G(r)/r = K .
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Indeed, r → g(r) := K (1 + r) − G(r) is a nonnegative nondecreasing concave function,

moreover limr→∞ g(r)/r = 0. Let τn := inf


t ≥ 0 : X t ∉ Bn


∧ T for n ≥ 0. This sequence

of stopping times localizes each component of X and also X . Moreover limn→∞ τn = T . It then
follows from Fatou’s lemma and the concavity of g that

E

g(X t ) | Fu


= E


lim

n→∞
g(X t∧τn

) | Fu


≤ lim inf

n→∞
E

g(X t∧τn

) | Fu


≤ lim inf
n→∞

g

E[X t∧τn

| Fu]


= lim inf
n→∞

g(Xu∧τn
) = g(Xu), for 0 ≤ u ≤ t ≤ T .

Hence (H4) is satisfied in this case.

Example 1.9 (Zero Generator). Let (H1) and (H4) hold. When the generator f vanishes,

Y · = E [g(XT ) | F·] and Y· = K

X . − E[X T | F.]


+ E[g(XT ) | F·].

(H1) yields that Y· ≤ K (X · − E[X T | F·])+ K (1 + E[X T | F·]) = K (1 + X ·). Therefore both
Y and Y are in C. When X is a strict local martingale on [0, T ], it is clear that Y 0 = E[g(XT )] <

K (X0 − E[X T ])+ E[g(XT )] = Y0. Moreover Y is of class D, but Y is not.

Example 1.10 (A BSDE with Quadratic Growth in z). Consider the following BSDE:

Pt = log X T +

 T

t


αs +

1
2
|Qs |

2


ds −

 T

t
Qs d Bs, (1.1)

where α is a nonnegative bounded process. Define (Y, Z) = (eP , eP Q). It satisfies

Yt = X T +

 T

t
αsYs ds −

 T

t
Zs d Bs . (1.2)

The previous BSDE satisfies (H1)–(H3). When X is a strict local martingale, (1.2) admits two
different solutions, so is (1.1).

In [13], the uniqueness of solutions to BSDEs with quadratic growth in z is proved among
solutions whose first component Y satisfies

E

eγ sup0≤t≤T P+

t + eϵsup0≤t≤T P−
t


< ∞, for some γ > 1 and ϵ > 0,

where P+ and P− are positive and negative parts of P . In this example, the additional solution
(P, Q), associated to (Y, Z) in Theorem 1.4, is outside the previous class. Indeed, it follows from
Theorem 1.4(iii) that eP

≥ X . Then P+
≥ log max{X , 1}, hence

E

eγ sup0≤t≤T P+

t


≥ E[ sup

0≤t≤T
max{Xγt , 1}] ≥ E[ sup

0≤t≤T
Xγt ],

where the right-hand-side is infinity for any γ > 1 when X is a strict local martingale.

1.3. Existence and uniqueness of viscosity solutions to a quasi-linear PDE

Let us now specify a Markovian dynamics of X and study the quasi-linear PDE associated to
(BSDE). Assume that σ : (0,∞)d → Rd×d is locally Lipschitz in (0,∞)d , i.e., for any compact
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domain D ⊂ (0,∞)d , there exists a constant L D such that |σ(x)− σ(y)| ≤ L D|x − y| for any
x, y ∈ D. We consider the following SDE:

d X i
s =

d
j=1

σi j (Xs) d B j
s , X0 = x ∈ (0,∞)d , i = 1, . . . , d. (1.3)

It is well know that (1.3) admits a unique strong solution X x up to its explosion time ζ . Let
{Dn}n≥0 be a sequence of bounded open domains such that Dn ⊂ Dn+1 for n ≥ 0, and

n≥0 Dn = (0,∞)d . Define σ x
n := inf{t ≥ 0 : X x

t ∉ Dn}. Then ζ = limn→∞ σ x
n . We assume

that

P(ζ = ∞) = 1. (H5)

The assumption above implies that (1.3) admits a unique (0,∞)d valued strong solution {X x
t :

t ≥ 0}. We denote by L :=
1
2 T r(σσ ′

∇
2) its infinitesimal generator.

Since components of X x are continuous supermartingales, ζ = σ x
∞. Here σ x

∞ := inf{t ≥ 0 :

X x
t ∈ O} where O := {x ∈ Rd

+ : xi = 0 for some i ∈ {1, . . . , d}} is the face of the first orthant.
Therefore (H5) is equivalent to σ x

∞ = ∞, hence X x never reaches the boundaries of its state
space in finite time. As a result no boundary condition is needed for (PDE). Still Theorem 1.14
shows that (PDE) admits multiple solutions. We refer readers to [6] for a detailed discussion on
boundary conditions in stochastic volatility models where the volatility process can reach the
boundary of its state space.

Remark 1.11. There are several ways to check whether σ x
∞ is almost surely infinite.

First, if there exists a Lyapunov function Ψ on (0,∞)d such that limx→x Ψ(x) = ∞ for any
x ∈ O and a positive constant λ such that LΨ(x) ≤ λΨ(x) for any x ∈ (0,∞)d , then σ x

∞ = ∞

(see Theorem 6.7.1 in [26]). Second, if σi j (·) is continuously differentiable in [0,∞)d , the
matrix σσ ′ degenerates on O, and the so called Fichera drifts fi (x) = −

1
2

d
j=1 ∂x j (σσ

′)i j (x)
are nonnegative on {xi = 0}, for each i = 1, . . . , d , then σ x

∞ = ∞ (see Theorem 9.4.1 and
Corollary 9.4.2 in [18]). Third, if σi j (x) = x isi j (x) for some matrix s, then Z i

= log X i satisfies

d Z i
t = −

1
2

d
j=1 s2

i j (e
Zt ) dt +

d
j=1 si j (eZt ) d B j

t , where eZ
= (eZ1

, . . . , eZd
). Since |X | does

not explode to infinity in finite time, then X does not hit O in finite time if and only if |Z | does not
explode to infinity in finite time. Then any sufficient condition which ensures the nonexplosion
of Z implies σ x

∞ = ∞. For example, Khasminskii provided such a sufficient condition (see e.g.
Theorem 52.1 in [30, Chap. V]). In 1 dimension, σ x

∞ = ∞ can be identified via Feller’s test.

Since no growth assumption is imposed on σ, X can be strict local martingale. The following
are some examples.

Example 1.12.

(i) If there exists some component of X , say X i , such that d X i
t = σi i (X i

t )d Bi
t where σ ≠ 0 on

(0,∞) and


∞

1 r/σ 2
i i (r) dr < ∞, then X i , hence X , is a strict local martingale (see [14]).

(ii) Suppose that X has the following dynamics

d X1
t = X1

t X2
t d B1

t , d X2
t = X2

t


ρ d B1

t +


1 − ρ2 d B2

t


.

Then X1, hence X , is a strict local martingale if and only if ρ > 0 (see [32]).
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(iii) A large class of multi-variate local martingales X is provided in stochastic portfolio theory,
where X models the deflated stock prices. When the market price of risk exists and there is
arbitrage relative to the market, X is a strict local martingale (see Section 6 in [17] for more
details).

After the dynamics of X is introduced, let us consider (PDE) associated to (BSDE). The
following definition of viscosity solutions follows from [3]. For a function u defined on
[0, T ] × (0,∞)d , we denote by u∗ (resp. u∗) the upper- (resp. lower-) semicontinuous envelope
of u: for all (t, x) ∈ [0, T ] × (0,∞)d ,

u∗(t, x) := lim sup
[0,T ]×(0,∞)d∋(t ′,x ′)→(t,x)

u(t ′, x ′) and

u∗(t, x) := lim inf
[0,T ]×(0,∞)d∋(t ′,x ′)→(t,x)

u(t ′, x ′).

Definition 1.13 (Viscosity Solution).

