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Abstract

The problem of integrated volatility estimation for an Ito semimartingale is considered under discrete
igh-frequency observations in short time horizon. We provide an asymptotic expansion for the integrated
olatility that gives us, in detail, the contribution deriving from the jump part. The knowledge of such a
ontribution allows us to build an unbiased version of the truncated quadratic variation, in which the bias
s visibly reduced. In earlier results to have the original truncated realized volatility well-performed the
ondition β > 1

2(2−α) on β (that is such that ( 1
n )β is the threshold of the truncated quadratic variation)

nd on the degree of jump activity α was needed (see Mancini, 2011; Jacod, 2008). In this paper we
heoretically relax this condition and we show that our unbiased estimator achieves excellent numerical
esults for any couple (α, β).
c 2020 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we consider the problem of estimating the integrated volatility of a discretely-
bserved one-dimensional Itô semimartingale over a finite interval. The class of Itô semimartin-

gales has many applications in various areas such as neuroscience, physics and finance. Indeed,
it includes the stochastic Morris–Lecar neuron model [8] as well as important examples taken
from finance such as the Barndorff–Nielsen–Shephard model [2], the Kou model [16] and the
Merton model [19]; to name just a few.
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In this work we aim at estimating the integrated volatility based on discrete observations
X t0 , . . . , X tn of the process X , with ti = i T

n . Let X be a solution of

X t = X0 +

∫ t

0
bsds +

∫ t

0
asdWs +

∫ t

0

∫
R\{0}

γ (Xs− ) z µ̃(ds, dz), t ∈ R+,

ith W = (Wt )t≥0 a one dimensional Brownian motion and µ̃ a compensated Poisson random
easure. We also require the volatility at to be an Itô semimartingale.
We consider here the setting of high frequency observations, i.e. ∆n :=

T
n → 0 as n → ∞.

We want to estimate I V :=
1
T

∫ T
0 a2

s f (Xs)ds, where f is a polynomial growth function. Such
a quantity has already been widely studied in the literature because of its great importance in
finance. Indeed, taking f ≡ 1, I V turns out being the so called integrated volatility that has
particular relevance in measuring and forecasting the asset risks; its estimation on the basis of
discrete observations of X is one of the long-standing problems.

In the sequel we will present some known results denoting by I V the classical integrated
volatility, that is we are assuming f equals 1.

When X is continuous, the canonical way for estimating the integrated volatility is to use
he realized volatility or approximate quadratic variation at time T:

[X, X ]n
T :=

n−1∑
i=0

(∆X i )2, where ∆X i = X ti+1 − X ti .

nder very weak assumptions on b and a (namely when
∫ T

0 b2
s ds and

∫ T
0 a4

s ds are finite
for all t ∈ (0, T ]), we have a central limit theorem (CLT) with rate

√
n: the processes

n([X, X ]n
T − I V ) converge in the sense of stable convergence in law for processes, to a limit

Z which is defined on an extension of the space and which conditionally is a centered Gaussian
ariable whose conditional law is characterized by its (conditional) variance VT := 2

∫ T
0 a4

s ds.
When X has jumps, the variable [X, X ]n

T no longer converges to I V . However, there are
ther known methods to estimate the integrated volatility.

The first type of jump-robust volatility estimators are the Multipower variations (cf [3,4,12]),
hich we do not explicitly recall here. These estimators satisfy a CLT with rate

√
n but with

a conditional variance bigger than VT (so they are rate-efficient but not variance-efficient).
The second type of volatility estimators, introduced by Jacod and Todorov in [14], is

based on estimating locally the volatility from the empirical characteristic function of the
increments of the process over blocks of decreasing length but containing an increasing number
of observations, and then summing the local volatility estimates.

Another method to estimate the integrated volatility in jump diffusion processes, introduced
by Mancini in [17], is the use of the truncated realized volatility or truncated quadratic
ariance (see [12,18]):

ˆI V
n
T :=

n−1∑
i=0

(∆X i )21{|∆Xi |≤vn},

here vn is a sequence of positive truncation levels, typically of the form ( 1
n )β for some

β ∈ (0, 1
2 ).

Below we focus on the estimation of I V through the implementation of the truncated
uadratic variation, that is based on the idea of summing only the squared increments of X
hose absolute value is smaller than some threshold v .
n
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It is shown in [11] that ˆI V
n
T has exactly the same limiting properties as [X, X ]n

T does
for some α ∈ [0, 1) and β ∈ [ 1

2(2−α) ,
1
2 ). The index α is the degree of jump activity or

Blumenthal–Getoor index

α := inf
{

r ∈ [0, 2] :

∫
|x |≤1

|x |
r F(dx) < ∞

}
,

here F is a Lévy measure which accounts for the jumps of the process and it is such that
he compensator µ̄ has the form µ̄(dt, dz) = F(z)dzdt .

Mancini has proved in [18] that, when the jumps of X are those of a stable process with
ndex α ≥ 1, the truncated quadratic variation is such that

( ˆI V
n
T − I V )

P
∼ (

1
n

)β(2−α). (1)

This rate is less than
√

n and no proper CLT is available in this case.
In this paper, in order to estimate I V :=

1
T

∫ T
0 a2

s f (Xs)ds, we consider in particular the
runcated quadratic variation defined in the following way:

Qn :=

n−1∑
i=0

f (X ti )(X ti+1 − X ti )
2ϕ

∆
β
n
(X ti+1 − X ti ),

here ϕ is a C∞ function that vanishes when the increments of the data are too large compared
o the typical increments of a continuous diffusion process, and thus can be used to filter the
ontribution of the jumps.

We aim to extend the results proved in short time in [18] characterizing precisely the noise
ntroduced by the presence of jumps and finding consequently some corrections to reduce such
noise.
The main result of our paper is the asymptotic expansion for the integrated volatility.

ompared to earlier results, our asymptotic expansion provides us precisely the limit to
hich nβ(2−α)(Qn − I V ) converges when ( 1

n )β(2−α) >
√

n, which matches with the condition
< 1

2(2−α) .
Our work extends equation (1) (obtained in [18]). Indeed, we find

Qn − I V =
Zn
√

n
+ (

1
n

)β(2−α)cα

∫
R
ϕ(u)|u|

1−αdu
∫ T

0
|γ |

α(Xs) f (Xs)ds + oP((
1
n

)β(2−α)),

here Zn
L
−→ N (0, 2

∫ T
0 a4

s f 2(Xs)ds) stably with respect to X . The asymptotic expansion here
bove allows us to deduce the behavior of the truncated quadratic variation for each couple
α, β), that is a plus compared to (1).

Furthermore, providing we know α (and if we do not it is enough to estimate it previously,
ee for example [23] or [20]), we can improve the performance of the truncated quadratic
ariation subtracting the bias due to the presence of jumps to the original estimator or taking
articular functions ϕ that make the bias derived from the jump part equal to zero. Using the
symptotic expansion of the integrated volatility we also provide the rate of the error left after
aving applied the corrections. It derives from the Brownian increments mistakenly truncated
way, when the truncation is tight.

Moreover, in the case where the volatility is constant, we show numerically that the
orrections gained by the knowledge of the asymptotic expansion for the integrated volatility
llows us to reduce visibly the noise for any β ∈ (0, 1

2 ) and α ∈ (0, 2). It is a clear improvement
because, if the original truncated quadratic variation was a well-performed estimator only if



C. Amorino and A. Gloter / Stochastic Processes and their Applications 130 (2020) 5888–5939 5891

a

p
r
S
t
r
p

2

(

w
r

r

T
a
c
w

2

µ

e

A
r
r
m
f

T
W

A
a

β > 1
2(2−α) (condition that never holds for α ≥ 1), the unbiased truncated quadratic variation

chieves excellent results for any couple (α, β).
The outline of the paper is the following. In Section 2 we present the assumptions on the

rocess X. In Section 3 we define the truncated quadratic variation and we state the main
esults of the paper. In Section 4 we show the numerical performance of the unbiased estimator.
ection 5 is devoted to the statement of propositions useful for the proof of the main results,

hat is given in Section 6. In Section 7 we give some technical tools about Malliavin calculus,
equired for the proof of some propositions, while other proofs and some technical results are
resented in the Appendix.

. Model, assumptions

The underlying process X is a one dimensional Itô semimartingale on the space (Ω ,F ,
Ft )t≥0,P), where (Ft )t≥0 is a filtration, and observed at times ti =

i
n , for i = 0, 1, . . . , n.

Let X be a solution to

X t = X0 +

∫ t

0
bsds +

∫ t

0
asdWs +

∫ t

0

∫
R\{0}

γ (Xs− ) z µ̃(ds, dz), t ∈ R+, (2)

here W = (Wt )t≥0 is a one dimensional Brownian motion and µ̃ a compensated Poisson
andom measure on which conditions will be given later.

We will also require the volatility at to be an Itô semimartingale and it thus can be
epresented as

at = a0 +

∫ t

0
b̃sds +

∫ t

0
ãsdWs +

∫ t

0
âsdŴs +

∫ t

0

∫
R\{0}

γ̃s z µ̃(ds, dz)

+

∫ t

0

∫
R\{0}

γ̂s z µ̃2(ds, dz). (3)

he jumps of at are driven by the same Poisson compensated random measure µ̃ as X plus
nother Poisson compensated measure µ̃2. We need also a second Brownian motion Ŵ : in the
ase of “pure leverage” we would have â ≡ 0 and Ŵ is not needed; in the case of “no leverage”
e rather have ã ≡ 0. In the mixed case both W and Ŵ are needed.

.1. Assumptions

The first assumption is a structural assumption describing the driving terms W, Ŵ , µ̃ and
˜ 2; the second one being a set of conditions on the coefficients implying in particular the
xistence of the various stochastic integrals involved above.

1: The processes W and Ŵ are two independent Brownian motion, µ and µ2 are Poisson
andom measures on [0,∞)×R associated to the Lévy processes L = (L t )t≥0 and L2 = (L2

t )t≥0
espectively, with L t :=

∫ t
0

∫
R zµ̃(ds, dz) and L2

t :=
∫ t

0

∫
R zµ̃2(ds, dz). The compensated

easures are µ̃ = µ−µ̄ and µ̃2 = µ2−µ̄2; we suppose that the compensator has the following
orm: µ̄(dt, dz) := F(dz)dt , µ̄2(dt, dz) := F2(dz)dt . Conditions on the Levy measures F and

F2 will be given in A3 and A4. The initial condition X0, a0, W , Ŵ , L and L2 are independent.
he Brownian motions and the Lévy processes are adapted with respect to the filtration (Ft )t≥0.
e suppose moreover that there exists X , solution of (2).

2: The processes b, b̃, ã, â, γ̃ , γ̂ are bounded, γ is Lipschitz. The processes b, ã are cádlág
dapted, γ , γ̃ and γ̂ are predictable, b̃ and â are progressively measurable. Moreover it exists
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an Ft -measurable random variable Kt such that

E[|bt+h − bt |
2
|Ft ] ≤ Kt |h|; ∀p ≥ 1, E[|Kt |

p] < ∞.

We observe that the last condition on b holds true regardless if, for example, bt = b(X t );
: R → R Lipschitz.
The next assumption ensures the existence of the moments:

3: For all q > 0,
∫
|z|>1 |z|q F(dz) < ∞ and

∫
|z|>1 |z|q F2(dz) < ∞. Moreover, E[|X0|

q ] < ∞

nd E[|a0|
q ] < ∞.

4 (Jumps):

1. The jump coefficient γ is bounded from below, that is infx∈R |γ (x)| := γmin > 0.
2. The Lévy measures F and F2 are absolutely continuous with respect to the Lebesgue

measure and we denote F(z) =
F(dz)

dz , F2(z) =
F2(dz)

dz .
3. The Lévy measure F satisfies F(dz) =

ḡ(z)
|z|1+α dz, where α ∈ (0, 2) and ḡ : R → R is a

continuous symmetric nonnegative bounded function with ḡ(0) = 1.
4. The function ḡ is differentiable on {0 < |z| ≤ η} for some η > 0 with continuous

derivative such that sup0<|z|≤η |
ḡ′

ḡ | < ∞.
5. The jump coefficient γ is upper bounded, i.e. supx∈R |γ (x)| := γmax < ∞.
6. The Levy measure F2 satisfies

∫
R |z|2 F2(z)dz < ∞.

The first and fifth points of the assumptions here above are useful to compare size of jumps of
X and L . The fourth point is required to use Malliavin calculus and it is satisfied by a large
class of processes: α- stable process (ḡ = 1), truncated α-stable processes (ḡ = τ , a truncation
function), tempered stable process (ḡ(z) = e−λ|z|, λ > 0).

In the following, we will use repeatedly some moment inequalities for jump diffusion, which
are gathered in Lemma 1 and showed in the Appendix.

