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Abstract

The problem of integrated volatility estimation for an Ito semimartingale is considered under discrete
high-frequency observations in short time horizon. We provide an asymptotic expansion for the integrated
volatility that gives us, in detail, the contribution deriving from the jump part. The knowledge of such a
contribution allows us to build an unbiased version of the truncated quadratic variation, in which the bias
is visibly reduced. In earlier results to have the original truncated realized volatility well-performed the
condition 8 > ﬁ on B (that is such that (%)ﬁ is the threshold of the truncated quadratic variation)
and on the degree of jump activity o was needed (see Mancini, 2011; Jacod, 2008). In this paper we
theoretically relax this condition and we show that our unbiased estimator achieves excellent numerical
results for any couple («, B).
© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we consider the problem of estimating the integrated volatility of a discretely-
observed one-dimensional It6 semimartingale over a finite interval. The class of It6 semimartin-
gales has many applications in various areas such as neuroscience, physics and finance. Indeed,
it includes the stochastic Morris—Lecar neuron model [8] as well as important examples taken
from finance such as the Barndorff-Nielsen—Shephard model [2], the Kou model [16] and the
Merton model [19]; to name just a few.
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In this work we aim at estimating the integrated volatility based on discrete observations
Xis - -+ Xy, of the process X, with t; = i%. Let X be a solution of

t t t
X,=Xo+/ bsds+f asdw,-+/f y(X,)zjids, dz), 1 €Ry,
0 0 0 JR\{0}

with W = (W;),> a one dimensional Brownian motion and /i a compensated Poisson random
measure. We also require the volatility a, to be an Itd semimartingale.

We consider here the setting of high frequency observations, i.e. 4, := % — 0asn — oo.
We want to estimate IV = % OT a’f(X,)ds, where f is a polynomial growth function. Such
a quantity has already been widely studied in the literature because of its great importance in
finance. Indeed, taking f = 1, IV turns out being the so called integrated volatility that has
particular relevance in measuring and forecasting the asset risks; its estimation on the basis of
discrete observations of X is one of the long-standing problems.

In the sequel we will present some known results denoting by IV the classical integrated
volatility, that is we are assuming f equals 1.

When X is continuous, the canonical way for estimating the integrated volatility is to use
the realized volatility or approximate quadratic variation at time T:

n—1
(X, X17 = Z(AX,-)Z, where AX; = X,.

i+1
i=0

— X .

i

Under very weak assumptions on b and a (namely when fOT b2ds and fOT atds are finite
for all + € (0,T]), we have a central limit theorem (CLT) with rate ./n: the processes
(X, X 17— 1V) converge in the sense of stable convergence in law for processes, to a limit
Z which is defined on an extension of the space and which conditionally is a centered Gaussian
variable whose conditional law is characterized by its (conditional) variance Vy := 2 fOT a;‘ds.

When X has jumps, the variable [X, X]7 no longer converges to /V. However, there are
other known methods to estimate the integrated volatility.

The first type of jump-robust volatility estimators are the Multipower variations (cf [3,4,12]),
which we do not explicitly recall here. These estimators satisfy a CLT with rate /n but with
a conditional variance bigger than Vr (so they are rate-efficient but not variance-efficient).

The second type of volatility estimators, introduced by Jacod and Todorov in [14], is
based on estimating locally the volatility from the empirical characteristic function of the
increments of the process over blocks of decreasing length but containing an increasing number
of observations, and then summing the local volatility estimates.

Another method to estimate the integrated volatility in jump diffusion processes, introduced
by Mancini in [17], is the use of the truncated realized volatility or truncated quadratic
variance (see [12,18]):

n—1
IV =Y (AX) Ljax )
i=0
where v, is a sequence of positive truncation levels, typically of the form (%)’3 for some
B €, 3.

Below we focus on the estimation of IV through the implementation of the truncated
quadratic variation, that is based on the idea of summing only the squared increments of X
whose absolute value is smaller than some threshold v,.
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It is shown in [11] that IAV’; has exactly the same limiting properties as [X, X} does
for some ¢ € [0,1) and B € [ﬁ, %). The index o is the degree of jump activity or
Blumenthal-Getoor index

o= inf{re[0,2]: |x|’F(dx)<oo},

lx|=<1
where F is a Lévy measure which accounts for the jumps of the process and it is such that
the compensator i has the form u(dt, dz) = F(z)dzdt.

Mancini has proved in [18] that, when the jumps of X are those of a stable process with
index o > 1, the truncated quadratic variation is such that

UVy —1v)~ (%)ﬁ@*‘”. )

This rate is less than «/n and no proper CLT is available in this case.
In this paper, in order to estimate IV := % fOT af f(X;)ds, we consider in particular the
truncated quadratic variation defined in the following way:

n—1
On =y FX) Xy, = X009 Ky, — X,
i=0
where ¢ is a C* function that vanishes when the increments of the data are too large compared
to the typical increments of a continuous diffusion process, and thus can be used to filter the
contribution of the jumps.

We aim to extend the results proved in short time in [18] characterizing precisely the noise
introduced by the presence of jumps and finding consequently some corrections to reduce such
a noise.

The main result of our paper is the asymptotic expansion for the integrated volatility.
Compared to earlier results, our asymptotic expansion provides us precisely the limit to
which nf@=*(Q, — I'V) converges when (1)#?~ > /n, which matches with the condition

B < 3o
Our work extends equation (1) (obtained in [18]). Indeed, we find
Zn 1 T 1
0y =1V = Z 4 (2 e, [ gttt “du [y 7 + 03/,
N R 0 n

where Z, A N(0,2 fOT a? f2(X,)ds) stably with respect to X. The asymptotic expansion here
above allows us to deduce the behavior of the truncated quadratic variation for each couple
(a, B), that is a plus compared to (1).

Furthermore, providing we know « (and if we do not it is enough to estimate it previously,
see for example [23] or [20]), we can improve the performance of the truncated quadratic
variation subtracting the bias due to the presence of jumps to the original estimator or taking
particular functions ¢ that make the bias derived from the jump part equal to zero. Using the
asymptotic expansion of the integrated volatility we also provide the rate of the error left after
having applied the corrections. It derives from the Brownian increments mistakenly truncated
away, when the truncation is tight.

Moreover, in the case where the volatility is constant, we show numerically that the
corrections gained by the knowledge of the asymptotic expansion for the integrated volatility
allows us to reduce visibly the noise for any 8 € (0, %) and @ € (0, 2). It is a clear improvement
because, if the original truncated quadratic variation was a well-performed estimator only if
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B > ﬁ (condition that never holds for @ > 1), the unbiased truncated quadratic variation
achieves excellent results for any couple («, B).

The outline of the paper is the following. In Section 2 we present the assumptions on the
process X. In Section 3 we define the truncated quadratic variation and we state the main
results of the paper. In Section 4 we show the numerical performance of the unbiased estimator.
Section 5 is devoted to the statement of propositions useful for the proof of the main results,
that is given in Section 6. In Section 7 we give some technical tools about Malliavin calculus,
required for the proof of some propositions, while other proofs and some technical results are
presented in the Appendix.

2. Model, assumptions

The underlying process X is a one dimensional It6 semimartingale on the space ({2, F,

(Ft)i=0, P), where (F;);>o is a filtration, and observed at times #; = fl, fori =0,1,...,n.
Let X be a solution to
t t t
X, = Xg +/ byds +/ a;dW; +/ / v(Xs-)zplds,dz), teRy, 2)
0 0 0 JR\{0}

where W = (W,);>0 is a one dimensional Brownian motion and /i a compensated Poisson
random measure on which conditions will be given later.

We will also require the volatility a, to be an It0 semimartingale and it thus can be
represented as

t t t t
a; =agp + / byds + / agdW + / a,dW, + / / Vs z (ds, dz)
0 0 0 0 JR\{0}

t
+// Vs 2 fla(ds, dz). 3)
0 JR\(0)

The jumps of a, are driven by the same Poisson compensated random measure g as X plus
another Poisson compensated measure fi,. We need also a second Brownian motion W: in the
case of “pure leverage” we would have @ = 0 and W is not needed; in the case of “no leverage”
we rather have @ = 0. In the mixed case both W and W are needed.

2.1. Assumptions

The first assumption is a structural assumption describing the driving terms W, W, it and
[i2; the second one being a set of conditions on the coefficients implying in particular the
existence of the various stochastic integrals involved above.

Al: The processes W and W are two independent Brownian motion, @ and pu, are Poisson
random measures on [0, 00) xR associated to the Lévy processes L = (L;);>o and Ly = (L,z),zo
respectively, with L, = [J [, zii(ds, dz) and L? = [ [ zfi2(ds, dz). The compensated
measures are fi = u— i and fi; = @y — il; we suppose that the compensator has the following
form: p(dt, dz) :== F(dz)dt, j1o(dt, dz) == F,(dz)dt. Conditions on the Levy measures F and
F, will be given in A3 and A4. The initial condition Xy, ag, W, W, L and L, are independent.
The Brownian motions and the Lévy processes are adapted with respect to the filtration (F;);>o.
We suppose moreover that there exists X, solution of (2).

A2: The processes b, b, d, a, 7, y are bounded, y is Lipschitz. The processes b, a are cadlag
adapted, y, y and 7 are predictable, b and a are progressively measurable. Moreover it exists
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an F; -measurable random variable K, such that

Ellbisn — b *|F1 < K, |hl;  ¥p > 1, E[|K,|"] < 0.

We observe that the last condition on b holds true regardless if, for example, b, = b(X,);
b : R — R Lipschitz.

The next assumption ensures the existence of the moments:
A3: For all ¢ > 0, flz|>1 |z|9 F(dz) < oo and flz\>l |z]9 F>(dz) < oo. Moreover, E[|X(|7] < oo
and E[|ap|?] < oc.

A4 (Jumps):

1. The jump coefficient y is bounded from below, that is infycg |y (X)| = VYmin > 0.

2. The Lévy measures F' and F, are absolutely continuous with respect to the Lebesgue
measure and we denote F(z) = £ ;d;), F(z2) = E Z(d ),

3. The Lévy measure F satisfies F(dz) = ljfi)a dz, where a€(0,2)andg:R—> Risa
continuous symmetric nonnegative bounded function with g(0) = 1.

4. The function g is dlfferentlable on {0 < |z| < n} for some n > 0 with continuous
derivative such that SUPo (< | 5 |& | < Q0.

5. The jump coefficient y is upper bounded i.e. sup,cg |V (X)] == Yimaxr < 00.

6. The Levy measure F, satisfies fR 1zI> F>(2)dz < oo.

The first and fifth points of the assumptions here above are useful to compare size of jumps of
X and L. The fourth point is required to use Malliavin calculus and it is satisfied by a large
class of processes: a- stable process (g = 1), truncated «-stable processes (g = 7, a truncation
function), tempered stable process (g(z) = e, A > 0).

In the following, we will use repeatedly some moment inequalities for jump diffusion, which
are gathered in Lemma 1 and showed in the Appendix.

Lemma 1. Suppose that AI-A4 hold. Then, for all t > s,

(1) for all p > 2, E[la, — a,|’] < c|t — s|; for all ¢ > 0 sup,¢fo 71 Ella;|?] < oo.

(2) for all p > 2, p €N, E[la;, — a,|P|Fs] < clt — s|.

(3) for all p > 2, B[|X, — X,|"17 < c|t —s|7; for all g > 0 sup,.i0. 7 EI|X,|] < o0,

(4) for all p > 2, p € N, E[|X; — X,|P|F;] < clt — s|(1 + | X,|7).

(3) for all p 22, p € N, supeqo, BlXs14lP1F] = 1+ 1X,17)

(6) for all p > 1, E[|X] — XC|”]I’ <t —s|2 and E[|X{ — X“|”|]—"]ﬁ <clt —s|2(1+|X 7)),
where we have denoted by X¢ the continuous part of the process X, which is such that

t t
X; —X; :=/ auqu—l-/ b,du.

3. Setting and main results

The process X is observed at regularly spaced times t; = i A, = % fori =0,1,...,n
within a finite time interval [0, T]. We can assume, WLOG, that 7 = 1.
Our goal is to estimate the integrated volatility IV := % OT a’f(X,)ds, where f is a

polynomial growth function. To do it, we propose the estimator Q,, based on the truncated
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quadratic variation introduced by Mancini in [17]. Given that the quadratic variation was a
good estimator for the integrated volatility in the continuous framework, the idea is to filter the
contribution of the jumps and to keep only the intervals in which we judge no jumps happened.
We use the size of the increment of the process X,, ., — X, in order to judge if a jump occurred
or not in the interval [¢;, t;,): as it is hard for the increment of X with continuous transition to

overcome the threshold A,"? = (%)5 for g < %, we can assert the presence of a jump in [#;, ;1)
if |X,,, — X,| > AL

We set
n—1
Qn = Z f(Xt,')(XlH,l - Xti)zwAs(XlH,l - Xt,')» (4)
i=0
where

Xti+1 — Xy
Al
with ¢ a smooth version of the indicator function, such that ¢(¢) = 0 for each ¢, with [{]| > 2

and ¢(¢) =1 for each ¢, with |¢| < 1.
It is worth noting that, if we consider an additional constant k in ¢ (that becomes

q)A;?(Xti+1 - Xl‘,') = 90( )a

N (Xi — X)) = go(%)), the only difference is the interval on which the function

is 1 or 0: it will be 1 for |X,,, — X,| < kAh; 0 for |X,,, — X,| = 2kA}. Hence, for
shortness in notations, we restrict the theoretical analysis to the situation where k = 1 while,
for applications, we may take the threshold level as kA with k # 1.

3.1. Main results

The main result of this paper is the asymptotic expansion for the truncated integrated
volatility.

We show first of all it is possible to decompose the truncated quadratic variation, separating
the continuous part from the contribution of the jumps. We consider right after the difference
between the truncated quadratic variation and the discretized volatility, showing it consists on
the statistical error (which derives from the continuous part), on a noise term due to the jumps
and on a third term which is negligible compared to the other two. From such an expansion it
appears clearly the condition on («, ) which specifies whether or not the truncated quadratic
variation performs well for the estimation of the integrated volatility. It is also possible to build
some unbiased estimators. Indeed, through Malliavin calculus, we identify the main bias term
which arises from the presence of the jumps. We study then its asymptotic behavior and, by
making it equal to zero or by removing it from the original truncated quadratic variation, we
construct some corrected estimators.

We define as Q,{ the jumps contribution present in the original estimator Q,:

- gy
0; i=n"" ) X / /R P X0 K = X 5)
i=0

i

op(L%y P

Denoting as Op((%)k) a quantity such that — T = 0, the following decomposition holds

true:
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Theorem 1. Suppose that AI-A4 hold and that 8 € (0, %) and a € (0, 2) are given in definition
(4) and in the third point of A4, respectively. Then, as n — 00,

n—1
00 =3 FIXOXE, — XOF + (Y05 +¢, ©)
l:() 4 1 n
nol ligl -
=Y s aaw+ CPCOG] 4, )
i=0 fi

where &, is both oum((%)ﬁ(z’“)) and, for each € > 0, O]p((%)(l_aﬁ_g)/\(%_g)).

