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Abstract

In this paper we establish a weak and a strong law of large numbers for supercritical superprocesses
with general non-local branching mechanisms. Our results complement earlier results obtained for su-
perprocesses with only local branching. Several interesting examples are developed, including multitype
continuous-state branching processes, multitype superdiffusions and superprocesses with discontinuous
spatial motions and non-decomposable branching mechanisms.
c⃝ 2019 Elsevier B.V. All rights reserved.
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1. Introduction

A natural and interesting question in the theory of superprocesses is how fast the mass as-
signed to a compact set grows as time evolves. For superdiffusions, Engländer and Turaev [17]
proved a weak convergence of the ratio between the mass in a compact set and its expectation.
Later, weak (convergence in law or in probability) and strong (almost sure convergence) laws
of large numbers have been established for superdiffusions successively in [15,16,18,29] and
the references therein. For superprocesses where the spatial motion may have discontinuous
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paths, Chen et al. [8] is the first paper that established the almost sure limit theorems. They
showed that the principal eigenvalue of the L2-generator associated with the mean semigroup
determines asymptotic properties of the superprocesses. When the branching mechanism is
purely local, the corresponding L2-generator is a local perturbed Schrödinger operator (that
is, the operator obtained through Feynman–Kac transform by a positive continuous additive
functional). Motivated by their work, Wang [32] and Kouritzin and Ren [24] established the
strong law of large numbers (SLLN in abbreviation) for super-Brownian motions and super-
α-stable processes, where the branching mechanisms are quadratic and spatially independent.
The key ingredient in their work is Fourier analysis, which requires that the transition density
of the Feynman–Kac semigroup can be represented in terms of spectral measure and the
eigenfunctions of the Schrödinger operators. Very recently, a new approach to SLLN has been
taken in [9,15]. The core of their proofs is the skeleton decomposition, that represents the
(purely local branching) superprocess as an immigration process along a branching Markov
process, called the skeleton. An advantage of this method is that it enables one to transfer results
directly from the theory of branching Markov processes. However, for a general (non-local
branching) superprocess, even the existence of the skeleton needs to be justified.

In the above mentioned papers, the branching mechanisms are assumed to be purely local.
Unfortunately, there is less work on the limit theorems for non-local branching superprocesses.
In a recent paper, Kyprianou and Palau [26] established a spine decomposition for a multitype
continuous-state branching process (MCSBP in abbreviation) and used it to study extinction
properties. Concurrently to their work, a similar decomposition has been obtained by Chen
et al. [7] for a special class of multitype superdiffusions. This decomposition is further extended
in [30] to superprocess with a branching mechanism which has both local and non-local parts.
Very recently, Kyprianou et al. established in [27] the SLLN for a supercritical MCSBP. The
papers mentioned above concerned only special kinds of non-local branching superprocesses.
In fact, for a MCSBP (resp. a multitype diffusion), if one considers the E-valued spatial
motion on an enriched state space E × I , where I is the finite or countable set of types,
then the mutation in types is the jumps in the I -coordinates, and the associated Feynman–Kac
semigroup is generated by a matrix (resp. a coupled elliptic system, cf. Examples 3.7 and
3.8). So, the spectral theory of matrices (resp. the potential theory for elliptic systems) can be
applied. For a general non-local branching superprocess, the associated Schrödinger operator
takes the form J − a + γ , where J is the generator of underlying spatial motion, a is a
bounded function, γ is an integral operator, and a, γ are related to the branching mechanism
(cf. Eq. (4)). Since γ can be quite general, the methods mentioned above are not applicable
and a different approach is needed. In this paper, we characterize the Schrödinger operator
in terms of the associated bilinear form, and impose some technical assumptions ((A1)–(A3)
) to ensure the existence of a positive principal eigenvalue −λ1 and a ground state of the
Schrödinger operator. These conditions may look strong but they hold for a large class of
processes, and we illustrate this for several key examples in Section 3.2. Under these and
a few more assumptions, we show in Theorems 3.3 and 3.4 that the mass of a (non-local
branching) superprocess on every compact set grows exponentially at rate −λ1, and the ground
state determines the asymptotic distribution. Our proof of SLLN follows two main steps, first to
obtain the SLLN along lattice times and then to extend it to all times through approximation
of bounded functions by resolvent functions. Our approach to the convergence along lattice
times relies on a stochastic integral representation of superprocesses (Proposition 4.3). This
representation enables one to decompose the superprocess into (not necessarily orthogonal or
worthy) martingale measures, and therefore is useful in studying the structure properties of
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superprocesses. We are not the first ones to use stochastic analysis to study the limit theorems
of superprocesses. A similar idea was used in [27] for MCSBPs and in [29] for superdiffusions
on bounded domains. However, in this paper, we extend this idea much further by considering
superprocesses where the spacial motion may be discontinuous and the branching mechanism
is allowed to be non-local.

The remainder of this paper is organized as follows. We start Section 2 with a review on
definitions and basic properties of symmetric Borel right processes, non-local branching super-
processes, mean semigroups and the associated bilinear forms. In Section 3 we present the main
results on weak and strong laws of large numbers and give concrete examples. In Section 4,
we investigate the martingale problem and establish a stochastic integral representation for
superprocesses. Finally, in the last section we give the proofs of the main results.

2. Preliminaries

Throughout this paper, “:=” means “is defined to be”. Suppose that E is a Luzin topological
space with Borel σ -algebra B(E) and m is a σ -finite measure on (E,B(E)) with full support.
Let E∂ := E ∪ {∂} be the one-point compactification of E . Any function f on E will be
automatically extended to E∂ by setting f (∂) = 0. Let M(E) denote the space of finite Borel
measures on E topologized by the weak convergence and M(E)0

:= M(E) \ {0} where 0
denotes the null measure. For µ a measure on B(E) and f , g measurable functions, let ⟨ f, µ⟩ :=∫

E f (x)µ(dx) and ( f, g) :=
∫

E f (x)g(x)m(dx) whenever the integrals make sense. Sometimes
we also write µ( f ) for ⟨ f, µ⟩. For a function f on E , ∥ f ∥∞ := supx∈E | f (x)|. If f (x, t) is
a function on E × [0,+∞), we say f is locally bounded if supt∈[0,T ] supx∈E | f (x, t)| < +∞

for every T ∈ (0,+∞). We use Bb(E) (respectively, B+(E) or C(E)) to denote the space
of bounded (respectively, nonnegative or continuous) measurable functions on (E,B(E)). For
a, b ∈ R, let a ∧ b := min{a, b} and a−

:= max{−a, 0}.

2.1. Spatial motion

Let ξ = (Ω ,H,Ht , θt , ξt ,Πx , ζ ) be an m-symmetric Borel right process on E , where
{Ht : t ≥ 0} is the associated natural filtration, {θt : t ≥ 0} is a time-shift operator of ξ
satisfying ξt ◦ θs = ξt+s for s, t ≥ 0, and ζ := inf{t > 0 : ξt = ∂} is the lifetime of ξ . Denote
by {Pt : t ≥ 0} the transition semigroup of ξ , in other words,

Pt f (x) := Πx [ f (ξt )] , ∀ f ∈ B+(E).

It is known that {Pt : t ≥ 0} can be uniquely extended to a strongly continuous contraction
semigroup on L2(E,m), which we also denote by {Pt : t ≥ 0} (cf. [5, Lemma 1.1.14]). Then,
by the theory of Dirichlet forms, there exists a symmetric quasi-regular Dirichlet form (E,F)
on L2(E,m) associated with ξ :

F =

{
u ∈ L2(E,m) : sup

t>0

1
t

∫
E
(u(x) − Pt u(x)) u(x)m(dx) < +∞

}
,

E(u, v) = lim
t→0

1
t

∫
E
(u(x) − Pt u(x)) v(x)m(dx), ∀u, v ∈ F .

Moreover, this process is quasi-homeomorphic to a Hunt process associated with a regular
Dirichlet form on a locally compact separable metric space (cf. [21]) and all of the results
of [21] can be applied to ξ and its Dirichlet form. Henceforth, we may and do assume that
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ξ is an m-symmetric Hunt process on a locally compact separable metric space associated
with a regular Dirichlet form (E,F). In addition, we assume that ξ admits a transition density
p(t, x, y) with respect to the measure m, which is symmetric in (x, y) for each t > 0.

2.2. Non-local branching superprocesses

In this paper, we consider a superprocess X := {X t : t ≥ 0} associated to the spatial motion
ξ and a (non-local) branching mechanism ψ given by

ψ(x, f ) := a(x) f (x) + b(x) f (x)2
− η(x, f )

+

∫
M(E)0

(
e−ν( f )

− 1 + ν({x}) f (x)
)

H (x, dν),
(1)

for x ∈ E and f ∈ B+

b (E), where a(x) ∈ Bb(E), b(x) ∈ B+

b (E), η(x, dy) is a bounded kernel
on E and H (x, dν) is a σ -finite kernel from E to M(E)0 such that

sup
x∈E

∫
M(E)0

(
ν(1) ∧ ν(1)2

+ νx (1)
)

H (x, dν) < +∞.

Here, νx (dy) denotes the restriction of ν(dy) to E \ {x}. To be specific, X is a M(E)-valued
Markov process satisfying that for every f ∈ B+

b (E) and every µ ∈ M(E),

Pµ
(
e−⟨ f,X t ⟩

)
= e−⟨Vt f,µ⟩, for t ≥ 0,

where Vt f (x) := − log Pδx

(
e−⟨ f,X t ⟩

)
is the unique nonnegative locally bounded solution to the

integral equation

Vt f (x) = Pt f (x) − Πx

[∫ t

0
ψ(ξs, Vt−s f )ds

]
.

Such a process is defined in [28] via its log-Laplace functional and referred to as the (Pt , ψ)-
superprocess. The branching mechanisms defined in (1) are quite general. For example, let

φL (x, λ) := a(x)λ+ b(x)λ2
+

∫
(0,+∞)

(
e−λu

− 1 + λu
)
π L (x, du), (2)

for x ∈ E and λ ≥ 0, where (u ∧ u2)π L (x, du) is a bounded kernel from E to (0,+∞), and

φN L (x, f ) := −η(x, f ) +

∫
M(E)0

(
e−ν( f )

− 1
)
π N L (x, dν)

for x ∈ E and f ∈ B+(E), where ν(1)π N L (x, dν) is a bounded kernel from E to M(E)0.
Then (x, f ) ↦→ φL (x, f (x)) + φN L (x, f ) is a branching mechanism that can be represented
in the form of (1). A branching mechanism of this type is said to be decomposable with
local part φL and non-local part φN L . In particular, if the non-local part equals 0, we call
such a branching mechanism purely local. Another usual way to define superprocesses with a
decomposable branching mechanism is as a scaling limit of a sequence of branching particle
systems (cf. [13,14,28]).