Lemma 1. Suppose that A1–A4 hold. Then, for all t > s,
1) for all p ≥ 2, E[|at − as |

p] ≤ c|t − s|; for all q > 0 supt∈[0,T ] E[|at |
q ] < ∞.

2) for all p ≥ 2, p ∈ N, E[|at − as |
p
|Fs] ≤ c|t − s|.

3) for all p ≥ 2, E[|X t − Xs |
p]

1
p ≤ c|t − s|

1
p ; for all q > 0 supt∈[0,T ] E[|X t |

q ] < ∞,
4) for all p ≥ 2, p ∈ N, E[|X t − Xs |

p
|Fs] ≤ c|t − s|(1 + |Xs |

p).
5) for all p ≥ 2, p ∈ N, suph∈[0,1] E[|Xs+h |

p
|Fs] ≤ c(1 + |Xs |

p).

6) for all p > 1, E[|X c
t − X c

s |
p]

1
p ≤ |t − s|

1
2 and E[|X c

t − X c
s |

p
|Fs]

1
p ≤ c|t − s|

1
2 (1 + |Xs |

p),
here we have denoted by X c the continuous part of the process X, which is such that

X c
t − X c

s :=

∫ t

s
audWu +

∫ t

s
budu.

. Setting and main results

The process X is observed at regularly spaced times ti = i∆n =
i T
n for i = 0, 1, . . . , n,

ithin a finite time interval [0, T ]. We can assume, WLOG, that T = 1.
Our goal is to estimate the integrated volatility I V :=

1
T

∫ T
0 a2

s f (Xs)ds, where f is a
polynomial growth function. To do it, we propose the estimator Q , based on the truncated
n
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quadratic variation introduced by Mancini in [17]. Given that the quadratic variation was a
good estimator for the integrated volatility in the continuous framework, the idea is to filter the
contribution of the jumps and to keep only the intervals in which we judge no jumps happened.
We use the size of the increment of the process X ti+1 − X ti in order to judge if a jump occurred
or not in the interval [ti , ti+1): as it is hard for the increment of X with continuous transition to
overcome the threshold ∆

β
n = ( 1

n )β for β ≤
1
2 , we can assert the presence of a jump in [ti , ti+1)

if |X ti+1 − X ti | > ∆
β
n .

We set

Qn :=

n−1∑
i=0

f (X ti )(X ti+1 − X ti )
2ϕ

∆
β
n
(X ti+1 − X ti ), (4)

where

ϕ
∆
β
n
(X ti+1 − X ti ) = ϕ(

X ti+1 − X ti

∆
β
n

),

ith ϕ a smooth version of the indicator function, such that ϕ(ζ ) = 0 for each ζ , with |ζ | ≥ 2
nd ϕ(ζ ) = 1 for each ζ , with |ζ | ≤ 1.

It is worth noting that, if we consider an additional constant k in ϕ (that becomes

k∆β
n
(X ti+1 − X ti ) = ϕ(

X ti+1 −X ti

k∆β
n

)), the only difference is the interval on which the function

is 1 or 0: it will be 1 for |X ti+1 − X ti | ≤ k∆β
n ; 0 for |X ti+1 − X ti | ≥ 2k∆β

n . Hence, for
shortness in notations, we restrict the theoretical analysis to the situation where k = 1 while,
for applications, we may take the threshold level as k∆β

n with k ̸= 1.

3.1. Main results

The main result of this paper is the asymptotic expansion for the truncated integrated
volatility.

We show first of all it is possible to decompose the truncated quadratic variation, separating
the continuous part from the contribution of the jumps. We consider right after the difference
between the truncated quadratic variation and the discretized volatility, showing it consists on
the statistical error (which derives from the continuous part), on a noise term due to the jumps
and on a third term which is negligible compared to the other two. From such an expansion it
appears clearly the condition on (α, β) which specifies whether or not the truncated quadratic
variation performs well for the estimation of the integrated volatility. It is also possible to build
some unbiased estimators. Indeed, through Malliavin calculus, we identify the main bias term
which arises from the presence of the jumps. We study then its asymptotic behavior and, by
making it equal to zero or by removing it from the original truncated quadratic variation, we
construct some corrected estimators.

We define as Q̃ J
n the jumps contribution present in the original estimator Qn:

Q̃ J
n := nβ(2−α)

n−1∑
i=0

(
∫ ti+1

ti

∫
R\{0}

γ (Xs− ) z µ̃(ds, dz))2 f (X ti )ϕ∆β
n
(X ti+1 − X ti ). (5)

Denoting as oP(( 1
n )k) a quantity such that oP(( 1

n )k )

( 1
n )k

P
→ 0, the following decomposition holds

rue:
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Theorem 1. Suppose that A1–A4 hold and that β ∈ (0, 1
2 ) and α ∈ (0, 2) are given in definition

(4) and in the third point of A4, respectively. Then, as n → ∞,

Qn =

n−1∑
i=0

f (X ti )(X c
ti+1

− X c
ti )

2
+ (

1
n

)β(2−α) Q̃ J
n + En (6)

=

n−1∑
i=0

f (X ti )(
∫ ti+1

ti
asdWs)2

+ (
1
n

)β(2−α) Q̃ J
n + En, (7)

here En is both oP(( 1
n )β(2−α)) and, for each ϵ̃ > 0, oP(( 1

n )(1−αβ−ϵ̃)∧( 1
2 −ϵ̃)).

To show Theorem 1 here above, the following lemma will be useful. It illustrates the error
e commit when the truncation is tight and therefore the Brownian increments are mistakenly

runcated away.

emma 2. Suppose that A1–A4 hold. Then, ∀ϵ > 0,
n−1∑
i=0

f (X ti )(X c
ti+1

− X c
ti )

2(ϕ
∆
β
n
(X ti+1 − X ti ) − 1) = oP((

1
n

)1−αβ−ϵ).

Theorem 1 anticipates that the size of the jumps part is ( 1
n )β(2−α) (see Theorem 3) while

he size of the Brownian increments wrongly removed is upper bounded by ( 1
n )1−αβ−ϵ (see

emma 2). As β ∈ (0, 1
2 ), we can always find an ϵ > 0 such that 1 − αβ − ϵ > β(2 − α) and

herefore the bias derived from a tight truncation is always smaller compared to those derived
rom a loose truncation. However, as we will see, after having removed the contribution of the
umps such a small downward bias will represent the main error term if αβ > 1

2 .
In order to eliminate the bias arising from the jumps, we want to identify the term Q̃ J

n in
etail. For that purpose we introduce

Q̂n := (
1
n

)
2
α−β(2−α)

n−1∑
i=0

f (X ti )γ
2(X ti )d(γ (X ti )n

β−
1
α ), (8)

here d(ζ ) := E[(Sα1 )2ϕ(Sα1 ζ )]; (Sαt )t≥0 is an α-stable process.
We want to move from Q̃ J

n to Q̂n . The idea is to move from our process, that in small time
ehaves like a conditional rescaled Lévy process, to an α stable distribution.

roposition 1. Suppose that A1–A4 hold. Let (Sαt )t≥0 be an α-stable process. Let g be a
easurable bounded function such that ∥g∥pol := supx∈R( |g(x)|

1+|x |p ) < ∞, for some p ≥ 1,
p ≥ α hence

|g(x)| ≤ ∥g∥pol (|x |
p
+ 1). (9)

oreover we denote ∥g∥∞ := supx∈R |g(x)|. Then, for any ϵ > 0, 0 < h < 1
2 ,

|E[g(h−
1
α Lh)] − E[g(Sα1 )]| ≤ Cϵh | log(h)| ∥g∥∞ + Cϵh

1
α ∥g∥

1−
α
p −ϵ

∞ ∥g∥

α
p +ϵ

pol | log(h)|
(10)

+ Cϵh
1
α ∥g∥

1+
1
p −

α
p +ϵ

∞ ∥g∥
−

1
p +

α
p −ϵ

pol | log(h)|1{α>1},

here C is a constant independent of h.
ϵ
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Proposition 1 requires some Malliavin calculus. The proof of Proposition 1 as well as some
technical tools will be found in Section 7.

The previous proposition is an extension of Theorem 4.2 in [7] and it is useful when ∥g∥∞ is
large, compared to ∥g∥pol . For instance, it is the case if consider the function g(x) := |x |

21|x |≤M

for M large.
We need Proposition 1 to prove the following theorem, in which we consider the difference

between the truncated quadratic variation and the discretized volatility. We make explicit its
decomposition into the statistical error and the noise term due to the jumps, identified as Q̂n .

Theorem 2. Suppose that A1–A4 hold and that β ∈ (0, 1
2 ) and α ∈ (0, 2) are given in Definition

(4) and in the third point of A4, respectively. Then, as n → ∞,

Qn −
1
n

n−1∑
i=0

f (X ti )a
2
ti =

Zn
√

n
+ (

1
n

)β(2−α) Q̂n + En, (11)

where En is always oP(( 1
n )β(2−α)) and, adding the condition β > 1

4−α
, it is also

P(( 1
n )(1−αβ−ϵ̃)∧( 1

2 −ϵ̃)). Moreover Zn
L
−→ N (0, 2

∫ T
0 a4

s f 2(Xs)ds) stably with respect to X.

We recognize in the expansion (11) the statistical error of model without jumps given by
Zn , whose variance is equal to the so called quadricity. As said above, the term Q̂n is a bias
erm arising from the presence of jumps and given by (8). From this explicit expression it is
ossible to remove the bias term (see Section 4).

The term En is an additional error term that is always negligible compared to the bias
eriving from the jump part ( 1

n )β(2−α) Q̂n (that is of order ( 1
n )β(2−α) by Theorem 3).

The bias term admits a first order expansion that does not require the knowledge of the
ensity of Sα .

roposition 2. Suppose that A1–A4 hold and that β ∈ (0, 1
2 ) and α ∈ (0, 2) are given in

Definition (4) and in the third point of Assumption 4, respectively. Then

Q̂n =
1
n

cα
n−1∑
i=0

f (X ti )|γ (X ti )|
α(

∫
R
ϕ(u)|u|

1−αdu) + Ẽn, (12)

with

cα =

{
α(1−α)

4Γ (2−α) cos( απ2 ) if α ̸= 1, α < 2
1

2π if α = 1.
(13)

Ẽn = oP(1) and, if α < 4
3 , it is also nβ(2−α)oP(( 1

n )(1−αβ−ϵ̃)∧( 1
2 −ϵ̃)) = oP(( 1

n )( 1
2 −2β+αβ−ϵ̃)∧(1−2β−ϵ̃)).

We have not replaced directly the right hand side of (12) in (11), observing that ( 1
n )β(2−α)Ẽn

En , because ( 1
n )β(2−α)Ẽn is always oP(( 1

n )β(2−α)) but to get it is also oP(( 1
n )(1−αβ−ϵ̃)∧( 1

2 −ϵ̃)) the
additional condition α < 4

3 is required.
Proposition 2 provides the contribution of the jumps in detail, identifying a main term.

ecalling we are dealing with some bias, it comes naturally to look for some conditions to
ake it equal to zero and to study its asymptotic behavior in order to remove its limit.
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Corollary 1. Suppose that A1–A4 hold and that α ∈ (0, 4
3 ), β ∈ ( 1

4−α
, ( 1

2α ∧
1
2 )). If ϕ is such

that
∫
R |u|

1−αϕ(u)du = 0 then, ∀ϵ̃ > 0,

Qn −
1
n

n−1∑
i=0

f (X ti )a
2
ti =

Zn
√

n
+ oP((

1
n

)
1
2 −ϵ̃), (14)

ith Zn defined as in Theorem 2 here above.

It is always possible to build a function ϕ for which the condition here above is respected
see Section 4).