• u is called a viscosity subsolution of (PDE) if u∗ < ∞ on [0, T ] × (0,∞)d and if for any
φ ∈ C1,2((0, T ) × (0,∞)d) and (t, x) ∈ (0, T ) × (0,∞)d , such that 0 = (u∗

− φ)(t, x) ≥

(u∗
− φ)(t,x) for any (t,x) ∈ (0, T )× (0,∞)d ,

−∂tφ − Lφ − f (t, x, u∗,∇φ σ) ≤ 0.

Moreover, u∗(T, x) ≤ g(x) for x ∈ (0,∞)d .
• The viscosity supersolution is defined similarly using u∗.
• u is called a viscosity solution of (PDE) if it is both viscosity sub- and supersolution.

In what follows viscosity solutions of (PDE) are constructed via solutions of (BSDE). Since
there are multiple solutions of (BSDE), (PDE) also admits multiple viscosity solutions. For a
fixed t ∈ [0, T ], under assumptions of Theorem 1.4, the BSDE

Ys = g(X x
T −t )+

 T −t

s
f (u + t, X x

u , Yu, Zu) du −

 T −t

s
Zu d Bs,

s ∈ [0, T − t], (1.4)

admits two solutions which are denoted by (Y t,x ,Z t,x ) and (Y t,x
,Z t,x

). Define Bt
s := B(s−t)+

and X t,x
s := X x

(s−t)+ for s ∈ [0, T ]. Then Bt is a Brownian motion in its own natural filtration
and X t,x is the unique strong solution to

d X t,x
s = σ(X t,x

s ) d Bt
s , X t,x

t = x . (1.5)

Define (Y t,x
s , Z t,x

s ) := (Y t,x
(s−t)+ , I{s≥t}Z t,x

s−t ), and (Y
t,x
s , Z

t,x
s ) similarly, for s ∈ [0, T ]. Now two

deterministic functions can be defined:

u(t, x) := Y t,x
t = Y t,x

0 and u(t, x) := Y
t,x
t = Y t,x

0 ,

for (t, x) ∈ [0, T ] × (0,∞)d . (1.6)

It is immediate from Theorem 1.4(iii) that

u(t, x) > u(t, x), for (t, x) ∈ [0, T )× (0,∞)d .
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Before we state that both u and u are viscosity solutions to (PDE), we impose some additional
assumptions. First, there exists a constant K such that

H(s, r) = K (1 + r) for (s, r) ∈ [0, T ] × (0,∞). (H6)

This assumption implies that both u(t, x) and u(t, x) are bounded from above by C(1 + x) on
[0, T ] × (0,∞)d , where C is a constant depending on µ, K , K , and T . Additionally,

d
i, j

(σσ ′)i j (x)viv j > 0, for x ∈ (0,∞)d and v ∈ Rd
\ {0}. (H7)

Denote

τ x
n := inf{s ≥ 0 : X x

s ∉ Bn} ∧ T .

Since X x does not reach O in finite time, Xτ x
n

∈ S+
n when τ x

n < T . Assumption (H7) implies that
points on S+

n are regular, i.e., τ x
n = 0 for any x ∈ S+

n (see Theorem 2.3.3 in [26]). This property
will help us construct sequences of continuous functions which approximate u and u from below.

Now we are ready to present the existence and uniqueness results for (PDE).

Theorem 1.14 (Existence). Suppose that (H1)–(H7) hold. Then (PDE) admits two different
viscosity solutions u and u. Both of them are nonnegative and bounded from above by C(1 + x),
where C depends on µ, K , K , and T . But u(t, x) > u(t, x) for (t, x) ∈ [0, T )× (0,∞)d .

Remark 1.15. Both u and u are constructed via limits of increasing sequences of continuous
functions. Therefore they are lower semi-continuous. When (PDE) is linear, the continuity of u
and u can be proved via the Schauder interior estimate (see [15]). When (PDE) is quasi-linear
and the comparison result holds between viscosity super- and sub- solutions, u = u and they
are continuous. A sufficient condition for the comparison result, hence the uniqueness result for
(PDE), is provided in Theorem 1.16.

To obtain the comparison result for (PDE), we need some additional assumptions: for any
R > 0, there exists a function m R such that limr→0 m R(r) = 0 and

| f (t, x, y, z)− f (t, x ′, y, z)| ≤ m R(|x − x ′
|(1 + |z|))

for t ∈ [0, T ], |x |, |x ′
|, |y| ≤ R and z ∈ Rd . (H8)

Additionally, we replace (H3.i) and (H3.ii) with

| f (t, x, y, z)− f (t, x, y, z′)| ≤ b(x)|z − z′
|, (H3′.i)

| f (t, x, y, z)− f (t, x, y′, z)| ≤ µ|y − y′
|, (H3′.ii)

for t, x, y, y′, z, z′
∈ [0, T ]× (0,∞)d ×R+ ×R+ ×Rd

×Rd . Here b(·) is a bounded continuous
function and µ is positive. We denote Assumptions (H3′.i), (H3′.ii), (H3.iii), (H3.iv) collectively
as (H3′).

As usual the uniqueness result follows from a comparison result. However, Theorem 1.14
implies that the comparison result between viscosity super- and subsolutions fails when X is a
strict local martingale. To restore it, we assume the existence of a Lyapunov function Ψ , which
ensures the martingale property of X .
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Theorem 1.16 (Comparison). Suppose that (H1), (H2), (H3′), (H4)–(H8) hold. Moreover, there
exists a strict positive function Ψ : (0,∞)d → (0,∞) and a positive constant λ such that

LΨ(x) ≤ λ(1 + Ψ(x)), for x ∈ (0,∞)d , (H9.i)

lim
(0,∞)d∋x→x∈O

Ψ(x) = ∞, (H9.ii)

for any M > 0, there exists R such that Ψ(x)/x ≥ M for all x with x ≥ R, (H9.iii)

cΨ(x) ≥ b(x)|∇Ψ(x)σ (x)|, for some constant c and all x ∈ (0,∞)d . (H9.iv)

Then for any nonnegative subsolution u and supersolution v which are both of at most linear
growth in their spatial variables,

u(t, x) ≤ v(t, x), for (t, x) ∈ [0, T ] × (0,∞)d .

Remark 1.17. As we have seen in Remark 1.11, (H9.i) and (H9.ii) combined implies that X
never reaches O in finite time. On the other hand, (H9.i) and (H9.iii) ensure the martingale
property of X . The reason is the following. (H9.i) deduces that E[Ψ(X t,x

s∧τn )] ≤ Ψ(x)+λ
 s

0 (1+

E[Ψ(X t,x
u∧τn )]) du. By Gronwall’s inequality, the previous inequality yields E[Ψ(X t,x

s∧τn )] ≤

(Ψ(x) + λs)eλs
=: M which is a constant independent of n. Now take any ϵ > 0, according to

(H9.iii), there exists sufficiently large R such that Ψ (x)
x ≥

M
ϵ

for any x such that x ≥ R. Then

E


X t,x
s∧τn I

{X t,x
s∧τn ≥R}


≤
ϵ

M
E

Ψ(X t,x

s∧τn )I{X t,x
s∧τn ≥R}


≤ M

ϵ

M
= ϵ, for any n.

Hence {X t,x
s∧τn }n≥0 is a uniformly integrable family. This implies that X t,x , hence X t,x , is a

martingale.
Assumption (H9.iv) represents a balance between the growth restriction on σ and the

generator’s dependence on z. Intuitively, the more restriction we put on the growth of σ , the
wider class of generators Theorem 1.16 covers. Let us illustrate this point using the following
examples.

Example 1.18 (σ has at most Linear Growth). When |σ(x)| ≤ C(1 + |x |) for some constant
C and all x, b(·) can be any bounded function, Ψ can be chosen as 1 + |x |

2 (another function
depending on the behavior of σ near O needs to be added to Ψ so that (H9.ii) holds). One can
check that (H9.i), (H9.iii) and (H9.iv) are satisfied. Therefore Theorem 1.16 holds for generators
which are Lipschitz in z and has bounded growth in z. In this case, the comparison result actually
holds in the class of functions such that lim|x |→∞ |u(t, x)|e−A[log |x |]

2
= 0 for some A > 0

(see [4]).