To show Theorem 1 here above, the following lemma will be useful. It illustrates the error
we commit when the truncation is tight and therefore the Brownian increments are mistakenly
truncated away.

Lemma 2. Suppose that AI-A4 hold. Then, Ve > 0,
n—1 1
DS = X0 (X, = Xy) = 1) = 0p()! 7).
i=0
Theorem 1 anticipates that the size of the jumps part is (1)#?~® (see Theorem 3) while
the size of the Brownian increments wrongly removed is upper bounded by (%)""‘ﬂ_e (see
Lemma 2). As 8 € (0, %), we can always find an € > 0 such that | — ¢ —€ > (2 — «) and
therefore the bias derived from a tight truncation is always smaller compared to those derived
from a loose truncation. However, as we will see, after having removed the contribution of the
jumps such a small downward bias will represent the main error term if o« > %
In order to eliminate the bias arising from the jumps, we want to identify the term Q,{ in
detail. For that purpose we introduce

n—1
A L 2 g0, 1
0y = ()a Y F(X )y (Xid(y (X n ™), ®)
i=0
where d(¢) := ]E[(S‘f)%p(S{"{)]; (87)i=0 1s an a-stable process.
We want to move from Q,{ to Q,. The idea is to move from our process, that in small time
behaves like a conditional rescaled Lévy process, to an « stable distribution.

Proposition 1. Suppose that AI-A4 hold. Let (S7);>0 be an a-stable process. Let g be a

measurable bounded function such that ||g|| pol = supxeR(llf_(‘ﬁl,,) < oo, for some p > 1,
p > « hence
18COI < gl por (Ix17 + 1). ©
Moreover we denote | g |l := sup,cg |8(x)|. Then, for any e >0, 0 < h < 1
1 1 1-%—¢ 2 te
|Elg(h™ = Ly)] — E[g(SP]I < Ceh [log(h)| lIglloe + Ceh® llglles " NIgll,, [logh)l

(10)
1, a

1 141 -2 pe — 545 —e
+Cehe ligloo ™ 7 N8l " Hog(M)ligs1y,

where C, is a constant independent of h.
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Proposition 1 requires some Malliavin calculus. The proof of Proposition 1 as well as some
technical tools will be found in Section 7.

The previous proposition is an extension of Theorem 4.2 in [7] and it is useful when || g||, is
large, compared to ||g|| ,,;- For instance, it is the case if consider the function g(x) := |x 1’1 lx|<M
for M large.

We need Proposition | to prove the following theorem, in which we consider the difference
between the truncated quadratic variation and the discretized volatility. We make explicit its
decomposition into the statistical error and the noise term due to the jumps, identified as O,

Theorem 2. Suppose that A1-A4 hold and that 8 € (0, %) and o € (0, 2) are given in Definition
(4) and in the third point of A4, respectively. Then, as n — 00,

n—1
1 Z 1 N
n—= X)al = “= 4+ (=)0, + &, 11
0 n?:()f( D = T+ (P00 + (11)
where &, is always o[p((%)ﬁ(z’“)) and, adding the condition B > ﬁ, it is also

Op((%)(l_aﬁ_g)/\(%_g)). Moreover Z, ﬁ) N(, ZfOT a;‘fz(Xs)ds) stably with respect to X.

We recognize in the expansion (11) the statistical error of model without jumps given by
Z,, whose variance is equal to the so called quadricity. As said above, the term Qn is a bias
term arising from the presence of jumps and given by (8). From this explicit expression it is
possible to remove the bias term (see Section 4).

The term &, is an additional error term that is always negligible compared to the bias
deriving from the jump part (1)#@=®Q, (that is of order (1)?@=% by Theorem 3).

The bias term admits a first order expansion that does not require the knowledge of the
density of S¢.

Proposition 2. Suppose that A1-A4 hold and that 8 € (0, %) and a € (0,2) are given in
Definition (4) and in the third point of Assumption 4, respectively. Then

n—1

R 1 )
On = ;CO‘ Z f(X,i)|)/(X,l,)|°‘(/ ‘P(”)|M|1_adu) + &, (12)
i=0 R
with
__ol-w) ;
Cy = 4]F<2—a>cos(%) fa#l a<2 .
bre if a=1.

~ ~ 1 -~ 1 ~ ~
En=op(1) and, ifa < 3%, itis also nPC=op((1)1=4P=ONG=9) = gp((1)(z2Ptef~On1=26-€))

We have not replaced directly the right hand side of (12) in (11), observing that (%)5(2“")5,,
= &,, because (%)ﬁ(z’“)gn is always OP((%)ﬁ(z’“)) but to get it is also o[p((%)(l_“ﬁ_gw%_g)) the
additional condition o < % is required.

Proposition 2 provides the contribution of the jumps in detail, identifying a main term.
Recalling we are dealing with some bias, it comes naturally to look for some conditions to

make it equal to zero and to study its asymptotic behavior in order to remove its limit.
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Corollary 1. Suppose that A1-A4 hold and that o € (0, %), B € (7=, (5= A 3)). If @ is such
that [, lul'""“@(u)du = 0 then, ¥é > 0,

1 n—1 5 Zn
Qn - ; ;f(xt,')ari - ﬁ

with Z, defined as in Theorem 2 here above.

1 -
+ op«;)%*), (14)

It is always possible to build a function ¢ for which the condition here above is respected
(see Section 4).

We have supposed o < ;—‘ in order to say that the error we commit identifying the
contribution of the jumps as the first term in the right hand side of (12) is always negligible
compared to the statistical error. Moreover, taking 8 < i we get | —aff > % and therefore also
the bias studied in Lemma 2 becomes upper bounded by a quantity which is roughly OP(J%).

Eq. (14) gives us the behavior of the unbiased estimator, that is the truncated quadratic
variation after having removed the noise derived from the presence of jumps. Taking « and 8
as discussed above we have, in other words, reduced the error term &, to be o]p((%)f_g), which
is roughly the same size as the statistical error.

We observe that, if o« > % but y = k € R, the result still holds if we choose ¢ such that

f up(u) fa(lu@)ﬂ-é)du =0,
R k n

where f, is the density of the a-stable process. Indeed, following (8), the jump bias 0, is now
defined as

n—1

1.2 1
120w 2 p-1
(n) E SX)k“d(kn”" =)

i=0

n—1
— (1)E e 3 px, i / Lok ) fo()dz
n i=0 R n

12 o e 1, 1,1 1 1,1
= ()" p@ )gf(xmkz(;)“ﬂ «ﬁ /R u%(u)fa(zu(;)ﬂ @)du = 0,

where we have used a change of variable.
Another way to construct an unbiased estimator is to study how the main bias detailed in
(12) asymptotically behaves and to remove it from the original estimator.

Theorem 3. Suppose that A1-A4 hold. Then, as n — 00,
T
A P —a o
On — Ca/ @Q)|ul' du/ [y (X" f(Xs)ds. (15)
R 0

Moreover

Zn

n

T
0, —1v =22 4 (Lyeay, / o@)lu'~*du / (X F(X,)ds + 0p((L)P2),
n R 0 n
(16)

where Z, £> N(O, 2f0T a?fz(Xx)ds) stably with respect to X.
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It is worth noting that, in both [13] and [18], the integrated volatility estimation in short

time is dealt and they show that the truncated quadratic variation has rate  /n if B > 2(2£ o

We remark that the jump part is negligible compared to the statistic error if ! < n~ 262-®
and so § > that is the same condition given in the literature.

However, if we take («, 8) for which such a condition does not hold, we can still use that
we know in detail the noise deriving from jumps to implement corrections that still make the
unbiased estimator well-performed (see Section 4).

We require the activity « to be known, for conducting bias correction. If it is unknown, we
need to estimate it previously (see for example the methods proposed by Todorov in [23] and
by Mies in [20]). Then, a question could be how the estimation error in & would affect the
rate of the bias-corrected estimator. We therefore assume that &, = o + Op(a,), for some rate
sequence a,. Replacing &, in (16) it turns out that the error derived from the estimation of «
does not affect the correction if @, (1)f@~ < (%)%, which means that a, has to be smaller than

1 o .
(%)Tﬂ(z“”. We recall that 8 € (0, %) and a € (0, 2). Hence, such a condition is not a strong
requirement and it becomes less and less restrictive when « gets smaller or 8 gets bigger.

4. Unbiased estimation in the case of constant volatility

In this section we consider a concrete application of the unbiased volatility estimator in a
jump diffusion model and we investigate its numerical performance.

We consider our model (2) in which we assume, in addition, that the functions a and y are
both constants.

Suppose that we are given a discrete sample X, ,..., X, with ; = iA, = ,’—1 for i =
0,...,n.

We now want to analyze the estimation improvement; to do it we compare the classical error
committed using the truncated quadratic variation with the unbiased estimation derived by our
main results.

We define the estimator we are going to use, in which we have clearly taken f = 1 and we
have introduced a threshold k in the function ¢, so it is

n—1
On =) Xy = X0 pp Kiryy, = X). (17
i=0

If normalized, the error committed estimating the volatility is E; := (Q, — oz)ﬁ.
We start from (12) that in our case, taking into account the presence of k, is

0, = cay k> / o)|ul'~du) + &,. (18)
R

We now get different methods to make the error smaller.

First of all we can replace (18) in (11) and so we can reduce the error by subtracting a
correction term, building the new estimator Q¢ := Q, — (%)ﬁ(z"")cmy"‘kz""(f]R o@)|u)' " *du).
The error committed estimating the volatility with such a corrected estimator is E; := (Q;, —
az)ﬁ .

Another approach consists of taking a particular function ¢ that makes the main contribution
of Qn equal to 0. We define ¢(¢) = ¢(¢) + c¥(¢), with ¢ a C* function such that ¥(¢) =0
for each ¢, |¢] = 2 or [¢| < 1. In this way, for any ¢ € R\ {0}, ¢ is still a smooth version of
the indicator function such that ¢(¢) = 0 for each ¢, |[¢] > 2 and ¢(¢) = 1 foreach ¢, |¢| < 1.
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We can therefore leverage the arbitrariness in ¢ to make the main contribution of Q,, equal to

l-a
zero, choosing ¢ = —%, which is such that [; (¢ + ¢y (u)|ul'"“du = 0.
R u)\u

Hence, it is possible to achieve an improved estimation of the Volatility by using the

truncated quadratic variation Q, . := Z:-’;Ol(X i — Xg V(@ 4+ Er)( "Z'Aﬂ ‘). To make it clear

we will analyze the quantity E3 := (Q,.. — 02)J/n.

Another method widely used in numerical analysis to improve the rate of convergence of a
sequence is the so-called Richardson extrapolation. We observe that the first term on the right
hand side of (18) does not depend on n and so we can just write Qn = Q +&,. Replacing it
in (11) we get

1 A
Qn +T+ B2— a)Q+5n and

Zon 1 1 <
Q2n—(7 + \/2—_’_2#}(2 o) I’lﬂ(z Q)Q+ 2ns
_9BC-a) .
where we have also used that (1)P@=®& = &, We can therefore use 22" 92 a5 improved
n 1—28Q—a)

estimator of 2.

We give simulation results for £, E, and E3 in the situation where o = 1. The given mean
and the deviation standard are each based on 500 Monte Carlo samples. We choose to simulate
a tempered stable process (that is F satisfies F(dz) = ‘ell;‘x) in the case o < 1 while, in the
interest of computational efficiency, we will exhibit results gained from the simulation of a
stable Lévy process in the case o > 1 (F(dz) = mlﬁ).

We have taken the smooth functions ¢ and v as below:

1 ifx] <1
e = 1 T il < (x| <2 (19)
0 iflx|>2
0 if|[x]<lorx|>M
Puo = {eTFFE i1 <] < 2 0)
em_%ﬁﬁ if% < x| < M;

choosing opportunely the constant M in the definition of ¥r); we can make its decay slower or
faster. We observe that the theoretical results still hold even if the support of ¢ changes as M
changes and so it is [-M, M] instead of [—2, 2].

Concerning the constant £ in the definition of ¢, we fix it equal to 3 in the simulation of
the tempered stable process, while its value is 2 in the case « > 1, 8 = 0.2 and, in the case
a > 1 and B = 0.49, it increases as « and y increase.

The results of the simulations are given in columns 3-6 of Table la for 8 = 0.2 and in
columns 3-6 of Table 1b for 8 = 0.49.

It appears that the estimation we get using the truncated quadratic variation performs worse
as soon as o and y become bigger (see column 3 in both Table 1a and b). However, after having
applied the corrections, the error seems visibly reduced. A proof of which lies, for example,
in the comparison between the error and the root mean square: before the adjustment in both
Table la and b the third column dominates the fourth one, showing that the bias of the original
estimator dominates the standard deviation while, after the implementation of our main results,
we get E, and E; for which the bias is much smaller.



C. Amorino and A. Gloter / Stochastic Processes and their Applications 130 (2020) 5888-5939 5899

Table 1
Monte Carlo estimates of Ej, E, and E3 from 500 samples. We have here fixed n = 700; g = 0.2 in the first
table and 8 = 0.49 in the second one.

(a) p=0.2 (b) B =0.49
o y  Mean Rms Mean Mean o y  Mean Rms Mean Mean
E, E; E E3 E; E, E; E3
0.1 1 3.820 3.177 0.831 0.189 0.1 1 1.092 1.535 0.307 —0.402
3 5289 3.388 1.953 —0.013 3 1254 1.627 0.378 —-0.372
05 1 15.168 9.411 0.955 1.706 05 1 2503 1.690 0.754 —0.753
3 14445 5.726 2971 0.080 3 4.680 2.146 1.651 —0.824
09 1 13717 4.573 4.597 0.311 09 1 2909 1.548 0.217 0.416
3 42419 6.980 13.664  —0.711 3 8.042 1.767 0.620 —0.404
1.2 1 32507 11.573 0.069 2.137 12 1 7.649 1.992 —0.944  —0.185
3 112.648 21.279 —0.915 0.800 3 64.937 9.918 —-1.692  —2275
1.5 1 50.305 12.680 0.195 0.923 1.5 1 25713 3.653 —1.697  3.653
3 250.832 27.170 —5.749  3.557 3 218591 21.871 —4.566  —13.027
19 1 261.066 20.729 —0.530 9.139 1.9 1 238.379 14.860 —6.826  16.330
3 2311.521 155950 —0.304 —35.177 3 2357553 189.231  3.827 —87.353

We observe that for @ < 1, in both cases 8 = 0.2 and 8 = 0.49, it is possible to choose
opportunely M (on which ’s decay depends) to make the error E3 smaller than E,. On the
other hand, for ¢ > 1, the approach which consists of subtracting the jump part to the error
results better than the other, since E3 is in this case generally bigger than E,, but to use this
method the knowledge of y is required. It is worth noting that both the approaches used, that
lead us respectively to E, and E3, work well for any 8 € (0, %).