We have supposed α < 4
3 in order to say that the error we commit identifying the

contribution of the jumps as the first term in the right hand side of (12) is always negligible
compared to the statistical error. Moreover, taking β < 1

2α we get 1−αβ > 1
2 and therefore also

the bias studied in Lemma 2 becomes upper bounded by a quantity which is roughly oP( 1
√

n ).
Eq. (14) gives us the behavior of the unbiased estimator, that is the truncated quadratic

ariation after having removed the noise derived from the presence of jumps. Taking α and β
s discussed above we have, in other words, reduced the error term En to be oP(( 1

n )
1
2 −ϵ̃), which

s roughly the same size as the statistical error.
We observe that, if α ≥

4
3 but γ = k ∈ R, the result still holds if we choose ϕ such that∫

R
u2ϕ(u) fα(

1
k

u(
1
n

)β−
1
α )du = 0,

here fα is the density of the α-stable process. Indeed, following (8), the jump bias Q̂n is now
efined as

(
1
n

)
2
α−β(2−α)

n−1∑
i=0

f (X ti )k
2d(k nβ−

1
α )

= (
1
n

)
2
α−β(2−α)

n−1∑
i=0

f (X ti )k
2
∫
R

z2ϕ(zk(
1
n

)
1
α−β) fα(z)dz

= (
1
n

)
2
α−β(2−α)

n−1∑
i=0

f (X ti )k
2(

1
n

)3(β−
1
α ) 1

k3

∫
R

u2ϕ(u) fα(
1
k

u(
1
n

)β−
1
α )du = 0,

here we have used a change of variable.
Another way to construct an unbiased estimator is to study how the main bias detailed in

12) asymptotically behaves and to remove it from the original estimator.

heorem 3. Suppose that A1–A4 hold. Then, as n → ∞,

Q̂n
P

→ cα

∫
R
ϕ(u)|u|

1−αdu
∫ T

0
|γ (Xs)|α f (Xs)ds. (15)

oreover

Qn − I V =
Zn
√

n
+ (

1
n

)β(2−α)cα

∫
R
ϕ(u)|u|

1−αdu
∫ T

0
|γ (Xs)|α f (Xs)ds + oP((

1
n

)β(2−α)),

(16)

here Z
L
−→ N (0, 2

∫ T a4 f 2(X )ds) stably with respect to X.
n 0 s s
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It is worth noting that, in both [13] and [18], the integrated volatility estimation in short
time is dealt and they show that the truncated quadratic variation has rate

√
n if β > 1

2(2−α) .

We remark that the jump part is negligible compared to the statistic error if n−1 < n−
1

2β(2−α)

and so β > 1
2(2−α) , that is the same condition given in the literature.

However, if we take (α, β) for which such a condition does not hold, we can still use that
we know in detail the noise deriving from jumps to implement corrections that still make the
unbiased estimator well-performed (see Section 4).

We require the activity α to be known, for conducting bias correction. If it is unknown, we
need to estimate it previously (see for example the methods proposed by Todorov in [23] and
by Mies in [20]). Then, a question could be how the estimation error in α would affect the
rate of the bias-corrected estimator. We therefore assume that α̂n = α + OP(an), for some rate
sequence an . Replacing α̂n in (16) it turns out that the error derived from the estimation of α
does not affect the correction if an( 1

n )β(2−α) < ( 1
n )

1
2 , which means that an has to be smaller than

( 1
n )

1
2 −β(2−α). We recall that β ∈ (0, 1

2 ) and α ∈ (0, 2). Hence, such a condition is not a strong
requirement and it becomes less and less restrictive when α gets smaller or β gets bigger.

4. Unbiased estimation in the case of constant volatility

In this section we consider a concrete application of the unbiased volatility estimator in a
jump diffusion model and we investigate its numerical performance.

We consider our model (2) in which we assume, in addition, that the functions a and γ are
both constants.

Suppose that we are given a discrete sample X t0 , . . . , X tn with ti = i∆n =
i
n for i =

, . . . , n.
We now want to analyze the estimation improvement; to do it we compare the classical error

ommitted using the truncated quadratic variation with the unbiased estimation derived by our
ain results.
We define the estimator we are going to use, in which we have clearly taken f ≡ 1 and we

ave introduced a threshold k in the function ϕ, so it is

Qn =

n−1∑
i=0

(X ti+1 − X ti )
2ϕk∆β

n
(X ti+1 − X ti ). (17)

f normalized, the error committed estimating the volatility is E1 := (Qn − σ 2)
√

n.
We start from (12) that in our case, taking into account the presence of k, is

Q̂n = cαγ αk2−α(
∫
R
ϕ(u)|u|

1−αdu) + Ẽn. (18)

We now get different methods to make the error smaller.
First of all we can replace (18) in (11) and so we can reduce the error by subtracting a

correction term, building the new estimator Qc
n := Qn − ( 1

n )β(2−α)cαγ αk2−α(
∫
R ϕ(u)|u|

1−αdu).
he error committed estimating the volatility with such a corrected estimator is E2 := (Qc

n −
2)

√
n.

Another approach consists of taking a particular function ϕ̃ that makes the main contribution
of Q̂n equal to 0. We define ϕ̃(ζ ) = ϕ(ζ ) + cψ(ζ ), with ψ a C∞ function such that ψ(ζ ) = 0
or each ζ , |ζ | ≥ 2 or |ζ | ≤ 1. In this way, for any c ∈ R \ {0}, ϕ̃ is still a smooth version of
he indicator function such that ϕ̃(ζ ) = 0 for each ζ , |ζ | ≥ 2 and ϕ̃(ζ ) = 1 for each ζ , |ζ | ≤ 1.
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We can therefore leverage the arbitrariness in c to make the main contribution of Q̂n equal to
zero, choosing c̃ := −

∫
R ϕ(u)|u|

1−αdu∫
R ψ(u)|u|1−αdu

, which is such that
∫
R(ϕ + c̃ψ(u))|u|

1−αdu = 0.
Hence, it is possible to achieve an improved estimation of the volatility by using the

runcated quadratic variation Qn,c :=
∑n−1

i=0 (X ti+1 − X ti )
2(ϕ+ c̃ψ)(

X ti+1 −X ti

k∆β
n

). To make it clear

we will analyze the quantity E3 := (Qn,c − σ 2)
√

n.
Another method widely used in numerical analysis to improve the rate of convergence of a

equence is the so-called Richardson extrapolation. We observe that the first term on the right
and side of (18) does not depend on n and so we can just write Q̂n = Q̂ + Ẽn . Replacing it
n (11) we get

Qn = σ 2
+

Zn
√

n
+

1
nβ(2−α) Q̂ + En and

Q2n = σ 2
+

Z2n
√

2n
+

1
2β(2−α)

1
nβ(2−α) Q̂ + E2n,

where we have also used that ( 1
n )β(2−α)Ẽn = En . We can therefore use Qn−2β(2−α) Q2n

1−2β(2−α) as improved
estimator of σ 2.

We give simulation results for E1, E2 and E3 in the situation where σ = 1. The given mean
nd the deviation standard are each based on 500 Monte Carlo samples. We choose to simulate
tempered stable process (that is F satisfies F(dz) =

e−|z|

|z|1+α ) in the case α < 1 while, in the
interest of computational efficiency, we will exhibit results gained from the simulation of a
stable Lévy process in the case α ≥ 1 (F(dz) =

1
|z|1+α ).

We have taken the smooth functions ϕ and ψ as below:

ϕ(x) =

⎧⎪⎪⎨⎪⎪⎩
1 if |x | < 1

e
1
3 +

1
|x |2−4 if 1 ≤ |x | < 2

0 if |x | ≥ 2

(19)

ψM (x) =

⎧⎪⎪⎨⎪⎪⎩
0 if |x | ≤ 1 or |x | ≥ M

e
1
3 +

1
|3−x |2−4 if 1 < |x | ≤

3
2

e
1

|x |2−M
−

5
21 +

4
4M2−9 if 3

2 < |x | < M;

(20)

hoosing opportunely the constant M in the definition of ψM we can make its decay slower or
aster. We observe that the theoretical results still hold even if the support of ϕ̃ changes as M
hanges and so it is [−M,M] instead of [−2, 2].

Concerning the constant k in the definition of ϕ, we fix it equal to 3 in the simulation of
he tempered stable process, while its value is 2 in the case α > 1, β = 0.2 and, in the case
> 1 and β = 0.49, it increases as α and γ increase.
The results of the simulations are given in columns 3–6 of Table 1a for β = 0.2 and in

olumns 3–6 of Table 1b for β = 0.49.
It appears that the estimation we get using the truncated quadratic variation performs worse

s soon as α and γ become bigger (see column 3 in both Table 1a and b). However, after having
pplied the corrections, the error seems visibly reduced. A proof of which lies, for example,
n the comparison between the error and the root mean square: before the adjustment in both
able 1a and b the third column dominates the fourth one, showing that the bias of the original
stimator dominates the standard deviation while, after the implementation of our main results,
e get E and E for which the bias is much smaller.
2 3
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Table 1
Monte Carlo estimates of E1, E2 and E3 from 500 samples. We have here fixed n = 700; β = 0.2 in the first
table and β = 0.49 in the second one.

(a) β = 0.2 (b) β = 0.49

α γ Mean Rms Mean Mean α γ Mean Rms Mean Mean
E1 E1 E2 E3 E1 E1 E2 E3

0.1 1 3.820 3.177 0.831 0.189 0.1 1 1.092 1.535 0.307 −0.402
3 5.289 3.388 1.953 −0.013 3 1.254 1.627 0.378 −0.372

0.5 1 15.168 9.411 0.955 1.706 0.5 1 2.503 1.690 0.754 −0.753
3 14.445 5.726 2.971 0.080 3 4.680 2.146 1.651 −0.824

0.9 1 13.717 4.573 4.597 0.311 0.9 1 2.909 1.548 0.217 0.416
3 42.419 6.980 13.664 −0.711 3 8.042 1.767 0.620 −0.404

1.2 1 32.507 11.573 0.069 2.137 1.2 1 7.649 1.992 −0.944 −0.185
3 112.648 21.279 −0.915 0.800 3 64.937 9.918 −1.692 −2.275

1.5 1 50.305 12.680 0.195 0.923 1.5 1 25.713 3.653 −1.697 3.653
3 250.832 27.170 −5.749 3.557 3 218.591 21.871 −4.566 −13.027

1.9 1 261.066 20.729 −0.530 9.139 1.9 1 238.379 14.860 −6.826 16.330
3 2311.521 155.950 −0.304 −35.177 3 2357.553 189.231 3.827 −87.353

We observe that for α < 1, in both cases β = 0.2 and β = 0.49, it is possible to choose
pportunely M (on which ψ’s decay depends) to make the error E3 smaller than E2. On the
ther hand, for α > 1, the approach which consists of subtracting the jump part to the error
esults better than the other, since E3 is in this case generally bigger than E2, but to use this
ethod the knowledge of γ is required. It is worth noting that both the approaches used, that

ead us respectively to E2 and E3, work well for any β ∈ (0, 1
2 ).

We recall that, in [13], the condition found on β to get a well-performed estimator was

β >
1

2(2 − α)
, (21)

that is not respected in the case β = 0.2. Our results match the ones in [13], since the third
column in Table 1b (where β = 0.49) is generally smaller than the third one in Table 1a (where
β = 0.2). We emphasize nevertheless that, comparing columns 5 and 6 in the two tables, there
is no evidence of a dependence on β of E2 and E3.

The price you pay is that, to implement our corrections, the knowledge of α is request. Such
corrections turn out to be a clear improvement also because for α that is less than 1 the original
stimator (17) is well-performed only for those values of the couple (α, β) which respect the

condition (21) while, for α ≥ 1, there is no β ∈ (0, 1
2 ) for which such a condition can hold.

That is the reason why, in the lower part of both Table 1a and b, E1 is so big.
Using our main results, instead, we get E2 and E3 that are always small and so we obtain

wo corrections which make the unbiased estimator always well-performed without adding any
equirement on α or β.

. Preliminary results

In the sequel, for δ ≥ 0, we will denote as Ri (∆δ
n) any random variable which is Fti

easurable and such that, for any q ≥ 1,

∃c > 0 :

 Ri (∆δ
n)

∆δ
n


Lq

≤ c < ∞, (22)

with c independent of i, n.
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Ri represent the term of rest and have the following useful property, consequence of the
just given definition:

Ri (∆δ
n) = ∆δ

n Ri (∆0
n). (23)

We point out that it does not involve the linearity of Ri , since the random variables Ri on the
left and on the right side are not necessarily the same but only two on which the control (22)
holds with ∆δ

n and ∆0
n , respectively.

In order to prove the main result, the following proposition will be useful.
We define, for i ∈ {0, . . . , n − 1},

∆X J
i :=

∫ ti+1

ti

∫
R\{0}

γ (Xs− ) z µ̃(ds, dz) and

∆X̃ J
i :=

∫ ti+1

ti

∫
R\{0}

γ (X ti ) z µ̃(ds, dz).

(24)

We want to bound the error we commit moving from ∆X J
i to ∆X̃ J

i , denoting as oL1 (∆k
n) a

quantity such that Ei [|oL1 (∆k
n)|] = Ri (∆k

n), with the notation Ei [.] = E[.|Fti ].