Example 1.19 (No Growth Constraint on σ ). If we know that X is a martingale, but no other
information on the growth of σ , Theorem 1.16 covers the case where the generator does not
depend on z (hence b ≡ 0). In fact, Assumption (H9) is sharp in 1 dimension: if X is a 1-
dimensional strict positive martingale, then there exists Ψ which satisfies all conditions in (H9).
Hence under other assumptions in Theorem 1.16, the comparison holds among at most linear
growth super- and subsolutions if and only if X is a strict positive martingale.

To construct Ψ , let us consider Ψ1(x) = 2
 x

c dy
 y

c
dz
σ 2(z)

for some c > 0. It follows from
Feller’s test that X does not reach 0 in finite time if and only if limx↓0 Ψ1(x) = ∞. On
the other hand, X is a martingale if and only if


∞

c
x

σ 2(x)
dx = ∞ (see [14]). Then consider
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Ψ2(x) = x +
 x

c dy
 y

c
z

σ 2(z)
dz. We set Ψ = Ψ1 + Ψ2. (H9.ii) and (H9.iv) clearly hold;

(H9.iii) follows from the fact that limx→∞ Ψ2(x)/x = limx→∞ Ψ ′

2(x) = ∞; (H9.i) follows
from LΨ1 = 1 and LΨ2 ≤ Ψ2/2.

Example 1.20 (σ has Superlinear Growth but X is still a Martingale). Consider the 1-

dimensional SDE d X t = σ(X t )d Bt where σ(x) =


x if x ≤ e
x


log x if x > e . One can check that σ is

locally Lipschitz in (0,∞) and the solution X does not reach 0 in finite time, because X is a
Geometric Brownian motion when X ≤ e. On the other hand, since


∞

e
x

x2 log x
dx = ∞, X is

a martingale (see [14]). Consider b(x) =


1 if x ≤ e

e

x


log x
if x > e . We will show in the next paragraph

that Ψ exists and (H9) is satisfied. Then Theorem 1.16 holds in this case, where the generator
may depend on z nontrivially.

Let us set

Ψ(x) =
1
x

+ x +

 x

e
dy
 y

e

z

σ 2(z)
dz.

Clearly (H9.ii) holds and so does (H9.iii), which follows from the same argument as in the last
example. Now we are going to verify (H9.i) and (H9.iv). First,

1
2
σ 2(x)Ψ ′′(x) =


1
x

+
1
2

x if x ≤ e

log x

x
+

1
2

x if x > e
≤ Ψ(x).

Then (H9.i) holds. Second,

b(x)|Ψ ′(x)|σ(x) ≤


1
x

+ 2x − x log x if x ≤ e

e


1

x2 + 1 + log log x


if x > e

≤ CΨ(x),

where the second inequality holds for sufficiently large C because limx↓0 x log x = 0 and

limx→∞

 x
e log log ydy

log log x = ∞ from l’Hopital rule. Hence (H9.iv) is also verified.

2. Construction of multiple solutions to (BSDE)

Let us first discuss the construction of (Y, Z) and (Y , Z) intuitively. Recall τn = inf{s ≥ 0 :

Xs ∉ Bn}∧T for n > 0. The supermartingale property of X implies that {τn = T } increases to Ω
as n → ∞. Moreover, the stopped processes X ·∧τn and X ·∧τn

are martingales. Given a sequence
of random variables ξn ∈ Fτn , we consider the following sequence of BSDEs:

Y n
t = ξn +

 T

t
I{s≤τn} f (s, Xs, Y n

s , Zn
s ) ds −

 T

t
Zn

s d Bs, for each n ≥ 0. (2.1)

To approximate (BSDE), we choose two different sequences of terminal conditions for the
previous BSDE:

ξn := g(Xτn ) and ξn := gn(Xτn ), (2.2)
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where gn(x) := g(x)hn(x) and hn(·) is a continuous function such that 0 ≤ hn ≤ 1 and

hn(x) =


1, x ∈ Bn−1
0, x ∉ Bn

. Since g is bounded on Bn , both ξn and ξn are bounded. Then under

Assumptions (H3.i) and (H3.ii), (2.1) admits a solution: (Y n, Zn) when the terminal condition is
ξn; (Y

n
, Z

n
) when the terminal condition is ξn . Both these solutions are also unique inside the

class (S ∞,M2). See e.g. Theorem 2.2 and Proposition 2.2 in [22].
Notice that ξn = gn(XT )I{τn=T }. Both {ξn}n≥0 and {ξn}n≥0 converge to g(XT ) in probability

as n → ∞. This convergence motivates us to construct Y and Y via limits of {Y n
}n≥0 and

{Y
n
}n≥0, respectively. It is important to note that the convergence of {ξn}n≥0 and {ξn}n≥0 is

in probability, not necessarily in expectation. This allows that {Y n
}n≥0 and {Y

n
}n≥0 eventually

converge to different solutions. To make this idea rigorous, we will employ a localization
argument in [9] and then apply the monotone stability result for solutions of BSDE in [21].
Before carrying out these steps, let us prepare the following two lemmas.

Lemma 2.1. Let (H1), (H2), (H3.i)–(H3.iii) hold. Then

Y
n+1
t ≥ Y

n
t , for t ∈ [0, T ].

If (H4.i) also holds,

Y n+1
t ≥ Y n

t , for t ∈ [0, τn].

Proof. Recall ξn = gn(XT )I{τn=T }. Since both {gn}n≥0 and {τn}n≥0 are nondecreasing, then
{ξn}n≥0 is also nondecreasing. On the other hand, I{s≤τn} f ≤ I{s≤τn+1} f since f is nonnegative.
Therefore the first statement follows from the comparison theorem (see e.g. Theorem 2.4 in [22])
directly.

To prove the second statement, we first show

E

ξn+1 | Fτn


≥ ξn . (2.3)

Indeed, this follows from

E

ξn+1 | Fτn


= K


1 + E[X τn+1

| Fτn ]


− E


g(Xτn+1) | Fτn


≥ K (1 + X τn

)− g(Xτn ) = ξn,

where the inequality uses (H4.i) and the martingale property of X τn+1∧·. Now consider the
following BSDE:

Y n+1
t = ξn+1 +

 T

t
I{s≤τn} f (s, Xs,Y n+1

s ,Zn+1
s ) ds −

 T

t

Zn+1
s d Bs . (2.4)

It admits a unique solution (Y n+1,Zn+1) ∈ (S ∞,M2). Since τn ≤ τn+1 and f ≥ 0, the
comparison theorem implies that

Y n+1
t ≥ Y n+1

t , for t ∈ [0, T ]. (2.5)

Taking conditional expectation with respect to Fτn on both sides of (2.4) gives

Y n+1
t = E[ξn+1 | Fτn ] +

 T

t
I{s≤τn} f (s, Xs,Y n+1

s ,Zn+1
s ) ds −

 T

t

Zn+1
s I{s≤τn}d Bs,

t ∈ [0, τn].
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Compare the previous BSDE with the one satisfied by Y n . The comparison theorem and (2.3)
combined givesY n+1

t ≥ Y n
t , for t ∈ [0, τn].

Then the second statement follows after combining the previous inequality with (2.5). �

The following lemma gives a upper bound for Y n and Y
n
.

Lemma 2.2. Let (H3.ii) and (H3.iv) hold. For any n ≥ 0,

Y n
t ≤ C


E

ξn +

 T

t
H(s, X s) ds

Ft


≤ C


E[ξn | Ft ] +

 T

t
H(s, X t )ds


,

t ∈ [0, T ],

where C = e(µ∨0)T . The same statement holds for (Y
n
, ξn) as well.