We recall that, in [13], the condition found on B to get a well-performed estimator was

1
F> =
that is not respected in the case § = 0.2. Our results match the ones in [13], since the third
column in Table 1b (where 8 = 0.49) is generally smaller than the third one in Table la (where
B = 0.2). We emphasize nevertheless that, comparing columns 5 and 6 in the two tables, there
is no evidence of a dependence on 8 of E, and Ej.

The price you pay is that, to implement our corrections, the knowledge of « is request. Such
corrections turn out to be a clear improvement also because for « that is less than 1 the original
estimator (17) is well-performed only for those values of the couple («, ) which respect the
condition (21) while, for @ > 1, there is no 8 € (0, %) for which such a condition can hold.
That is the reason why, in the lower part of both Table la and b, E; is so big.

Using our main results, instead, we get E, and E3 that are always small and so we obtain
two corrections which make the unbiased estimator always well-performed without adding any
requirement on ¢« or S.

21

5. Preliminary results

In the sequel, for § > 0, we will denote as Ri(Af,) any random variable which is F,
measurable and such that, for any g > 1,
Ri(A))
Ab

with ¢ independent of i, n.

Jc >0 < ¢ < 00, (22)

L4
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R; represent the term of rest and have the following useful property, consequence of the
just given definition:
Ri(A%) = ASR;(AY). (23)

We point out that it does not involve the linearity of R;, since the random variables R; on the
left and on the right side are not necessarily the same but only two on which the control (22)
holds with A2 and A?, respectively.

In order to prove the main result, the following proposition will be useful.

We define, fori € {0,...,n — 1},

Tit1
AX] = / / y(X,-)zfi(ds,dz)  and
4 R\{0}
(24)

- Lit1
Ax] :=/ / y(X,) z fllds, dz).
[ R\{0}

We want to bound the error we commit moving from AX; to AX 7, denoting as 0,1(A%) a
quantity such that E;[|o,1(A%)|] = R;(A¥), with the notation E;[.] = E[.|F].

Proposition 3. Suppose that A1-A4 hold. Then
(AX!)p 3 (AXi) = (AX]Pg p(AX]) + 01 (A]C7H, (25)

Tit1 fit1 - -
([ aawoaxo paxy = ([ adWAR oy (AX)) + o414, 20
i t

Moreover, for each € > 0 and f the function introduced in the definition of Q,,

n—1 n—1 . _ —aptn(L_z
3 FXAX)Pg p(AXD) = 3 FXAR g 0 (AR]) +op(a, 7779,

i=0 i=0
27

n—1 n—1

fit+1 fit1 B _

D FXX / asdW)AX] 9 19 (AXD) = D F(X,) / a,dWy)AX] ¢ \p(AX])

i=0 l i=0 1
—aB—OA(L—¢

+op(ay, T, (28)

Proposition 3 will be showed in the Appendix.
In the proof of our main results, also the following lemma will be repeatedly used.

Lemma 3. Let us consider AXl.J and Af(lj as defined in (24). Then
1. For each q > 2 3¢ > 0 such that

E[|AX; iax o)1) = Ri(APO=) = Ri(A}). (29)
EIAR! 1y g0 171 = RAATP) = R(A)7), (30)
2. For each g > 1 we have
E[IAX]1( 5 |1 = Ri(ATPE), 31)
{%ﬂsmxiﬂsm’f}
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Proof. Reasoning as in Lemma 10 in [1] we easily get (29). Observing that AX lJ is a particular
case of AX IJ where y is fixed, evaluated in X, it follows that (30) can be obtained in the same
way of (29). Using the bound on AX; obtained from the indicator function we get that the
left hand side of (31) is upper bounded by

cAPIE[1 { }m,.] < APIR,(Al=F),

B
A
S <jAx] <4l

where in the last inequality we have used Lemma 11 in [1] on the interval [¢;, #;11] instead of
on [0, h]. From property (23) of R; we get (31). O
6. Proof of main results

We show Lemma 2, required for the proof of Theorem 1.
6.1. Proof of Lemma 2

Proof. By the definition of X¢ we have
n—1

1D FXDX; = X5 (9 ,p(AX) = D))

fit1
i=0

i+1

n—1 I
ch|f(xf,->|(|/
i=0 fi

In the sequel the constant ¢ may change value from line to line.
Concerning I}, using Holder inequality we have

fit1
ad W, + |[ buds )l yp (AX) — 1] = |12, + |12,
4

n—1 lit1 1 1
E[13,11 < cZEnf(Xf,.NEfH/ a,d Wi P17 Eillg 16 (AX:) — 11171, (32)
i=0 fi
where [E; is the conditional expectation wit respect to ;.
We now use Burkholder-Davis—Gundy inequality to get, for p; > 2,

tig1 s litl P L LIRSS L
Ei[l f asd W, 177 < By / 2ds| 1P < R(AD)T = R(AD), (33)
t 5

where in the last inequality we have used that a? has bounded moments as a consequence
of Lemma 1. We now observe that, from the definition of ¢ we know that ¢ ,s (AX;) — 1
is different from 0 only if |AX;| > AP We consider two different sets: |AX ,] | < %Af and
|AX| > %Af We recall that AX; = AX¢+ AX/ and so, if |AX;| > A? and |AX| < %A,’f,
then it means that | AX¢| must be more than %Af . Using a conditional version of Tchebychev
inequality we have that, Vr > 1,
E:[|AX{]']
Al

n

1 1 g,
Pi(AX{| z sAD < ¢ < R, (34)
where IP; is the conditional probability with respect to JF;;; the last inequality follows from

the sixth point of Lemma 1. If otherwise |AXiJ | > %Aﬁ, then we introduce the set
B
Niw = 1AL = 228 ¥s € (1, 11 We have Pi{1AXY| = 3 AT} 0 (Vi) = Pr(@in)),
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with

AP liy1 oo
Pi((Niu)) = Pi@s € (1. ti] 1 ]ALy| > 5—2) < f / oy F@dzds < c AP,
t; n

Ymin Ty
(35)
where we have used the third point of A4. Furthermore, using Markov inequality,
1 ,
IP’,»<{|AX,-’ = 545} N Niw) < CEIAX] [ 1y, AP < Ri(A PP
= Ri(4,77), (36)

where we have used the first point of Lemma 3, observing that 1 N;, acts like the indicator
function in (29) (see also (219) in [1]). Now using (34), (35), (36) and the arbitrariness of r
we have

1 1
P(|AX;| > AP) = Pi(JAX;| > AP, |AX]| < EAS) +P;(1AX;| > A% |AXY| > EAS)
< Ri(AL7P). (37)

Taking p big and ¢ next to 1 in (32) and replacing there (33) with p; = 2p and (37) we get,
Ve > 0,
n—1
n' PR ] < 0 Y CRIF (X)) Ri(ADR(A )]

i=1
1 . n—1
<) ;;E[If(X,,-)IR,-(l)].

Now, for each € > 0, we can always find an € smaller than it, that is enough to get that

(1)13# goes to zero in L' and so in probability. Let us now consider ;' ,. We recall that b
is uniformly bounded by a constant, therefore
i+l
(/ byds)* < c A% (38)
l

Acting moreover on | ,s (AX;) — 1] as we did here above it follows

n—1
n' PRI, 1] < n' e Y BIF (X)) Ri(ADR(A) 0]

i=1

1 3 n—1
< ()T Y B FX)IR (D)

i=I

and so I}, = op((})!~*F=%). O
6.2. Proof of Theorem 1

We observe that, using the dynamic (2) of X and the definition of the continuous part X¢,
we have that

lit1
Xy =Xy =05, =+ [ [ )z o, (39)
i R\{0}

tit1
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Replacing (39) in definition (4) of Q, we have

fit+1 i+l
= i=0
n—1

+2) 0 fXDXK = XI(AX g 45 (AX))

n—1 n—1
On =) fXDX, = XpP + ) FOX)XG, | = Xi)(9,p(AX) = 1)
i=0

lit1
i=0
n—1 4
+ Y FXAX] Vg p(AX) =Y I (40)
i=0 j=1

Comparing (40) with (6), using also definition (5) of Q,,, it follows that our goal is to show
—aB—n(L_e )
that I} 4+ I = &,, that is both {)p(Af(z_a)) and OP(AS Fonz é)). We have already shown in
Lemma 2 that I} = 0p(Ay ™). As (1—af—)A(L —&) < 1—ap—¢ and B2—a) < 1—af—¢,
we immediately get I = &,.
Let us now consider /3. From the definition of the process (X7) it is

n—1 lit1 lit1
2Zf(X,i)[/ b,ds +/ adeS]AXiJ(pAﬁ(AXi) =: I_{il + 13”2.
i=0 li li

We use on /3, Cauchy-Schwarz inequality, (38) and Lemma 10 in [1], getting

n—1
1 1
E[I5 11 <2 ) EILF(X)IRi(APE)2 Ri(AT)2]
i=0

18 0ma) 1
<A - ;Eﬂf(xz,«)mi(l)]»

where we have also used property (23) on R. We observe it is % + 8- % > % if and only if
1
B(1 — %) > 0, that is always true. We can therefore say that /3| = op(A?) and so

(3-OA1-ap—&)

I, = op(A, ). (41)
Moreover,

E[NL ] operg 1

ks A; ;gE[|f(x,i)|Ri(1)], (42)

that goes to zero using the polynomial growth of f, the definition of R, the fifth point of

Lemma 1. Moreover, we have observed that the exponent on A, is positive for 8 < %(ljg),
2

that is always true.
Concerning I3 ,, we start proving that I}, = o]p(Af(zfa)). From (26) in Proposition 3 we
have

I3, 2 - s
i = e > f(X)AX] e AP (AX) / a,dWy
n n i=0 1
2 n—1
+ g 2 S Ky oun (A, (43)
n i=0
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By the definition of 0;: the last term here above goes to zero in norm 1 and so in probability.
The first term of (43) can be seen as

2 n—1 -, - tiy1 fit]
s 2 S X)AK gy (AT / aydW, + / (@ — a)dW,]. (44)
n i=0 ti t;
On the first term of (44) here above we want to use Lemma 9 of [9] in order to get that it
converges to zero in probability, so we have to show the following:

n—1 .
2 ~ - lig1 P
e Y Elf(X)AX] 9 4p(AX]) f a,dW,] = 0, (45)
n i=0 fi
4 = 2 JN2 2 o J fit 21 B
i LB AR AT aaw) S (46)
n i=0 " t

where E;[.] = E[.|F;].
Using the independence between W and L we have that the left hand side of (45) is
n—1

2 = = ; lit1
o O S XOELAX 0 g (AXDIEL | aydW] = 0. (47)
n i=0 !

Now, in order to prove (46), we use Holder inequality with p big and g next to 1 on its left
hand side, getting it is upper bounded by

n-l lit] - -
8,500 5 POEI[ T a,d WP PENAR g (AX)1E
—0 1 n

n—1

< APEON " X OR(ADRI(A

i=0

1B,
7 TqQa—
n

)

n—1
1
< A HCTaRabm SN 2(X ) Ri(1), (48)
n i=0

where we have used (33), (30) and property (23) of R. We observe that the exponent on A, is
positive if 8 < ﬁ — € and we can always find an € > 0 such that it is true. Hence (48) goes

to zero in norm 1 and so in probability.
Concerning the second term of (44), using Cauchy—Schwarz inequality and (30) we have

. . fit1
Bl AX! ¢ (AT [ e = aJawil
L4
7/ 77274 it 244
< BIAK 0y (AXDPIEN [0, - a1,
t

1. B lit1 1 B 3,80
< R(AFTTE / lag — a,2ds1? < A7 TVR(DA, < AT R (1),
t

(49)
where we have also used the second point of Lemma | and the property (23) of R. Replacing
(49) in the second term of (44) we get it is upper bounded in norm 1 by

1_g 0B n—1
A7 BN IRAD), (50)

i=0
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that goes to zero since the exponent on A, is more than 0 for 8 < that is always true.

Using (43)—(46) and (50) we get 2 " “)’
i 5o s
We now want to show that I"2 is also ouna(A(2 —On(map- 6))
Using (28) in Proposition 3 we get it is enough to prove that
: nXEf(X,l)[AX’ Aﬂ(AX )/ a, dW,] 5 0, (52)

An
where the left hand side here above can be seen as (44), with the only difference that now we
have A2 ¢ instead of A’s 2= We have again, acting like we did in (47) and (48),

#nX:f(X,,.)E,'[A)?iJ(pAE(AXi,)/tm wdW 5 o -
" i=0 fi
and
e EE[f (X, )(AX] )2 (AX )(/ ayd W]
< A2€+2ﬂ ap—e nXif X)RA(1), -

i=0

that goes to zero in norm 1 and so in probability. Using also (49) we have that

2 n—1
=Y ElIf(X)AX ¢ s (AX) / as — a; 1dW;|]
A2 i=0
ba-atel < A
< A - g | f(X,)IRi(1), (55)

that, again, goes to zero in norm 1 and so in probablhty since the exponent on A, is always

positive. Using (52)—(55) we get I”’2 = op(A? ) and so

(z—e)A(l af—¢€)

1, = op(Al ) (56)

From Lemma 2, (41), (42), (51) and (56) it follows (6).
Now, in order to prove (7), we recall the definition of X;:

Tit1 tit1
XIL;+1 — X’i 2/ bsds +/ ades' (57)
t t;

Replacing (57) in (6) and comparing it with (7) it follows that our goal is to show that

n-l lit1 n-l lit1 lit1
AT+ A} = Z f(X,l.)(/ byds)® +2 Z f(X,l.)(/ bsds)(/ a,dWy) = &
i=0 l i—0 i i
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Using (38) and property (23) of R we know that

E“A,H] B 1 n—1 n—1

—Fe < e . ZEnf(X,, IRi(A2)] < Alpe-o ] =D ELFX)IRM] (58)
n n i=0
and
E[|A"[] 11
WA < A3 LS R IR (59)
A2 i=0

that go to zero since the exponent on A, is always more than 0, f has both polynomial growth
and the moments are bounded.