Proposition 3. Suppose that A1–A4 hold. Then

(∆X J
i )2ϕ

∆
β
n
(∆X i ) = (∆X̃ J

i )2ϕ
∆
β
n
(∆X̃ J

i ) + oL1 (∆β(2−α)+1
n ), (25)

(
∫ ti+1

ti
asdWs)∆X J

i ϕ∆β
n
(∆X i ) = (

∫ ti+1

ti
asdWs)∆X̃ J

i ϕ∆β
n
(∆X̃ J

i ) + oL1 (∆β(2−α)+1
n ). (26)

oreover, for each ϵ̃ > 0 and f the function introduced in the definition of Qn ,

n−1∑
i=0

f (X ti )(∆X J
i )2ϕ

∆
β
n
(∆X i ) =

n−1∑
i=0

f (X ti )(∆X̃ J
i )2ϕ

∆
β
n
(∆X̃ J

i ) + oP(∆
(1−αβ−ϵ̃)∧( 1

2 −ϵ̃)
n ),

(27)

n−1∑
i=0

f (X ti )(
∫ ti+1

ti
asdWs)∆X J

i ϕ∆β
n
(∆X i ) =

n−1∑
i=0

f (X ti )(
∫ ti+1

ti
asdWs)∆X̃ J

i ϕ∆β
n
(∆X̃ J

i )

+ oP(∆
(1−αβ−ϵ̃)∧( 1

2 −ϵ̃)
n ). (28)

Proposition 3 will be showed in the Appendix.
In the proof of our main results, also the following lemma will be repeatedly used.

emma 3. Let us consider ∆X J
i and ∆X̃ J

i as defined in (24). Then

1. For each q ≥ 2 ∃ϵ > 0 such that

E[|∆X J
i 1{

|∆X J
i |≤4∆β

n

}|q |Fti ] = Ri (∆1+β(q−α)
n ) = Ri (∆1+ϵ

n ). (29)

E[|∆X̃ J
i 1{

|∆X̃ J
i |≤4∆β

n

}|q |Fti ] = Ri (∆1+β(q−α)
n ) = Ri (∆1+ϵ

n ). (30)

2. For each q ≥ 1 we have

E[|∆X J
i 1{

∆
β
n

4 ≤|∆X J
i |≤4∆β

n

}|
q
|Fti ] = Ri (∆1+β(q−α)

n ). (31)
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Proof. Reasoning as in Lemma 10 in [1] we easily get (29). Observing that ∆X̃ J
i is a particular

case of ∆X J
i where γ is fixed, evaluated in X ti , it follows that (30) can be obtained in the same

way of (29). Using the bound on ∆X J
i obtained from the indicator function we get that the

left hand side of (31) is upper bounded by

c∆βq
n E[1{

∆
β
n

4 ≤|∆X J
i |≤4∆β

n

}|Fti ] ≤ ∆βq
n Ri (∆1−αβ

n ),

where in the last inequality we have used Lemma 11 in [1] on the interval [ti , ti+1] instead of
on [0, h]. From property (23) of Ri we get (31). □

6. Proof of main results

We show Lemma 2, required for the proof of Theorem 1.

6.1. Proof of Lemma 2

Proof. By the definition of X c we have

|

n−1∑
i=0

f (X ti )(X c
ti+1

− X c
ti )

2(ϕ
∆
β
n
(∆X i ) − 1)|

≤ c
n−1∑
i=0

| f (X ti )|
(
|

∫ ti+1

ti
asdWs |

2
+ |

∫ ti+1

ti
bsds|2

)
|ϕ

∆
β
n
(∆X i ) − 1| =: |I n

2,1| + |I n
2,2|.

In the sequel the constant c may change value from line to line.
Concerning I n

2,1, using Holder inequality we have

E[|I n
2,1|] ≤ c

n−1∑
i=0

E[| f (X ti )|Ei [|
∫ ti+1

ti
asdWs |

2p]
1
p Ei [|ϕ∆β

n
(∆X i ) − 1|

q ]
1
q ], (32)

where Ei is the conditional expectation wit respect to Fti .
We now use Burkholder–Davis–Gundy inequality to get, for p1 ≥ 2,

Ei [|
∫ ti+1

ti
asdWs |

p1 ]
1
p1 ≤ Ei [|

∫ ti+1

ti
a2

s ds|
p1
2 ]

1
p1 ≤ Ri (∆

p1
2

n )
1
p1 = Ri (∆

1
2
n ), (33)

here in the last inequality we have used that a2
s has bounded moments as a consequence

f Lemma 1. We now observe that, from the definition of ϕ we know that ϕ
∆
β
n
(∆X i ) − 1

s different from 0 only if |∆X i | > ∆
β
n . We consider two different sets: |∆X J

i | < 1
2∆

β
n and

|∆X J
i | ≥

1
2∆

β
n . We recall that ∆X i = ∆X c

i +∆X J
i and so, if |∆X i | > ∆

β
n and |∆X J

i | < 1
2∆

β
n ,

then it means that |∆X c
i | must be more than 1

2∆
β
n . Using a conditional version of Tchebychev

inequality we have that, ∀r > 1,

Pi (|∆X c
i | ≥

1
2
∆β

n ) ≤ c
Ei [|∆X c

i |
r ]

∆
βr
n

≤ Ri (∆
( 1

2 −β)r
n ), (34)

where Pi is the conditional probability with respect to Fti ; the last inequality follows from
the sixth point of Lemma 1. If otherwise |∆X J

i | ≥
1
2∆

β
n , then we introduce the set

Ni,n :=

{
|∆Ls | ≤

2∆β
n ; ∀s ∈ (ti , ti+1]

}
. We have Pi (

{
|∆X J

| ≥
1∆

β
n

}
∩ (Ni,n)c) ≤ Pi ((Ni,n)c),
γmin i 2
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with

Pi ((Ni,n)c) = Pi (∃s ∈ (ti , ti+1] : |∆Ls | >
∆
β
n

2γmin
) ≤ c

∫ ti+1

ti

∫
∞

∆
β
n

2γmin

F(z)dzds ≤ c∆1−αβ
n ,

(35)

here we have used the third point of A4. Furthermore, using Markov inequality,

Pi (
{
|∆X J

i | ≥
1
2
∆β

n

}
∩ Ni,n) ≤ cEi [|∆X J

i |
r
1Ni,n ]∆−βr

n ≤ Ri (∆−βr+1+β(r−α)
n )

= Ri (∆1−βα
n ), (36)

here we have used the first point of Lemma 3, observing that 1Ni,n acts like the indicator
unction in (29) (see also (219) in [1]). Now using (34), (35), (36) and the arbitrariness of r
e have

Pi (|∆X i | > ∆β
n ) = Pi (|∆X i | > ∆β

n , |∆X J
i | <

1
2
∆β

n ) + Pi (|∆X i | > ∆β
n , |∆X J

i | ≥
1
2
∆β

n )

≤ Ri (∆1−αβ
n ). (37)

Taking p big and q next to 1 in (32) and replacing there (33) with p1 = 2p and (37) we get,
∀ϵ > 0,

n1−αβ−ϵ̃E[|I n
2,1|] ≤ n1−αβ−ϵ̃c

n−1∑
i=1

E[| f (X ti )|Ri (∆n)Ri (∆1−αβ−ϵ
n )]

≤ (
1
n

)ϵ̃−ϵ
c
n

n−1∑
i=1

E[| f (X ti )|Ri (1)].

Now, for each ϵ̃ > 0, we can always find an ϵ smaller than it, that is enough to get that
I n
2,1

( 1
n )1−αβ−ϵ̃

goes to zero in L1 and so in probability. Let us now consider I n
2,2. We recall that b

is uniformly bounded by a constant, therefore

(
∫ ti+1

ti
bsds)2

≤ c∆2
n. (38)

Acting moreover on |ϕ
∆
β
n,i

(∆X i ) − 1| as we did here above it follows

n1−αβ−ϵ̃E[|I n
2,2|] ≤ n1−αβ−ϵ̃c

n−1∑
i=1

E[| f (X ti )|Ri (∆2
n)Ri (∆1−αβ−ϵ

n )]

≤ (
1
n

)1+ϵ̃−ϵ c
n

n−1∑
i=1

E[| f (X ti )|Ri (1)]

nd so I n
2,2 = oP(( 1

n )1−αβ−ϵ̃). □

.2. Proof of Theorem 1

We observe that, using the dynamic (2) of X and the definition of the continuous part X c,
we have that

X ti+1 − X ti = (X c
ti+1

− X c
ti ) +

∫ ti+1
∫

γ (Xs− ) z µ̃(ds, dz). (39)

ti R\{0}
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Replacing (39) in definition (4) of Qn we have

Qn =

n−1∑
i=0

f (X ti )(X c
ti+1

− X c
ti )

2
+

n−1∑
i=0

f (X ti )(X c
ti+1

− X c
ti )

2(ϕ
∆
β
n
(∆X i ) − 1)

+ 2
n−1∑
i=0

f (X ti )(X c
ti+1

− X c
ti )(∆X J

i )ϕ
∆
β
n
(∆X i )

+

n−1∑
i=0

f (X ti )(∆X J
i )2ϕ

∆
β
n
(∆X i ) =:

4∑
j=1

I n
j . (40)

Comparing (40) with (6), using also definition (5) of Q̃n , it follows that our goal is to show

that I n
2 + I n

3 = En , that is both oP(∆β(2−α)
n ) and oP(∆

(1−αβ−ϵ̃)∧( 1
2 −ϵ̃)

n ). We have already shown in
Lemma 2 that I n

2 = oP(∆1−αβ−ϵ̃
n ). As (1−αβ−ϵ̃)∧( 1

2 −ϵ̃) < 1−αβ−ϵ̃ and β(2−α) < 1−αβ−ϵ̃,
we immediately get I n

2 = En .
Let us now consider I n

3 . From the definition of the process (X c
t ) it is

2
n−1∑
i=0

f (X ti )[
∫ ti+1

ti
bsds +

∫ ti+1

ti
asdWs]∆X J

i ϕ∆β
n
(∆X i ) =: I n

3,1 + I n
3,2.

We use on I n
3,1 Cauchy–Schwarz inequality, (38) and Lemma 10 in [1], getting

E[|I n
3,1|] ≤ 2

n−1∑
i=0

E[| f (X ti )|Ri (∆1+β(2−α)
n )

1
2 Ri (∆2

n)
1
2 ]

≤ ∆
1
2 +

β
2 (2−α)

n
1
n

n−1∑
i=0

E[| f (X ti )|Ri (1)],

where we have also used property (23) on R. We observe it is 1
2 + β −

αβ

2 > 1
2 if and only if

(1 −
α
2 ) > 0, that is always true. We can therefore say that I n

3,1 = oP(∆
1
2
n ) and so

I n
3,1 = oP(∆

( 1
2 −ϵ̃)∧(1−αβ−ϵ̃)

n ). (41)

oreover,

E[|I n
3,1|]

∆
β(2−α)
n

≤ ∆
1
2 −β+

αβ
2

n
1
n

n−1∑
i=0

E[| f (X ti )|Ri (1)], (42)

that goes to zero using the polynomial growth of f , the definition of R, the fifth point of
Lemma 1. Moreover, we have observed that the exponent on ∆n is positive for β < 1

2
1

(1−
α
2 ) ,

that is always true.
Concerning I n

3,2, we start proving that I n
3,2 = oP(∆β(2−α)

n ). From (26) in Proposition 3 we
ave

I n
3,2

∆
β(2−α)
n

=
2

∆
β(2−α)
n

n−1∑
i=0

f (X ti )∆X̃ J
i ϕ∆β

n
(∆X̃ J

i )
∫ ti+1

ti
asdWs

+
2
β(2−α)

n−1∑
f (X ti )oL1 (∆β(2−α)+1

n ). (43)

∆n i=0
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By the definition of oL1 the last term here above goes to zero in norm 1 and so in probability.
he first term of (43) can be seen as

2

∆
β(2−α)
n

n−1∑
i=0

f (X ti )∆X̃ J
i ϕ∆β

n
(∆X̃ J

i )[
∫ ti+1

ti
ati dWs +

∫ ti+1

ti
(as − ati )dWs]. (44)

n the first term of (44) here above we want to use Lemma 9 of [9] in order to get that it
onverges to zero in probability, so we have to show the following:

2

∆
β(2−α)
n

n−1∑
i=0

Ei [ f (X ti )∆X̃ J
i ϕ∆β

n
(∆X̃ J

i )
∫ ti+1

ti
ati dWs]

P
−→ 0, (45)

4

∆
2β(2−α)
n

n−1∑
i=0

Ei [ f 2(X ti )(∆X̃ J
i )2ϕ2

∆
β
n
(∆X̃ J

i )(
∫ ti+1

ti
ati dWs)2]

P
−→ 0, (46)

where Ei [.] = E[.|Fti ].
Using the independence between W and L we have that the left hand side of (45) is

2

∆
β(2−α)
n

n−1∑
i=0

f (X ti )Ei [∆X̃ J
i ϕ∆β

n
(∆X̃ J

i )]Ei [
∫ ti+1

ti
ati dWs] = 0. (47)

ow, in order to prove (46), we use Holder inequality with p big and q next to 1 on its left
and side, getting it is upper bounded by