Proof. We only prove the statement for (Y n, ξn), the same argument applies to the statement for
(Y

n
, ξn) as well. Consider the following ODE:

ϕn
t = ξn +

 T

t
I{s≤τn}(H(s, X s)+ µϕn

s ) ds

and define Φn
t := E[ϕn

t | Ft ]. The solution to the previous ODE is

ϕn
t = ξn for t ≥ τn and ϕn

t = eµ(τn−t)ξn +

 τn

t
eµ(s−t)H(s, X s)ds, for t < τn .

It then follows 0 ≤ ϕn
t ≤ C(ξn +

 T
t H(s, X s))ds, which yields

0 ≤ Φn
t ≤ C


E

ξn +

 T

t
H(s, X s) ds

Ft


.

Since r → H(·, r) is concave and nondecreasing,

E
 T

t
H(s, X s) ds

Ft


=

 T

t
E


H(s, X s)
Ft


ds ≤

 T

t
H

s,E[X s | Ft ]


ds

≤

 T

t
H(s, X t ) ds,

where the second inequality follows from the supermartingale property of X . Therefore the last
two estimates combined give

0 ≤ Φn
t ≤ C


E[ξn | Ft ] +

 T

t
H(s, X t ) ds


.

Now the statement follows if we can show

Φn
t ≥ Y n

t , t ∈ [0, T ].

To this end, note that (H3.ii) and (H3.iv) imply f (t, x, y, z) ≤ H(t, x)+µy for any (t, x, y, z) ∈

[0, T ] × Rd
+ × R+ × Rd . Then the previous claim follows from the same comparison argument

in Lemma 1 of [9]. �

Now we are ready to prove the first main result.
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Proof of Theorem 1.4. The proof is split into several steps.
Step 1: Construction of solutions. We will only present the construction of (Y, Z) from

the limit of {(Y n, Zn)}n≥0. The solution (Y , Z) can be similarly constructed via the limit of
{(Y

n
, Z

n
)n≥0}. Fix k ∈ N. We stop every (Y n, Zn) at τk by defining

Y n,k
t := Y n

t∧τk
and Zn,k

t := Zn
t I{t≤τk }.

These stopped processes satisfy the following BSDE:

Y n,k
t = Y n

τk
+

 T

t
I{s≤τk } f (s, Xs, Y n,k

s , Zn,k
s ) ds −

 T

t
Zn,k

s d Bs .

It follows from Lemma 2.1 that {Y n,k
}n≥k is a nondecreasing sequence. Moreover {Y n,k

}n≥k is
bounded uniformly in n. Indeed, Lemma 2.2 and (H1) implies that

0 ≤ Y n,k
t = Y n

t∧τk
≤ C


K (1 + X t∧τk

)+

 T

t∧τk

H(s, X t∧τk
) ds


≤ Mk, t ∈ [0, T ].

Here Mk , depending on the maximum of H on [0, T ] × [minx∈Bk
x,maxx∈Bk

x], is a constant
independent of n.

Since {Y n,k
}n≥k is monotone and uniformly bounded, it follows from Proposition 2.4 in [21]

that {Y n,k
}n≥k converges uniformly on [0, T ] to a continuous process kY· := limn→∞ Y n,k

· and
{Zn,k

}n≥k converges to some k Z in M2, such that (kY, k Z) ∈ (S ∞,M2) is a solution to the
following BSDE:

kYt = ηk +

 T

t
I{s≤τk } f (s, Xs,

kYs,
k Zs) ds −

 T

t

k Zs d Bs, (2.6)

where ηk = limn→∞ Y n
τk

. Note ηk = g(XT ) when τk = T . We will use this observation later.
Now coming back to the definition of Y n,k and kY , we have

k+1Yt∧τk = lim
n→∞

Y n,k+1
t∧τk

= lim
n→∞

Y n
t∧τk∧τk+1

= lim
n→∞

Y n
t∧τk

= lim
n→∞

Y n,k
t =

kYt .

On the other hand, it follows from limn→∞ E[
 T

0 |
k Zs − Zn,k

s |
2 ds] = 0 that limn→∞

E[
 τk

0 |
k Zs − Zn,k

s |
2 ds] = 0. Similarly, limn→∞ E[

 τk
0 |

k+1 Zs − Zn,k+1
s |

2 ds] = 0. Noticing that

Zn,k
s I{s≤τk } = Zn

s I{s≤τk } = Zn,k+1
s I{s≤τk }, we obtain E[

 τk
0 |

k+1 Zs −
k Zs |

2 ds] = 0. Therefore
we can define Y and Z via

Yt∧τk :=
kYt and Z t :=

k Z t if t ∈ [0, τk].

When τk = T , since kY is continuous on [0, T ], so is Y . Moreover limt→T Yt = limt→T
kYt =

ηk = g(XT ) on {τk = T }. By sending k to infinity and recalling that


k∈N{τk = T } = Ω , we
deduce that Y is almost surely continuous and limt→T Yt = g(XT ). On the other hand, from the
definition of Z ,

P
 T

0
|Zs |

2 ds = ∞


= P

 T

0
|Zs |

2 ds = ∞, τk = T


+ P

 T

0
|Zs |

2ds = ∞, τk < T


≤ P

 τk

0
|
k Zs |

2 ds = ∞


+ P(τk < T ).
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The right-hand-side of the previous inequality converges to zero as k → ∞. Therefore T
0 Z2

s ds < ∞. Now following from (2.6), (Y, Z) satisfies

Yt∧τk = Yτk +

 τk

t∧τk

f (s, Xs, Ys, Zs) ds −

 τk

t∧τk

Zsd Bs .

Sending k to infinity, we conclude that (Y, Z) is a solution to (BSDE).
Step 2: Uniform integrability. From Lemma 2.2,

Y t = lim
n→∞

Y
n
t ≤ C


lim

n→∞
E[gn(XT )I{τn=T } | Ft ] + E

 T

t
H(s, X s) ds

Ft


= C


E


g(XT )+

 T

t
H(s, X s) ds

Ft


, on {t ≤ τk}. (2.7)

In the second equality above, for any subsequence of

gn(XT )I{τn=T }


n≥1, there exists a

further subsequence converging to g(XT ) a.s. Hence the conditional expectation converges to
E[g(XT )|Ft ] along this subsequence via the dominated convergence theorem. It then follows
that the conditional expectation along the entire sequence also converges. Otherwise there exists
a non-convergence subsequence which contradicts with the aforementioned property. Now send
k to infinity, (2.7) holds for t ∈ [0, T ]. Therefore, Y is of class D because it is nonnegative and
bounded from above by a uniformly integrable martingale. On the other hand, combined with
(H1), (2.7) also implies Y ∈ C.

Now let us switch our attention to Y . First, since Zn
∈ M2,


·

0 Zn
s d Bs is a martingale.

Then f ≥ 0 implies that Y n
t = E


ξn +

 T
t I{s≤τn} f (s, Xs, Y n

s , Zn
s )ds | Ft


≥ E[ξn | Ft ].

The construction of Y then yields

Yt = lim
n→∞

Y n
t ≥ lim

n→∞
E[g(Xτn ) | Ft ].

In order to derive limn→∞ E

g(Xτn ) | Ft


, recall g(x) = K (1+x)−g(x) and g(x) ≤ G(x) from

(H4.ii). Since G is nondecreasing and limr→∞ G(r)/r = 0, there exists a function ψ such that
ψ(G(r)) ≤ r for r ≥ 0 and limy↑∞ ψ(y)/y = ∞. Indeed, set ψ(y) = inf{r ≥ 0 : G(r) ≥ y}. ψ
is nondecreasing, limy↑∞ ψ(y) = ∞, and ψ(G(r)) ≤ r . On the other hand, since G(ψ(y)) ≥ y,

it follows 0 = limy↑∞
G(ψ(y))
ψ(y) ≥ lim supy↑∞

y
ψ(y) . Therefore limy↑∞ ψ(y)/y = ∞. These

properties on ψ imply that E[ψ(G(X τn
))] ≤ E[X τn

] ≤ x for any n. From de la Vallée Poussin
criteria (see Lemma 3 in [31, pp. 190]), the previous inequalities imply that {G(X τn

)}n≥0, hence
{g(Xτn )}n≥0, is uniformly integrable. As a result, limn→∞ E[g(Xτn ) | Ft ] = E[g(XT ) | Ft ]. Go
back to the limit of E[g(Xτn ) | Ft ],

lim
n→∞

E

g(Xτn ) | Ft


= K


1 + lim

n→∞
E

X τn

| Ft


− lim
n→∞

E

g(Xτn ) | Ft


= K


1 + lim

n→∞
X t∧τn


− E [g(XT ) | Ft ]

= K (1 + X t )− E [g(XT ) | Ft ]

= K

X t − E[X T | Ft ]


+ E [g(XT ) | Ft ] . (2.8)

Now if Y was of class D, X would also be, since E

g(XT )− K X T | F·


is already of class D.