We can rewrite (1) into

ψ(x, f ) = a(x) f (x) + b(x) f (x)2
− γ (x, f )

+

∫
M(E)0

(
e−ν( f )

− 1 + ν( f )
)

H (x, dν),
(3)
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where γ (x, dy) := η(x, dy) +
∫
M(E)0 νx (dy)H (x, dν) is a bounded kernel on E . We note that,

ψ given by (3) is purely local if and only if γ (x, 1) = 0 for all x ∈ E .
By [28, Theorem 5.12], a (Pt , ψ)-superprocess X has a right realization in M(E). Let us

denote by W+

0 the space of right continuous paths from [0,+∞) to M(E) having zero as a
trap. Here, we assume that X is the coordinate process in W+

0 and (Ft )t∈[0,∞] is the filtration
generated by the coordinate process, which is completed with the class of Pµ-negligible
measurable sets for every µ ∈ M(E). We emphasize that the branching mechanisms considered
in this paper are allowed to be non-local and non-decomposable. In Section 3.2 we give a
concrete example of a non-local and non-decomposable branching mechanism (Example 3.9).

2.3. Mean semigroups and the associated bilinear forms

It is known from [28, Proposition 2.27] that for every µ ∈ M(E) and f ∈ Bb(E),

Pµ (⟨ f, X t ⟩) = ⟨Pt f, µ⟩,

where Pt f (x) is the unique locally bounded solution to the integral equation

Pt f (x) = Pt f (x) − Πx

[∫ t

0
a(ξs)Pt−s f (ξs)ds

]
+ Πx

[∫ t

0
γ (ξs,Pt−s f )ds

]
. (4)

By the Markov property of X , the operator Pt satisfies the semigroup property, i.e., PtPs =

Pt+s for all t, s ≥ 0. Moreover, Pt admits a transition density p(t, x, y) with respect to the
measure m. In fact, if m(B) = 0 for some B ⊂ E , then by the hypothesis Pt 1B(x) = 0 for all
t ≥ 0 and x ∈ E . Therefore, Pt 1B(x) = 0 is the unique locally bounded solution to (4) for
f = 1B . This implies that Pt ≪ m and p(t, x, y) exists.

We now introduce a class of nonnegative smooth measures on E (cf. [4]).

Definition 2.1. A nonnegative measure µ on E is called a smooth measure of ξ if there is a
positive continuous additive functional Aµt of ξ such that∫

E
f (x)µ(dx) = lim

t→0

1
t
Πm

[∫ t

0
f (ξs)dAµs

]
, ∀ f ∈ B+(E).

Here, Πm(·) :=
∫

E Πx (·)m(dx). In this case, µ is also called the Revuz measure of Aµt .
Moreover, we say that a smooth measure µ belongs to the Kato class K(ξ ), if

lim
t↓0

sup
x∈E

∫ t

0

∫
E

p(s, x, y)µ(dy)ds = 0.

A function g is said to be in the class K(ξ ) if the measure g(x)m(dx) is in K(ξ ).

Clearly all bounded measurable functions are included in K(ξ ). It is known (see, e.g.,
[1, Proposition 2.1.(i)] and [31, Theorem 3.1]) that if ν ∈ K(ξ ), then for every ϵ > 0 there is
some constant Aϵ > 0 such that∫

E
u(x)2ν(dx) ≤ ϵ E(u, u) + Aϵ

∫
E

u(x)2m(dx), ∀u ∈ F . (5)

First, we assume the following condition holds.∫
E
γ (x, dy)m(dx) is a Kato measure of ξ. (A1)
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Under condition (A1), it follows from (5), the boundedness of x ↦→ γ (x, 1), and the
inequality

|u(x)u(y)| ≤
1
2

(u(x)2
+ u(y)2)

that for every ϵ > 0, there is a constant Kϵ > 0 such that∫
E

∫
E

u(x)u(y)γ (x, dy)m(dx) ≤ ϵ E(u, u) + Kϵ

∫
E

u(x)2m(dx), ∀u ∈ F .

It follows that the bilinear form (Q,F) defined by

Q(u, v) := E(u, v) +

∫
E

a(x)u(x)v(x)m(dx) −

∫
E

∫
E

u(y)v(x)γ (x, dy)m(dx)

for every u, v ∈ F is closed and that there are positive constants K and β0 such that
Qβ0 (u, u) := Q(u, u) + β0(u, u) ≥ 0 for all u ∈ F , and

|Q(u, v)| ≤ KQβ0 (u, u)1/2Qβ0 (v, v)1/2, ∀u, v ∈ F .

Then, from [25], for the closed form (Q,F) on L2(E,m), there corresponds a unique pair of
strongly continuous, dual semigroups {Tt : t ≥ 0} and {T̂t : t ≥ 0} on L2(E,m) satisfying that
∥Tt∥L2(E,m) ≤ eβ0t , ∥T̂t∥L2(E,m) ≤ eβ0t , and that for all α > β0,

Qα(Gα f, g) = Qα(g, Ĝα f ) = ( f, g), ∀ f ∈ L2(E,m), g ∈ F .

Here Gα f :=
∫

+∞

0 e−αt Tt f dt and Ĝα f :=
∫

+∞

0 e−αt T̂t f dt .
We make two more assumptions. Assume that

a(x), γ (x, 1) ∈ L2(E,m), (A2)

and that, there exist a constant λ1 < 0 and strictly positive functions h, ĥ ∈ F with h bounded
continuous, ∥h∥L2(E,m) = 1 and (h, ĥ) = 1 such that

Q(h, v) = λ1(h, v), Q(v, ĥ) = λ1(v, ĥ), ∀v ∈ F . (A3)

It is proved in [30] that under (A1)–(A2), for every t > 0, Tt is the unique bounded linear
operator on L2(E,m) which is equal to Pt on L2(E,m) ∩ Bb(E). More precisely, for all
f ∈ L2(E,m) ∩ Bb(E), Tt f = Pt f in L2(E,m). On the other hand, condition (A3) implies
that Tt h = e−λ1t h and T̂t ĥ = e−λ1t ĥ in L2(E,m) for all t ≥ 0. Therefore, conditions (A1)–(A3)
amount to saying that −λ1 is the principal eigenvalue of the L2-generator of the semigroup
(Pt )t≥0, and that h is the associated ground state.

Let us make a short remark on (A3). In the case of a purely local branching mechanism
where ψ = φL is given in (2), the associated L2-generator of (Pt )t≥0 takes the form J − a,
where J denotes the L2-generator of underlying spatial motion. In this case, condition (A3) is
satisfied, for instance, by symmetric diffusions on bounded smooth domains in Rd as well as
symmetric α-stable processes on Rd (cf. Example 3.6 and the references therein). In Section 3.2
we give more examples of non-local branching superprocesses for which conditions (A1)–(A3)
are satisfied.

3. Main results and examples

3.1. Statements of the main results

Now we are going to present the main results of this paper. The first one relates the principal
eigenvalue of Pt and the associated ground state with a martingale.
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Proposition 3.1. Suppose (A1)–(A3) hold. For every µ ∈ M(E), W h
t (X ) := eλ1t

⟨h, X t ⟩ is a
non-negative Pµ-martingale with respect to the filtration {Ft : t ≥ 0}.

We assume the following condition holds for the remainder of this paper.

The operators f ↦→ ψ(·, f ) and f ↦→ γ (·, f ) − a(·) f (·) preserve Cξb (E). (A4)

Here Cξb (E) denotes the set of bounded measurable functions that are finely continuous with
respect to ξ .

Let W h
∞

(X ) be the martingale limit of W h
t (X ). Our second result gives the L p-convergence

of W h
t (X ) for a p ∈ (1, 2].

Theorem 3.2. Suppose (A1)–(A4) hold. If there is p ∈ (1, 2] such that

sup
x∈E

h−1(x)
∫
M(E)0

ν(h)p H (x, dν) < +∞, (A5)

then, W h
t (X ) converges to W h

∞
(X ) in L p(Pµ) for every µ ∈ M(E).

We define the operators

P̃t f (x) =
eλ1t

h(x)
Pt ( f h)(x) (6)

and

p̃t (t, x, y) =
eλ1t

h(x )̂h(y)
p(t, x, y), (7)

for t ≥ 0, x, y ∈ E , f ∈ B+

b (E), where p(t, x, y) is the transition density of Pt with respect
to m. An intuition of the above operators is given in Section 5.1, where it is showed that they
can be seen, respectively, as the transition semigroup and the transition density function (with
respect to hĥm) of an auxiliary process ξ̃ , see Proposition 5.2 and Remark 5.3.

Theorem 3.3 (Weak Law of Large Numbers). Suppose (A1)–(A5) hold. If

lim
t→+∞

sup
x∈E

essup
y∈E

| p̃(t, x, y) − 1| = 0, (A6)

then, for any µ ∈ M(E) and f ∈ B+(E) with f/h bounded,

lim
t→+∞

eλ1t
⟨ f, X t ⟩ = ( f, ĥ)W h

∞
(X ) in L p(Pµ).

Theorem 3.4 (Strong Law of Large Numbers). Suppose (A1)–(A6) hold. If

lim
t→0+

∥P̃tφ − φ∥∞ = 0 ∀φ ∈ C0(E), (A7)

where C0(E) denotes the space of bounded continuous functions that vanish at ∂ , then, there
exists Ω0 of Pµ-full probability for every µ ∈ M(E), such that on Ω0, for every m-almost
everywhere continuous function f with f/h bounded,

lim
t→+∞

eλ1t
⟨ f, X t ⟩ = ( f, ĥ)W h

∞
(X ).

The proofs of the above results will be given in Section 5.
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Remark 3.5. In this paper we assume that the spatial motion is a symmetric Borel right
process. This assumption is not necessary. An extension is possible, at least, to some extent.
One direction is to assume that the spatial motion is a transient Borel standard process on a
Luzin space, which has a strong dual process. Definitions of smooth measures and the Kato
class can then be extended, while still preserving the properties used in this paper. We refer the
readers to [4,10] for the Kato class measures defined in this way. Therefore, methods in this
paper can be applied to establish the LLN for such superprocesses. Nevertheless, we keep to
the less general class of spatial motions in this paper for the sake of mathematical convenience.

3.2. Examples

In what follows, we will illustrate our main results by several concrete examples for which
the branching mechanisms are local or non-local.

Example 3.6. In the case of a purely local branching mechanism where ψ = φL is given by
(2), the auxiliary process ξ̃ moves as a copy of the Doob h-transformed process ξ h of the spatial
motion (cf. Proposition 5.1 and Remark 5.3). Therefore, conditions (A5)–(A7) are reduced to
the following:

(A5’) supx∈E h(x)p−1
∫

0,+∞
u pπ L (x, du) < +∞ for some p ∈ (1, 2];

(A6’) limt→+∞ supx∈E essupy∈E |ph(t, x, y) − 1| = 0;
(A7’) limt→0+ ∥Ph

t φ − φ∥∞ = 0 ∀φ ∈ C0(E),
where Ph

t denotes the transition semigroup of ξ h and ph(t, x, y) denotes its transition density
with respect to the measure m̃(dy) = h(y)2m(dy). There is a large class of (purely local
branching) superprocesses that satisfies conditions (A1)–(A7), see for example, [9, Examples
1,2,4,5]. Therefore, Theorems 3.3 and 3.4 can be applied to these superprocesses.