∆−2β(2−α)
n

n−1∑
i=0

f 2(X ti )Ei [(
∫ ti+1

ti
ati dWs)2p]

1
p Ei [|∆X̃ J

i ϕ∆β
n
(∆X̃ J

i )|
2q

]
1
q

≤ ∆−2β(2−α)
n

n−1∑
i=0

f 2(X ti )Ri (∆n)Ri (∆
1
q +

β
q (2q−α)

n )

≤ ∆1−2β(2−α)+2β−αβ−ϵ
n

1
n

n−1∑
i=0

f 2(X ti )Ri (1), (48)

where we have used (33), (30) and property (23) of R. We observe that the exponent on ∆n is
positive if β < 1

2−α
− ϵ and we can always find an ϵ > 0 such that it is true. Hence (48) goes

o zero in norm 1 and so in probability.
Concerning the second term of (44), using Cauchy–Schwarz inequality and (30) we have

Ei [|∆X̃ J
i ϕ∆β

n
(∆X̃ J

i )||
∫ ti+1

ti
[as − ati ]dWs |]

≤ Ei [|∆X̃ J
i ϕ∆β

n
(∆X̃ J

i )|2]
1
2 Ei [|

∫ ti+1

ti
[as − ati ]dWs |

2]
1
2

≤ Ri (∆
1
2 +

β
2 (2−α)

n )Ei [
∫ ti+1

ti
|as − ati |

2ds]
1
2 ≤ ∆

1
2 +

β
2 (2−α)

n Ri (1)∆n ≤ ∆
3
2 +

β
2 (2−α)

n,i Ri (1),

(49)

here we have also used the second point of Lemma 1 and the property (23) of R. Replacing
49) in the second term of (44) we get it is upper bounded in norm 1 by

∆
1
2 −β+

αβ
2

n
1
n

n−1∑
E[| f (X ti )|Ri (1)], (50)
i=0
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F

R

that goes to zero since the exponent on ∆n is more than 0 for β < 1
2

1
(1−

α
2 ) , that is always true.

Using (43)–(46) and (50) we get

I n
3,2

∆
β(2−α)
n

P
−→ 0. (51)

We now want to show that I n
3,2 is also oP(∆

( 1
2 −ϵ̃)∧(1−αβ−ϵ̃)

n ).
Using (28) in Proposition 3 we get it is enough to prove that

1

∆
1
2 −ϵ̃

n

n−1∑
i=0

f (X ti )[∆X̃ J
i ϕ∆β

n
(∆X̃ J

i )
∫ ti+1

ti
asdWs]

P
−→ 0, (52)

where the left hand side here above can be seen as (44), with the only difference that now we

have ∆
1
2 −ϵ̃

n instead of ∆β(2−α)
n . We have again, acting like we did in (47) and (48),

2

∆
1
2 −ϵ̃

n

n−1∑
i=0

f (X ti )Ei [∆X̃ J
i ϕ∆β

n
(∆X̃ J

i )
∫ ti+1

ti
ati dWs]

P
−→ 0 (53)

nd

4

∆
2( 1

2 −ϵ̃)
n

n−1∑
i=0

Ei [ f 2(X ti )(∆X̃ J
i )2ϕ2

∆
β
n
(∆X̃ J

i )(
∫ ti+1

ti
ati dWs)2]

≤ ∆2ϵ̃+2β−αβ−ϵ
n

1
n

n−1∑
i=0

f 2(X ti )Ri (1), (54)

that goes to zero in norm 1 and so in probability. Using also (49) we have that

2

∆
1
2 −ϵ̃

n

n−1∑
i=0

Ei [| f (X ti )∆X̃ J
i ϕ∆β

n
(∆X̃ J

i )
∫ ti+1

ti
[as − ati ]dWs |]

≤ ∆
β
2 (2−α)+ϵ̃
n

1
n

n−1∑
i=0

| f (X ti )|Ri (1), (55)

that, again, goes to zero in norm 1 and so in probability since the exponent on ∆n is always

positive. Using (52)–(55) we get I n
3,2 = oP(∆

1
2 −ϵ̃

n ) and so

I n
3,2 = oP(∆

( 1
2 −ϵ̃)∧(1−αβ−ϵ̃)

n ). (56)

rom Lemma 2, (41), (42), (51) and (56) it follows (6).
Now, in order to prove (7), we recall the definition of X c

t :

X c
ti+1

− X c
ti =

∫ ti+1

ti
bsds +

∫ ti+1

ti
asdWs . (57)

eplacing (57) in (6) and comparing it with (7) it follows that our goal is to show that

An
1 + An

2 :=

n−1∑
f (X ti )(

∫ ti+1

bsds)2
+ 2

n−1∑
f (X ti )(

∫ ti+1

bsds)(
∫ ti+1

asdWs) = En.
i=0 ti i=0 ti ti
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Using (38) and property (23) of R we know that

E[|An
1|]

∆
β(2−α)
n

≤
1

∆
β(2−α)
n

n−1∑
i=0

E[| f (X ti )|Ri (∆2
n)] ≤ ∆1−β(2−α)

n
1
n

n−1∑
i=0

E[| f (X ti )|Ri (1)] (58)

nd

E[|An
1|]

∆
1
2 −ϵ̃

n

≤ ∆
1
2 +ϵ̃

n
1
n

n−1∑
i=0

E[| f (X ti )|Ri (1)], (59)

that go to zero since the exponent on ∆n is always more than 0, f has both polynomial growth
and the moments are bounded.

Let us now consider An
2 . By adding and subtracting bti in the first integral, as we have

already done, we get that

An
2 =

n−1∑
i=0

ζn,i + An
2,2 := 2

n−1∑
i=0

f (X ti )(
∫ ti+1

ti
bti ds)(

∫ ti+1

ti
asdWs)

+ 2
n−1∑
i=0

f (X ti )(
∫ ti+1

ti
[bs − bti ]ds)(

∫ ti+1

ti
asdWs).

Using Lemma 9 in [9], we want to show that
n−1∑
i=0

ζn,i = En (60)

and so that the following convergences hold:

1

∆
β(2−α)
n

n−1∑
i=0

Ei [ζn,i ]
P
−→ 0

1

∆
1
2 −ϵ̃

n

n−1∑
i=0

Ei [ζn,i ]
P
−→ 0; (61)

1

∆
2β(2−α)
n

n−1∑
i=0

Ei [ζ 2
n,i ]

P
−→ 0

1

∆
2( 1

2 −ϵ̃)
n

n−1∑
i=0

Ei [ζ 2
n,i ]

P
−→ 0. (62)

We have
n−1∑
i=0

Ei [ζn,i ] =
2

∆
β(2−α)
n

n−1∑
i=0

f (X ti )∆nbtiEi [
∫ ti+1

ti
asdWs] = 0

and so the two convergences in (61) both hold. Concerning (62), using (33) we have

∆1−2β(2−α)
n

c
n

n−1∑
i=0

f 2(X ti )b
2
tiEi [(

∫ ti+1

ti
asdWs)2] ≤ ∆2−2β(2−α)

n
c
n

n−1∑
i=0

f 2(X ti )b
2
ti Ri (1)

nd

∆
1−2( 1

2 −ϵ̃)
n

c
n

n−1∑
i=0

f 2(X ti )b
2
tiEi [(

∫ ti+1

ti
asdWs)2] ≤ ∆1+2ϵ̃

n
c
n

n−1∑
i=0

f 2(X ti )b
2
ti Ri (1),

hat go to zero in norm 1 and so in probability since ∆n is always positive. It follows (62) and
o (60). Concerning An , using Holder inequality, (33), the assumption on b gathered in A2
2,2
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and Jensen inequality it is

E[|An
2,2|] ≤ c

n−1∑
i=0

E[| f (X ti )|Ei [(
∫ ti+1

ti
|bs − bti |ds)q ]

1
q Ri (∆

1
2
n )]

≤ c
n−1∑
i=0

E[| f (X ti )|(∆
q−1
n

∫ ti+1

ti
Ei [|bs − bti |

q ]ds)
1
q Ri (∆

1
2
n )]

≤ c
n−1∑
i=0

E[| f (X ti )|(∆
q−1
n

∫ ti+1

ti
∆nds)

1
q Ri (∆

1
2
n )].

o we get

E[|An
2,2|]

∆
β(2−α)
n

≤ ∆
1
q +

1
2 −β(2−α)

n
c
n

n−1∑
i=0

E[| f (X ti )|Ri (1)] and (63)

E[|An
2,2|]

∆
1
2 −ϵ̃

n

≤ ∆
1
q +ϵ̃

n
c
n

n−1∑
i=0

E[| f (X ti )|Ri (1)]. (64)

Since it holds for q ≥ 2, the best choice is to take q = 2, in this way we get that (63) and (64)
go to 0 in norm 1, using the polynomial growth of f , the boundedness of the moments, the

efinition of Ri and the fact that the exponent on ∆n is in both cases more than zero, because
f β < 1

2−α
.

From (58), (59), (61), (63) and (64) it follows (7).

6.3. Proof of Theorem 2

roof. From Theorem 1 it is enough to prove that
n−1∑
i=0

f (X ti )(
∫ ti+1

ti
asdWs)2

−
1
n

n−1∑
i=0

f (X ti )a
2
ti =

Zn
√

n
+ En, (65)

and

Q̃ J
n = Q̂n +

1

∆
β(2−α)
n

En,

where En is always oP(∆β(2−α)
n ) and, if β > 1

4−α
, then it is also oP(∆

( 1
2 −ϵ̃)∧(1−αβ−ϵ̃)

n ). We can
ewrite the last equation here above as

Q̃ J
n = Q̂n + oP(1) (66)

nd, for β > 1
4−α

,

Q̃ J
n = Q̂n +

1

∆
β(2−α)
n

oP(∆
( 1

2 −ϵ̃)∧(1−αβ−ϵ̃)
n ). (67)

Indeed, using them and (7) it follows (11). Hence we are now left to prove (65)–(67).

Proof of (65). We can see the left hand side of (65) as
n−1∑

f (X ti )[(
∫ ti+1

asdWs)2
−

∫ ti+1

a2
s ds]+

n−1∑
f (X ti )

∫ ti+1

[a2
s −a2

ti ]ds =: M Q
n +Bn. (68)
i=0 ti ti i=0 ti
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We want to show that Bn = En , it means that it is both oP(∆β(2−α)
n ) and oP(∆

( 1
2 −ϵ̃)∧(1−αβ−ϵ̃)

n ).
e write

a2
s − a2

ti = 2ati (as − ati ) + (as − ati )
2, (69)

eplacing (69) in the definition of Bn it is Bn = Bn
1 + Bn

2 . We start by proving that Bn
2 =

P(∆β(2−α)
n ). Indeed, from the second point of Lemma 1, it is

E[|Bn
2 |] ≤ c

n−1∑
i=0

E[| f (X ti )|
∫ ti+1

ti
Ei [|as − ati |

2]ds] ≤ c∆2
n

n−1∑
i=0

E[| f (X ti )|].

t follows

E[|Bn
2 |]

∆
β(2−α)
n

≤ ∆1−β(2−α)
n

1
n

n−1∑
i=0

E[| f |(X ti )] and
E[|Bn

2 |]

∆
1
2 −ϵ̃

n

≤ ∆
1
2 +ϵ̃

n
1
n

n−1∑
i=0

E[| f |(X ti )],

(70)

hat go to zero using the polynomial growth of f and the fact that the moments are bounded.
e have also observed that the exponent on ∆n is always more than 0.
Concerning Bn

1 , we recall that from (3) it follows

as − ati =

∫ s

ti
b̃udu +

∫ s

ti
ãudWu +

∫ s

ti
âudŴu +

∫ s

ti

∫
R\{0}

γ̃u z µ̃(du, dz)

+

∫ s

ti

∫
R\{0}

γ̂u z µ̃2(du, dz)

nd so, replacing it in the definition of Bn
1 , we get Bn

1 := I n
1 + I n

2 + I n
3 + I n

4 + I n
5 .

We start considering I n
1 on which we use that b̃ is bounded

E[|I n
1 |] ≤ 2

n−1∑
i=0

E[| f (X ti )∥ati |

∫ ti+1

ti
(
∫ s

ti
cdu)ds] ≤ ∆n

1
n

n−1∑
i=0

E[| f (X ti )∥ati |].

t follows

E[|I n
1 |]

∆
β(2−α)
n

≤ ∆1−β(2−α)
n

1
n

n−1∑
i=0

E[| f (X ti )||ati |] and (71)

E[|I n
1 |]

∆
1
2 −ϵ̃

n

≤ ∆
1
2 +ϵ̃

n
1
n

n−1∑
i=0

E[| f (X ti )||ati |], (72)

that go to zero because of the polynomial growth of f , the boundedness of the moments and
he fact that 1 − β(2 − α) > 0.