However this contradicts with the strict local martingale property of X .
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Applying the similar estimate to the upper bound of Y , we obtain

Yt ≤ C


K

X t − E[X T | Ft ]


+ E


g(XT )+

 T

t
H(s, X s) ds

Ft


≤ C


K (1 + X t )+ E

 T

t
H(s, X s) ds

Ft


, (2.9)

where the second inequality holds since g(x) − K x ≤ K . Therefore Y ∈ C follows from the
previous inequality.

Step 3: (Y , Z) is the minimal solution. Since Z
n

∈ M2, it follows from the definition of Y
n

that Y
n
τn

= E

gn(XT )I{τn=T } | Fτn


. On the other hand, for any solution (Y ,Z) to (BSDE) such

that Y ∈ C,

Yt∧ζn = Yu∧ζn +

 u

t
I{s≤ζn} f (s, Xs,Ys,Zs) ds −

 u

t

ZsI{s≤ζn} d Bs, 0 ≤ t ≤ u ≤ T,

where ζn is chosen as inf{t ≥ 0 : |
 t

0 |Zu |
2du ≥ n}. Since f is nonnegative, the previous BSDE

gives Yt I{t≤ζn} ≥ E[Yu∧ζn | Ft ]I{t≤ζn}. Sending n → ∞ and utilizing Fatou’s lemma, we obtainYt ≥ E[Yu | Ft ], hence Y is a supermartingale. As a result,Yτn ≥ E[YT | Fτn ] = E[g(XT ) | Fτn ] ≥ E[gn(XT )I{τn=T } | Fτn ] = Y
n
τn
. (2.10)

On the other hand, since Y ∈ C and r → H(·, r) is concave and nondecreasing,

Yt ≤ C


K (1 + X t )+

 T

t
H(s, X t ) ds


.

Therefore Y·∧τn ∈ S ∞, which implies Z ·I{·≤τn} ∈ M2 (see Proposition 2.2 in [22]).
Now compare the following two BSDEs:

Y
n
t = Y

n
τn

+

 T

t
I{s≤τn} f (s, Xs, Y

n
s , Z

n
s ) ds −

 T

t
Z

n
s I{s≤τn}d Bs,

Yt = Yτn +

 T

t
I{s≤τn} f (s, Xs,Ys,Zs) ds −

 T

t

ZsI{s≤τn}d Bs .

Thanks to (2.10), the comparison theorem in (S ∞,M2) (see e.g. Theorem 2.4 in [22]) implies
that Yt ≥ Y

n
t , t ∈ [0, τn].

Since the choice of n is arbitrary, Yt ≥ Y t for t ∈ [0, T ] is then clear.
Step 4: Y0 > Y 0. Let us define

αt =


(Yt − Y t )

−1  f (t, X t , Yt , Z t )− f (t, X t , Y t , Z t )


if Yt ≠ Y t

0 if Yt = Y t ,

and the Rd - valued process {βt ; t ∈ [0, T ]} as follows. For 1 ≤ i ≤ d , let Z (i)t be the d-
dimensional vector whose first i components are equal to those of Z t and whose last d − i
components are equal to those of Z t . Then we define for 1 ≤ i ≤ d ,

β i
t =


(Z

i
t − Z i

t )


f (t, X t , Yt , Z
(i)
t )− f (t, X t , Yt , Z (i−1)

t )


if Z i
t ≠ Z

i
t

0 if Z i
t = Z

i
t .
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Note that {αt ; t ∈ [0, T ]} and {βt ; t ∈ [0, T ]} are both progressively measurable, αt ≤ µ, and
|βt | ≤ ν from (H3.i) and (H3.ii).

For 0 ≤ t ≤ u ≤ T , define Γt,u := exp
 u

t


αs −

1
2 |βs |

2


ds +
 u

t β
′
sd Bs


. Then

(Yt ,Zt ) := (Yt − Y t , Z t − Z t ) satisfies

Yt = Γt,u Yu −

 u

t
Γt,s(Zs + Ysβ

′
s)d Bs . (2.11)

Set ζn = inf{t ≥ 0 :
 t

0 Γ 2
0,u |Zu + Yuβ

′
u |

2du ≥ n}. We have from (2.11) that

Yt I{t≤ζn} = E[Γt,u∧ζn Yu∧ζn | Ft ]I{t≤ζn}.

Since both Y and Y are continuous processes, moreover Yt ≥ Y t ≥ 0 for t ∈ [0, T ] from Step 3,
we have P(Yt ≥ 0 for all t ∈ [0, T ]) = 1. Therefore Y·∧ζn ≥ 0 for any n ≥ 0. It then follows
from Fatou’s lemma that

Yt = lim
n→∞

E[Γt,u∧ζn Yu∧ζn | Ft ]I{t≤ζn} ≥ E[Γt,u Yu | Ft ].

As a result, {Γ0,t Yt ; t ∈ [0, T ]} is a nonnegative super martingale.
Now if Y0 = Y0 − Y 0 = 0, then Yt = 0 for any t ∈ [0, T ], which implies that

P(Yt = 0 for all t ∈ [0, T ]) = 1. However, this contradicts with the fact that Y is of class
D but Y is not. �

Proof of Corollary 1.7. Consider {ξαn }α∈[0,1],n≥1 where ξαn = (1 −α)gn(Xτn )+αg(Xτn ). Since
gn(Xτn ) = gn(XT )I{τn=T } ≤ g(Xτn ), then {ξαn }α∈[0,1] is nondecreasing. It is also clear that
ξ0

n = ξn and ξ1
n = ξn . Consider (2.1) whose terminal condition is replaced by ξαn . We denote its

solution by (Y n,α, Zn,α). Walking through Lemma 2.1 and Step 1 in Theorem 1.4, we obtain a
sequence of (BSDE) solutions (Y α, Zα)α∈[0,1] such that {Y α}α∈[0,1] is nondecreasing. it is also
clear that (Y 0, Z0) = (Y , Z) and (Y 1, Z1) = (Y, Z).

In this paragraph, we will show {Y α0 }α∈[0,1] is strictly increasing. For any 0 ≤ α < α′
≤ 1,

applying the argument in Step 4 of Theorem 1.4 to Y n,α and Y n,α′

, we obtain

Y n
0 ≥ E


Γ0,τn Y n

τn


≥ CµE[Y n

τn
] = Cµ(α

′
− α)E[g(Xτn )− gn(Xτn )], (2.12)

where Y n
= Y n,α′

− Y n,α and Γ0,τn ≥ Cµ =: exp(−µT ) because f (t, x, y, z) does not depend
on z and is Lipschitz in y with some Lipschitz constant µ. Sending n → ∞ in (2.12), and
utilizing arguments in Step 2 of Theorem 1.4, we obtain

Y α
′

0 − Y α0 ≥ Cµ(α
′
− α)K (X0 − E[X T ]) > 0,

since X is a nonnegative strict local martingale. This confirms the claim. �

In the rest of this section, we will prove that any solution, whose first component is in C, is
inside the class (S p,M p) for any p ∈ (0, 1). Let us first recall the following version of Doob’s
inequality.