Example 3.7. Suppose E = {1, 2, . . . , K }, m is the counting measure on E and Pt f (i) = f (i)
for all i ∈ E , t ≥ 0 and f ∈ B+(E). For i ∈ E and u = (u1, u2, . . . , uK )T

∈ [0,+∞)K , define
the function

ψ(i, u) := ai ui + bi u2
i − u · ηi +

∫
(0,+∞)K

(
e−u· y

− 1 + u · y
)
Γi (d y), (8)

where u · y =
∑

i∈E ui yi is the inner product of two vectors, ai ∈ (−∞,+∞), bi ≥ 0,
ηi = (ηi1, . . . , ηi K )T

∈ [0,∞)K , and Γi (d y) is a measure on (0,+∞)K such that∫
(0,+∞)K

(1 · y) ∧ (1 · y)2Γi (d y) < +∞ and
∫

(0,+∞)K
y jΓi (d y) ≤ ηi j for i ̸= j ∈ E .

Without loss of generality we can assume that ηi i = 0 for all i ∈ E (otherwise, we can change
the value to ai ). We assume that there is a p ∈ (1, 2] such that∫

(0,+∞)K

K∑
j=1

y p
j Γi (d y) < +∞, ∀i ∈ E . (9)

As a special case of the model given in Section 2.2, we have a non-local branching superprocess
{X t : t ≥ 0} in M(E) with transition probabilities given by

Pµ
[
exp (−⟨ f, X t ⟩)

]
= exp (−⟨Vt f, µ⟩) for µ ∈ M(E), t ≥ 0 and f ∈ B+

b (E),
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where Vt f (i) is the unique nonnegative locally bounded solution to

Vt f (i) = f (i) −

∫ t

0
ψ(i, Vs f )ds for t ≥ 0, i ∈ E .

For every i ∈ E and µ ∈ M(E), we define µ(i)
:= µ({i}). The map µ ↦→ (µ(1), . . . , µ(K ))T is a

homeomorphism between M(E) and [0,+∞)K . Hence {(X (1)
t , . . . , X (K )

t )T
: t ≥ 0} is a Markov

process in [0,+∞)K , which is called a K -type continuous-state branching process (K -type
CSBP in abbreviation). Define the K × K matrix M(t) = (M(t)i j )i, j∈E by M(t)i j := Pδi

[
X ( j)

t

]
for i, j ∈ E . Let Pt denote the mean semigroup of X , that is

Pt f (i) := Pδi [⟨ f, X t ⟩] =

K∑
j=1

M(t)i j f ( j) for i ∈ E, t ≥ 0 and f ∈ B+(E).

According to [2, lemma 3.4],

M(t) = et AT
, t ≥ 0,

where the matrix A = (Ai j )i, j is given by Ai j = −aiδi j + ηi j and AT is its transpose. If AT

is irreducible, then Perron–Frobenius theory implies that there exist Λ ∈ R and right and left
eigenvectors h, ĥ ∈ RK

+
with all their coordinates strictly positive such that

M(t)h = eΛt h and ĥ
T

M(t) = eΛt ĥ
T
, for all t ≥ 0.

For convenience we shall normalize h and ĥ such that h · h = h · ĥ = 1. Moreover, we have

e−Λt M(t)i j → hi ĥ j as t → +∞ ∀i, j ∈ E . (10)

When Λ ≤ 0, the K -type CSBP is extinct a.s., in other words,

Pµ

(
lim

t→+∞
X (i)

t = 0
)

= 1

for any µ ∈ M(E) (cf. [26, Theorem 2] and [30, Example 7.1]). Henceforth we assume
Λ > 0. In view of (9) and (10), one can easily verify that conditions (A1)–(A5) hold for
λ1 = −Λ, h and ĥ and that (A6) holds with p̃(t, i, j) = e−Λt (hi ĥ j )−1 M(t)i j (cf. [30, Example
7.1]). The auxiliary process ξ̃ is a finite-state Markov chain and hence is a Feller process. So
condition (A7) is automatically true. We note that Wt (X ) := e−Λt ∑K

i=1 hi X (i)
t is a nonnegative

martingale. Applying Theorems 3.3 and 3.4, we conclude that for every µ ∈ M(E) and i ∈ E ,
limt→+∞ e−Λt X (i)

t = ĥi W∞ Pµ-a.s. and in L p(Pµ), where W∞ denotes the martingale limit of
Wt (X ). In particular on the event {W∞ > 0},

lim
t→+∞

X (i)
t∑K

j=1 X ( j)
t

=
ĥi∑K
j=1 ĥ j

Pµ-a.s.

The a.s. convergence of this result is also obtained in [27, Theorem 1.4].

Example 3.8. Suppose that S = {1, . . . , K }, D is a bounded C1,1 domain in Rd , and m is
the counting measure times the Lebesgue measure on E = S × D. Suppose L(i) (i ∈ S) is a
second order differential operator of the form

L(i)
=

d∑
n,m=1

∂

∂xn

(
α(i)

n,m(x)
∂

∂xm

)
on Rd ,
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where for every x ∈ Rd , B(i)(x) :=
(
α(i)

n,m(x)
)

1≤n,m≤d is a uniformly elliptic symmetric
matrix with α(i)

n,m(x) ∈ C2,γ (Rd ) and γ ∈ (0, 1). Here, C2,γ (Rd ) denotes the space of
two times continuous differentiable functions whose second order derivatives are γ -Hölder
continuous. Let (ξ (i),Π (i)) be a symmetric diffusion on Rd with generator L(i), and ξ (i),D

be the subprocess of ξ (i) killed upon leaving D. It is known that the semigroup of ξ (i),D ,
denoted by P (i),D

t , admits a transition density function p(i)
D (t, x, y) with respect to the Lebesgue

measure, which is symmetric in (x, y) for each t > 0. For f ∈ B+(E), we use the convention
f (x) = ( f (1, x), . . . , f (K , x))T

= ( f1(x), . . . , fK (x))T. Let ξ be a Markov process on E with
semigroup Pt f (i, x) := P (i),D

t fi (x) for f ∈ B+(E) and (i, x) ∈ E . Define the branching
mechanism

Ψ ((i, x), f ) := ψ(i, f (x)), ∀(i, x) ∈ E, f ∈ B+(E),

where ψ(i, ·) is given by (8)–(9) in Example 3.7. Suppose {X t : t ≥ 0} is a (Pt ,Ψ )-
superprocess in M(E). For every i ∈ E and µ ∈ M(E), we define µ(i)(A) := µ({i} × A).
The map µ ↦→ (µ(1), . . . , µ(K ))T is a homeomorphism between M(E) and M(D)K . Hence,
{(X (1)

t , . . . , X (K )
t )T

: t ≥ 0} is a Markov process in M(D)K , which is called a K -type
superdiffusion.

Let us denote by Pt the mean semigroup of X t , that is,

Pt f (i, x) = Pδ(i,x)

⎡⎣ K∑
j=1

⟨ f j , X ( j)
t ⟩

⎤⎦ .
In view of (20), we have

Pt f (i, x) = e−ai t P (i),D
t fi (x) +

∫ t

0
e−ai s

∑
j ̸=i

ηi j P ( j),D
s (Pt−s( j, ·))(x)ds

for every f ∈ Bb(E) and (i, x) ∈ E , where ai and ηi j are the linear local and non-local
parts of ψ(i, ·), respectively. Now let a0 := maxi∈S

(
−ai +

∑
j∈S ηi j

)
+ 1 and Qt f (i, x) :=

e−a0tPt f (i, x) for all f ∈ Bb(E). Then, Qt satisfies that

Qt f (i, x) = e−(ai +a0)t P (i),D
t fi (x)

+

∫ t

0
e−(ai +a0)s (ai + a0)

∑
j ̸=i

ηi j

ai + a0
P ( j),D

s (Qt−s( j, ·))(x)ds.

This implies that Qt is the semigroup of a switched diffusion (Θt ,Ξt )t≥0 on E with generator

Su =

⎛⎜⎜⎜⎝
L(1) 0 · · · 0

0 L(2)
· · · 0

...
...

. . .
...

0 0 · · · L(K )

⎞⎟⎟⎟⎠ u + Qu, ∀u : D ↦→ RK

where Q = (qi j )1≤i, j≤K is given by −qi i = ai + a0 and qi j = ηi j for i ̸= j . The movement
of the switched diffusion (Θt ,Ξt )t≥0 is described as follows: The process Θ moves as an
S-valued Markov chain with intensity matrix Q. When Θ is in a state j ∈ S, Ξ moves as
an independent copy of ξ ( j),D until Θ has a jump. When Θ changes from j to another state
k ∈ S, Ξ immediately and continuously evolves as an independent copy of ξ (k),D and so on,
until the lifetime of Θ . It is known by [11, Theorem 5.3] that Qt admits a transition density
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function q(t, (i, x), ( j, y)) with respect to m. Moreover by [11, Theorem 5.3] one can deduce
that for every i, j ∈ S and t > 0, (x, y) ↦→ q(t, (i, x), ( j, y)) is jointly continuous and that
there are positive constants t0, ci , i = 1, . . . , 4 such that

c1 p0(c2t, x, y) ≤ q(t, (i, x), ( j, y)) ≤ c3 p0(c4t, x, y), ∀t ∈ (0, t0], i, j ∈ S, (11)

where p0(t, x, y) is the transition density of a killed Brownian motion in D. It follows
immediately that Pt has a transition density p(t, (i, x), ( j, y)) with respect to m which satisfies
that

c1ea0 p0(c2t, x, y) ≤ p(t, (i, x), ( j, y)) ≤ c3ea0t p0(c4t, x, y), ∀t ∈ (0, t0], i, j ∈ S.

Note that
∫

E2 p(t, (i, x), ( j, y))2m(di, dx)m(d j, dy) < +∞ for every t ∈ (0, t0]. Thus Pt is
a Hilbert–Schmidt operator in L2(E,m) and hence is compact. The same is true for its dual
operator P̂t . If we use σ (L) and σ (L̂) to denote the spectrum of the generators of Pt and P̂t

respectively, then it follows by Jentzch’s theorem that −λ1 := sup ℜ(σ (L)) = sup ℜ(σ (L̂)) is
a simple eigenvalue for both L and L̂, and that an eigenfunction h of L associated with −λ1

and an eigenfunction ĥ of L̂ associated with −λ1 can be chosen strictly positive on E and
satisfying

∫
E h2dm =

∫
E hĥdm = 1. It is proved in [7, Section 3] that there exists a constant

c5 > 1 such that

c−1
5 δD(x) ≤ h(i, x), ĥ(i, x) ≤ c5δD(x), ∀(i, x) ∈ E . (12)

Here, δD(x) denotes the Euclidean distance between x and the boundary of D. We assume
λ1 < 0. One can easily verify that conditions (A1)–(A5) hold for this example. Moreover,

p̃(t, (i, x), ( j, y)) =
eλ1tp(t, (i, x), ( j, y))

h(i, x)ĥ( j, y)
=

e(λ1+a0)t q(t, (i, x), ( j, y))

h(i, x)ĥ( j, y)
. (13)

In view of (11) and (12), one can apply a similar argument as in [7, section 3] to show that
the semigroup Qt is intrinsically ultracontractive, i.e. for any t > 0 there is a constant ct > 0
such that

q(t, (i, x), ( j, y)) ≤ ct h(i, x)ĥ( j, y), ∀(i, x), (i, y) ∈ E .