We now act on I n
2 and I n

3 in the same way. Considering I n
2 , we define ζn,i := 2 f (X ti )atiti+1

ti
(
∫ s

ti
ãudWu)ds. We want to use Lemma 9 in [9] to get that

I n
2

∆
β(2−α)
n

P
−→ 0 and

I n
2

∆
( 1

2 −ϵ̃)∧(1−αβ−ϵ̃)
n

P
−→ 0 (73)

and so we have to show the following:

1

∆
β(2−α)

n−1∑
Ei [ζn,i ]

P
−→ 0,

1
1
2 −ϵ̃

n−1∑
Ei [ζn,i ]

P
−→ 0; (74)
n i=0 ∆n i=0
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1

∆
2β(2−α)
n

n−1∑
i=0

Ei [ζ 2
n,i ]

P
−→ 0, (75)

1

∆
2( 1

2 −ϵ̃)
n

n−1∑
i=0

Ei [ζ 2
n,i ]

P
−→ 0. (76)

By the definition of ζn,i it is Ei [ζn,i ] = 0 and so (74) is clearly true. The left hand side of
(75) is

∆−2β(2−α)
n 4

n−1∑
i=0

f 2(X ti )a
2
tiEi [(

∫ ti+1

ti
(
∫ s

ti
ãudWu)ds)2]. (77)

Using Fubini theorem and Ito isometry we have

Ei [(
∫ ti+1

ti
(
∫ s

ti
ãudWu)ds)2] = Ei [(

∫ ti+1

ti
(ti+1 − s)ãsdWs)2] = Ei [

∫ ti+1

ti
(ti+1 − s2)ã2

s ds]

≤ Ri (∆3
n). (78)

ecause of (78), we get that (77) is upper bounded by

∆2−2β(2−α)
n

1
n

n−1∑
i=0

f 2(X ti )a
2
ti Ri (1),

that converges to zero in norm 1 and so (75) follows, since 2−2β(2−α) > 0 for β < 1
2−α

, that
is always true. Acting in the same way we get that the left hand side of (76) is upper bounded by

∆1+2ϵ̃
n

1
n

n−1∑
i=0

f 2(X ti )a
2
ti Ri (1),

that goes to zero in norm 1. The same holds clearly for I n
3 instead of I n

2 . In order to show also

I n
4

∆
β(2−α)
n

P
−→ 0 and

I n
4

∆
( 1

2 −ϵ̃)∧(1−αβ−ϵ̃)
n

P
−→ 0, (79)

we define ζ̃n,i := 2 f (X ti )ati

∫ ti+1
ti

(
∫ s

ti

∫
R γ̃uzµ̃(du, dz))ds. We have again Ei [ζ̃n,i ] = 0 and so

(74) holds with ζ̃n,i in place of ζn,i . We now act like we did in (78), using Fubini theorem and
Ito isometry. It follows

Ei [(
∫ ti+1

ti
(
∫ s

ti

∫
R
γ̃uzµ̃(du, dz)ds)2)] = Ei [(

∫ ti+1

ti

∫
R

(ti+1 − s)γ̃s zµ̃(ds, dz))2]

= Ei [
∫ ti+1

ti
(ti+1 − s)2γ̃ 2

s ds(
∫
R

z2 F(z)dz)] ≤ Ri (∆3
n), (80)

aving used in the last inequality the definition of µ̄(ds, dz), the fact that
∫
R z2 F(z)dz < ∞

nd the boundedness of γ̃ . Replacing (80) in the left hand side of (75) and (76), with ζ̃n,i in
lace of ζn,i , we have

1

∆
2β(2−α)
n

n−1∑
i=0

Ei [ζ̃ 2
n,i ] ≤ c∆−2β(2−α)

n

n−1∑
i=0

f 2(X ti )a
2
ti Ri (∆3

n)

≤ ∆2−2β(2−α)
n

1
n

n−1∑
f 2(X ti )a

2
ti Ri (1)
i=0
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and
1

∆1−2ϵ̃
n

n−1∑
i=0

Ei [ζ̃ 2
n,i ] ≤ ∆1+2ϵ̃

n
1
n

n−1∑
i=0

f 2(X ti )a
2
ti Ri (1).

Again, they converge to zero in norm 1 and thus in probability since 2−2β(2−α) > 0 always
holds. Therefore, we get (79). Clearly, (79) holds also with I n

5 replacing I n
4 ; the reasoning here

above joint with the sixth point of A4 on F2 is proof of that.
From (70), (71), (72), (73) and (79) it follows that

Bn = En. (81)

Concerning M Q
n :=

∑n−1
i=0 ζ̂n,i , Genon-Catalot and Jacod have proved in [9] that, in the

continuous framework, the following conditions are enough to get
√

nM Q
n → N (0, 2

∫ T
0 f 2(Xs)

4
s ds) stably with respect to X :

• Ei [ζ̂n,i ] = 0;
•

∑n−1
i=0 Ei [ζ̂ 2

n,i ]
P
−→ 2

∫ T
0 f 2(Xs)a4

s ds;

•
∑n−1

i=0 Ei [ζ̂ 4
n,i ]

P
−→ 0;

•
∑n−1

i=0 Ei [ζ̂n,i (Wti+1 − Wti )]
P
−→ 0;

•
∑n−1

i=0 Ei [ζ̂n,i (Ŵti+1 − Ŵti )]
P
−→ 0.

Theorem 2.2.15 in [12] adapts the previous theorem to our framework, in which there is the
presence of jumps.

We observe that the conditions here above are respected, hence

M Q
n =

Zn
√

n
, where Zn

n
−→ N (0, 2

∫ T

0
f 2(Xs)a4

s ds), (82)

stably with respect to X . From (81) and (82), it follows (65).

Proof of (66). We use Proposition 3 replacing (25) in the definition (5) of Q̃ J
n . Recalling that

the convergence in norm 1 implies the convergence in probability it is clear that we have to
prove the result on

nβ(2−α)
n−1∑
i=0

f (X ti )(∆X̃ J
i )2ϕ

∆
β
n
(∆X̃ J

i )

= nβ(2−α)
n−1∑
i=0

f (X ti )γ
2(X ti )∆

2
α
n (

∆X̃ J
i

γ (X ti )∆
1
α
n

)2ϕ
∆
β
n
(

∆X̃ J
i

γ (X ti )∆
1
α
n

γ (X ti )∆
1
α
n ), (83)

here we have also rescaled the process in order to apply Proposition 1. We now define

gi,n(y) := y2ϕ
∆
β
n
(yγ (X ti )∆

1
α
n ), (84)

ence we can rewrite (83) as

(
1
n

)
2
α−β(2−α)

n−1∑
i=0

f (X ti )γ
2(X ti )[gi,n(

∆X̃ J
i

γ (X ti )∆
1
α
n

) − E[gi,n(Sα1 )]]

+ (
1
n

)
2
α−β(2−α)

n−1∑
i=0

f (X ti )γ
2(X ti )E[gi,n(Sα1 )] =:

n−1∑
i=0

An
1,i + Q̂n, (85)
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where Sα1 is the α-stable process at time t = 1. We want to show that
∑n−1

i=0 An
1,i converges to

zero in probability. With this purpose in mind, we take the conditional expectation of An
1,i and

we apply Proposition 1 on the interval [ti , ti+1] instead of on [0, h], observing that property

(9) holds on gi,n for p = 2. By the definition (84) of gi,n , we have
gi,n


∞

= Ri (∆
2(β−

1
α )

n ) and
gi,n


pol = Ri (1). Replacing them in (10) we have that

|Ei [gi,n(
∆X̃ J

i

γ (X ti )∆
1
α
n

)] − E[gi,n(Sα1 )]| ≤ cϵ,α∆n| log(∆n)|Ri (∆
2(β−

1
α )

n )

+ cϵ,α∆
1
α
n | log(∆n)|Ri (∆

2(β−
1
α )(1−

α
2 −ϵ)

n ) + cϵ,α∆
1
α
n | log(∆n)|Ri (∆

2(β−
1
α )( 3

2 −
α
2 −ϵ)

n )1α>1.

o get
∑n−1

i=0 An
1,i := oP(1), we want to use Lemma 9 of [9]. We have

n−1∑
i=0

|Ei [An
1,i ]| ≤ (

1
n

)
2
α−β(2−α)

n−1∑
i=0

| f (X ti )||γ
2(X ti )|| log(∆n)|[∆

1+2(β−
1
α )

n

+ ∆
1
α+(2−α−ϵ)(β−

1
α )

n

+ ∆
1
α+(3−α−ϵ)(β−

1
α )

n 1α>1]Ri (1) ≤ (∆αβ
n + ∆

1
α−ϵ
n + ∆β−ϵ

n 1α>1)
| log(∆n)|

n

×

n−1∑
i=0

| f (X ti )||γ
2(X ti )|Ri (1), (86)

where we have used property (23). Using the polynomial growth of f , the boundedness of the
moments and the fifth point of Assumption 4 in order to bound γ , (86) converges to 0 in norm
1 and so in probability since ∆

αβ
n log(∆n) → 0 for n → ∞ and we can always find an ϵ > 0

such that ∆
1
α−ϵ
n does the same.

To use Lemma 9 of [9] we have also to show that

(
1
n

)
4
α−2β(2−α)

n−1∑
i=0

f 2(X ti )γ
4(X ti )Ei [(gi,n(

∆X̃ J
i

γ (X ti )∆
1
α
n

) − E[gi,n(Sα1 )])2]
P
−→ 0. (87)

We observe that Ei [(gi,n( ∆X̃ J
i

γ (X ti )∆
1
α
n

) − E[gi,n(Sα1 )])2] ≤ cEi [g2
i,n( ∆X̃ J

i

γ (X ti )∆
1
α
n

)] + cEi [E[gi,n(Sα1 )]2].

ow, using Eq. (30) of Lemma 3, we observe it is

Ei [g2
i,n(

∆X̃ J
i

γ (X ti )∆
1
α
n

)] =
∆

−
4
α

n

γ 4(X ti )
Ei [(∆X̃ J

i )4ϕ2
∆
β
n
(∆X̃ J

i )] =
∆

−
4
α

n

γ 4(X ti )
Ri (∆1+β(4−α)

n ), (88)

here ϕ acts as the indicator function. Moreover we observe that

E[gi,n(Sα1 )] =

∫
R

z2ϕ(∆
1
α−β
n γ (X ti )z) fα(z)dz = d(γ (X ti )∆

1
α−β
n ), (89)

with fα(z) the density of the stable process. We now introduce the following lemma, that will
be shown in the Appendix:



5912 C. Amorino and A. Gloter / Stochastic Processes and their Applications 130 (2020) 5888–5939

R

O
T

p

U

Lemma 4. Suppose that Assumptions 1–4 hold. Then, for each ζn such that ζn → 0 and for
each ϵ̂ > 0,

d(ζn) = |ζn|
α−2cα

∫
R

|u|
1−αϕ(u)du + o(|ζn|

−ϵ̂
+ |ζn|

2α−2−ϵ̂), (90)

where cα has been defined in (13).

Since 1
α

− β > 0, γ (X ti )∆
1
α−β
n goes to zero for n → ∞ and so we can take ζn as γ (X ti )

∆
1
α−β
n , getting that

E[gi,n(Sα1 )] = d(γ (X ti )∆
1
α−β
n ) = Ri (∆

( 1
α−β)(α−2)

n ). (91)

eplacing (88) and (91) in the left hand side of (87) we get it is upper bounded by
n−1∑
i=0

Ei [(An
1,i )

2] = (
1
n

)
4
α−2β(2−α)

n−1∑
i=0

f 2(X ti )γ
4(X ti )(Ri (∆1+β(4−α)

n ) + Ri (∆
4β−

4
α+2−2αβ

n ))

≤ ∆αβ∧1
n

1
n

n−1∑
i=0

f 2(X ti )γ
4(X ti )Ri (1), (92)

that converges to zero in norm 1 and so in probability, as a consequence of the polynomial gro-
wth of f and the fact that the exponent on ∆n is always positive. From (86) and (92) it follows

n−1∑
i=0

An
1,i = oP(1). (93)

and so (66).