Lemma 2.3. If L is a 1-dimensional nonnegative local martingale, then

E[ sup
0≤t≤T

L p
t ] ≤

1
1 − p

L p
0 , for any p ∈ (0, 1).
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Proof. Being a nonnegative local martingale implies that L is a supermartingale. It then follows
from Doob’s second submartingale inequality (see Theorem 1.3.8 in [20]) that

yP( inf
0≤t≤T

(−L t ) ≤ −y) ≤ E[(−LT )
+
] − E[−L0] = L0.

Denote L∗ = sup0≤t≤T L t , it then follows

E[L p
∗ ] = E


∞

0
I{L∗≥y} py p−1 dy


≤


∞

0
min {1, L0/y} py p−1 dy =

L p
0

1 − p
. �

Proposition 2.4. For any solution (Y, Z) to (BSDE) such that Y ∈ C, (Y, Z) ∈ (S p,M p) for
any p ∈ (0, 1).

Proof. It follows from Y ∈ C that

sup
0≤t≤T

Y p
t ≤ C


1 +

d
i=1

sup
0≤t≤T

(X i
t )

p
+ sup

0≤t≤T
E
 T

0
H(s, X s) ds

Ft

p
,

for some constant C, (2.13)

where the inequality (a + b)p
≤ a p

+ bp for any a, b ≥ 0 and p ∈ (0, 1) is used. Recall from
Lemma 6.1 in [8] that any 1-dimensional martingale {Mt ; t ∈ [0, T ]} satisfies

E[ sup
0≤t≤T

|Mt |
p
] ≤

1
1 − p

E[|MT |]
p, for any p ∈ (0, 1).

Then the previous inequality, Lemma 2.3, and (2.13) combined imply that

E[ sup
0≤t≤T

Y p
t ] ≤

C

1 − p


1 +

d
i=1

(X i
0)

p
+ E

 T

0
H(s, X s)ds

p
< +∞,

for any p ∈ (0, 1).

Now recall Lemma 3.1 in [8]. We have from the previous inequality that Z ∈ M p for any
p ∈ (0, 1). �

3. Viscosity solutions to (PDE)

3.1. A parabolic boundary value problem

To show that u and u, defined in (1.6), are viscosity solutions to (PDE), we need some
preparation first. Given t ∈ [0, T ], a domain Br for some r > 0, and a continuous function
h : Br → R, we consider the BSDE

Ys = h(X x
τ t,x )+

 T −t

s
I{u≤τ t,x } f (u + t, X x

u ,Yu,Zu) du −

 T −t

s
Zud Bu, (3.1)

where τ t,x
= inf{s ≥ 0 : X x

s ∉ Br } ∧ (T − t). Since h(X x
τ t,x ) is bounded, the previous BSDE

admits a unique solution (Y t,x ,Z t,x ) ∈ (S ∞,M2). Define (Yt,x
s ,Zt,x

s ) := (Y t,x
(s−t)+ , I{s≥t}Z t,x

s−t ).
They are the unique solution of

Ys = h(X t,x
σ t,x )+

 T

s
I{t≤u≤σ t,x } f (u, X t,x

u ,Yu,Zu) du −

 T

s
Zud Bt

u, (3.2)
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where σ t,x
= inf{s ≥ t : X t,x

s ∉ Br } ∧ T . Now set

w(t, x) := Yt,x
t = Y t,x

0 , for (t, x) ∈ [0, T ] × (0,∞)d . (3.3)

Since S+
r is regular, σ t,x

= t for x ∈ S+
r , hence w(t, x) = h(x) when x ∈ (0,∞)d \ B+

r . We
claim that

w(s, X t,x
s ) = Ys,X t,x

s
s = Yt,x

s = Y t,x
s−t , for s ∈ [t, σ t,x

]. (3.4)

Only the second identity needs a proof. Observe that X s,X t,x
s

s = X t,x
s . It follows from the pathwise

uniqueness for (1.5) that P(X s,X t,x
s

u = X t,x
u for any u ∈ [s, T ]) = 1. Then this yields σ s,X t,x

s =

σ t,x for s ≤ σ t,x . The second identity then follows from the uniqueness of solutions to (3.2).
In what follows, we will prove that w is continuous viscosity solution of the following

boundary value problem:

−∂tw − Lw − f (t, x, w,∇wσ) = 0, (t, x) ∈ (0, T )× B+
r ,

w(t, x) = h(x), (t, x) ∈ (0, T ] × S+
r ∪ T × B+

r .
(3.5)

Here no boundary condition is needed on O because (H5) implies that X t,x never reaches O
before T . Let us define what we mean by a continuous viscosity solution of (3.5).

Definition 3.1. A continuous function w : [0, T ] × B+
r → R is called a continuous viscosity

subsolution (resp. supersolution), if for any (t, x) ∈ (0, T ) × B+
r , φ ∈ C1,2((0, T ) × (0,∞)d)

such that (t, x) is the local maximum (resp. minimum) of w − φ, then

−∂tφ − Lφ − f (t, x, w,∇φ σ) ≤ 0 (resp. ≥ 0), if (t, x) ∈ (0, T )× B+
r ,

min {−∂tφ − Lφ − f (t, x, w,∇φ σ),w(t, x)− h(x)} ≤ 0, if (t, x) ∈ (0, T )× S+
r ,

(resp. max {∂tφ − Lφ − f (t, x, w,∇φ σ),w(t, x)− h(x)} ≥ 0)

w(T, x) ≤ h(x) (resp. w(T, x) ≥ h(x)).

A continuous function w is said to be a continuous viscosity function if it is both viscosity sub-
and supersolution.

Since points on S+
r are regular, the following result can be viewed as the parabolic analogue

of Proposition 6.3 and Theorem 6.5 in [12], where a similar result has been proved for an elliptic
boundary value problem.

Proposition 3.2. Suppose that (H3.i)–(H3.iii), (H5) and (H7) hold. Then w is a continuous
viscosity solution to (3.5).

3.2. Existence of viscosity solutions of (PDE)

Now choosing different h in (3.1) and (3.2), we can construct approximating sequences for
u and u. For each n, choose r = n, we rename w in (3.3) as un when h = g, and un when
h = gn . Both un and un are defined on [0, T ] × (0,∞)d . Solutions to (3.1) and (3.2) are
denoted as (Y n,t,x ,Z n,t,x ) and (Yn,t,x ,Zn,t,x ) respectively when h = g; and (Y n,t,x

,Z n,t,x
)

and (Yn,t,x
,Zn,t,x

) respectively when h = gn . Then un(t, x) = Y n,t,x
t = Y n,t,x

0 , for (t, x) ∈

[0, T ] × (0,∞)d , and a similar identity holds for un as well. Note that B+
r increases to (0,∞)d
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as n → ∞, it follows from the definition of u and u in (1.6) and the construction of Y t,x and
Y t,x

in (1.4) and Theorem 1.4 that

↑ lim
n→∞

un(t, x) =↑ lim
n→∞

Y n,t,x
0 = Y t,x

0 = u(t, x), for (t, x) ∈ [0, T ] × (0,∞)d ,

where the second identity holds for t = T thanks to ↑ limn→∞ gn(x) = g(x). A similar
statement holds for un and u as well. On the other hand, Proposition 3.2 implies that un (resp.
un) is a continuous viscosity solution to the boundary value problem (3.5) when the boundary
condition is g (resp. gn).

Before using {un}n≥0 and {un}n≥0 to prove that both u and u solves (PDE) in the viscosity
sense defined in Definition 1.1, we recall half-relaxed upper and lower limits of {un}n≥0:

uU (t, x) := lim sup
n→∞


um(t

′, x ′) : m ≥ n, (t ′, x ′) ∈ (0, T )× (0,∞)d , and

|t ′ − t | + |x ′
− x | ≤ 1/n


,

uL(t, x) := lim inf
n→∞


um(t

′, x ′) : m ≥ n, (t ′, x ′) ∈ (0, T )× (0,∞)d , and

|t ′ − t | + |x ′
− x | ≤ 1/n


.