Let us now consider A7. By adding and subtracting b, in the first integral, as we have
already done, we get that

n-l n-l lit1 lit1
AL = gt ALy =2 F(X,) / by ds)( f asdWy)
i=0 i=0 fi li

n-l lit] lit]
w23 [ tb = baas [ aawo).
i=0 li li
Using Lemma 9 in [9], we want to show that
D ti=6 (60)

and so that the following convergences hold:

n—1 n—1

1 1
— e O EilG] > 0 = L E (0] = 0; (61)
An i=0 A2 =0
n— n—1
1 2, P 1
ng&[;m]»o i ZIE[;”]—>O (62)

We have

ZE[M s a)ZﬂXt,)A btlE[/ asdW,] =

and so the two convergences in (61) both hold. Concerning (62), using (33) we have

Ay s Zf(x,,)bzlw / asdW,)?) < AZ2C0Z Zf(xz,)bzRa)

10 i=0
and

n—1 1 n—1
1-2(1-&)c i+l :C
A, 2 ;§ FPX)brEil( / adW,)’] < A" ;} LA X, Ri(D),
i=0 i i=0

that go to zero in norm 1 and so in probability since A, is always positive. It follows (62) and
so (60). Concerning A} ,, using Holder inequality, (33), the assumption on b gathered in A2
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and Jensen inequality it is

n—1

E[|A5 1] < ¢ ) EI|£(X,)|E; [(/ lbs — by, ds)'17 R, (A )

i=0

n—1 1
<Y El/(X)IAL lf T Eillb, — by 111ds)? Ri(AD)]

i=0 li

Ti41

n—1 1
<Y BIFXIAT [ Aot R
i=0

t

So we get
B[ A2, )
= <At )CX(;]E[lf(Xt,)lR(l)] and )
E A 1.z n—1
A AT S B IR ) 64
Ai_f n =

Since it holds for g > 2, the best choice is to take g = 2, in this way we get that (63) and (64)
go to 0 in norm 1, using the polynomial growth of f, the boundedness of the moments, the
definition of R; and the fact that the exponent on A, is in both cases more than zero, because
of B < 5.

From (58), (59), (61), (63) and (64) it follows (7).
6.3. Proof of Theorem 2

Proof. From Theorem 1 it is enough to prove that

Zf(x,x/ ayd W,y ——Zf(xt)a - f &, (65)

and
- N 1
J _
Qn - Q}’L + Aﬁ(z_a) g}’l’

(2 —E)A(l—af—¢€)

where &, is always OP(A’S(ZW)) and, if 8 > T then it is also op(A, ). We can
rewrite the last equation here above as
7= 0 +op(l) (66)
and, for 8 > 4+a,
1 (276)/\(170(/37@

Indeed, using them and (7) it follows (11). Hence we are now left to prove (65)—(67).

Proof of (65). We can see the left hand side of (65) as

n—1

n-l lit1 litl
> oo adwr- [ adst ) F0) / [ —a21ds = M2+B,. (69)
i=0 li li
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We want to show that B, = &,, it means that it is both o]p(Aﬂ(2 a)) and o]p(A(2 Nt —ep= E))
We write
a; —a; =2a,(a, —a,) + (@ — a,)’, (69)
replacing (69) in the definition of B, it is B, = B + Bj. We start by proving that B} =
o]p(Af(z_a)). Indeed, from the second point of Lemma 1, it is
n—1 n—1
E[IB}] < cZEnf(x,,n/ Eilla; — a,, [*lds] < c Ay Y EI|f£(X,)I].
=0 i=0
It follows
n—1
E[lBEL'] 1-B2— 0,) [|Bn|] %-‘rgl
e =4 ZJEnﬂ(xt, o ed ST s al ;E[lfl(Xz,.)],
(70)

that go to zero using the polynomial growth of f and the fact that the moments are bounded.
We have also observed that the exponent on A, is always more than 0.
Concerning B}, we recall that from (3) it follows

as — ay /budu+f auqu+/ auquJr// Yu 2 i(du, dz)
/ / Yu 2 ii2(du, dz)
R\{0

and so, replacing it in the deﬁmtlon of Bf,weget B =1+ 1]+ 17+ I + 1.
We start considering /{' on which we use that b is bounded

n—1 n—1

E[ulu<2ZE[|f(Xt,)||a,,| / (/ cdu)ds] < A, - ZEnf(X,,)nat,u

It follows
|In|] n—1
e < ar-pewl =D Elf(Xylla,]  and 1)
i=0
E[171] :
T ZEnf(xt,)Hat,u )
A2 i=0

that go to zero because of the polynomial growth of f, the boundedness of the moments and
the fact that 1 — B(2 — @) > 0.

We now act on I} and I in the same way. Considering I}, we define ¢,; = 2 f(X,)a,
f;”‘(f a,dW,)ds. We want to use Lemma 9 in [9] to get that
Iﬂ Il‘l
“Be-a - and  ——2—— 5o (73)
A « AEF_GM(]_O“@_Q
and so we have to show the following:
1 n—1 P 1 n—1
WZE@”A = 0. —ZE (641 = O; (74)
n i=0 A} i=0
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n—1
1 P
2B(2—a) ZE[(Z,-] =0, (75)
A i=0
1 n—1 P
1z ZE:'[C,ZZ,,-] — 0. (76)
AZ2T9 T
n

By the definition of ¢, ; it is E;[¢,;] = 0 and so (74) is clearly true. The left hand side of
(75) is

n—1 tit1 s
AP 043" (X, )0 B / ( / audW,)ds)*]. 77)
i=0 fi fi

Using Fubini theorem and Ito isometry we have

lit1 s fit1 lit1
E.[( / ( / G dWds 1 = E ([ (i1 — 9)ad W] = Eif f (11 — $)ads]
t; t; 1 !

< Ri(4). (78)
Because of (78), we get that (77) is upper bounded by

n—1
1
2-26Q2—« 2 2
Ay~ ; FH(X,)a; Ri(l),
that converges to zero in norm 1 and so (75) follows, since 2—28(2—«) > 0 for § < ﬁ that
is always true. Acting in the same way we get that the left hand side of (76) is upper bounded by
n—1
-1
A ZO: FA(X,)a? Ri(D),
that goes to zero in norm 1. The same holds clearly for I3 instead of /. In order to show also
1} Iy
—+ 50 ad —2* By (79)
AE(Z*(X) A(jfe)/\(lfaﬂfe)

we define 7, ; = 2f(Xy)ay, ft:i+l(j.tj Jg Vuzit(du, dz))ds. We have again E:[Z,:] = 0 and so
(74) holds with f,,,,' in place of £, ;. We now act like we did in (78), using Fubini theorem and
Ito isometry. It follows

tir N lit1
Eil( / o / / Puzii(du, d2)dsY)] = Eil( / : / (11 — $)72fi(ds. d2)’]
4 4 JR i R

_El f " i — 9P 72ds( f 2F()d2)] < R(AY), (80)
t; R

having used in the last inequality the definition of [i(ds, dz), the fact that fR 72F(2)dz < 00
and the boundedness of y. Replacing (80) in the left hand side of (75) and (76), with &, ; in
place of &, ;, we have

n—

1 n—1
1 ~
s D L] < c AP N £2(X, )al Ri(AY)

2B(2—a)
An i=0 i=0
n—1

|
< AHes- ;:f%xtl.)aik,»(l)



5910 C. Amorino and A. Gloter / Stochastic Processes and their Applications 130 (2020) 5888-5939

n—1 n—1
1 ~ -1
and A172€ ZE’[é‘Vil] S A,IL+26; g fZ(X,l)atle,(l)
n i=0 i=0

Again, they converge to zero in norm 1 and thus in probability since 2 —28(2 —«) > 0 always
holds. Therefore, we get (79). Clearly, (79) holds also with I§ replacing Ij'; the reasoning here
above joint with the sixth point of A4 on F, is proof of that.

From (70), (71), (72), (73) and (79) it follows that

B, =&,. (81)

Concerning M2 = Z?;ol Zn.i» Genon-Catalot and Jacod have proved in [9] that, in the

continuous framework, the following conditions are enough to get ./n M2 — N(0, 2 fOT FA(Xy)
atds) stably with respect to X:

o Eilfnil = 0;

o YIUEE21 D 2 ) fAXadds;

o DI EIL 1 0;

o Y10 Bl (Wi, — W)l = 0;

o Y00 Eillni (W, — W)l > 0.
Theorem 2.2.15 in [12] adapts the previous theorem to our framework, in which there is the

presence of jumps.
We observe that the conditions here above are respected, hence

T
MQ = Zn where Z, = N(0, 2 FA(Xyalds) (82)
n \/ﬁ’ n ’ o s/Mg ’

stably with respect to X. From (81) and (82), it follows (65).

Proof of (66). We use Proposition 3 replacing (25) in the definition (5) of Q,{ . Recalling that
the convergence in norm 1 implies the convergence in probability it is clear that we have to
prove the result on

n—1
nfC= Y FX AKX g 1p(AXY)
i=0

-l 2 AXY AX/ 1
=nPCO N F (XY (X)) AR ( )% 8 Y (XA, (83)
i=0 y(Xt,)Ar? ‘y(XT,)A;:

where we have also rescaled the process in order to apply Proposition 1. We now define

1
8in(¥) = ¥0 ;p (Y (X A7), (84)

hence we can rewrite (83) as

1 = AX/
(—)a PN F(X, )y X )i (— ) — Elgin(SO)]]
" . T
i=0 Y(XZJ)AI?
15 n—1 n—1 R
2ye-pC-w) 2 (8] =: n
+() Y FX)Y X )EIgia(SH = Y A}, + O, (85)

i=0 i=0
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where S} is the a-stable process at time t = 1. We want to show that Z::ol A, converges to
zero in probability. With this purpose in mind, we take the conditional expectation of A’ ; and

we apply Proposition 1 on the interval [#;, f; 1] instead of on [0, i], observing that property
2(8—

(9) holds on g;,, for p = 2. By the definition (84) of g; ., we have | gi.. | = Ri(A, ) and
||g, n ||pol R;(1). Replacing them in (10) we have that
AX/ 2
[Ei[gin(——)1 — Elgin(SHI = ce.a Anllog(An)|Ri(An - )
y(Xf,')Ar?
1 _1 _ 1y 3 _a_
+eaAF Tog(ANIR(AN™ 750 4 AF og(AD R4V TN,
To get Z" ! A" := op(1), we want to use Lemma 9 of [9]. We have
n—1 14206
D ELAT < (- Lyg-pe-o Z |F XDy XD og(ADI[A,
i=0 i=0
+A°‘+(2 a—e)(B—1)
1_ log(A
AT R () = (A 4+ AT a1 RS
n—1
X Z|f(Xti)||V2(Xti)|Ri(1)a (86)
i=0

where we have used property (23). Using the polynomial growth of f, the boundedness of the
moments and the fifth point of Assumption 4 in order to bound y, (86) converges to 0 in norm
1 and so in probability since A% log(A,) — 0 for n — oo and we can always find an € > 0

1_
such that A does the same.
To use Lemma 9 of [9] we have also to show that
n—1 XJ »
( Lyi-2s0-w > XY X)E:, ,,(—> — Elgi . (S]] = 0. (87)
i=0 V(Xt,)An

Ax] X
We observe that [E;[(g; »( ) — Elgin(SHD?] < cEilg?,( )] + cEi [E[g;, 1 (ST
Y(Xi) AT Y(Xi) AL
Now, using Eq. (30) of Lemma 3, we observe it is

AX/ A,
Eilg},( )l = w0
y(XpAy VR

4
o

Qu:.

Ei[(AX!)*? ,S(Ax ) = Ri(APPE=) (88)

A,
y (Xl‘,')
where ¢ acts as the indicator function. Moreover we observe that

L_p

E[gin(SP)] = /wa(ﬂf_ﬂy(xz,-)Z)fa(Z)dz =d(y(X,)A7 "), (89)

with f,(z) the density of the stable process. We now introduce the following lemma, that will
be shown in the Appendix:
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Lemma 4. Suppose that Assumptions 1-4 hold. Then, for each ¢, such that ¢, — 0 and for
each € > 0,

d(&) = 161" e ]R Jul' = po)du + 01~ + 16727, (90)
where c, has been defined in (13).
Since é - B >0, y(X,,.)A,;%fﬂ goes to zero for n — oo and so we can take ¢, as y(X;,)
A,;% i getting that
Elg.(S0)] = d(y(X,) A7 ) = R(AlF "), 1)
Replacing (88) and (91) in the left hand side of (87) we get it is upper bounded by

n-l1 n—1 \
ZE,-[(A?J)Z] = (%)%*Zﬂ@w) Z fz(Xti)V4(Xti )(Rl_(A111+13(47a)) + Ri(Aiﬁ*&+272aﬁ))
=0 i=0
n—1
< Ay 1 Z FAXDY X )RiD), 92)
n —0

that converges to zero in norm 1 and so in probability, as a consequence of the polynomial gro-
wth of f and the fact that the exponent on 4, is always positive. From (86) and (92) it follows

n—1
> oAt = os(D). (93)
i=0

and so (60).

Proof of (67). We use Proposition 3 replacing (27) in definition (5) of Q,{ . Our goal is to
prove that

n—1
—a 5 o ~ (3-2B+ap—ON(1-2—¢)
WP S FXNAK! P pp(AX]) = O+ 0p( 7077070,
i=0
On the left hand side of the equation here above we can act like we did in (83)—(85).
To get (67) we are therefore left to show that, if § > %a, then Z:':o] A’f’i is also

4
L 2B+ap-ena—2p—¢ .
o]p(Aiﬁ prof-onti=2p 6)). To prove it, we want to use Lemma 9 of [9], hence we want to

prove the following:

n—1

1

P
 1-2prapc ZEi[Al,i] — 0 and on
An i=0
; nX_I:E‘[(An )2] E) 0 o5
AZ(%—2ﬁ+aﬁ4) gt AN .

Using (86) we have that, if ¢ > 1, then the left hand side of (94) is in module upper bounded by

AR log(A)] 1 ¢ .
ot 2 DIV XDIR(D)
An i=0
n—1

1
og(AnI= 3 1 F Xl (X Ri (D),

i=0

3p—ap—i+éi—c
n

=A
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that goes to zero since we have chosen f > — > Otherwise, if @ < 1, then (86) gives
—a 2(3 )

us that the left hand side of (94) is in module upper bounded by

AP |log(A, )I 1

—2B+af— Z'f(xr,)HVZ(X,INR (D
AZ

: 1 n—1
= A0 2ADI= D L XI KIR(D),
i=0

that goes to zero because f > - > 1
4—qa

Using also (92), the left hand side of (95) turns out to be upper bounded by

AP zaﬁHGA“ﬂM' Sy fAX, )y4(X, )R;(1), that goes to zero in norm 1 and so in
probability since we have chosen B > Ta It follows (95) and so (11). [

6.4. Proof of Proposition 2

Proof. To prove the proposition we replace (90) in the definition of Q,,. It follows that our
goal is to show that

n—1

1 2 1_ .

I+ 1= (a0 3 £(X ) (X)) A8y X))
n i=0

1_ R -
1A Py x P = 6,

——e)/\(l—aﬁ—é)

).

where &, is always op(1) and, if ¢ < i it is also /3(2 —m=a0p( A’
We have that I{" = op(1) since it is upper bounded by

n—1
2_12p+ap—e(L-p) 1
A; ~ > Rio(D),

i=0
that goes to zero in norm 1 and so in probability since we can always find an € > 0 such that
the exponent on A, is positive.