Proof of (67). We use Proposition 3 replacing (27) in definition (5) of Q̃ J
n . Our goal is to

prove that

nβ(2−α)
n−1∑
i=0

f (X ti )(∆X̃ J
i )2ϕ

∆
β
n
(∆X̃ J

i ) = Q̂n + oP(∆
( 1

2 −2β+αβ−ϵ̃)∧(1−2β−ϵ̃)
n ).

n the left hand side of the equation here above we can act like we did in (83)–(85).
o get (67) we are therefore left to show that, if β > 1

4−α
, then

∑n−1
i=0 An

1,i is also

oP(∆
( 1

2 −2β+αβ−ϵ̃)∧(1−2β−ϵ̃)
n ). To prove it, we want to use Lemma 9 of [9], hence we want to

rove the following:

1

∆
1
2 −2β+αβ−ϵ̃

n

n−1∑
i=0

Ei [An
1,i ]

P
−→ 0 and (94)

1

∆
2( 1

2 −2β+αβ−ϵ̃)
n

n−1∑
i=0

Ei [(An
1,i )

2]
P
−→ 0. (95)

sing (86) we have that, if α > 1, then the left hand side of (94) is in module upper bounded by

∆
β−ϵ
n | log(∆n)|

∆
1
2 −2β+αβ−ϵ̃

n

1
n

n−1∑
i=0

| f (X ti )||γ
2(X ti )|Ri (1)

= ∆
3β−αβ−

1
2 +ϵ̃−ϵ

n | log(∆n)|
1
n

n−1∑
| f (X ti )||γ

2(X ti )|Ri (1),

i=0
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that goes to zero since we have chosen β > 1
4−α

> 1
2(3−α) . Otherwise, if α ≤ 1, then (86) gives

us that the left hand side of (94) is in module upper bounded by

∆
αβ
n | log(∆n)|

∆
1
2 −2β+αβ−ϵ̃

n

1
n

n−1∑
i=0

| f (X ti )||γ
2(X ti )|Ri (1)

= ∆
2β−

1
2 +ϵ̃

n | log(∆n)|
1
n

n−1∑
i=0

| f (X ti )||γ
2(X ti )|Ri (1),

that goes to zero because β > 1
4−α

> 1
4 .

Using also (92), the left hand side of (95) turns out to be upper bounded by

∆
−1+4β−2αβ+2ϵ̃
n ∆

αβ∧1
n

1
n

∑n−1
i=0 f 2(X ti )γ

4(X ti )Ri (1), that goes to zero in norm 1 and so in
probability since we have chosen β > 1

4−α
. It follows (95) and so (11). □

6.4. Proof of Proposition 2

Proof. To prove the proposition we replace (90) in the definition of Q̂n . It follows that our
oal is to show that

I n
1 + I n

2 := (
1
n

)
2
α−β(2−α)

n−1∑
i=0

f (X ti )γ
2(X ti )(o(|∆

1
α−β
n γ (X ti )|

−ϵ̂

+ |∆
1
α−β
n γ (X ti )|

2α−2−ϵ̂)) = Ẽn,

where Ẽn is always oP(1) and, if α < 4
3 , it is also 1

∆
β(2−α)
n

oP(∆
( 1

2 −ϵ̃)∧(1−αβ−ϵ̃)
n ).

We have that I n
1 = oP(1) since it is upper bounded by

∆
2
α−1−2β+αβ−ϵ̂( 1

α−β)
n

1
n

n−1∑
i=0

Ri (1) o(1),

hat goes to zero in norm 1 and so in probability since we can always find an ϵ̂ > 0 such that
the exponent on ∆n is positive.

Also I n
2 is oP(1). Indeed it is upper bounded by

∆
2
α−1−2β+αβ−2( 1

α−β)+2(1−αβ)−ϵ̂( 1
α−β)

n
1
n

n−1∑
i=0

Ri (1) o(1). (96)

We observe that the exponent on ∆n is 1 − αβ − ϵ̂( 1
α

− β) and we can always find ϵ̂ such that
it is more than zero, hence (96) converges in norm 1 and so in probability.

In order to show that I n
1 =

1
∆
β(2−α)
n

oP(∆
1
2 −ϵ̃

n ) = oP(∆
1
2 −ϵ̃−β(2−α)
n ) we observe that

I n
1

∆
1
2 −ϵ̃−β(2−α)
n

≤ ∆
2
α−1−

1
2 +ϵ̃−ϵ̂( 1

α−β)
n

1
n

n−1∑
i=0

Ri (1) o(1).

If α < 4
3 we can always find ϵ̃ and ϵ̂ such that the exponent on ∆n is more than zero, getting

the convergence wanted. It follows I n
=

1
β(2−α) oP(∆

( 1
2 −ϵ̃)∧(1−αβ−ϵ̃)

n ).
1 ∆n
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To conclude, I n
2 =

1
∆
β(2−α)
n

oP(∆1−αβ−ϵ̃
n ) = oP(∆1−2β−ϵ̃

n ). Indeed,

I n
2

∆
1−2β−ϵ̃
n

≤ ∆
2
α−1−1+αβ+ϵ̃−2( 1

α−β)+2(1−αβ)−ϵ̂( 1
α−β)

n
1
n

n−1∑
i=0

Ri (1) o(1). (97)

he exponent on ∆n is 2β−αβ+ ϵ̃− ϵ̂( 1
α

−β) and so we can always find ϵ̃ and ϵ̂ such that it
is positive. It follows the convergence in norm 1 and so in probability of (97). The proposition
is therefore proved. □

6.5. Proof of Corollary 1

Proof. We observe that (14) is a consequence of (12) in the case where Q̂n = 0. Moreover,

β < 1
2α implies that ∆1−αβ−ϵ̃

n is negligible compared to ∆
1
2 −ϵ̃

n . It follows (14). □

.6. Proof of Theorem 3

roof. The convergence (15) clearly follows from (12).
Concerning the proof of (16), we can see its left hand side as

Qn −
1
n

n−1∑
i=0

f (X ti )a
2
ti +

1
n

n−1∑
i=0

f (X ti )a
2
ti − I V1

and so, using (11) and the definition of I V1, it turns out that our goal is to show that

1
n

n−1∑
i=0

f (X ti )a
2
ti −

∫ 1

0
f (Xs) a2

s ds = oP(∆β(2−α)
n ). (98)

The left hand side of (98) is
n−1∑
i=0

f (X ti )
∫ ti+1

ti
(a2

ti − a2
s )ds +

n−1∑
i=0

∫ ti+1

ti
a2

s ( f (X ti ) − f (Xs))ds =: Bn + Rn.

Bn in the equation here above is exactly the same term we have already dealt with in the proof

of Theorem 2 (see (68)). As showed in (81) it is En and so, in particular, it is also oP(∆β(2−α)
n ).

On Rn we act like we did on Bn , considering this time the development up to second order
of the function f , getting

f (Xs) = f (X ti ) + f ′(X ti )(Xs − X ti ) +
f ′′(X̃ ti )

2
(Xs − X ti )

2, (99)

here X̃ ti ∈ [X ti , Xs]. Replacing (99) in Rn we get two terms that we denote R1
n and R2

n .
n them we can act like we did on (69). The estimations gathered in Lemma 1 about the

ncrements of X and of a have the same size (see points 2 and 4) and provide on Bn
2 and R2

n
he same upper bound:

E[|R2
n |] ≤ c

n−1∑
i=0

E[| f ′′(X ti )|
∫ ti+1

ti
Ei [|as ||Xs − X ti |

2]ds] ≤ c∆2
n

n−1∑
i=0

E[| f ′′(X ti )|Ri (1)],

here we have used Cauchy–Schwarz inequality and the fourth point of Lemma 1. It yields
R2

n = oP(∆β(2−α)
n ), which is the same result found in the first inequality of (70) for the

ncrements of a.
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To deal with R1
n we replace the dynamic of X (as done with the dynamic of a for Bn

1 ).
Even if the volatility coefficient in the dynamic of X is no longer bounded, the condition
ups∈[ti ,ti+1] Ei [|as |] < ∞ (which is true according with Lemma 1) is enough to say that (78)
eep holding.

Following the method provided in the proof of Theorem 2 to show that Bn
1 = En we obtain

R1
n = En and therefore R1

n = oP(∆β(2−α)
n ). It yields (98) and so the theorem is proved. □

7. Proof of Proposition 1

This section is dedicated to the proof of Proposition 1. To do it, it is convenient to introduce
an adequate truncation function and to consider a rescaled process, as explained in the next
subsections. Moreover, the proof of Proposition 1 requires some Malliavin calculus; we recall
in what follows all the technical tools to make easier the understanding of the paper.

7.1. Localization and rescaling

We introduce a truncation function in order to suppress the big jumps of (L t ). Let τ : R →

0, 1] be a symmetric function, continuous with continuous derivative, such that τ = 1 on
|z| ≤

1
4η

}
and τ = 0 on

{
|z| ≥

1
2η

}
, with η defined in the fourth point of Assumption 4.

On the same probability space (Ω ,F , (Ft ),P) we consider the Lévy process (L t ) defined
elow (2) whose measure is F(dz) =

ḡ(z)
|z|1+α 1R\{0}(z)dz, according with the third point

f A4, and the truncated Lévy process (Lτt ) with measure F τ (dz) given by F τ (dz) =
ḡ(z)τ (z)
|z|1+α 1R\{0}(z)dz. This can be done by setting L t :=

∫ t
0

∫
R zµ̃(ds, dz), as we have already

one, and Lτt :=
∫ t

0

∫
R zµ̃τ (ds, dz), where µ̃ and µ̃τ are the compensated Poisson random

measures associated respectively to

µ(A) :=

∫
[0,1]

∫
R

∫
[0,T ]

1A(t, z)µḡ(dt, dz, du), A ⊂ [0, T ] × R,

µτ (A) :=

∫
[0,1]

∫
R

∫
[0,T ]

1A(t, z)1u≤τ (z)µ
ḡ(dt, dz, du), A ⊂ [0, T ] × R,

or µḡ a Poisson random measure on [0, T ] × R × [0, 1] with compensator µ̄ḡ(dt, dz, du) =

t ḡ(z)
|z|1+α 1R\{0}(z)dzdu.

By construction, the restrictions of the measures µ and µτ to [0, h] ×R coincide on the set
{(u, z) such that u ≤ τ (z)}, and thus coincide on the event

Ωh :=

{
ω ∈ Ω;µḡ([0, h] ×

{
z ∈ R : |z| ≥

η

4

}
× [0, 1]) = 0

}
.

ince µḡ([0, h] ×
{
z ∈ R : |z| ≥

η

4

}
× [0, 1]) has a Poisson distribution with parameter

λh :=

∫ h

0

∫
|z|≥ η

4

∫ 1

0

ḡ(z)
|z|1+α

du dz dt ≤ ch;

e deduce that

P(Ω c
h ) ≤ c h. (100)

hen we have

P((L ) ̸= (Lτ ) ) ≤ P(Ω c) ≤ c h. (101)
t t≤h t t≤h h
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To prove Proposition 1 we have to rescale the process (L t )t∈[0,1], we therefore introduce an
uxiliary Lévy process (Lh

t )t∈[0,1] defined possibly on another filtered space (Ω̃ , F̃ , (F̃t ), P̃)
nd admitting the decomposition Lh

t :=
∫ t

0

∫
R zµ̃h(dt, dz), with t ∈ [0, 1]; where µ̃h is a

ompensated Poisson random measure µ̃h
= µh

− µ̄h , with compensator

µ̄h(dt, dz) = dt
ḡ(zh

1
α )

|z|1+α
τ (zh

1
α )1R\{0}(z)dz. (102)

y construction, the process (Lh
t )t∈[0,1] is equal in law to the rescaled truncated process

h−
1
α Lτht )t∈[0,1] that coincides with (h−

1
α Lht )t∈[0,1] on Ωn .

7.2. Malliavin calculus

In this section, we recall some results on Malliavin calculus for jump processes. We refer
to [6] for a complete presentation and to [7] for the adaptation to our framework. We will
work on the Poisson space associated to the measure µh defining the process (Lh

t )t∈[0,1] of the
revious section, assuming that h is fixed. By construction, the support of µh is contained in

0, 1] × Eh , where Eh :=

{
z ∈ R : |z| < η

2
1

h
1
α

}
, with η defined in the fourth point of A4. We

ecall that the measure µh has compensator

µ̄h(dt, dz) = dt
ḡ(zh

1
α )

|z|1+α
τ (zh

1
α )1R\{0}(z)dz := dt Fh(z)dz. (103)

n this section we assume that the truncation function τ satisfies the additional assumption∫
R

|
τ ′(z)
τ (z)

|
pτ (z)dz < ∞, ∀p ≥ 1.