The half-relaxed upper and lower limits uU and uL are defined analogously for {un}n≥0.
Since {un}n≥0 is a nondecreasing sequence of continuous functions, the following orders

among u, uU , uL , u∗ and u∗ hold. The same order also holds for functions associated to u as
well.

Lemma 3.3. For any (t, x) ∈ [0, T ] × (0,∞)d ,

u(t, x) = uL(t, x) = u∗(t, x) ≤ u∗(t, x) = uU (t, x).

Proof. This relationship has been applied in [27]. But no reference or proof is given there. For
the reader’s convenience, we present a short proof here.

u = u∗: Since u is the supremum of continuous functions {un}n≥0, u is lower-semicontinuous.
Recall that u∗ is the largest lower-semicontinuous function dominated by u. Hence u = u∗.

uL
≤ u: Since u is lower-semicontinuous, there exists a sequence (tn, xn) ∈ B(t,x)(1/n)

such that limn→∞ u(tn, xn) = u(t, x). Here B(t,x)(r) := {(t ′, x ′) ∈ (0, T ) × (0,∞)d :

|t ′ − t | + |x ′
− x | ≤ r}. Since {un}n≥0 is nondecreasing,

inf
(t ′,x ′)∈B(t,x)(1/n);m≥n

um(t
′, x ′) ≤ un(tn, xn) ≤ u(tn, xn).

The claim then follows from sending n → ∞ in the previous inequalities.
uL

≥ u: For any n ≥ N ≥ 0,

uL(t, x) ≥ inf
(t ′,x ′)∈B(t,x)(1/n);m≥n

um(t
′, x ′) ≥ inf

(t ′,x ′)∈B(t,x)(1/n)
uN (t

′, x ′),

where the second inequality holds since {un}n≥0 is nondecreasing. Now, sending n → ∞ and
using the continuity of uN , we obtain from the previous inequalities that uL(t, x) ≥ uN (t, x).
The claim then follows after sending N → ∞.

uU
≤ u∗: Let (tn, xn) be a sequence converging to (t, x) such that limn→∞ un(tn, xn) =

uU (t, x). Since {un}n≥0 is a nondecreasing sequence, un(tn, xn) ≤ u(tn, xn). Sending n → ∞,
the claim follows from the upper semicontinuity of u∗.
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u∗
≤ uU : For any ϵ > 0, these exists a sufficiently large N , such that

ϵ + uU (t, x) ≥ sup
(t ′,x ′)∈B(t,x)(1/N );n≥N

un(t
′, x ′) ≥ un(t,x),

for any n ≥ N and (t,x) ∈ B(t,x)(1/n).

Since {un}n≥0 is nondecreasing, the previous inequality yields ϵ + uU (t, x) ≥ u(t,x). Now the
claim follows from first sending n → ∞ then ϵ → 0. �

From the previous lemma and the definition of u, we have u∗(T, x) ≥ u∗(T, x) = u(T, x) =

g(x) for any x ∈ (0,∞)d . In what follows, we will prove the converse inequality. The same
statement holds for u∗ as well.

Lemma 3.4. Let (H1)–(H7) hold. Then u∗(T, x) ≤ g(x) for x ∈ (0,∞)d .

Proof. It suffices to prove the statement for uU , since uU
= u∗. Take any sequence {(tn, xn)}n≥0

converging to (T, x). Without loss of generality, we can assume all xn ∈ D for a bounded domain
D ⊂ (0,∞)d containing x . Recall that um(tn, xn) = Y m,tn ,xn

0 , where (Y m,Z m) ∈ (S ∞,M2)

(the superscript (tn, xn) is omitted for simplicity of notation) is the unique solution of the
following BSDE:

Y m
s = gm(X

xn

τ
tn ,xn
m

)+

 T −tn

s
I
{u≤τ

tn ,xn
m }

f (u + tn, X xn
u ,Y m

u ,Z m
u ) du −

 T −tn

s
Z m

u d Bu,

where τ tn ,xn
m = inf{u ≥ 0 : X xn

u ∉ Bm} ∧ (T − tn). Choosing s = 0 and taking expectation in the
last equation, we obtain

Y m
0 = E


gm(X

xn

τ
tn ,xn
m

)


+ E

 τ
tn ,xn
m

0
f (u + tn, X xn

u ,Y m
u ,Z m

u ) du


. (3.6)

Let us estimate individual terms on the right hand side of the previous identity. Assumptions
(H3), (H6) and Lemma 2.2 combined implies that

0 ≤ f (u + tn, X xn
u ,Y m

u ,Z m
u ) ≤ K (1 + X xn

u )+ µY m
u ≤ C(1 + X xn

u ),

where C is a constant depending on K , K , µ, T , but not n and m. As a result,

lim
n→∞

E

 τ
tn ,xn
m

0
f (u + tn, X xn

u ,Y m
u ,Z m

u ) du



≤ lim
n→∞

C
 T −tn

0
1 + E[X xn

u ] du ≤ lim
n→∞

C(T − tn)(1 + xn) = 0,

where the second inequality follows from the supermartingale property of X xn . On the other
hand,

E

gm(X

xn

τ
tn ,xn
m

)


≤ E

g(X xn

τ
tn ,xn
m

)


= K


1 + E[X xn

τ
tn ,xn
m

]


− E


g(X xn

τ
tn ,xn
m

)


= K (1 + xn)− E

g(X xn

τ
tn ,xn
m

)

. (3.7)

Recall that coefficients in (1.3) is locally Lipschitz. It then follows from the continuity of
stochastic flow (see Theorem 5.38 in [28]) that P − limn→∞ sups∈[0,T ] |X

xn
s − X x

s | = 0. As
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a result,

|X xn

τ
tn ,xn
m

− x | ≤ sup
s∈[0,T ]

|X xn
s − X x

s | + |X x
τ

tn ,xn
m

− x | → 0 under P,

as n → ∞. Going back to (3.7), we have from Fatou’s lemma that

lim sup
m≥n,n→∞

E

gm(X

xn

τ
tn ,xn
m

)


≤ K (1 + x)− lim inf
m≥n,n→∞

E

g(X xn

τ
tn ,xn
m

)


≤ K (1 + x)− g(x) = g(x).

Therefore, we conclude from (3.6) that lim supm≥n;n→∞ um(tn, xn) ≤ g(x). The statement then
follows since the choice of (tn, xn)n≥0 is arbitrary. �

Let D ⊂ Rd be locally compact and DT = (0, T ) × D. We recall parabolic semijets
P 2,± from [11]. The proof of Theorem 1.14 needs the following stability property of parabolic
semijets. This result is a straight forward extension of Proposition 4.2 in [11] to its parabolic
analogue.

Lemma 3.5. Let v be a upper semi-continuous function on DT , (t, z) ∈ DT , and (a, p,W ) ∈

P 2,+v(t, z). Suppose also that vn is a sequence of upper semi-continuous functions on DT such
that

(i) there exists (tn, xn) ∈ DT such that (tn, xn, vn(tn, xn)) → (t, z, v(t, z)),
(ii) if (sn, zn) ∈ DT and (sn, zn) → (s, x) ∈ DT , then lim supn→∞ vn(sn, zn) ≤ v(s, x).

Then there exists (t̂n, x̂n) ∈ DT , (an, pn,Wn) ∈ P 2,+vn(t̂n, x̂n) such that

(t̂n, x̂n, vn(t̂n, x̂n), an, pn,Wn) → (t, z, v(t, z), a, p,W ).

Now we are ready to prove that both u and u are viscosity solutions to (PDE).

Proof of Theorem 1.14. We have already seen u(t, x) > u(t, x) for (t, x) ∈ [0, T )×(0,∞)d . It
only remains to show that both u and u are viscosity solutions of at most linear growth. We will
only prove the statement for u. The statement for u can be proved similarly. First, Theorem 1.14
and (H6) combined implies that u(t, x) = Y t,x

0 ≤ C(1 + x) where C is a constant depending
on µ, K , K , and T . Second, u∗(T, x) ≤ g(x) has already been proved in Lemma 3.4. Lastly, for
any (t, x) ∈ (0, T )× (0,∞)d and (a, p,W ) ∈ P 2,+u∗(t, x), since u∗

= uU , we want to show

−a −
1
2

T r(σσ ′(x)W )− f (t, x, uU (t, x), p) ≤ 0.