As a consequence, there exist constants t1, c6, c7 > 0 such that

| p̃(t, (i, x), ( j, y)) − 1| ≤ c6e−c7t , ∀t > t1, (i, x), ( j, y) ∈ E .

Hence, condition (A6) is satisfied. It is known that there are positive constants Ci , i = 1, . . . , 4
such that for any t ∈ (0, 1] and x, y ∈ D,

C1

(
δD(x)
√

t
∧ 1

)(
δD(y)
√

t
∧ 1

)
t−

d
2 e−

C2|x−y|
2

2 ≤ p0(t, x, y)

≤ C3

(
δD(x)
√

t
∧ 1

)(
δD(y)
√

t
∧ 1

)
t−

d
2 e−

C4|x−y|
2

2 . (14)

In view of (11)–(14), we can apply similar calculations as in [9, Example 3] to show
condition (A7) is satisfied. Let W∞ denote the limit of the nonnegative martingale Wt =

eλ1t ∑K
j=1⟨h j , X ( j)

t ⟩. Applying Theorems 3.3 and 3.4, we conclude that for every µ ∈ M(E),
i ∈ S and fi ∈ C+(D) with fi/hi bounded, limt→+∞ eλ1t

⟨ fi , X (i)
t ⟩ = W∞

∫
D fi (x)ĥi (x)dx

Pµ-a.s. and in L p(Pµ).
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Example 3.9. Suppose that E is a bounded C1,1 open set in Rd (d ≥ 1), m is the Lebesgue
measure on E , α ∈ (0, 2), β ∈ [0, α∧d) and that ξ = (ξt ,Πx ) is an m-symmetric Hunt process
on E satisfying the following conditions: (1) ξ has a Lévy system (N , t) where N = N (x, dy)
is a jumping kernel given by

N (x, dy) =
C1

|x − y|
d+α

dy, x, y ∈ E

for some constant C1 > 0.
(2) ξ admits a jointly continuous transition density p(t, x, y) with respect to m and that

there exists a constant C2 > 1 such that

C−1
2 qβ(t, x, y) ≤ p(t, x, y) ≤ C2qβ(t, x, y), ∀(t, x, y) ∈ (0, 1] × E × E,

where

qβ(t, x, y) =

(
1 ∧

δE (x)
t1/α

)β (
1 ∧

δE (y)
t1/α

)β (
t−d/α

∧
t

|x − y|
d+α

)
. (15)

Here δE (x) stands for the Euclidean distance between x and the boundary of E . One concrete
example of ξ is the killed symmetric α-stable process in E . In this case, (15) is satisfied with
β = α/2. Another example of ξ is the censored symmetric α-stable process in E introduced
in [3] when α ∈ (1, 2). In this case, (15) is satisfied with β = α− 1. In fact, by using [6], one
could also include the case when E is a d-set, α ∈ (0, 2) and ξ is an α-stable-like process in
E .

Suppose that the branching mechanism ψ is given by (1) and satisfies (A4). We further
assume that the kernel γ (x, dy) has a density γ (x, y) with respect to m, which satisfies that

γ (x, y) ≤ C3|x − y|
ϵ−d

∀x, y ∈ E

for some C3, ϵ > 0. It is proved in [30, Example 7.3] that (A1)–(A3) and (A6) are satisfied.
They also proved that the mean semigroup Pt of this superprocess has a density function
p(t, x, y) with respect to m such that (x, y) ↦→ p(t, x, y) is jointly continuous for each t > 0
and

C−1
4 qβ(t, x, y) ≤ p(t, x, y) ≤ C4qβ(t, x, y) ∀t ∈ (0, 1], x, y ∈ E, (16)

for some C4 > 1. Moreover,

C−1
5 δE (x)β ≤ h(x), ĥ(x) ≤ C5δE (x)β ∀x ∈ E (17)

for some C5 > 1. In view of (7) and (15)–(17), we can show condition (A7) by applying
similar calculations as in [9, Example 5]. Therefore, Theorems 3.3 and 3.4 can be applied to
this example as long as condition (A5) holds. By (17), condition (A5) is satisfied if and only
if there is a p ∈ (1, 2] such that

sup
x∈E

δ
−β

E (x)
∫
M(E)0

ν(δβE )p H (x, dν) < +∞. (18)

An example of a branching mechanism that satisfies (18) and cannot be decomposed into
local and non-local parts is

ψ(x, f ) = a(x) f (x) + b(x) f (x)2

+ c(x)
∫ 1

0

(
exp{−u f (x) − u2π (x, f )} − 1 + u f (x)

) 1
u1+θ

du,
(19)
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where θ ∈ (1, 2), a(x) ∈ Cb(E), b(x), c(x) ∈ C+

b (E), c(x) ≤ C6δE (x)β for some C6 > 0,
and π (x, dy) is a probability kernel on E which has a density function π (x, y) with respect
to m satisfying that π (x, y) ≤ C7|x − y|

ϵ−d for some ϵ,C7 > 0. In fact, ψ given by (19) can
be represented in the form of (3) with H (x, dν) being the image of c(x)u−1−θdu under the
mapping u ↦→ uδx (dy) + u2π (x, dy) of [0, 1] into M(E)0, and γ (x, dy) =

c(x)
2−θ
π (x, dy).

4. Martingale problems and representation of superprocesses

The martingale problem of superprocesses with branching mechanisms given by (1) is
studied in [28] under some Feller type assumptions and the assumption

sup
x∈E

∫
M(E)0

ν(1)2 H (x, dν) < +∞.

These conditions guarantee that the martingale measure induced by the martingale problem is
worthy. Using the worthy martingale measure, [28] establishes a representation for superpro-
cesses in terms of stochastic integrals. In this section, we shall drop the above L2-moment
condition and investigate the martingale problem under much weaker hypotheses. As a result,
we obtain the same type of representation for superprocesses when the underlying martingale
measures are not necessarily orthogonal or worthy. All martingales or local martingales
mentioned in this section will be relative to the filtration (Ft )t≥0 and the probability Pµ where
µ ∈ M(E).

4.1. Martingale problems of superprocesses

A measurable function f is said to be finely continuous relative to ξ if t ↦→ f (ξt ) is
a.s. right continuous on [0,+∞). Let Uα denote the α-resolvent of (Pt )t≥0, (in other words
Uα f (x) :=

∫
∞

0 e−αt Pt f (x)dt). Recall that Cξb (E) is the set of bounded measurable functions
that are finely continuous with respect to ξ . Fix an arbitrary β > 0, define D(A) := UβCξb (E),
and for any f = Uβg ∈ D(A) with g ∈ Cξb (E), set A f := β f − g. It is known (cf.
[28, A.6]) that (A, D(A)) : D(A) → Cξb (E) defines a linear operator which is independent
of β. Moreover for every f ∈ D(A), (Pt f − f )/t converges boundedly and pointwise to A f
as t → 0. We call (A, D(A)) the weak generator of ξ . For a measurable function f , we set

e f (t) := exp
(

−

∫ t

0
f (ξs)ds

)
, ∀t ≥ 0,

whenever it is well defined.

Lemma 4.1. Suppose f ∈ Bb(E). If f is finely continuous with respect to ξ , then t ↦→ ⟨ f, X t ⟩

is right continuous on [0,+∞) almost surely. If t ↦→ f (ξt ) has left limits on (0,+∞) a.s., then
so does t ↦→ ⟨ f, X t ⟩.

Proof. The idea of this proof is from [19, Theorem 3.5(a)]. For a function g ∈ Bb(E), we use
(Pg

t )t≥0 to denote the Feynman–Kac semigroup given by

Pg
t f (x) = Πx

[
eg(t) f (ξt )

]
, x ∈ E, f ∈ Bb(E).
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Using this notation, one can rewrite Pt f (x) given in (4) as follows

Pt f (x) = Pa
t f (x) +

∫ t

0
Pa

t−sγ (Ps f )(x)ds, t ≥ 0, x ∈ E, f ∈ Bb(E). (20)

By Gronwall’s inequality, we have

∥Pt f ∥∞ ≤ ec0t
∥ f ∥∞, ∀t ≥ 0, f ∈ Bb(E), (21)

where c0 := ∥γ (·, 1)∥∞ +∥a−
∥∞. Now choose an arbitrary constant q0 > c0. For t ≥ 0, define

the operator Qt : Bb(E) → Bb(E) by Qt f (x) := e−q0tPt f (x). It follows by (20) that

Qt f (x) = Pa+q0
t f (x) +

∫ t

0
Pa+q0

t−s γ (Qs f )(x)ds

= Pa+q0
t f (x) + Πx

[∫ t

0
ea+q0 (s) (a(ξs) + q0) κ̂(ξs, Qt−s f )ds

]
,

where κ̂(x, dy) := γ (x, dy)/(a(x) + q0) is a sub-Markov kernel on E . We extend κ̂(x, dy) to a
Markov kernel from E to E ∪ {∂} by setting κ̂(x, {∂}) = 1 −

∫
E κ̂(x, dy). Let ξ̂ be the Markov

process obtained through a “piecing out” procedure of [22] (see also Section 5.1) from an
infinite sequence of copies of the ea+q0 (t)-subprocess of ξ , and the instantaneous distribution
κ̂ . Then (Qt )t≥0 defined above is the semigroup corresponding to ξ̂ . It follows by [28, Theorem
A.43] that (Qt )t≥0 induces the same fine topology on E as (Pt )t≥0.

Now fix an arbitrary µ ∈ M(E). Let {Tn : n ≥ 1} be a decreasing sequence of bounded
Ft -stopping times with limit T . Define νn ∈ M(E) by

νn( f ) := Pµ
[
e−q0Tn ⟨ f, XTn ⟩

]
, ∀ f ∈ Bb(E),

and define ν analogously with Tn replaced by T . Let Uq0 f (x) :=
∫

+∞

0 Qt f (x)dt for all
f ∈ Bb(E). One can easily show by strong Markov property and Fubini’s theorem that

νn
(
Uq0 f

)
= Pµ

[∫
+∞

Tn

e−q0s
⟨ f, Xs⟩ds

]
for every f ∈ Bb(E). Hence, νn(Uq0 f ) ↑ ν(Uq0 f ) as n → +∞. If f is finely continuous
relative to ξ , it is also finely continuous relative to ξ̂ , and so by [19, Proposition 3.3], we
have νn( f ) → ν( f ). Since {Tn : n ≥ 1} is arbitrary, [12, VI.48] yields the almost sure right
continuity of t ↦→ e−q0t

⟨ f, X t ⟩. Hence, we prove the first assertion. The second assertion
follows analogously from [19, Proposition 3.4(a)]. □

We note that by definition every f ∈ D(A) is a β-excessive function relative to (Pt )t≥0 and
thus t ↦→ f (ξt ) is càdlàg almost surely. This together with Lemma 4.1 implies that t ↦→ ⟨ f, X t ⟩

is càdlàg almost surely for every f ∈ D(A).
Let N (ds, dν) be the random measure on R+

× M(E)0 defined by

N (ds, dν) :=

∑
s≥0

1{∆Xs ̸=0}δ(s,∆Xs )(ds, dν).