Also 1} is op(1). Indeed it is upper bounded by

n—1
2 4 af— 1_ —aB)—é 1_ 1
A 12 HeB -2 - P2 —ap)—2( ﬁ)_ZR"(l)O(l)' (96)
i

We observe that the exponent on A, is 1 —af — é(é — B) and we can always find € such that

it is more than zero, hence (96) converges in norm 1 and so in probability.

3—E-p2-a)

In order to show that I} = WOP(AZ ") = op(AZ ) we observe that

In 7—1———&-5 e( 1 !
—— <A =Y Ri(Do(D).
Az —€—BR2—a) n —

If o < % we can always find € and € such that the exponent on A, is more than zero, getting

3
—E)A(1—
the convergence wanted. It follows I}' = ,3(2 ) O]PJ(A(Z oni=ap= 6))
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To conclude, I} = ﬁoP(A,l,_“ﬂ_g) — 0p(A%79) Indeed,

n

2 -l+apté—2L-prai—ap—el-p)

1 n—1
— 2 < A - ; Ri(1)o(1). 97)

The exponent on A, is 28 —af + € — é(é — B) and so we can always find € and € such that it
is positive. It follows the convergence in norm 1 and so in probability of (97). The proposition
is therefore proved. [

6.5. Proof of Corollary 1

Proof. We observe that (14) is a consequence of (12) in the case where Q,, = (. Moreover,

—ap—€ €

i
B < 5 implies that A, is negligible compared to A2 . It follows (14). O

6.6. Proof of Theorem 3

Proof. The convergence (15) clearly follows from (12).
Concerning the proof of (16), we can see its left hand side as

n—1 n—1
1 1
Q- ~ ; FXyag + Z{; f(Xpal — 1V,
and so, using (11) and the definition of 7V, it turns out that our goal is to show that

n—1 1
%Zf(xz,.)ai - /O f(Xy)alds = op(A[P™). (98)
i=0

The left hand side of (98) is
n-l litl nl e
D FXy) / (a; —adds +y / al(f(Xy,) = f(X)ds =: By + R,.
i=0 li i=0 Yl

B, in the equation here above is exactly the same term we have already dealt with in the proof
of Theorem 2 (see (68)). As showed in (81) it is £, and so, in particular, it is also OP(AE(Zia)).

On R, we act like we did on B, considering this time the development up to second order
of the function f, getting

1(Xy)

2
where )~(,,. € [X,, X;]. Replacing (99) in R, we get two terms that we denote R,ll and Rﬁ.
On them we can act like we did on (69). The estimations gathered in Lemma | about the
increments of X and of a have the same size (see points 2 and 4) and provide on B and R?
the same upper bound:

fX) = f(X) + f(X)Xs — X)) + (X5 — X)), 99)

n—1 tit1 n—1
E[IR}I] < ¢ > EII£"(X,)| / Eillas|| X, — X,,171ds] < c A2 Y EI|f"(X;) | Ri(D],
i=0 ti i=0
where we have used Cauchy—Schwarz inequality and the fourth point of Lemma 1. It yields
Rﬁ = OP(AQ(Z_“)), which is the same result found in the first inequality of (70) for the
increments of a.
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To deal with R! we replace the dynamic of X (as done with the dynamic of a for BY).
Even if the volatility coefficient in the dynamic of X is no longer bounded, the condition
SUPse(r; 1411 E;[las|]] < oo (which is true according with Lemma 1) is enough to say that (78)
keep holding.

Following the method provided in the proof of Theorem 2 to show that B} = &, we obtain
R; = &, and therefore R}, = oP(AE@*")). It yields (98) and so the theorem is proved. [

7. Proof of Proposition 1

This section is dedicated to the proof of Proposition 1. To do it, it is convenient to introduce
an adequate truncation function and to consider a rescaled process, as explained in the next
subsections. Moreover, the proof of Proposition 1 requires some Malliavin calculus; we recall
in what follows all the technical tools to make easier the understanding of the paper.

7.1. Localization and rescaling

We introduce a truncation function in order to suppress the big jumps of (L;). Let 7 : R —
[0, 1] be a symmetric function, continuous with continuous derivative, such that T = 1 on
{|z| < in} and T =0 on {|z| > %n} with 7 defined in the fourth point of Assumption 4.

On the same probability space ({2, F, (F;), P) we consider the Lévy process (L,) defined
below (2) whose measure is F(dz) = \Zgl,ii)“ Ir\(0}(z)dz, according with the third point
of A4, and the truncated Lévy process (L) with measure F*(dz) given by F'(dz) =

gl(zzl)li(j)lR\{o}(z)dz. This can be done by setting L, = [, [, z/i(ds, dz), as we have already

done, and L] := fot fR zil*(ds, dz), where @ and " are the compensated Poisson random
measures associated respectively to

B(A) = / / / 14, i, dz, dw), A CI0,T] xR,
[0,1] /R J[0,T]

WE(A) = / f / La(ts Dlueep(dt, dz, du), A C[0,T] xR,
[0,11 /R J[0,T]

for 48 a Poisson random measure on [0, 7] x R x [0, 1] with compensator /lg (dt,dz,du) =
dtlj%lﬂg\{o;(z)dzdu.

By construction, the restrictions of the measures p and u” to [0, ~] x R coincide on the set
{(u, z) such that u < 7(z)}, and thus coincide on the event

O = {wefz;;ﬁ([o,h]x{zeR:ng}x[o,l]):o].

Since pf([0, h] x {z eR:|z| > %} x [0, 1]) has a Poisson distribution with parameter

h 1 5
A ;:/ / / %dudzdtgch;
0o Jiz=2Jo Izl
we deduce that
P($2%) < ch. (100)

Then we have

P(L)i<h # (Li=n) = PU2) < ch. (101
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To prove Proposition 1 we have to rescale the process (L;);ef0,17, We therefore~int£0d11~ce an
auxiliary Lévy process (L?)re[o, 17 defined possibly on another filtered space ({2, F, (F;), P)
and admitting the decomposition L! := fot [z zid"(dt, dz), with ¢ € [0, 1]; where 4" is a

compensated Poisson random measure i = u" — i, with compensator

2(zhw)

" (dt, dz) = dt =

r(zh MNr\(0y(2)dz. (102)

By lconstruction, the process (Lﬁ‘),e[o,l] is equal in law to the rescaled truncated process
(h~a@ L},)iepo,17 that coincides with (A~ « Ly )sefo,17 on §2,.

7.2. Malliavin calculus

In this section, we recall some results on Malliavin calculus for jump processes. We refer
to [6] for a complete presentation and to [7] for the adaptation to our framework. We will
work on the Poisson space associated to the measure " defining the process (L )iefo,17 of the
previous section, assuming that / is fixed. By construction, the support of u” is contained in
[0, 1] x Ej,, where Ej, := {z eR:|z| < g%}, with 7 defined in the fourth point of A4. We

Pas

ho
recall that the measure " has compensator
- 1
g(zhw)

i'(dt, dz) = dt i

t(zh Mryj01(2)dz == dt Fj(2)dz. (103)

In this section we assume that the truncation function t satisfies the additional assumption

/ | (Z)I”r(z)dz < 00, Vp > 1.

We now deﬁne the Malliavin operators L and I' (omitting their dependence in %) and their
basic properties (see [6] Chapter IV, sections 8-9-10). For a test function f : [0, 1] x R —
R measurable, C? with respect the second variable, with bounded derivative and such that
f € Np=1 LP(a"(dt, dz)), we set u"(f) = fol Jg [, 2" (dt, dz). As auxiliary function, we
consider ,o : R — [0, c0) such that ,0 is symmetric, two times differentiable and such that
p(2) = % if 7 € [0, ;] and p(z) = z% if z > 1. Thanks to the truncation , we do not need
that p vamshes at infinity. Assuming the fourth point of Assumption 4, we check that p, p’
and ,o F belong to N> L?(F,(z)dz). With these notations, we define the Malliavin operator
L on the functional /,Lh( f) as follows:

L)) = uwf+p f+ﬁ0

where f’ and f” are derivative W1th respect to the second variable. This definition permits
to construct a linear operator on the space D C M,>L?(F(z)dz) which is self-adjoint:
VO, ¥ € D, EOLY = EL®PV (see Section 8 in [6] for the details on the construction of
D).
We associate to L the symmetric bilinear operator I
e, v)=L(o, ¥)— OL(V)— VL(D).
If f and g are two test functions, we have

("), 1" (g) = u"(of'g). (104)
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The operators L and [ satisfy the chain rule property:
1

LF(®) = F(P)LD + EF”(Q)F(QD, D), I(F(P), ¥)=F'(P)[(D, V).
These operators permit to establish the following integration by parts formula (see [6] Theorem
8-10 p.103).
Theorem 4. Let ¢ and ¥ be random variable in D and f be a bounded function with bounded
derivatives up to order two. If I'(®, D) is invertible and I'"'(®, D) € Np=1L?, then we have

Ef(®)¥ =Ef(®)Ha(P), (105)
with

Ho(W) = 20D, )LD — (D, WY D, D). (106)

The random variable L'l’ belongs to the domain of the operators L and I". Computing L(L’f),

(L, L}l') and HL;I,(l) it is possible to deduce the following useful inequalities, proved in
Lemma 4.3 in [7].

Lemma 5. We have

SpE[H,(DI” <C,  ¥p =1,

1
suplE| f / 2l (ds, d2yH ()" <€, ¥p =1,
n 0 |z|>1
With this background we can proceed to the proof of Proposition 1.
7.3. Proof of Proposition 1

Proof. The first step is to construct on the same probability space two random variables whose
laws are close to the laws of h’éLh and S}. We recall briefly the notation of Section 7.1: wh
is a Poisson random measure with compensator i(dt, dz) defined in (102) and the process
L" is defined by

t t
L= / / zii"(ds, dz) = f f . zf(ds, dz) (107)
0 R 0 |z\§h75%

with " = u" — . Using triangle inequality we have
1 1
|ELg(h~ & Ly)] — E[g(SH]| < |E[g(h~ % Ly)] — E[g(LN]| + [Elg(L]) — g(SHIl.  (108)
By the definition of L’l’ it is
1 1 1 .
|E[g(h~= Ly)] — E[g(LD]| = [Elgh~a Ly) — g(h~ = LI < 2 lIgllos P(2) < ¢ ligllo 1,
(109)

where in the last inequality we have used (101). In order to get an estimation to the second term
of (108) we now construct a variable approximating the law of S} and based on the Poisson
measure j1":

t
Lot = / / g ds, dz), (110)
0 Jizl<h™w }
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where g;, is an odd function built in the proof of Theorem 4.1 in [7] for which the following
lemma holds:
Lemma 6.

1. For each test function f, defined as in Section 7.2, we have

1 1
/ / | f@ gn(@)a" e, dz) = / f | ft, 0)p*"(dt, dw),  (111)
0 Jizi<dnw 0 Jwzin~a

where i"(dt, dz) is the compensator defined in (102) and

1
_ T(wh¥)
a%"dt, dw) = dt ——dw
|(,()| I+o
is the compensator of a measure associated to an «-stable process whose jumps are
truncated with the function t.

2. There exists €y > 0 such that, for |z| < eoh*al,
181(2) — 2| < c2he +clz]h ifa # 1,
lgn(2) =zl < e’hllog(lzIm)]  if @ = 1.

3. The function g, is C' on (—eoh’al, eoh’é) and for |z] < eoh’é,
18h2) — 1| < clzlh® +clzl*h ifa# 1,

lgn(@) — 1] < clzlhllog(lzIM)]  if e = 1.

The second and the third point of the lemma here above are proved in Lemma 4.5 of [7],
while the first point is proved in Theorem 4.1 [7] and it shows us, using the exponential
formula for Poisson measure, that g, is the function that turns our measure w1 into the measure
associated to an a-stable process truncated with the function . Thus (L?"h),e[o,l] is a Lévy

1
T(wh@)
|w|l+a

process with jump intensity @ +—> and we recognize the law of an «-stable truncated

process. We deduce, similarly to (109),
IE[g(LY™)] - El[g(SH]] < c gl h- (112)

Proposition 1 is a consequence of (108), (109), (112) and the following lemma:

Lemma 7. Suppose that Assumptions I to 4 hold. Let g be as in Proposition 1. Then, for any
€ > 0 and for p > a,

o 1 1-%+te - —€
E[g(LY) — (LS| < CehllogM)] gl + Che liglloe " gl |log(h)]

1_«a

1 1+i-a4e Ly
+Cehe liglo ™ " ligl 0

a

»¢€
[log(7)[1a>1-

Proof. The proof is based of the comparison of the representation of (107) and (110). Since
1
in Lemma 6 the difference g,(z) — z is controlled for |z| < €yh~«, we need to introduce

a localization procedure consisting in regularizing 1 ) Let 7 be a
{Mh([O,l]x{zeRzlz\>eoh_E]):0}

smooth function defined on R and with values in [0, 1], such that Z(x) = 1 for x < % and
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Z(x) = 0 for x > 1. Moreover, we denote by ¢ a smooth function on R, with values in [0, 1]
such that ¢(z) = 0 for |z] < % and ¢(z) =1 for |z] > 1 and we set

! zhé ! zhé
v [ eEwtasan = [ f e s, dz)
0 JR €0 0 {%eoh*agz\geoh*&] €0

+/01/{| hl}uh(ds,dz),
z|z€oh @

wh.=1(v").
From the construction, W” is a Malliavin differentiable random variable such that W” =0
implies ([0, 1]x {z eR:|z| > eoh_al }) = 0. It is possible to show, acting as we did in (100),
that P(W" # 1) < P(u” has a jump of size > %eoh_é) = O(h). From the latter, it is clear
that the proof of the lemma reduces in proving the result on [E[g(LT)W"] — E[g(L‘f’h)W"]L
Considering a regularizing sequence (g,) converging to g in L' norm, such that Vp g, is
C' with bounded derivative and | g, | < llgll.. we may assume that g is C' with bounded

derivative too. Using the integration by parts formula (105) and denoting by G any primitive
function of g we can write E[g(L")W"] = E[G(L"H L;;(Wh)] where the Malliavin weight can

be written, using (106) and the chain rule property of the operator I, as
(Wt LM
I, L

Using the triangle inequality, we are now left to find upper bounds for the following two terms:

Mo (W) = WhH (1) — (113)

Ty = [ELg(LY")W"] — EIG(LT")YH 1 (WH]),

Ty = [E[G(LY"YH (W' = E[GL)H (W1,

Let us start considering T». Using the Lipschitz property of the function G and (113) we have
it is upper bounded by

Ellg(L)ILY" = LYIH (WHI] < Ellg(LoILT" — LYW H (D]
r(wh LM

+E[|g(L)|LY" — LI ———=L2
[lg(LDIL, il Th Ll

1
=: T2,1 + Tz,z,

where 1:1 is between L‘f'h and L’I’. We focus on Tz,l. Using the definitions (107) and (110) of
L" and L‘;"h it is

1
o1 < Ellg(Lyll / / (8n(2) — D" (ds, d2) | Hpn(HW"|]
0 JR
1
< Ellg(Ly)] /0 f (en(0) — )" (ds. d2) [ H (W]
lzl=<