Since there is a sufficiently large B+
n such that (t, x) ∈ (0, T ) × B+

n , the previous inequality
follows directly from Proposition 3.2 and Lemma 3.5. Similar argument shows that u is also a
supersolution. �

3.3. Uniqueness of viscosity solutions of (PDE)

To prove the comparison result, let us first present the following lemma, which is similar to
Lemma 3.7 in [4].

Lemma 3.6. Let u be a subsolution, v be a supersolution of (PDE), and both u and v be locally
bounded in [0, T ] × (0,∞)d . Then w := u − v is a viscosity subsolution of

− ∂tw − Lw − µ|w| − b |∇w σ | = 0, in [0, T )× (0,∞)d . (3.8)
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Proof. The proof is essentially the same with the proof of Lemma 3.7 in [4], except several
points which we are going to emphasize as follows. Let us follow the notation in [4].

First, fix (t0, x0) ∈ (0, T )× (0,∞)d and φ(t, x) ∈ C1,2((0, T )× (0,∞)d) such that w∗
− φ

attains its strict global maximum at (t0, x0). We double the variables and introduce an auxiliary
function

ψϵ,α(t, x, s, y) = u∗(t, x)− v∗(s, y)−
|x − y|

2

ϵ2 −
|t − s|2

α2 − φ(t, x),

where ϵ, α are positive parameters which tend to zero. Fix a compact domain B ⊂ (0,∞)d which
contains x0. Since ψϵ,α is upper semi-continuous and is bounded from above on ([0, T ] × B)2,
the maximum of ψϵ,α on ([0, T ]× B)2 is attained at a point (t, x, s, y) ∈ ([0, T ]× B)2. We have
dropped the dependence of t, x, s, and y in ϵ and α for simplicity of notation. We claim that

(i) (t, x), (s, y) → (t0, x0) as ϵ, α → 0,
(ii) |x − y|

2/ϵ2 and |t − s|2/α2 are bounded and tend to zero as ϵ, α → 0.

Indeed, since ψϵ,α attains its maximum at (t, x, s, y),

u∗(t, x)− v∗(s, y)−
|x − y|

2

ϵ2 −
|t − s|2

α2 − φ(t, x)

≥ u∗(t0, x0)− v∗(t0, x0)− φ(t0, x0). (3.9)

The previous inequality yields

|x − y|
2
+ |t − s|2 ≤ 2 (ϵ2

∨ α2) max
(t,x,s,y)∈([0,T ]×B)2

|u∗(t, x)− v∗(s, y)− φ(t, x)|.

Send ϵ, α → 0 in the previous inequality. It follows that x and y converge to the same point, sayx , meanwhile t and s converge tot . Then sending ϵ, α → 0 on the left side of (3.9) and using
the upper semi-continuity of u∗

− v∗ − φ, we obtain

u∗(t,x)− v∗(t,x)− φ(t,x)− lim
ϵ,α→0


|x − y|

2

ϵ2 +
|t − s|2

α2


≥ u∗(t0, x0)− v∗(t0, x0)− φ(t0, x0).

Since u∗
− v∗ − φ attains its strict global maximum at (t0, x0), both claims follow from the

previous inequality. Now apply Theorem 8.3 in [11] to obtain two triplets (a + ∂tφ(t, x), p +

∇φ(t, x),M) ∈ P 2,+
u∗(t, x) and (a, p, N ) ∈ P 2,−

v∗(s, y) respectively, and write down
two inequalities that these triplets satisfy. When we estimate the difference between these two
inequalities, since x, y ∈ B, we can use the local Lipschitz continuity of σ on B:

T r(σσ ′(x)M)− T r(σσ ′(y)N ) ≤ CB
|x − y|

2

ϵ2 + T r(σσ ′(x)φ(t, x)),

where CB depends on the Lipschitz constant of σ on B.
Second, since (H3′.i) is assumed,

f (·, x, ·, (p + ∇φ(t, x))σ (x))− f (·, x, ·, pσ(y))

≤ b(x)
p (σ (x)− σ(y))+ ∇φ(t, x)σ (x)

 ,
where p = 2(x − y)/ϵ2. Using the Lipschitz continuity of σ on B, the right side of the previous
inequality converges to b(x0) |∇φ(t0, x0)σ (x0)| as ϵ, α → 0. The rest argument is the same with
that in Lemma 3.7 in [4]. �
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In what follows we are going to construct a supersolution to (3.8), using the Lyapunov function
Ψ in (H9).

Lemma 3.7. Assume that the strict positive function Ψ in (H9) exists. Then Φ(t, x) :=

eL(T −t)Ψ(x), for sufficiently large L, satisfies

−∂tΦ − LΦ − µΦ − b|∇Φσ | > 0, in [0, T ] × (0,∞)d .

Proof. Since Ψ(x) → ∞ as x → x ∈ O or |x | → ∞,Ψ being strictly positive implies that
m := minx∈(0,∞)d Ψ(x) > 0. It then follows from (H9.i) and (H9.iv) that

−∂tΦ(t, x)− LΦ(t, x)− µΦ(t, x)− b(x) |∇xΦ(t, x)σ (x)|

≥ LΦ(t, x)− λeL(T −t)
− λΦ(t, x)− µΦ(t, x)− cΦ(t, x).

Since Φ(t, x) ≥ m on [0, T ] × (0,∞)d , one can choose sufficiently large L such that the right
side of the previous inequality is strictly positive on [0, T ] × (0,∞)d . �

Proof of Theorem 1.16. We are going to show that w = u − v satisfies w(t, x) ≤ αΦ(t, x) in
[0, T ] × (0,∞)d for any α > 0. Sending α to zero, we obtain u ≤ v on [0, T ] × (0,∞)d .

To prove the claim, let us consider M(t, x) := (w∗(t, x)− αΦ(t, x)) eµt . Since u and v are
nonnegative and bounded from above by C(1 + x) for some constant C , moreover (H9.ii) and
(H9.iii) imply that Φ(t, x) → ∞ as x → x ∈ O and lim|x |→∞ Φ(x)/x = ∞, then there exists a
compact domain B ⊂ (0,∞)d such that M(t, x) < 0 for (t, x) ∈ [0, T ]× Bc. On the other hand,
since M is upper semi-continuous, it attains its maximum in [0, T ] × B at a point, say (t0, x0).
We can assume that M(t0, x0) > 0, otherwise M ≤ 0 on [0, T ]× (0,∞)d and we are done. As a
result (t0, x0) is the global maximum point of M on [0, T ] × (0,∞)d and w∗(t0, x0) > 0, which
implies t0 < T thanks to u∗(T, x) ≤ g(x) ≤ v∗(T, x).

From the maximum point property, we obtain that

w∗(t, x)− αΦ(t, x) ≤

w∗(t0, x0)− αΦ(t0, x0)


eµ(t0−t),

for any (t, x) ∈ [0, T ] × (0,∞)d .

This inequality implies that w∗
− φ attains its global maximum point at (t0, x0), where

φ(t, x) = αΦ(t, x)+

w∗(t0, x0)− αΦ(t0, x0)


eµ(t0−t).

Since w is a subsolution to (3.8), we have

−∂tφ(t0, x0)− Lφ(t0, x0)− µw∗(t0, x0)− b(x0) |∇φ(t0, x0)σ (x0)| ≤ 0.

But the left side of this inequality is

α [−∂tΦ(t0, x0)− LΦ(t0, x0)− µΦ(t0, x0)− b(x0) |∇Φ(t0, x0)σ (x0)|] .

We then obtain a contradiction with Lemma 3.7. �
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