Here, we use the standard notation ∆Xs := Xs −Xs− for the jump of X at time s. Let N̂ (ds, dν)
be the predictable compensator of N (ds, dν) and Ñ (ds, dν) := N (ds, dν) − N̂ (ds, dν) be the
compensated random measure. In view of condition (A4) and the argument above, one can
prove the following result in the same way as [28, Theorem 7.13].

Theorem 4.2. Suppose (A4) holds. The following statements are true.
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(i) The predictable compensator N̂ (ds, dν) is given by

N̂ (ds, dν) = ds
∫

E
Xs−(dx)H (x, dν)

where H (x, dν) is the kernel associated with the non-linear part in (1).
(ii) The superprocess (X t )t≥0 has no negative jumps, that is, for any s ≥ 0, ∆Xs is a

nonnegative random measure. For any f ∈ D(A), the process

Mt ( f ) := ⟨ f, X t ⟩ − ⟨ f, X0⟩ −

∫ t

0
⟨A f + γ f − a f, Xs⟩ds, t ≥ 0,

is a càdlàg martingale.
(iii) For all f ∈ D(A), Mt ( f ) has a unique decomposition

Mt ( f ) = Mc
t ( f ) + Md

t ( f ), t ≥ 0,

where t ↦→ Mc
t ( f ) is a square integrable continuous martingale with quadratic variation

⟨Mc( f )⟩t = 2
∫ t

0 ⟨b f 2, Xs⟩ds, and

t ↦→ Md
t ( f ) =

∫ t

0

∫
M(E)0

ν( f )Ñ (ds, dν)

is a purely discontinuous martingale.

4.2. A representation for superprocesses

For f ∈ D(A), it will be convenient to write

Mt ( f ) =

∫ t

0

∫
E

1{s≤t} f (x)M(ds, dx).

We shall show in the following that the stochastic integral
∫ t

0

∫
E ϕ(s, x)M(ds, dx) can be de-

fined formally for a large class of integrands ϕ(s, x), which includes the functions {1{s≤t} f (x) :

t ≥ 0, f ∈ D(A)} as a subclass.
Let (ω, s, ν) ↦→ F(ω, s, ν) be a predictable function on W+

0 × R+
× M(E)0 such that

Pµ

⎡⎣(∑
s≤t

F(s,∆Xs)21{∆Xs ̸=0}

)1/2
⎤⎦ < +∞, ∀t ≥ 0. (22)

Then, following [23, Section II.1d], one can define the stochastic integral of F with respect to
the compensated measure Ñ (ds, dν), denoted by∫ t

0

∫
M(E)0

F(s, ν)Ñ (ds, dν),

as the unique purely discontinuous local martingale whose jumps are indistinguishable from
the process F(s,∆Xs)1{∆Xs ̸=0}. Condition (22) holds in the special case where F(ω, s, ν) =

Fϕ(ω, s, ν) =
∫

E ϕ(s, x)ν(dx) and ϕ is a bounded measurable function on R+
× E . Indeed, in

this case we have

Pµ

⎡⎣(∑
s≤t

Fϕ(s,∆Xs)21{∆Xs ̸=0}

)1/2
⎤⎦ ≤ sup

s≥0
x∈E

ϕ(s, x)|Pµ

⎡⎣(∑
s≤t

∆Xs(1)21{∆Xs ̸=0}

)1/2
⎤⎦
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where ∆Xs(1) = ⟨1,∆Xs⟩. Moreover, we have

Pµ

⎡⎣(∑
s≤t

∆Xs(1)21{∆Xs ̸=0}

)1/2
⎤⎦

≤ Pµ

⎡⎣(∑
s≤t

∆Xs(1)21{∆Xs (1)≤1}

)1/2
⎤⎦+ Pµ

⎡⎣(∑
s≤t

∆Xs(1)21{∆Xs (1)>1}

)1/2
⎤⎦

≤ Pµ

[∑
s≤t

∆Xs(1)21{∆Xs (1)≤1}

]1/2

+ Pµ

[∑
s≤t

∆Xs(1)1{∆Xs (1)>1}

]
In the first inequality, we use the fact that (a+b)1/2

≤ a1/2
+b1/2 for any a, b ≥ 0. In the second

inequality, we use Jensen’s inequality and the fact that (a1 + · · · + an)1/2
≤ a1/2

1 + · · · + a1/2
n

for any n ≥ 1 and a1, . . . , an ≥ 0, respectively, to get the first and the second term. Therefore,
by Theorem 4.2(i) we get

Pµ

⎡⎣(∑
s≤t

∆Xs(1)21{∆Xs ̸=0}

)1/2
⎤⎦

≤ Pµ

[∫ t

0
ds
∫

E
Xs−(dx)

∫
M(E)0

ν(1)21{ν(1)≤1} H (x, dν)
]1/2

+ Pµ

[∫ t

0
ds
∫

E
Xs−(dx)

∫
M(E)0

ν(1)1{ν(1)>1} H (x, dν)
]
. (23)

In view of the fact that ν(1) ∧ ν(1)2 H (x, dν) is a bounded kernel from E to M(E)0, we can
show by (21) that the expectations on the right hand side are finite. In the sequel, we will write

Md
t (ϕ) =

∫ t

0

∫
E
ϕ(s, x)Md (ds, dx) :=

∫ t

0

∫
M(E)0

Fϕ(s, ν)Ñ (ds, dν)

for every ϕ ∈ Bb(R+
× E).

Define a random measure η on R+
× E × E by

η(ds, dx, dy) := ds
∫

E
Xs(dz)2b(z)δz(dx)δz(dy).

Immediately by (21) we have

Pµ

[⏐⏐⏐⏐∫ t

0

∫
E2
η(ds, dx, dy)

⏐⏐⏐⏐] ≤ 2∥b∥∞Pµ

[∫ t

0
Xs(1)ds

]
< +∞.

Theorem 4.2(iii) yields that ⟨Mc( f )⟩t =
∫ t

0

∫
E2 f (x) f (y)η(ds, dx, dy) for every f ∈ D(A).

Thus, by Doob’s martingale inequality

Pµ

[
sup

0≤s≤t
|Mc

s ( f ) − Mc
s (g)|2

]
≤ 4Pµ

[∫ t

0

∫
E2

| f (x) − g(x)|| f (y) − g(y)|η(ds, dx, dy)
]

for all f, g ∈ D(A). Using the above two inequalities and the fact that any element of Cb(E)
is the bounded pointwise limit of a sequence from D(A), one can extend the linear map
D(A) ∋ f ↦→ Mc( f ) to a martingale functional {Mc( f ), f ∈ Cb(E)} in the same way as
[28, Section 7.3], and then further extend it to a martingale measure Mc(ds, dx) on R+

× E ,
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which satisfies that

Mc
t ( f ) =

∫ t

0

∫
E

f (x)Mc(ds, dx), ∀t ≥ 0, f ∈ D(A),

and has covariance measure η(ds, dx, dy). Let (ω, s, x) ↦→ G(ω, s, x) be a predictable function
on W+

0 × R+
× E such that

Pµ

[∫ t

0
ds
∫

E
2b(x)G2(s, x)Xs(dx)

]
< +∞, ∀t ≥ 0. (24)

Then, following [28, Section 7.3], one can define the stochastic integral of G with respect to
the martingale measure Mc(ds, dx), denoted by∫ t

0

∫
E

G(s, x)Mc(ds, dx),

as the unique square integrable càdlàg martingale with quadratic variation

2
∫ t

0
⟨bG2(s, ·), Xs⟩ds.

We deduce by (21) that condition (24) is satisfied in the special case where G(ω, s, x) = ϕ(s, x)
for some ϕ ∈ Bb(R+

× E). To simplify notation, we write in the sequel

Mc
t (ϕ) =

∫ t

0

∫
E
ϕ(s, x)Mc(ds, dx).

Now we can define

Mt (ϕ) :=

∫ t

0

∫
E
ϕ(s, x)M(ds, dx) := Md

t (ϕ) + Mc
t (ϕ)

for every ϕ ∈ Bb(R+
× E), where Md

t (ϕ) is the unique purely discontinuous martingale whose
jumps are indistinguishable from the process ⟨ϕ(s, ·),∆Xs⟩1{∆Xs ̸=0}, and Mc

t (ϕ) is the unique
square integrable càdlàg martingale with quadratic variation 2

∫ t
0 ⟨bϕ2(s, ·), Xs⟩ds.

Proposition 4.3. Suppose (A4) holds. For every f ∈ Bb(E), t ≥ 0 and µ ∈ M(E),

⟨ f, X t ⟩ = ⟨Pt f, X0⟩ +

∫ t

0

∫
E
Pt−s f (x)M(ds, dx), Pµ-a.s. (25)

Proof. We first consider f ∈ Cb(E). Take q0 > c0 where c0 is the positive constant given
in (21). Let U q0 and Uq0 be the q0-resolvent of (Pt )t≥0 and (Pt )t≥0, respectably. By taking
Laplace transforms of both sides of (4) we get

Uq0 f (x) = U q0 f (x) + U q0 (γ − a)Uq0 f (x), x ∈ E . (26)

Recall the concatenation process ξ̂ defined in the proof of Lemma 4.1. It is known that ξ̂
induces the same topology as ξ . Moreover, Uq0 f is an excessive function with respect to ξ̂ ,
and hence is finely continuous relative to ξ̂ (or, equivalently, ξ ). Thus, by condition (A4),
(γ − a)Uq0 f ∈ Cξb (E). Eq. (26) implies that Uq0 f ∈ D(A) and

AUq0 f (x) = AU q0 f (x) + AU q0 (γ − a)Uq0 f (x)
= q0U q0 f (x) − f (x) + q0U q0 (γ − a)Uq0 f (x) − (γ − a)Uq0 f (x)
= q0U

q0 f (x) − f (x) − (γ − a)Uq0 f (x),
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or equivalently,

(A + γ − a)Uq0 f (x) = q0U
q0 f (x) − f (x), x ∈ E .

Then, by Theorem 4.2(ii)

Mt (Uq0 f ) = ⟨Uq0 f, X t ⟩ − ⟨Uq0 f, X0⟩ −

∫ t

0
⟨q0U

q0 f − f, Xs⟩ds

is a càdlàg martingale. Using this martingale, one can apply the argument in the proof of
[20, Proposition 2.13] with minor modification to show that (25) holds for f ∈ Cb(E).