1
+ E[lg(Ly)] / / )  (80(2) = D" (ds. d2) | Hn(HW" ], (114)
0 Ji=|zlzeph™ @
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where we have used that g;, is an odd function with the symmetry of the compensator ji"
and the fact that on W), # 0 we have u"([0,1] x {zeR:|z| > eoh_é ) = 0. For the
sake of shortness, we only give the details of the proof in the case @ # 1. In the case
o = 1, one needs to modify this control with an additional logarithmic term. For the small
jumps term, from inequality 2.1.37 in [12] and the second point of Lemma 6 we deduce
E[| fol fmgl(gh(z) — )i"(ds, dz)lql] < qu(h—l—hé)q' , Yq1 > 2. Using it and Holder inequality
with ¢g; big and ¢, close to 1 we have

1
Eflg(Ly)ll / / (8n(2) — )it" (s, dD)Hp (HW" ]
0 Jizl=1

1 A 1
<C,(h+ ha)E[|g(L1)|qz|7-[L,1,(1)|qz Wh

~ _1 _L
< Cyy(h + B[ g(L)|™ W R Bl (12022, (115)

where in the last inequality we have used again Holder inequality, with p, big and p; close
1

to 1. Using the first point of Lemma 5, we know that IE[I’HL»I,(l)WzPZ]W is bounded, hence
(115) is upper bounded by

1 a By P12,
Caaaph 181l + Cyrgrpp e ELG(LOWE| 7] 9201, (116)

where we have bounded | g(1:1)| with its infinity norm and used that 0 < W* < 1. We remind
that we are considering g, and p; next to 1, hence we can write gop; as 1 + €. We now
introduce r in the following way:

(I+e)r (I+e€)(1—r)

A 1
lg(Ly)| WhTee

(1+e)(1-r)

Ef|g(Ly)|"t W T = E[|g(L))|

A 1
< llgl% Ellg(Ly)] WhTe <

_r A P _ 1
Il gl ot BLCAL A+ [Ly| ) FOI W] e

1—r p(l4+e)(1—r)

A 1
<c gl Iglhr +cligli gk ENLi] W (117)

where we have estimated g with its norm co and we have used the property (9) of g and that
0 < W" < 1. We observe that 1:1 is between L*l’ and L‘f’h hence |I:1| < |L’1’|+ IL‘f’h|. Moreover
we choose r such that p(1 4 €)(1 —r) = «; therefore r = 1 — ﬁ In this way we have that
(117) is upper bounded by

-1 o

€ P € —l
cliglloo " gl o™ log(h™ ), (118)

where we have used that E[|i1|aWh] < clog(h’al), that we justify now. Indeed, using
Lemma 2.1.5 in the appendix of [12] if @ € [1, 2] and Jensen inequality if « € [0, 1), we
have

1
E[|L,]| Wh]ScE[<|L’f|“+|L7"’|“)Wh]ScEn/f i (ds, dz)|]
0 1z]<1

1
+ cE] / / gn(@i (ds, d2)]]
0 |z]<1
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1
—i—cE[/ / 12" (ds, d2)]
0 Jisizlzeh—a

1
4 cEl / / | 18n@I A" (ds, d2)].
0 Ji<iziseph™ @

We observe that, using Kunita inequality, the first term here above is bounded in L” and, as a
consequence of the second point of Lemma 6, the second term here above so does. Concerning
the third term here above (and so, again, we act on the fourth in the same way), we have

1
c]E[/ f | 1z|14A"(ds, dz)] < c/ 1 121" dz
0 Ji<lzl<egh~@ .

< c log(h~#) < c|log(h)], (119)

where we have also used definition (102) of &".
Replacing (118) in (116) we get

1
E[Ig(Ll)II/O f (gh(Z)—Z)llh(ds,dZ)IIHLI;(l)Whl] < Copmh gl
|z|=1

1 1-%+e 2 _¢ 1
+ Corgamh@ liglos " llgllyy log(h™=), (120)

where we have taken another €, using its arbitrariness. The constants depend also on it.
Let us now consider the large jumps term in (114). Using the second point of Lemma 6 and
the following basic inequality

1 1
/ f 2P s, dz) < / / L2 s, d)
0 Ji<lzj<eph— 0 Ji<lzleph— @

1
x/ / | lzlu(ds, dz)
0 I<|z|<egh™ @

for § > 1, we get it is upper bounded by

1
A 1
E[Ig(LOI/ / | (h# 2] + hlz|*)u" (ds, dz)
0 I<|z|<egh™ @

1
x/ f |zl (ds, do)lH (D)W, (121)
0 Jl<|z|<egh™ @

We now use Holder inequality with p, big and p; next to 1 and we observe that, from the
second point of Lemma 5, it follows

L

1
El / / el ds. d2H (D)7 < Cp
o Ji<jz<eph—w

Hence (121) is upper bounded by

A 1 1 1
CoEllg@)" / / (2] + Bl ds. d2)P W (122)
0 Ji<izizeoha
1 1
< C,, gl hEl / / R s, d) T
0 Ji<izl<eh—a

| . 1 1
+Cp2h&1E[|g(L1)|”‘|f / | lzlu s, dz)| " wher (123)
0 I<|z|<egh™ @
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Concerning the first term of (123), we use Lemma 2.1.5 in the appendix of [12] with p; =
(1 4+ ¢€) €[1,2] and the definition of F}, given in (103), getting

E[ / / et (ds. do) e < B / / O s, do)) e
1<|z|<egh™ 01 1<|z|<egh™ Ot

< c( 1 |Z|00+O- 10y Ve < ch™ T = ch~, (124)

l<lzl<egh™ @

where we have used the arbitrariness of € in the last equality.

On the second term of (123) we act differently depending on whether or not « is more than
1. If it does, we act as we did in (117), considering p; = 1 4+ € < « and introducing r, this
time we set it such that the following equality holds:

pl+e)l-r+1+¢e) =a. (125)

We also use the property (9) on g, hence it is upper bounded by

. (1+e)(1—r)
Cpuh llglin lgh oy BICL+ 12,7 )|/ / Lzl (ds, do) T wh e
1<|Z‘<€0h77

(126)

Now on the first term here above we use that 0 < W” < 1 and Lemma 2.1.5 in the appendix
of [12] as we did in (124) in order to get

1
e 1
E[| / / | lelu(ds, d2) 1 < e (127)
0 Ji<|zlzegh~@

Moreover we observe, as we have already done, that |I:1| < |L’f| + |L‘f’h| and that, from the
second point of Lemma 6, there exists ¢ > 0 such that |g,(z)| < c|z|; so we get

1
A p(l+e)(1-r) 1+ 1
E[|L| |/ / Clzlnlds, dz)| T Wi
0 I<|z|<egh™ @

1
Sc—i—E[I/ / L2l (ds, o))
0 I<|z|<egh™ @

1 1
<« 2|zl M d) T < ¢
1<|zl<eph™ @ l1+e

p(l+e)(1—r)+(1+4€)

L
] T+

log(h™#) < c| log(h)]. (128)

having chosen a particular r just in order to have the exponent here above equal to o and
so having found out the same computation of (119). We have not considered the integral on
|z] < 1 because, as we have already seen above (119), the integral is bounded in L? and so
we simply get (127) again. From (125) we obtain r = 1 + % —
(127) and (128) we get (126) is upper bounded by

p(l - Replacing it and using

Lo Tt
Cph l1glleo IIgII,,(,l (¢ + [log(h))

L € + €
= Cp,h* ||g||oo ”““ngn,,; 75 | log(h). (129)
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If otherwise « is less than 1, then the second term of (123) is upper bounded by
1
1 L 1 11
he ||g||OOIE[|/ / 1 lz|u(ds, d2)|" WhPT < Cp,h@ |Igllo hTHe @
0 Ji<lzl<egh™@

1
= Cph T gllos » (130)

where we have taken p; = 1 4+ € and we have used the fact that 0 < W" < 1 and that, for

a <1,
|// | lzlul(ds, dz)| TIe < chiea,
I<|z|<egh™ Ot

Using (123), (124), (129) and (130) it follows

R|—

1
Ellg(L))]| /0 / iy 1(gh<z>—z)uh<ds,dz>|my;(1)wh|]
I<|z|<eph™ @

— 1 1+ € + 7 €
< Cp,h' " Ngllo + Cpyh® ||g||oo i gl 7 | log(h)] Lo (131)
Now from (114), (120), and (131) it follows

- - e
To1 < Crgppyh' ~“ NIgllos + Corappyh® ”g“oo IIgllpgl |log(R)]

o 1, o

1 I+ —%4e ~ —f+%
+ Cq|q2p2h°’ llglloo r ”g” p r |10g(h)|1a>1- (132)

Concerning 7~‘2,2, it is already proved in Theorem 4.2 in [7] that

Thy < chliglls - (133)
Let us now consider Tl. Using (104) and (106) we can write
( h) Wh Lh Wh
(W) = L Lt — L(——).
Py (W= F(Lh, oy eyt T M vy

With computations using that L is a self-adjoint operator we get

", Lh

I — Ly Lh
i, L

5o a,h hy _ a,h h 7 h
T = |E[g(LTHW"] — E[g(L}™) W < E[lg(L I Ir L [WH].

(134)
Using Eq. (104), we have

1
Ly — Ly L = f / | P — gL ()" (ds, dz).
0 |z\<%h7§
Using the third point of Lemma 6 we deduce the following on the event W" # 0:

1
o,n l o
|F<L?—L1*’,L’:>|5cff @ 2] + hle) ds. d2)
|z|<egh™ @

1
_C/f p(2)(h# |z] + hlz|*)" (ds, d2)
0 Jlz|=1
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1
+c / / | P (ds, dz)
0 I<|z|<egh™ @

1
x / / [ (h#|z] + hlz|*)" (ds, d2)
0 I<|z|<egh™ @

1 1
<c / / (W (ds, d2)(he + ) + ¢ / f (D (ds, dz)
0 R 0 R

1
[ b et
0 I<|z|<egh™ @
= c(h® + W)[(L", L") + cD(L", L")

1
x (/ / (¥ 2] + Rl (ds. d2)), (135)
0 Ji<lzl<eph— @

where we have used that z is always less than 1 in the first integral and that, since p is a
positive function, we can upper bound the integrals considering whole set R. Moreover, we
have used the definition of I'(L", L}11)~ Replacing (135) in (134) we get

1
Ty < cthe + WENgLI] + cE[|g(L1)|f / (2] + hlzI)u s, d2)]
0 1

<|z|<egh™ @
=Ty +Ta. (136)

Concerning 7} |, we have

= 1 ~ 1 1-¢ @
Tii < chligle + cheElg(L I < chliglls + ch@ liglleo ” lIgll 5y [og)], (137)

where in the last inequality we have acted exactly like we did in (117) and (118) with the
exponent on g that is exactly equal to 1 instead of 1+ € and so we have chosen r such that
p(1—r) = «. Let us now consider T} ,. We observe that it is exactly like (122) but with p; = 1
instead of p; = 1 + €, with the only difference that computing (124) now we get ¢ log(h_é)
instead of ¢k~ and in the definition (125) we choose r such that p(1 —r) + 1 = «. Acting
exactly like we did above it follows

; el

T2 < Cpyhllog(M)] I8lloe + Cpyhe llglloo lgl,o * og(h)1gs1. (138)
Using (132), (133), (137) and (138), the lemma is proved. [J

It follows Proposition 1, using also (108), (109) and (112). O
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Appendix

In this section we will prove the technical proposition and lemmas we have used.
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A.l. Proof of Lemma 1
Proof. We start proving 1. From the dynamic (3) of a it is

t t t
Efla, — a,]”] < E[| / Budul?] + EJ| / G dW,|”] +EJ] / G d W, 7]

t
+]E[I// Yuz it(du, dz)|”]
s JR\(0)

t 5
+]E[I/ / Yuzo(du,dz)|P1=: ) I;.
s JR\(0) Z !

j=1

In the following, since we will act on the two Brownian motions W and W in the same way,
we will not report /3 anymore. Also considering the Poisson random measures, we will deal
only with I, in detail, underlining that on /5 the same reasoning applies. We use Burkholder—
Davis—Gundy inequalities on the stochastic integral and Kunita inequality on the jump part, in
addition to a repeated use of Jensen inequality to get

hh+lh <t —slP- 1/ EllB| ]du+E|f @Gl
+E[ / / 7l 121 fi(du, d2))
+E“/ / T2 fdu, d2) 31 < clt — 5|7
R\{0

+ |t — s|7‘1/ E[|d,|”1du

t

+ / E[[7. |7 1ds( f 1217 F(2)d2)
s R\{0}

t
+|t—s|’7‘1/ E[m|21ds</ |2]* F(z)dz)
s R\{0}

p P
<c(t—=s|P+]t—s|2+]t—s|+ |t —s5|2) <c|t —s]|,

with the inequalities above holding true also because all the coefficients in the dynamic of a
are supposed to be bounded. The reasoning here above joint with A3 also yields that, for all
q > 0, sup,.o E[|a,]?] < oo.

The proof of 2 follows the same lines as the proof of 1 above.

As we proved in point 1 that the volatility has bounded moments, it is possible to get points
3 and 4 from Theorem 66 of [21] and Proposition 3.1 in [22]. The fifth point is showed in [1],
below Lemma 1, and the last one in Section 8 of [10]. [

A.2. Proof of Proposition 3
Proof. In order to show (25), we reformulate (AX ,J Yo AP (AX;) as

(AX] V19 pp (AXD) = @ pp(AXD] + (AX] Y0 13 (AX]) = ¢ 15 (AX])]
+(AX] — AX] Y 5(AX]) (139)

5
+2AX/ (AX{ = AX])g 1o (AX]) + (AX{ Y yp (AX]) =2 ) 1),
k=1
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Comparing (25) with (139) it turns out that our goal is to show that 2221 I'(i) = o1
(Aff(z_“)H). In the sequel will prove that Zzzl E[I}0)I] < cAfQ_a)H; the same reasoning
applies to the conditional version, that is 22=1 E; (11} DI < Ri(Af(z_a)H).

Let us start considering 7/'(i). We know that AX; = AX¢ + AX/, where we have denoted
by AX{ the continuous part of the increments of the process X. We study

N =1I1)+1{, = Il”(i)l{ + I7 ()1 (140)

\Ax,-\zsA{f} {\Ax,-|<3Aff}’

having omitted the dependence upon i in I{'; and I}, in order to make the notation easier.
Concerning 11”,1’ we split again on the sets {|AXiJ| > ZAf} and [lAXiJ| < ZAf}. Recalling

that ¢(¢) = 0 for |¢] > ZAE, we observe that if |AXiJ| > ZAg then 17| is just 0. Otherwise,
if |[AX]| < 2A? | then it means that |AX¢| must be more than A so we can use (34). In the
sequel the constant ¢ may change value from line to line. Using the bound on (AX lJ )2 and the
boundedness of ¢ we get

28+(3—B)r
" .