Let G be the class of bounded measurable functions for which (25) holds. The above
argument shows that Cb(E) ⊆ G. By the modified monotone class theorem (cf. [28, Proposition
A.2]), it suffices to prove that G is closed under bounded pointwise convergence. Suppose that
{ fn : n ≥ 1} is a sequence of functions from G and f is the bounded pointwise limit of fn . One
can easily deduce by bounded convergence theorem that for every t ≥ 0, ⟨ fn, X t ⟩ → ⟨ f, X t ⟩,
⟨Pt fn, X0⟩ → ⟨Pt f, X0⟩ and that (s, x) ↦→ 1{s≤t}Pt−s f (x) is the bounded pointwise limit of
(s, x) ↦→ 1{s≤t}Pt−s fn(x). Note that

Pµ

[⏐⏐⏐⏐∫ t

0

∫
E
(Pt−s fn(x) − Pt−s f (x))Mc(ds, dx)

⏐⏐⏐⏐2
]

= Pµ

[∫ t

0

∫
E
⟨2b(Pt−s fn − Pt−s f )2, Xs⟩ds

]
≤ 2∥b∥∞

∫ t

0

⟨
Ps
[
(Pt−s fn − Pt−s f )2

]
, µ
⟩
ds.

By (21) and the bounded convergence theorem, the integral on the right hand side of the above
inequality converges to 0 as n → +∞. Hence we get∫ t

0

∫
E
Pt−s f (x)Mc(ds, dx) = lim

n→+∞

∫ t

0

∫
E
Pt−s fn(x)Mc(ds, dx) in L2(Pµ). (27)

We write Md,n
t for

∫ t
0

∫
E (Pt−s fn(x) − Pt−s f (x))Md (ds, dx). This is a purely discontinuous

local martingale whose jumps are indistinguishable from the process ⟨Pt−s fn − Pt−s f,
∆Xs⟩1{∆Xs ̸=0}. By the Burkholder–Davis–Gundy inequality we have

Pµ
[
|Md,n

t |
]

≤ Pµ

⎡⎣(∑
s≤t

|∆Md,n
s |

2

)1/2
⎤⎦

≤ Pµ

⎡⎣(∑
s≤t

⟨
|Pt−s fn − Pt−s f | ,∆Xs

⟩2)1/2
⎤⎦ .

Applying similar calculations as in (23), we can show that the expectation on the right hand
side is less than or equal to

Pµ

[∫ t

0
ds
∫

E
Xs−(dx)

∫
M(E)0

ν (|Pt−s fn − Pt−s f |)2 1{ν(1)≤1} H (x, dν)
]1/2

+ Pµ

[∫ t

0
ds
∫

E
Xs−(dx)

∫
M(E)0

ν (|Pt−s fn − Pt−s f |) 1{ν(1)>1} H (x, dν)
]
.

Note that ν(1)∧ν(1)2 H (x, dν) is a bounded kernel from E to M(E)0. In view of this and (21),
one can show by the bounded convergence theorem that the above two expectations converge
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to 0 as n → +∞. Hence we have∫ t

0

∫
E
Pt−s f (x)Md (ds, dx) = lim

n→+∞

∫ t

0

∫
E
Pt−s fn(x)Md (ds, dx) in L1(Pµ). (28)

(27) and (28) imply that there is a subsequence { fin : n ≥ 1} such that

lim
n→+∞

∫ t

0

∫
E
Pt−s fin (x)M(ds, dx) =

∫ t

0

∫
E
Pt−s f (x)M(ds, dx) Pµ-a.s. (29)

Since (25) holds for f replaced by fin , by letting n → +∞ we can show by (29) that it also
holds for f , and hence f ∈ G. Therefore G is closed under bounded pointwise convergence.
We complete the proof. □

5. Proofs of the main results

5.1. Interpretation of P̃t

The following proposition gathers what was already established in [30]. These facts will be
used later in the proofs of the main results.

Proposition 5.1. Suppose (A1)–(A3) hold. For every x ∈ E, define

q(x) :=
γ (x, h)

h(x)
.

Then

Ht := exp
(
λ1t −

∫ t

0
a(ξs)ds +

∫ t

0
q(ξs)ds

)
h(ξt )
h(ξ0)

, ∀t ≥ 0

is a positive Πx -martingale with respect to the filtration {Ht : t ≥ 0}. Consequently, the formula

dΠ h
x = Ht dΠx on Ht ∩ {t < ζ }, ∀x ∈ E,

uniquely determines a family of probability measures {Π h
x : x ∈ E} on (Ω ,H). The process

ξ under {Π h
x : x ∈ E} will be denoted by ξ h . The process ξ h is a conservative and recurrent

(in the sense of [21]) symmetric right Markov process on E with respect to the probability
measure m̃(dy) := h(y)2m(dy). Let Ph

t denote its transition semigroup, it satisfies that

Ph
t f (x) = Π h

x [ f (ξt )] =
eλ1t

h(x)
Πx
[
ea−q (t)h(ξt ) f (ξt )

]
,

for every x ∈ E, t ≥ 0 and f ∈ Bb(E). Moreover, ξ h has a transition density function with
respect to m̃.

Suppose ξ̂ := ((̂ξt )t≥0; Π̂
h
x ) is the eq (t)-subprocess of ξ h , that is,

Π̂ h
x

(̂
ξt ∈ B

)
= Π h

x

[
eq (t)1{ξt ∈B}

]
, ∀ t ≥ 0, B ∈ B(E).

In fact, a version of the eq (t)-subprocess can be obtained by the following method of
curtailment of the lifetime. Let Z be an exponential random variable of parameter 1 independent
of ξ h . Put

ζ̂ (ω) := inf
{

t ≥ 0 :

∫ t

0
q
(
ξ h

s (ω)
)

ds ≥ Z (ω)
}

(= +∞, if such t does not exist),
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and

ξ̂t (ω) :=

{
ξ h

t (ω) if t < ζ̂ (ω),
∂ if t ≥ ζ̂ (ω).

Then the process (̂ξt )t≥0 is equal in law to the eq (t)-subprocess of ξ h . Now, we define

κ(x, dy) :=
h(y)γ (x, dy)
γ (x, h)

1{γ (x,1)>0} + δx (dy)1{γ (x,1)=0}, for x ∈ E . (30)

We note that κ(x, dy) is a probability kernel on E . Let ξ̃ := ((̃ξt )t≥0, Π̃x ) be the right process
constructed from ξ̂ and the instantaneous distribution κ (̂ξζ̂−(ω), dy) by using the so-called
“piecing out” procedure (cf. Ikeda et al. [22]), which can be described as follows: the process
ξ̃ evolves as a copy of ξ̂ until time ζ̂−, then it is stopped at time ζ̂ and instantaneously
revived by the kernel κ(x, dy) in the following way: At time ζ̂ , the process ξ̃ is immediately
restarted at a new position y which is randomly chosen according to the probability distribution
κ (̂ξζ̂−(ω), dy). Starting from y, ξ̃ evolves again as a copy of ξ̂ and so on, until a countably
infinite number of revivals have occurred. Let P̃t be the transition semigroup of ξ̃ . Naturally
by construction it satisfies the renewal equation

P̃t f (x) = Π h
x

[
eq (t) f (ξt )

]
+ Π h

x

[∫ t

0
q(ξs)eq (s)κ(ξs, P̃t−s f )ds

]
for every f ∈ B+

b (E).

Proposition 5.2. Suppose (A1)–(A3) hold. Then, P̃t f (x) satisfies (6) for every f ∈ B+

b (E),
t ≥ 0 and x ∈ E. The probability measure

ρ(dy) := h(y )̂h(y)m(dy)

is an invariant measure for the semigroup (P̃t )t≥0. Moreover, ξ̃ has a transition density function
p̃(t, x, y) with respect to the measure ρ which is given by (7).

Proof. This proposition follows in the same way as [30, Propositions 4.1] with γ (x, dy) and
πh(x, dy) in the proof of [30] replaced by γ (x, dy) given in (3) and κ(x, dy) given in (30),
respectively. We omit the details here. The explicit form of p̃(t, x, y) follows from the fact that∫

E
p̃(t, x, y) f (y)ρ(dy) = P̃t f (x) =

eλ1t

h(x)
Pt ( f h)(x)

=
eλ1t

h(x)

∫
E
p(t, x, y) f (y)h(y)m(dy)

=
eλ1t

h(x)

∫
E
p(t, x, y) f (y )̂h−1(y)ρ(dy)

for every x ∈ E , t ≥ 0 and f ∈ Bb(E). □

Remark 5.3. Formula (6) can be written as
Pδx [⟨ f h, X t ⟩]
Pδx [⟨h, X t ⟩]

= Π̃x
[

f (̃ξt )
]
, for f ∈ B+

b (E) and t ≥ 0,

which enables us to calculate the first moment of the superprocess in terms of an auxiliary
process ξ̃ . This formula is viewed as an analogue of the “many-to-one” formula for branching
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Markov processes. In particular, when the branching mechanism is purely local, the concatenat-
ing procedure described below (30) does not occur, since γ (x, 1) = 0 and κ(x, dy) = δx (dy) for
every x ∈ E . So in this case, the auxiliary process ξ̃ runs as a copy of the Doob h-transformed
process ξ h . It holds that

P̃t f (x) = Ph
t f (x) =

eλ1t

h(x)
Πx [ea(t)h(ξt ) f (ξt )] =

eλ1t

h(x)
Pt ( f h)(x),

for every x ∈ E , t ≥ 0 and f ∈ Bb(E).

5.2. Proofs of Proposition 3.1 and Theorems 3.2 and 3.4

Proof of Proposition 3.1. This proposition can be proved similarly as [30, Theorem 3.2]. We
also give details here for completeness. By the Markov property of X , to show W h

t (X ) is a
martingale, it suffices to prove that

Pt h(x) = e−λ1t h(x) ∀x ∈ E, t ≥ 0. (31)

Recall from Proposition 5.1 that ξ h is a conservative process with transition semigroup Ph
t .

Let u(t, x) := Πx
[
ea−q (t)h(ξt )

]
. Then we have

1 = Ph
t 1(x) =

eλ1t

h(x)
u(t, x) ∀x ∈ E, t ≥ 0,

and consequently, u(t, x) = e−λ1t h(x). Let A(s, t) := −
∫ t

s (a − q)(ξr )dr . We note that

eA(0,t)
− 1 = −(eA(t,t)

− eA(0,t)) =

∫ t

0
(−a(ξs) + q(ξs)) eA(s,t)ds.

Thus by Fubini’s theorem and the Markov property of ξ , we have

u(t, x) = Πx
[
eA(0,t)h(ξt )

]
= Pt h(x) − Πx

[∫ t

0
a(ξs)eA(s,t)h(ξt )ds

]
+ Πx

[∫ t

0
q(ξs)eA(s,t)h(ξt )ds

]
= Pt h(x) − Πx

[∫ t

0
a(ξs)u(t − s, ξs)ds

]
+ Πx

[∫ t

0

γ (ξs, h)
h(ξs)

u(t − s, ξs)ds
]

= Pt h(x) − Πx

[∫ t

0
a(ξs)u(t − s, ξs)ds

]
+ Πx

[∫ t

0
γ (ξs, ut−s)ds

]
.

In the last equality we use the fact that u(t − s, x) = e−λ1(t−s)h(x) twice. The above equality
implies that u(t, x) = Pt h(x) is the unique locally bounded solution to (4) for f = h. Hence
we prove (31). □

For the remainder of this section we assume that conditions (A1)–(A4) hold and (A5) is
satisfied for some constant p ∈ (1, 2]. Conditions used in each lemma are stated explicitly. Let
us explain shortly how to prove Theorems 3.2–3.4.
(i) Since W h

t (X ) is a martingale, in order to prove Theorem 3.2, we shall prove that

Pµ

[
sup
t≥0

W h
t (X )p

]
< +∞, ∀µ ∈ M(E). (32)
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(ii) Note that for any t, s ≥ 0 and f ∈ B+

b (E),

eλ1(t+s)
⟨ f, X t+s⟩ =

(
eλ1(t+s)

⟨ f, X t+s⟩ − Pµ
[
eλ1(t+s)

⟨ f, X t+s⟩|Ft
])

+ Pµ
[
eλ1(t+s)

⟨ f, X t+s⟩|Ft
]
. (33)

We shall prove Theorem 3.3 by showing the L p-convergence of the two summands in (33).
This is done through Lemmas 5.4 and 5.5.

(iii) The proof of Theorem 3.4 follows two main steps. Firstly we shall prove the almost
sure convergence along lattice times (Lemma 5.6). Then we extend it to continuous time.
The transition from discrete to continuous time is obtained through approximation of bounded
functions by resolvent functions (Lemma 5.7 and Eq. (50)).

Proof of Theorem 3.2. Fix an arbitrary µ ∈ M(E). By Propositions 3.1 and 4.3 we have

W h
t (X ) = ⟨h, X0⟩ +

∫ t

0

∫
E

eλ1sh(x)M(ds, dx).

By Doob’s martingale inequality and Jensen’s inequality we have

Pµ

[
sup

0≤r≤t

⏐⏐⏐⏐∫ r

0

∫
E

eλ1sh(x)Mc(ds, dx)
⏐⏐⏐⏐p]2/p

≤

(
p

p − 1

)2

Pµ

[⏐⏐⏐⏐∫ t

0

∫
E

eλ1sh(x)Mc(ds, dx)
⏐⏐⏐⏐p]2/p

≤

(
p

p − 1

)2

Pµ

[⏐⏐⏐⏐∫ t

0

∫
E

eλ1sh(x)Mc(ds, dx)
⏐⏐⏐⏐2
]

= 2
(

p
p − 1

)2

Pµ

[∫ t

0
e2λ1s

⟨bh2, Xs⟩ds
]

≤ 2
(

p
p − 1

)2

∥b∥∞∥h∥∞⟨h, µ⟩

∫ t

0
eλ1sds.

Since λ1 < 0, by letting t → +∞, we get

Pµ

[
sup
r≥0

⏐⏐⏐⏐∫ r

0

∫
E

eλ1sh(x)Mc(ds, dx)
⏐⏐⏐⏐p]2/p

< +∞. (34)

We note that t ↦→
∫ t

0

∫
E eλ1sh(x)Md (ds, dx) is a purely discontinuous local martingale whose

jumps are indistinguishable from the process eλ1s
⟨h,∆Xs⟩1{∆Xs ̸=0}. Hence, by the Doob’s

martingale inequality and the Burkholder–Davis–Gundy inequality for purely discontinuous
local martingale, we have

Pµ

[
sup

0≤r≤t

⏐⏐⏐⏐∫ r

0

∫
E

eλ1sh(x)Md (ds, dx)
⏐⏐⏐⏐p]

≤

(
p

p − 1

)p

Pµ

[⏐⏐⏐⏐∫ t

0

∫
E

eλ1sh(x)Md (ds, dx)
⏐⏐⏐⏐p]

≤ c1Pµ

⎡⎣(∑
0≤s≤t

e2λ1s
⟨h,∆Xs⟩

2

)p/2
⎤⎦
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≤ c1Pµ

[∑
0≤s≤t

eλ1 ps
⟨h,∆Xs⟩

p

]

= c1Pµ

[∫ t

0
eλ1 psds

∫
E

Xs−(dx)
∫
M(E)0

ν(h)p H (x, dν)
]
,

where c1 = c1(p) is a positive constant. In the third inequality we use the fact that (a1 + · · · +

an)p/2
≤ a p/2

1 + · · · + a p/2
n for any a1, . . . , an ≥ 0 and p ∈ (1, 2]. By Proposition 5.2, the

expectation on the right hand side is equal to∫ t

0
eλ1 ps

⟨
Ps

(∫
M(E)0

ν(h)p H (·, dν)
)
, µ

⟩
ds

=

∫ t

0
eλ1(p−1)s

⟨
h P̃s

(
h−1

∫
M(E)0

ν(h)p H (·, dν)
)
, µ

⟩
ds

≤

h−1
∫
M(E)0

ν(h)p H (·, dν)


∞

⟨h, µ⟩

∫ t

0
eλ1(p−1)sds.

Letting t → +∞, we get

Pµ

[
sup
s≥0

⏐⏐⏐⏐∫ s

0

∫
E

eλ1sh(x)Md (ds, dx)
⏐⏐⏐⏐p]

< +∞. (35)

Therefore, (32) follows directly from (34) and (35). We complete the proof. □

In order to simplify computations, we will work with the test functions f = φh with
φ ∈ B+

b (E).

Lemma 5.4. Suppose (A1)–(A6) hold. For any φ ∈ B+

b (E) and µ ∈ M(E),

lim
s→+∞

lim
t→+∞

Pµ
[
eλ1(t+s)

⟨φh, X t+s⟩|Ft
]

= (φh, ĥ)W h
∞

(X ) Pµ-a.s. and in L p(Pµ).

Proof. Fix φ ∈ B+

b (E) and µ ∈ M(E). By Theorem 3.2, it suffices to prove that

lim
s→+∞

lim
t→+∞

(
Pµ
[
eλ1(t+s)

⟨φh, X t+s⟩|Ft
]
− (φh, ĥ)W h

t (X )
)

= 0 Pµ-a.s. and in L p(Pµ).

(36)

For any s, t ≥ 0, by the Markov property

Pµ
[
eλ1(t+s)

⟨φh, X t+s⟩|Ft
]

= eλ1(t+s)PX t [⟨φh, Xs⟩]

= eλ1(t+s)
⟨Ps(φh), X t ⟩

= eλ1t
⟨h P̃sφ, X t ⟩.

Hence,⏐⏐⏐Pµ [eλ1(t+s)
⟨φh, X t+s⟩|Ft

]
− (φh, ĥ)W h

t (X )
⏐⏐⏐ ≤ eλ1t

⟨
h
⏐⏐⏐P̃sφ − ⟨φh, ĥ⟩

⏐⏐⏐ , X t

⟩
.

It follows by condition (A6) and Proposition 5.2 that for any ϵ > 0 any s sufficiently large,

sup
x∈E

⏐⏐⏐P̃sφ(x) − ⟨φh, ĥ⟩

⏐⏐⏐ ≤ sup
x∈E

∫
E

|φ(y)| | p̃(s, x, y) − 1| ρ(dy) ≤ ϵ∥φ∥∞,

in which case⏐⏐⏐Pµ [eλ1(t+s)
⟨φh, X t+s⟩|Ft

]
− (φh, ĥ)W h

t (X )
⏐⏐⏐ ≤ ϵ∥φ∥∞W h

t (X ) (37)
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Since W h
t (X ) → W h

∞
(X ) Pµ-a.s. and in L p(Pµ), we get (36) by letting t → +∞ and ϵ → 0

in (37). □

Lemma 5.5. Suppose (A1)–(A6) hold. For any φ ∈ B+

b (E), µ ∈ M(E) and s ≥ 0,

lim
t→+∞

(
eλ1(t+s)

⟨φh, X t+s⟩ − Pµ
[
eλ1(t+s)

⟨φh, X t+s⟩|Ft
])

= 0 in L p(Pµ).

Moreover, for any m ∈ N and σ > 0 the following holds Pµ-a.s. and in L p(Pµ).

lim
n→+∞

(
eλ1(m+n)σ

⟨φh, X (m+n)σ ⟩ − Pµ
[
eλ1(m+n)σ

⟨φh, X (m+n)σ ⟩|Fnσ
])

= 0.

Proof. For any T > 0, we define

LT
s,t (φ) :=

∫ t

s

∫
E
PT −r (φh)(x)M(dr, dx), 0 ≤ s ≤ t ≤ T, φ ∈ B+

b (E),

and define LT,c
s,t (φ) and LT,d

s,t (φ) analogously with M replaced by Mc and Md respectively. For
simplicity, T is omitted when t = T . By the fact that (a + b)p

≤ 2p−1(a p
+ bp) for any

a, b ≥ 0, p ∈ (1, 2], and Jensen’s inequality, we have

Pµ
[
|LT

0,t (φ)|
p
]

≤ 2p−1
[

Pµ
[

LT,c
0,t (φ)2

]p/2
+ Pµ

[
|LT,d

0,t (φ)|
p
]]
.

Applying similar calculations as in the proof of Theorem 3.2, one can show that the two expec-
tations on the right hand side of the above inequality are finite and hence Pµ

[
|LT

0,t (φ)|p]
< +∞

for every t ∈ [0, T ]. Thus the local martingale [0, T ] ∋ t ↦→ LT
0,t (φ) is an L p-integrable

martingale. Using this and Proposition 4.3, we have

eλ1(t+s)
⟨φh, X t+s⟩ − Pµ

[
eλ1(t+s)

⟨φh, X t+s⟩|Ft
]

= eλ1(t+s)L0,t+s(φ) − eλ1(t+s)Pµ
[
L0,t+s(φ)|Ft

]
= eλ1(t+s)L0,t+s(φ) − eλ1(t+s)L t+s

0,t (φ)

= eλ1(t+s)L t,t+s(φ). (38)

On one hand, by Proposition 5.2, we have

Pµ
[(

eλ1(t+s)Lc
t,t+s(φ)

)2
]

= 2Pµ

[∫ t+s

t
e2λ1(t+s)

⟨bPt+s−r (φh)2, Xr ⟩dr
]

= 2Pµ

[∫ t+s

t
e2λ1r

⟨bh2(P̃t+s−rφ)2, Xr ⟩dr
]

≤ 2∥b∥∞∥h∥∞∥φ∥∞Pµ

[∫ t+s

t
e2λ1r

⟨h P̃t+s−rφ, Xr ⟩dr
]

= 2∥b∥∞∥h∥∞∥φ∥∞⟨h P̃t+sφ,µ⟩

∫ t+s

t
eλ1r dr.

Immediately,

Pµ
[(

eλ1(t+s)Lc
t,t+s(φ)

)2
]

≤ 2∥b∥∞∥φ∥
2
∞

∥h∥∞⟨h, µ⟩

∫ t+s

t
eλ1r dr ∀t, s ≥ 0.