E[lI} 1] < cAFE 1 < cAPP(AXE) > APy < cA

[1{\AX,-|23AE,|AXI.J\<2A,€}
(141)

Hence

(3-Br—1+ap

E(I],]] < A, (142)

Arll+ﬁ(2*0l)

that goes to 0 for n — oo since for each choice of g € (0, %) and a € (0, 2) we can always
find r big enough such that the exponent on A, is positive.

We now consider I, on the sets [lAXiJ| 24A5} and {|AXiJ| <4A5}. Using the
boundedness of ¢ we have

E[|1],]1 |1 = cEIAX Y1y

{\AX,.]|24A'3 |Axi\<3A5,\Axif|z4A§]]'

We observe that also in this case |AX;| < 3Af and |AXY] > 4A? involve |AX{| > AP
Moreover (AX{)2 < c(AX;)? + c(AXf)2 < cAi’3 + c(AXf)z, hence

E[|Iln,2|1{\Ax.f|z4A£f]] < cAYPIAX]| = A)) + CE[(AX?)ZI{\quzAS}]
rL— rl— rel_
< AT 4 CBIAXOIPIAXS| = A2 < ea,PTETIIIEETIL (143

where we have used Cauchy—Schwarz inequality, (34) and the sixth point of Lemma 1.
Therefore we get

" [r(3=B)—1+aBIAl5 (3 —B)—p2—a)]
WE[MQU{‘A&J'}MQI] <c4, ) (144)
n
that converges to 0 for n — oo since we can always find r > 1 such that the exponent A, is
positive.
In order to conclude the study of I{'(i), we study 11’1,21|\AX1.1|<4A5|'

E[|1},[1 1<c|¢| A, ElAX]?1AX; — AX] |1

[|AX,' \53A5,\AX{|§4A5]]’
(145)

[lax{i<aaf)
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where we have used the smoothness of ¢. Using Holder inequality and the sixth point of
Lemma 1 it is upper bounded by

o |—

1
cAPEIAXIPVEIAX 1y s axt zea)]

-

1
2—p T2
= cdi TEN(AXD) ql{lei\ssA,’f,\Ax;’|s4Aﬁ}] ' (146)
Now, since our indicator function 1 \AX,-|53A§,|AX,-’\54A5 is less than I[IAX,-’|§4A5]’ we can
use the first point of Lemma 3. Through the use of the conditional expectation we get
o 1 1+8(2q—a) 1+p(2q—a)
E[I(AX}) q1{\AX1|§3A5,|AxiJ\S4A5}]q <cdA, * ERDI=<ca * . (147)

Replacing (147) in (146) and taking g small (next to 1), we obtain E[|1ﬁ2|1{|AXJ‘<4Aﬁ}] <

1 e
cA,%+ﬂ+l o “. Tt follows
E[|1{1,2|1{\Axif|<4Af}] 1p e
APCartT <cd, . (148)
n

that goes to 0 for n — oo since we can always find an € as small as the exponent on A4, is
positive, for g € (0, %).
Let us now consider 17 (7).

L) =150 1{|Ax{|sm5} + L) ]{|Ax{\>m5} =L+ b, (149)
Concerning the first term of (149), we have

BN, < 47 o] BI(AX] | AX] - A??fllgmx-ufms}]

< cA;ﬂE[(AX{)“l[ }]%]E[mx{ — AR/, (150)

|ax/|<24f

where we have used the smoothness of ¢ and Cauchy—Schwarz inequality. Using again the first
point of Lemma 3, we have that

1 1
E[(Axij)ﬁ[m;({\smﬁ}]z - E[Ei[(AXij)41{IAX,»’\ﬁzAff]]]z
1+B(4—a) l+2ﬂ,%
<4, ° E[RD] <cl; : (151)
We now introduce a lemma that will be proved later:
Lemma 8. Suppose that AI-A4 hold. Then
1. ¥Yq = 2 we have
E[|AX! — AX!|"] < e 22, (152)
2. for q € [1,2] and a < 1, we have
~ 1,1
E[AX] — AX! 10 < cAZ™™. (153)
Replacing (151) and (152) in (150) we get
_gyliop 9B 3,598
B[ 1] < ca, 2 o qr T (154)
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Hence

EII13, 1] L pred
e <A (153)

that goes to 0 for n — oo since the exponent on A, is positive for § <
true with o« and B in the intervals chosen.
We now want to show that also I, is 01 (AP We split I}, on the sets

{|A)~(ij| < 2A5} and {|A)~(i’| > ZAf]. We observe that, by the definition of ¢, I}, is null

on the second set. Adding and subtracting AX 7/ in 17,1 {‘ N

2(1;7%), that is always

we have
|<24} ]

E[|1},]1 1 < cE[(AX] — AX]Y|p ,s(AX])

[lax/1=24f)
&
- ‘pA{j(AXi )|1{|A)?{|52A5,|AX{|>2A5}]

+ CEIAX])lp yg(AX]) = 0 g (AXDIT (156)

|Ai/\sm5}]'

On the second term of (156) we can act exactly as we have done in I{ |» with AX lJ instead of
AXI.J (and so using (30) instead of (29)). We get

~ ~ 3 '3,%
ELAX Y10 5 (AX]) = 04 (AXDI s gl < €487 (157)

Concerning the first term of (156), by the definition of ¢ we know it is

E[(AX] —AX!)| — ¢ \p(AX] W iaxsiz2af ax 2af] | S CE[(AX] =AX])] < e},
(158)
where in the last inequality we have used (152). Using (156)—(158) it follows
n n §+lg,ﬂ §+ﬁ,ﬁ
E[73,11 = E[|Iz,2|1{|A)~(:/‘§2A5}] <cA;T T 4l =cA;TT 7, (159)
. . 2 . .. %Jrﬂ*% . 1
considering that A; is negligible compared to A, since 8 < s Hence
2
E[|13,]] Vel
W E CAn , (160)
that goes to 0 for n — oo.
Concerning I3 (i), we have
E[15 ()] < cEl(AX] — AX/)] < cA7, (161)
where the last inequality follows from (152). Hence I5(i) = o Ll(A,’f (270‘”1), indeed
ENEDN 1 opas
e c4, : (162)

that goes to 0 for n — oo considering that the exponent on A, is positive for f < -

2—a’
condition that is always satisfied for 8 € (0, %) and o € (0, 2).
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Let us now consider /;(i). Using Cauchy—Schwarz inequality it is
ngs J 7 J\274 FJIN2 2 ZJy\74 3450w
E[I; ()] < cE[(AX] — AX;) T2 E[(AX}) <PA5(AX,» N2 <A, A

3,498
—cAIPTT (163)

where we have used (152) and the first point of Lemma 3. It follows
E[7{ ()l

,,/34,*
2 2
e = ¢4 , (164)
n
that goes to 0 for n — oo since the exponent on 4, is more than 0 if 8 < ﬁ, that is
2

always true. Using (139), (142), (144), (148), (155), (160), (162) and (164) we obtain (25).
In order to prove (27), we use again reformulation (139). Replacing it in the left hand side
of (27) it turns out that our goal is to show that

n—1 4

SO 1) £Xy) = op(AE ), (165)

i=0 k=1
Using a conditional on J;, version of (149), (154) and (159) we have

n—1 h 1 n—1 l+ﬁ_ﬁ_€

D BB (XN < —ZR(AZ )=~ R(ATTTE.

i=0 i=0
Since B(1 — %) is always more than zero and, Vé > 0 we can always find € smaller than it,
we get

n—1 .

1_ —€
DB (X)) = 0p(AF ) = 0p1(4,

i=0

(2 —EAN(l—apf— e)) (166)

From a conditional version of (161) we get that Z:‘:ol I (i) f(X,,) is upper bounded in L' norm
by the L' norm of 1 30"/ R;(A27'=¢) = L $™"" " R;(A}=<) and so

n—1

Zl”(z)f(X, ) =0,1(4,

=0

(3-OA(1-ap— 2N (167)

Using a conditional version of (163) we get that Yo ' (i) f(X,,) is upper bounded in L'
lipg _ob_
norm by the L' norm of 1 7~/ R,-(A,%+ﬂ =Ly R4 727 hence

n—1

Zl”(z)f(X, ) = 0,1 (A,

2 —EN(l—ap—€)

)- (168)

Concermng I} (i), we consider I{ I (i Yand [ ”2(1' ) as defined in (140). Using a conditional version

of (141) on I{,(i) it follows that ni=¢ Z" ! I”l(i)f(X,l) is upper bounded in L' norm by the
r r+2f—3 +¢

L! norm of 1 i 'R (A(2 prazp=i= 2+€) =1 e 'R (A(2 Pk 2JFE), that goes to zero

because we can ﬁnd r big enough such that the exponent on A, is positive, hence

n—1

IO (X)) = oy A2 = 0,1(A)

i=0

—76)A(17a/37€))' (169)
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Acting as we did in the proof of (25), we consider I,’fz(i) on the sets [|AXiJ| > 4A5} and
{|AXiJ| < 4A§}. Again, from (143) and the arbitrariness of r > 0 it follows

n—1

n g A —Hn—ap-&
DI g maap | £ (Xi) = 00 (A7, (170)
i=0 !

When [AX]| < 4AP we act in a different way, considering the development up to second
order of ¢ AP centered in AX ,J :

If’,z(i)l{mxijldAﬁ} = [(Axil)zAx;‘<p’A£(AX{)A;ﬁ

J\2 [V -2 _
+(AXDAXD (pAE(X”)A” ]1{\AX1|53A5,\AX{|<4AE] =

. fng; e
=1 (’)1{\Axi|smf,\AX,-’|<4A5] +5h (’)1[|Ax,-|53A§,|AX/\<4A5}’

where X, € [AXiJ, AX;]. Now, acting like we did in (145), (146) and (147), taking ¢ next to
1 we get

Ei[|f§(i)1{mxi|§345, axfi<aaf ] = Ri(AIHPC-0-c+1-28) _ g (A2-ap—c)

Since for each € > 0 we can find an € such that € — € > 0 it follows, taking the conditional
expectation

n—1

An . —aB—é€ (
Z b (l)l{lAXi\SSAf, \AX!|<4A,€’|f(Xh') = OLl(Ayll =) = opi(4,
=0 1

L-On(-ap-&)

). (171

Concerning i 1Nl }, we no longer consider the indicator function because

[laxis3all 1ax! 1<aa]
it is

(AX{)ZAxfgo’Ag(AX{)A;ﬁ +(AX{)ZAX5¢’A£(AX{)A;’3(1{lAXHSSAE’ ax!ianl] ~ 1)

and the second term here above is different from zero only on a set smaller that { |AX;| > 3A,‘? }

or { |AX l’ | > 4Aff ], on which we have already proved the result (see the study of [ ]" ORY
(169) and I7,(i) in (170)). We want to show that
— A-n1-ap-9)
A 5—EN(1—ap—€
D IO F(Xy) = op(Ay ). (172)
i=0
We start from the reformulation

7@y = AXFAPIAX]Y (@ p(AX]) — ¢ w(AXD) + (AX] = AX] V¢ 4 (AX))

4
v v / v vJIN2, v -
+2AX/ (AX! — AX{)¢A5(AX{) +(AX)) ¢A5(AX{)] = Z It ).
j=1
and we observe that, after have used Holder inequality and have remarked that go’Aﬂ acts like

An 1 n An n An n
¢ Ap> We can act on Iy, as we did on I}, on I{, as on /3 and on I{'; as on ;). So we get,
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using also Holder inequality and the sixth point of Lemma 1,

. . . 1
Eill17 @) + 1750 + 175D < Ri(Ax ﬂ)(Ei[”zn(iNq]% +IE[|13"(i)|‘1]5 +E[|If(i)|‘1]5).

(173)
Now, taking g next to 1, we need the following lemma that we will prove later:
Lemma 9. Suppose that AI-A4 hold. Then, Ve > 0,
3.p 9B
Bl + 15O + 11501 < R(ad™ 27, (174)
with 17 (i), 15 () and I, (i) as defined in (139).
From (173) and (174) it follows
n—1 1 - 1 - -
P N T - (3-On(1-ap-d)
U@ + 1@ + IOV (X)) = 001(A7 ) = oA 70, (175)

i=0
On Zl'.lz_ol fl” JX) = 27;01 L. we want to use Lemma 9 in [9]. By the independence
between L and W we get

n—1 n—1
1 1 - < / v c

1 ZEi[Cn,i] =1 Z f(Xt,-)Ay,fEi [(AXij)zsﬂA;s(AX;J)]]Ei[AXi] =0 (176)

AF =0 A} =0 !
and

n—1

—al_¢ ~ ~ .

AT XA P ENAR] ) 9 (ARDIEN(AXO] < cAZF278 (177
i=0 "

where we have also used the sixth point of Lemma 1 and the first point of Lemma 3. Using

(176) and (177) we have

(3 -On(1-ap-&)

n—1
D I f(Xy) = op(A, )
=0
that, joint with (175) and the fact that the convergence in norm 1 implies the convergence in
probability, give us (172). Using also (166)—(171) we get (165) and so (27).
In order to prove (26), we reformulate AX{ % Aﬁ(AX,-) as we have already done in (139)

getting

tiyl lit+1
( / asdwoaxg%f(;\x,»):(/ adW)(AX) g 1p(AX) — 9 ,p(AX])]
t 43
Liy1 J J <
([ aama Al (AX)) - g (AR
f

Lit1 - -
+([ 7 aawnax! - axhe gz am)
ti "

Lit1 - - 4 -
- / a dWO(AX o p(AR]) = 3 1000

J=1
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Comparing (178) with (26) it turns out that our goal is to prove that W Zj’:l ]E[|I~;‘(i)|]

— 0, for n — oo (again, acting as we do in the sequel it is alson'f)ossible to show that
Z;zl E,-[IIJ’-’(i)I] < Ri(AffiZ_a)+l). Let us start considering /7'(i). Using Holder inequality, its
expected value is upper bounded by

fit1 L P p2y-
E[| / agd Wi [P TP EAX] 7@ 18 (AXi) — ¢ 5 (AX]) 7172 (179)
1 n n

1
We now act on ]E[lAXiJ|p2|<pA5(AX,-) - (pAg(AXiJ)V’Z]E as we did in the study of I}'(i):

1AXT 1?10 10 (AXD) = 9,y (AXDI™ = |AX] 7|9 4p(AXD)
- ‘pA,’f(AXiJ)lpzl{|Ax,-|z3Aﬁ}

+1AX] 1”19 4p(AX) — ¢A§(AX{)|”1{‘AX”<3A5} = I, + 17,
Concerning I1 s if |AXiJ| > 2A5 it is just 0, otherwise we can act exactly as we have done

on Il"l, taking p, = 2. Hence, Vr > 1,

rel
ENT, |]2 <(c A2ﬁ+r(2 PNE o pPHIGP),

Let us now consider 11’"2. If |AX]| > 4Af | we act again like we did on I',, taking pp = 2. It
yields again

(180)

Pr5-p)

E[|fﬁ2|1{ ]]z <cA, (181)

|AX] |244]

If |AX/| < 4 AP we use the smoothness of ¢ and Holder inequality getting
1

- .
B[]0 |AX,-|<3A§,|AXI.J\<4A5}] ?

flax/i<aaf]] = APEIAX] P19/ (0)|2 | AX( |1 [

1 1
5A;"E[IAX,?I”Z"’]PTPE[W(@)I”qIAXflm1[ 127, (182)

|AX; \<3A5,|Axif\<4A5}

with ¢ a point between AX; and AX
Now we observe that, if |[AX{| > =*, then taking p» g = 1 4+ € we have

l+€ ﬁ+r(2 ﬁ)prg

1
Ellg' ()] | AX]|
|AX; <348 1 Ax) |<aaf | axe)= 20

}] 1+e < CA
where we have used the bound on |AX]| given by the indicator function, the boundedness
of ¢’ and (34). Otherwise, by the definition of ¢, we know that |¢'(¢)| # O only if |¢| €

ﬁ
(AL 2A0). Then AL < |¢] < |AX| +|AX/| < 2|AX]| 4 |AX¢] < 2|AX/| + 42, hence
/3
|AX] | > 3Aﬁ " and so we can say it is

1+e

1+e€ J
Ell¢' ()] AX/ | , VI Lo
|AX;|<3AL.|AX] |<4A) | AXE|< S

1+
<c]E[|AXJ| 1 AP s 1
F<|AX] <44y,
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Using the second point of Lemma 3, passing through the conditional expected value we get it
is upper bounded by

Arll+ﬂ(l+e_a)E[Ri(1)] < CA,ll+ﬂ(l+e_a).

Hence

L lae 7 1+e o A Gp—enI AU+l i
Elle' (O [AX; | 1{‘AX’_|<3A5,|AX[_J|<4A5]]1+ <cA,

€— L
= ey POTTIIne (183)
The last equality follows from the fact that, for each choice of 8 € (0, %) and o € (0,2), we
can always find r > 1 and € > 0 suchthatﬂ+r(% —B)—e>14+8(1+4+€—a).
Replacing (183) in (182) and using the sixth point of Lemma 1 we have that

[§=B+1+B(+e—a)] L (G-ap-e)ps
n

~ 3 _uB—
E[| 77 }1% <cA, = cA =A™  asa

,2|1{\Axif|<4A5
the last equality follows from the choice of both p, and ¢ next to 1. Using (180), (181) and
(184) we get

1 rel 3 _ 8- 38—
ELAX!Plp yp(AX) = ¢ yp(AX))P172 < A 2P0 2 a2,

(185)
Replacing (33) and (185) in (179) it follows
B[} ()] < A}~ (186)
hence
E[1} )] |2pec
W < CAn . (187)

Since we can always find an € > 0 such that 1 — 28 — ¢ > 0, the expected value above goes
to 0 for n — oo. ~ ~ ~ ~
Concerning (i), we split again on Iy := Ig(i)l[ and Iy, := Iz"(i)l{

|Ax{|52A{,’] \Axif|>2A§}'

~ ~ lit1
BUL = ENE O 401248 < cAE|| / adW, || AX] | AX]

[1axy

_ AX!'JH{\AX/KZAE}]

_ fit1 2 1 5721
< cAnﬁEn/ a dW,|* | AX] | 1[|AX_,‘<M3}121E[|AX{ - AX/)2
t; il=mn

Ni

- tit1 1 2 1
<4, 'ﬁE“f a,dW, PP E[AX]| ql{mx!|<m’3]]2q’
4 i 1=44n

where we have used Cauchy—Schwarz inequality, (152) and Holder inequality. Now we take p
big and ¢ next to 1, using (33) and the first point of Lemma 3 we get

- gl i1 B e
[} ,[] < ca, "2t (188)
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and so

1-2p+% -

El} ] < A, (189)

A1+ﬂ(27ot)

It goes to O for n — oo because we can always find an € > 0 such that the exponent in A, is

posmve Let us now consider I2 5 = 12 51 { ] + 12,21 { From the definition

|AX] <248 |Ax{|>2A,§}

of g, I3, {|AX{\>2A§} =0.
. lit1 = ;
E[|I£2|1[\AX,.]|§2A'3}] = E[Iﬁ asdWs[[AX7 [l \p(AX])
vJ
- ‘pAﬁ(AXi )|1{|A}?if|§2A,‘f,|Axi’|>2A,‘?]]
fi+l J oJ J
+E / adW, | AX? — AR g 1(AXY)
t "
o
- ‘/’A,*?(Axi )|1[|A)?{|§2A5,|AXI.J|>2A5J}]

_ap_ li+1 - -
<A T gy / adW, I AX] — AR | — ¢ (AR,
t "

where we have acted exactly like we did in 1~2’" 1» using that AX IJ is less than 2Af . We have also
used that, by the definition of ¢, evaluated in AX lJ it is zero. Now we use Holder inequality,
(33) and the boundedness of ¢ to get

~ - ¢ fi+1 1 ~7.q.1
B[}, < ey +E[|f a,dWi| "1 E[|AX] — AX][]a
t

_oB_ 1 ~ 1
<Ay P 4 e AZE[IAX] — AKX
Now, if @ < 1 we use (153), with g = 1 4 €, getting

- _aB_ 1,1, 1 _ap_
BN\ <cdy *  edi T =en (190)
Therefore, for « < 1, we have
1-2p+% —
E[15),]] < c4, . (191)

AI+BC=a)

We can find an € > 0 such that the exponent on A, is positive hence, if « < 1, then
Iy, = 0,1(ATPP79). Otherwise, if « > 1, we use (152) having taken g = 2. We get

- _oB 1
ElZ,N < cA) ? “+cAf" = cal.

It follows that, for o > 1, it is

n l—ﬂ(Z—(x)
WEHQ,M <cA; . (192)

We observe that the exponent on A, is more than 0 if 8 <
B €0, 3) and o €[1,2).

2 T a), that is always true for
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To conclude, we use on f3(i ) Holder inequality, (33), the boundedness of ¢ and then we act
as we did on 1} ,, using (153) or (152), depending on whether or not « is less than 1. In the
case o < 1 we get

T, 1 %+%+l]75 1-BQ2—a)—e
WEH% @I < WCAn T =cA, , (193)
that goes to 0 for n — oo since we can always find € > 0 such that the exponent on A, is
positive. Otherwise it follows
B[] < AF = A2 P 194
T UG DI = —g5—¢A0 = ¢4, . (194)
Ap Ay
The exponent on A4, is positive if 8 <
a > 1. Hence (i) = 0, 1(AYTPE,
From (187)—(194) and the reformulation (178), it follows (26).

Replacing reformulation (178) in the left hand side of (28), it turns out that the theorem is
proved if

%ﬁ, that is always true since we are in the case

LI J-on(1-ap-2
SO RN = o ), (195)
i=0 k=1

Using a conditional version of Eqgs. (186), (188), (190), (193) and (194) (adding in the last two
B(2 — ) in the exponent of A,) we easily get (195) and so (28). O

A.3. Proof of Lemma 4

Proof. By the definition of d(¢,), as in law we have that S = —S{, we get d(&,) = d(|¢,])
and thus we can assume that ¢, > 0. Using a change of variable we obtain

d(&,) = E[(S9)*(S¥¢,)] = / 20(z8) fu(2)dz = (&) 3 f u%(u)fa(g)du. (196)
R R n

We want to use an asymptotic expansion of the density (see Theorem 7.22 in [15], with d = 1
and o = 1) which states that, if z is big enough, then a development up to order N of
fa(Z) is
c 11 4La
o k —a\k —aN

—re T == 2 U oz, (197)

o i L
for some coefficients a;. We therefore take M > 0 big enough such that, for é > M, we can
use (197). Hence the right hand side of (196) can be seen as

n n

-3 2 u -3 2 u _.qn 4 n
(n) u o) fo(—)du + (&) w o) fo(—=)du =: I + 17 (198)
lul <t M ¢ lul>n M ¢

We have that, Vé > 0, I} = o(¢, é). Indeed, using that ¢ and f, are both bounded, we
get

n

I . .
—+ <7 / urdu < cgf, (199)
Cn || <¢u M
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that goes to zero because we have assumed that ¢, — 0. I} is

(O / | W pu)ce ()" lul ™ " du + (¢,)
ul>e M

Ca

u
x / WP ful—) = —— |6y ]du, (200)
lu|>n M G ul
The first term here above can be seen as

(&) e / ] p()du — (&) ca / ] (u)du
R |

M‘San
(D /R |u|'""p(u)du + 0((£,)~¢).

Indeed, using that ¢ is bounded, we have

1,A|(cn)“*2ca / ' p(u)du| < c(g,) 2 / lul'"du < c(g,)f. (201)
(&n)—¢ lul<taM lul<¢a M

that goes to zero for n — oo.

Replacing (199), (200) and (201) in (198) and comparing it with (90), it turns out that our
goal is to show that the second term of (200) is o(¢{~9"?¢=2=9) Using on it (197) with N = 2,
which implies | f,(z) — #' < W for |z| > M and some ¢ > 0, we can upper bound it

with ¢(6,)** 2 [|, 2.y [ul'*du. By the definition of ¢ we have

n

M M
[ e = [ e odu [ g < e et
lu|>¢ M -2 2
(202)
Therefore we get that the second term of (200) is upper bounded by
4.

The first term here above is clearly o(¢2*~27¢) while the second is 0(£, ), hence the sum is
0({,5’6)“2“’2’@). The lemma is therefore proved. [

A.4. Proof of Lemma 8

Proof. We observe that, Vo € [0, 2], we have

- lit1
E[AX] — AX,»JIZ] = E[( /[V(Xsf) — y(X,)lzii(ds, dz))’]
t; R

lit1
=E[ / fR [y(Xs-) — y (X )Pz i(ds, d2)]

tit1 fit1
<c / E[|X; — X, |*1ds / IzI*F(z)dz < ¢ Ands < cA2,
ti R t

(203)

where we have used Ito isometry, the regularity of y and the third point of Lemma 1.
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We have in this way proved (152) and showed that (153) holds with ¢ = 2. For ¢ > 2,
using Kunita inequality and acting like we did here above we get

E[lAX] — AX]|"] < E[/ " /[V(Xsf) —y(X:)1z? a(ds, d2)]
t; R
fit+1
+ E[( f f [y (X,_) — y(X,)PIz2filds, d2))?]
t; R
< c/ " E[|X, — X, |71ds -HE[(/ . X, — Xli|2ds)%] <cA?

i

-1

g_1 [li+l q
+cA); / E[|X; — X,|7lds = cAZ + cA; <cA2,
4
where we have also used Jensen inequality.
In order to prove (153) we observe that, if « < 1, then we have
- fit+1
Bilax/ - A/ <0 [ [ o) -y leids. 2
t |z[>24;
fit1 B
+E[|/ / Aﬂ[V(Xs—) —v(X)lzpds, d2)|]. (204)
t |z]<24;
The first term in the right hand side of (204) is upper bounded by
fit1
Hy/“oo ]E[/ [ 5 [Xs— — X, 11z| F(z)dzds]
7 lz|=2A4,
lit1 5.1
< c/ / E[IX,- — X, "1 ds|z| F(2)dz
i Jiiz2af
lit1 1 3
<c [ Al lredaas < eal. (205)
: lzlz240

where we have used the compensation formula, the regularity of y, Cauchy—Schwarz inequality

in order to use the third point of Lemma | and the boundedness of the integral for |z| > ZA’S .
Moreover, acting in the same way, the second term in the right hand side of (204) is upper
bounded by

fit+1
HV/||OO]E[/ /| VKo = Xyl FQdzds)
t z|=24;

Liyl 1 3 —u
<c f A ( 2l d2)ds < cAZ P, (206)
ti IZ\EZAE

using again compensation formula, the regularity of y and Cauchy—Schwarz inequality in order
to use the third point of Lemma 1. We have also used the third point of A4 and computed the
integral on z. Using (204)—(206) we get

~ 3A13 _ 3
E[AX] — AX{ ] < cad™? P = ea;, (207)

since « < 1 and so (I — o) > 0. We now use interpolation theorem (see below Theorem 1.7
in Chapter 4 of [5]) getting

E[|AX! — AX!|")7 < E[IAX] — A%/ [P@AX! — AX! P19,
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With =0+ 5% hence = 2 — 1. Using (203) and (207) it follows

~ 3 1
E[|Ax{—Ax{|"]$gcA,§eA;f cAH ZenTTe

D=

where we have also replaced 6. O
A.5. Proof of Lemma 9

Proof. We want to use a conditional version of the interpolation theorem, therefore we have
to estimate the norm 2 of I} (i), I3(i) and I;(i). Observing that ¢ is a bounded function and
using Kunita inequality we get

lit1
B[] < E[|AX] 1*] < cEil / / ly (Xs)I*1zI* fa(ds, dz)]

t; R

lit1

+ cEi[( f / ly (X, z* i(ds, d2))*]
t,‘ R
< / 2 F()dDE / s
R ti

+CE,( / P F()d2)X f "y xRds?]
R t;
< Ri(4,) + Ri(A%) = Ri(A,), (208)

where in the last inequality we have also used the polynomial growth of y and the fifth point
of Lemma 1.

Concerning the norm 2 of I3 (i), we use the conditional version of the first point of Lemma 8
for g = 2 to get

Ei[15 ()] < BillAX] — AX/ "] < Ri(4}). (209)
We now consider /;(i). Using Cauchy—Schwarz inequality and a conditional version of both

the first point of Lemma 8 for ¢ = 2 and (30) in Lemma 3, where ¢ acts like the indicator
function, we have

E GO < cBlIAX! — AR/ PPENAR 0 p(AZDI = R(ATT). @10
Using interpolation theorem it follows, Vj € {2, 3, 4},
E[117G)]"" ] < E,»[|1*?(i>|]9(Ei[|1'?(i>|2]%>1‘9, @11
w1th95uchthat—_9~|— henceQ_T—l 1—+
From a condltlonal version of (149), (154), (159) and Egs. (208) and (211) it follows

aﬁ e
E QLG < R(ATT TP RADI = Rya DT,

T RAeR, 212)

_ it
Since 2+28—ap is always more than zero we can just see the exponent on 4, ; as %—}—ﬂ—%—e.
From a conditional version of (161), (209) and (211) it follows
2e

E I G)T1 < Ri(A2Ri(A)! ™ = Ri(AF) = Ri(A, 7). (213)
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In the same way, using a conditional version of (163), (210) and (211) it follows
af | 2pe

2+ I+e ) (214)
The result (174) is a consequence of (212), (213), (214) and that 2 is always more than
3 ap

s+ 8- O

2 2

(g G+p-u-Eo+ e G+2-9) 48—
B[] 1 < Ri(4A,2 T 77 T2 — Ry(AR
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