Since λ1 < 0, it follows that

lim
t→+∞

Pµ
[(

eλ1(t+s)Lc
t,t+s(φ)

)2
]

= 0,
+∞∑
n=1

Pµ
[(

eλ1(m+n)σ Lc
nσ,(m+n)σ (φ)

)2
]
< +∞,
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which in turn implies that

lim
t→+∞

eλ1(t+s)Lc
t,t+s(φ) = 0 in L2(Pµ),

lim
n→+∞

eλ1(m+n)σ Lc
nσ,(m+n)σ (φ) = 0 Pµ-a.s. and in L2(Pµ). (39)

On the other hand, by the Burkholder–Davis–Gundy inequality and the fact that (a + b)p/2
≤

a p/2
+ bp/2 for any a, b ≥ 0 and p ∈ (1, 2], we have that

Pµ
[⏐⏐eλ1(t+s)Ld

t,t+s(φ)
⏐⏐p
]

≤ c1Pµ

⎡⎣( ∑
t≤r≤t+s

e2λ1(t+s)
⟨Pt+s−r (φh),∆Xr ⟩

2

)p/2
⎤⎦

≤ c1Pµ

[ ∑
t≤r≤t+s

eλ1 p(t+s)
⟨Pt+s−r (φh),∆Xr ⟩

p

]

= c1Pµ

[∫ t+s

t
eλ1 p(t+s)dr

∫
E

Xr−(dx)
∫
M(E)0

ν(Pt+s−r (φh))p H (x, dν)
]

= c1

∫ t+s

t
eλ1(p−1)r

⟨
h P̃r

(
h−1

∫
M(E)0

ν
(
h P̃t+s−rφ

)p
H (·, dν)

)
, µ

⟩
dr,

where c1 = c1(p) is a positive constant. Since ∥P̃t+s−rφ∥∞ ≤ ∥φ∥∞, we get

Pµ
[⏐⏐eλ1(t+s)Ld

t,t+s(φ)
⏐⏐p
]

≤ c1∥φ∥
p
∞

∫ t+s

t
eλ1(p−1)r

⟨h P̃r F, µ⟩dr (40)

where F(x) := h−1(x)
∫
M(E)0 ν(h)p H (x, dν). It follows by condition (A6) that for any ϵ > 0

there exists t sufficiently large such that

sup
x∈E

⏐⏐P̃r F(x)
⏐⏐ ≤ (1 + ϵ)ρ(F), ∀r ≥ t,

in which case the integral on the right hand side of (40) is less than or equal to

⟨h, µ⟩(1 + ϵ)ρ(F)
∫ t+s

t
eλ1(p−1)r dr.

Thus, we get

lim
t→+∞

Pµ
[⏐⏐eλ1(t+s)Ld

t,t+s(φ)
⏐⏐p
]

= 0,
+∞∑
n=1

Pµ
[⏐⏐eλ1(m+n)σ Ld

nσ,(n+m)σ (φ)
⏐⏐p
]
< +∞,

and consequently, by Borel–Cantelli lemma

lim
t→+∞

eλ1(t+s)Ld
t,t+s(φ) = 0 in L p(Pµ),

lim
n→+∞

eλ1(m+n)σ Ld
nσ,(n+m)σ (φ) = 0 Pµ-a.s. and in L p(Pµ). (41)

The lemma follows from (38), (39) and (41). □

Proof of Theorem 3.3. In view of (33), this theorem is an immediate consequence of
Lemmas 5.4 and 5.5. □

Lemmas 5.4 and 5.5 also give the following result.
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Lemma 5.6. Suppose (A1)–(A6) hold. Then, for any σ > 0, µ ∈ M(E) and f ∈ B+(E)
with f/h bounded,

lim
n→+∞

eλ1nσ
⟨ f, Xnσ ⟩ = ( f, ĥ)W h

∞
(X ) Pµ-a.s.

This result is the SLLN for superprocesses along lattice times. For the transition to
continuous time, we need the following lemma.

Lemma 5.7. Suppose (A1)–(A6) hold. For any φ ∈ B+

b (E), α > 0 and µ ∈ M(E),

lim
t→+∞

eλ1t
⟨(αŨαφ)h, X t ⟩ = (φh, ĥ)W h

∞
(X ) Pµ-a.s.

where Ũαφ(x) :=
∫

+∞

0 e−αs P̃sφ(x)ds.

Proof. Fix φ ∈ B+

b (E) and α, σ > 0. Let g(x) := αŨαφ(x) for x ∈ E . Suppose
t ∈ [nσ, (n + 1)σ ). We have

eλ1t
⟨gh, X t ⟩ − (φh, ĥ)W h

∞
(X )

=
(
eλ1t

⟨gh, X t ⟩ − Pµ
[
eλ1(n+1)σ

⟨gh, X (n+1)σ ⟩|Ft
])

+
(
Pµ
[
eλ1(n+1)σ

⟨gh, X (n+1)σ ⟩|Ft
]
− Pµ

[
eλ1(n+1)σ

⟨gh, X (n+1)σ ⟩|Fnσ
])

+

(
Pµ
[
eλ1(n+1)σ

⟨gh, X (n+1)σ ⟩|Fnσ
]
− (φh, ĥ)W h

∞
(X )

)
=: I (1)(t, (n + 1)σ ) + I (2)(t, nσ, (n + 1)σ ) + I (3)(nσ, (n + 1)σ ). (42)

By Markov property we have

I (1)(t, (n + 1)σ ) = eλ1t
⟨gh, X t ⟩ − eλ1(n+1)σPX t

[
⟨gh, X (n+1)σ−t ⟩

]
= eλ1t

⟨gh, X t ⟩ − eλ1t
⟨h P̃(n+1)σ−t (g), X t ⟩

= eλ1t
⟨
h
(
g − P̃(n+1)σ−t (g)

)
, X t

⟩
. (43)

Note that

g(x) − P̃(n+1)σ−t g(x) =

∫
+∞

0
αe−αs P̃sφ(x)ds − eα((n+1)σ−t)

∫
+∞

(n+1)σ−t
αe−αs P̃sφ(x)ds

=
(
1 − eα((n+1)σ−t)) g(x) + eα((n+1)σ−t)

∫ (n+1)σ−t

0
αe−qs P̃sφ(x)ds.

Hence ∥g − P̃(n+1)σ−t g∥∞ ≤ 2∥φ∥∞

(
eα((n+1)σ−t)

− 1
)
, and by (43)

sup
t∈[nσ,(n+1)σ )

|I (1)(t, (n + 1)σ )| ≤ 2∥φ∥∞ (eασ − 1) sup
t∈[nσ,(n+1)σ )

W h
t (X ).

Since W h
t (X ) converges Pµ-a.s. to a finite limit, the above inequality implies that

lim
σ→0

lim
n→+∞

sup
t∈[nσ,(n+1)σ )

|I (1)(t, (n + 1)σ )| = 0 Pµ-a.s. (44)

Recall the definition of LT
s,t (φ) given in the proof of Lemma 5.5. By Proposition 4.3 we have

I (2)(t, nσ, (n + 1)σ ) = Pµ
[
eλ1(n+1)σ L0,(n+1)σ (g)|Ft

]
− Pµ

[
eλ1(n+1)σ L0,(n+1)σ (g)|Fnσ

]
= eλ1(n+1)σ L (n+1)σ

0,t (g) − eλ1(n+1)σ L (n+1)σ
0,nσ (g)

= eλ1(n+1)σ L (n+1)σ
nσ,t (g), (45)
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where for the second equality we use the fact that [0, (n + 1)σ ] ∋ t ↦→ L (n+1)σ
0,t (g) is a

martingale. It follows from Doob’s martingale inequality that, for p ∈ (1, 2],

Pµ

[
eλ1 p(n+1)σ sup

t∈[nσ,(n+1)σ )
|L (n+1)σ

nσ,t (g)|
p
]

≤ c1eλ1 p(n+1)σPµ
[
|Lnσ,(n+1)σ (g)|p]

≤ c2eλ1 p(n+1)σ
(

Pµ
[
|Lc

nσ,(n+1)σ (g)|2
]p/2

+ Pµ
[
|Ld

nσ,(n+1)σ (g)|
p
])
, (46)

where ci = ci (p) > 0, i = 1, 2. We have showed in the proof of Lemma 5.5 that for n
sufficiently large,

e2λ1(n+1)σPµ
[
Lc

nσ,(n+1)σ (g)2]
≤ c3

∫ (n+1)σ

nσ
eλ1r dr,

and

eλ1 p(n+1)σPµ
[⏐⏐Ld

nσ,(n+1)σ (g)
⏐⏐p
]

≤ c4

∫ (n+1)σ

nσ
eλ1(p−1)r dr

for some positive constants ci , i = 3, 4 independent of n. Using the above estimates and (46)
one can easily show that

∑
+∞

n=N Pµ
[
eλ1(n+1)σ supt∈[nσ,(n+1)σ ) |L

(n+1)σ
nσ,t (g)|

p]
is finite for N large

enough. Thus by Borel–Cantelli lemma and (45) we get

sup
t∈[nσ,(n+1)σ )

⏐⏐I (2)(t, nσ, (n + 1)σ )
⏐⏐ = sup

t∈[nσ,(n+1)σ )
eλ1(n+1)σ

|L (n+1)σ
t,nσ (g)| → 0 Pµ-a.s. (47)

as n → +∞. Finally we have

I (3)(nσ, (n + 1)σ ) = eλ1(n+1)σPXnσ [⟨gh, Xσ ⟩] − (φh, ĥ)W h
∞

(X )

= eλ1nσ
⟨h P̃σ g, Xnσ ⟩ − (φh, ĥ)W h

∞
(X ).

Recall that (P̃t )t≥0 is invariant with respect to the measure ρ(dx) = h(x)ĥ(x)m(dx). We have
(h P̃σ g, ĥ) = α

∫
∞

0 e−αs(h P̃σ+sφ, ĥ)ds = (φh, ĥ). It then follows by Lemma 5.6 that

lim
n→+∞

I (3)(nσ, (n + 1)σ ) = 0 Pµ-a.s. (48)

In view of (44), (47) and (48), one can prove this lemma by letting first n → +∞ and then
σ → 0 in (42). □

Finally we shall prove SLLN along continuous time under assumptions (A1)–(A7).

Proof of Theorem 3.4. By [9, Lemma 7.1] it suffices to prove that for any µ ∈ M(E) and
φ ∈ C+

0 (E),

lim
t→+∞

eλ1t
⟨φh, X t ⟩ = (φh, ĥ)W h

∞
(X ) Pµ-a.s. (49)

Condition (A7) implies that for any φ ∈ C+

0 (E)

∥αŨαφ − φ∥∞ ≤

∫
∞

0
αe−αt

∥P̃tφ − φ∥∞dt =

∫
∞

0
e−s

∥P̃s/αφ − φ∥∞ds → 0 (50)
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as α → ∞. For any α > 0, we have⏐⏐⏐eλ1t
⟨φh, X t ⟩ − (φh, ĥ)W h

∞
(X )

⏐⏐⏐
≤ eλ1t

⟨|αŨαφ − φ|h, X t ⟩ +

⏐⏐⏐eλ1t
⟨(αŨαφ)h, X t ⟩ − (φh, ĥ)W h

∞
(X )

⏐⏐⏐
≤ ∥αŨαφ − φ∥∞W h

t (X ) +

⏐⏐⏐eλ1t
⟨(αŨαφ)h, X t ⟩ − (φh, ĥ)W h

∞
(X )

⏐⏐⏐ .
By Lemma 5.7 and Eq. (50), we conclude (49) by letting first t → ∞ and then α → ∞. □
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