We now define the Malliavin operators L and Γ (omitting their dependence in h) and their
basic properties (see [6] Chapter IV, sections 8–9–10). For a test function f : [0, 1] × R →

R measurable, C2 with respect the second variable, with bounded derivative and such that
f ∈ ∩p≥1L p(µ̄h(dt, dz)), we set µh( f ) =

∫ 1
0

∫
R f (t, z)µh(dt, dz). As auxiliary function, we

consider ρ : R → [0,∞) such that ρ is symmetric, two times differentiable and such that
ρ(z) = z4 if z ∈ [0, 1

2 ] and ρ(z) = z2 if z ≥ 1. Thanks to the truncation τ , we do not need
that ρ vanishes at infinity. Assuming the fourth point of Assumption 4, we check that ρ, ρ ′

and ρ F ′
h

Fh
belong to ∩p≥1L p(Fh(z)dz). With these notations, we define the Malliavin operator

L on the functional µh( f ) as follows:

L(µh( f )) :=
1
2
µh(ρ ′ f ′

+ ρ
F ′

h

Fh
f ′

+ ρ f ′′),

where f ′ and f ′′ are derivative with respect to the second variable. This definition permits
to construct a linear operator on the space D ⊂ ∩p≥1L p(Fh(z)dz) which is self-adjoint:
Φ,Ψ ∈ D, EΦLΨ = ELΦΨ (see Section 8 in [6] for the details on the construction of

D).
We associate to L the symmetric bilinear operator Γ :

Γ (Φ,Ψ ) = L(Φ,Ψ ) − ΦL(Ψ ) − Ψ L(Φ).

f f and g are two test functions, we have
h h h ′ ′
Γ (µ ( f ), µ (g)) = µ (ρ f g ). (104)
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The operators L and Γ satisfy the chain rule property:

L F(Φ) = F ′(Φ)LΦ +
1
2

F ′′(Φ)Γ (Φ,Φ), Γ (F(Φ),Ψ ) = F ′(Φ)Γ (Φ,Ψ ).

These operators permit to establish the following integration by parts formula (see [6] Theorem
8–10 p.103).

Theorem 4. Let Φ and Ψ be random variable in D and f be a bounded function with bounded
derivatives up to order two. If Γ (Φ,Φ) is invertible and Γ−1(Φ,Φ) ∈ ∩p≥1L p, then we have

E f ′(Φ)Ψ = E f (Φ)HΦ(Ψ ), (105)

ith

HΦ(Ψ ) = −2ΨΓ−1(Φ,Φ)LΦ − Γ (Φ,ΨΓ−1(Φ,Φ)). (106)

The random variable Lh
1 belongs to the domain of the operators L and Γ . Computing L(Lh

1),
Γ (Lh

1, Lh
1) and HLh

1
(1) it is possible to deduce the following useful inequalities, proved in

Lemma 4.3 in [7].

Lemma 5. We have

sup
n

E|HLh
1
(1)|p

≤ C p ∀p ≥ 1,

sup
n

E|

∫ 1

0

∫
|z|>1

|z|µh(ds, dz)HLh
1
(1)|

p
≤ C p ∀p ≥ 1.

With this background we can proceed to the proof of Proposition 1.

7.3. Proof of Proposition 1

Proof. The first step is to construct on the same probability space two random variables whose
laws are close to the laws of h−

1
α Lh and Sα1 . We recall briefly the notation of Section 7.1: µh

is a Poisson random measure with compensator µ̄h(dt, dz) defined in (102) and the process
Lh

t is defined by

Lh
t =

∫ t

0

∫
R

zµ̃h(ds, dz) =

∫ t

0

∫
|z|≤h−

1
α η

2

zµ̃h(ds, dz) (107)

with µ̃h
= µh

− µ̄h . Using triangle inequality we have

|E[g(h−
1
α Lh)] − E[g(Sα1 )]| ≤ |E[g(h−

1
α Lh)] − E[g(Lh

1)]| + |E[g(Lh
1) − g(Sα1 )]|. (108)

y the definition of Lh
1 it is

|E[g(h−
1
α Lh)] − E[g(Lh

1)]| = |E[g(h−
1
α Lh) − g(h−

1
α Lτh)]| ≤ 2 ∥g∥∞ P(Ω c

n ) ≤ c ∥g∥∞ h,
(109)

here in the last inequality we have used (101). In order to get an estimation to the second term
f (108) we now construct a variable approximating the law of Sα1 and based on the Poisson
easure µh :

Lα,ht :=

∫ t ∫
−

1 η
gh(z)µ̃h(ds, dz), (110)
0 |z|≤h α
2
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where gh is an odd function built in the proof of Theorem 4.1 in [7] for which the following
lemma holds:

Lemma 6.

1. For each test function f , defined as in Section 7.2, we have∫ 1

0

∫
|z|≤ η

2 h−
1
α

f (t, gh(z))µ̄h(dt, dz) =

∫ 1

0

∫
|ω|≤

η
2 h−

1
α

f (t, ω)µ̄α,h(dt, dω), (111)

where µ̄h(dt, dz) is the compensator defined in (102) and

µ̄α,h(dt, dω) = dt
τ (ωh

1
α )

|ω|
1+α

dω

is the compensator of a measure associated to an α-stable process whose jumps are
truncated with the function τ .

2. There exists ϵ0 > 0 such that, for |z| ≤ ϵ0h−
1
α ,

|gh(z) − z| ≤ cz2h
1
α + c|z|1+αh if α ̸= 1,

|gh(z) − z| ≤ cz2h| log(|z|h)| if α = 1.

3. The function gh is C1 on (−ϵ0h−
1
α , ϵ0h−

1
α ) and for |z| < ϵ0h−

1
α ,

|g′

h(z) − 1| ≤ c|z|h
1
α + c|z|αh if α ̸= 1,

|g′

h(z) − 1| ≤ c|z|h| log(|z|h)| if α = 1.

The second and the third point of the lemma here above are proved in Lemma 4.5 of [7],
hile the first point is proved in Theorem 4.1 [7] and it shows us, using the exponential

ormula for Poisson measure, that gh is the function that turns our measure µh into the measure
ssociated to an α-stable process truncated with the function τ . Thus (Lα,ht )t∈[0,1] is a Lévy

rocess with jump intensity ω ↦→
τ (ωh

1
α )

|ω|1+α and we recognize the law of an α-stable truncated

process. We deduce, similarly to (109),

|E[g(Lα,h1 )] − E[g(Sα1 )]| ≤ c ∥g∥∞ h. (112)

Proposition 1 is a consequence of (108), (109), (112) and the following lemma:

Lemma 7. Suppose that Assumptions 1 to 4 hold. Let g be as in Proposition 1. Then, for any
ϵ > 0 and for p ≥ α,

|E[g(Lh
1) − g(Lα,h1 )]| ≤ Cϵh| log(h)| ∥g∥∞ + Cϵh

1
α ∥g∥

1−
α
p +ϵ

∞ ∥g∥

α
p −ϵ

pol | log(h)|

+ Cϵh
1
α ∥g∥

1+
1
p −

α
p +ϵ

∞ ∥g∥
−

1
p +

α
p −ϵ

pol | log(h)|1α>1.

roof. The proof is based of the comparison of the representation of (107) and (110). Since
n Lemma 6 the difference gh(z) − z is controlled for |z| ≤ ϵ0h−

1
α , we need to introduce

localization procedure consisting in regularizing 1{
µh ([0,1]×

{
z∈R:|z|>ϵ0h−

1
α

}
)=0

}. Let I be a

smooth function defined on R and with values in [0, 1], such that I(x) = 1 for x ≤
1 and
2
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I(x) = 0 for x ≥ 1. Moreover, we denote by ζ a smooth function on R, with values in [0, 1]
such that ζ (z) = 0 for |z| ≤

1
2 and ζ (z) = 1 for |z| ≥ 1 and we set

V h
:=

∫ 1

0

∫
R
ζ (

zh
1
α

ϵ0
)µh(ds, dz) =

∫ 1

0

∫{
1
2 ϵ0h−

1
α ≤|z|≤ϵ0h−

1
α

} ζ (
zh

1
α

ϵ0
)µh(ds, dz)

+

∫ 1

0

∫{
|z|≥ϵ0h−

1
α

} µh(ds, dz),

W h
:= I(V h).

From the construction, W h is a Malliavin differentiable random variable such that W h
̸= 0

implies µh([0, 1]×
{

z ∈ R : |z| > ϵ0h−
1
α

}
) = 0. It is possible to show, acting as we did in (100),

hat P(W h
̸= 1) ≤ P(µh has a jump of size > 1

2ϵ0h−
1
α ) = O(h). From the latter, it is clear

that the proof of the lemma reduces in proving the result on |E[g(Lh
1)W h] − E[g(Lα,h1 )W h]|.

onsidering a regularizing sequence (gp) converging to g in L1 norm, such that ∀p gp is
1 with bounded derivative and

gp


∞
≤ ∥g∥∞, we may assume that g is C1 with bounded

erivative too. Using the integration by parts formula (105) and denoting by G any primitive
unction of g we can write E[g(Lh

1)W h] = E[G(Lh
1)HLh

1
(W h)] where the Malliavin weight can

e written, using (106) and the chain rule property of the operator Γ , as

HLh
1
(W h) = W hHLh

1
(1) −

Γ (W h, Lh
1)

Γ (Lh
1, Lh

1)
. (113)

Using the triangle inequality, we are now left to find upper bounds for the following two terms:

T̃1 := |E[g(Lα,h1 )W h] − E[G(Lα,h1 )HLh
1
(W h)]|,

T̃2 := |E[G(Lα,h1 )HLh
1
(W h)] − E[G(Lh

1)HLh
1
(W h)]|.

et us start considering T̃2. Using the Lipschitz property of the function G and (113) we have
it is upper bounded by

E[|g(L̂1)∥Lα,h1 − Lh
1∥HLh

1
(W h)|] ≤ E[|g(L̂1)∥Lα,h1 − Lh

1∥W hHLh
1
(1)|]

+ E[|g(L̂1)∥Lα,h1 − Lh
1∥

Γ (W h, Lh
1)

Γ (Lh
1, Lh

1)
|]

=: T̃2,1 + T̃2,2,

where L̂1 is between Lα,h1 and Lh
1 . We focus on T̃2,1. Using the definitions (107) and (110) of

Lh
1 and Lα,h1 it is

T̃2,1 ≤ E[|g(L̂1)∥
∫ 1

0

∫
R

(gh(z) − z)µ̃h(ds, dz)∥HLh
1
(1)W h

|]

≤ E[|g(L̂1)∥
∫ 1

0

∫
|z|≤1

(gh(z) − z)µ̃h(ds, dz)∥HLh
1
(1)W h

|]

+ E[|g(L̂1)∥
∫ 1

0

∫
1≤|z|≤ϵ0h−

1
α

(gh(z) − z)µh(ds, dz)∥HLh
1
(1)W h

|], (114)
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where we have used that gh is an odd function with the symmetry of the compensator µ̄h

and the fact that on Wh ̸= 0 we have µh([0, 1] ×

{
z ∈ R : |z| > ϵ0h−

1
α

}
) = 0. For the

ake of shortness, we only give the details of the proof in the case α ̸= 1. In the case
= 1, one needs to modify this control with an additional logarithmic term. For the small

umps term, from inequality 2.1.37 in [12] and the second point of Lemma 6 we deduce
[|

∫ 1
0

∫
|z|≤1(gh(z) − z)µ̃h(ds, dz)|

q1 ] ≤ Cq1 (h+h
1
α )q1 , ∀q1 ≥ 2. Using it and Holder inequality

ith q1 big and q2 close to 1 we have

E[|g(L̂1)∥
∫ 1

0

∫
|z|≤1

(gh(z) − z)µ̃h(ds, dz)∥HLh
1
(1)W h

|]

≤ Cq1 (h + h
1
α )E[|g(L̂1)|

q2
|HLh

1
(1)|q2 W h]

1
q2

≤ Cq1 (h + h
1
α )E[|g(L̂1)|

p1 q2 W h]
1

q2 p1 E[|HLh
1
(1)|q2 p2 ]

1
q2 p2 , (115)

here in the last inequality we have used again Holder inequality, with p2 big and p1 close
to 1. Using the first point of Lemma 5, we know that E[|HLh

1
(1)|q2 p2 ]

1
q2 p2 is bounded, hence

(115) is upper bounded by

Cq1q2 p2 h ∥g∥∞ + Cq1q2 p2 h
1
αE[|g(L̂1)W h

|
p1 q2 ]

1
q2 p1 , (116)

here we have bounded |g(L̂1)| with its infinity norm and used that 0 ≤ W h
≤ 1. We remind

hat we are considering q2 and p1 next to 1, hence we can write q2 p1 as 1 + ϵ. We now
ntroduce r in the following way:

E[|g(L̂1)|1+ϵW h]
1

1+ϵ = E[|g(L̂1)|
(1+ϵ)r

|g(L̂1)|
(1+ϵ)(1−r )

W h]
1

1+ϵ

≤ ∥g∥
r
∞
E[|g(L̂1)|

(1+ϵ)(1−r )
W h]

1
1+ϵ ≤

∥g∥
r
∞

∥g∥
1−r
pol E[(1 + |L̂1|

p
)(1+ϵ)(1−r )W h]

1
1+ϵ

≤ c ∥g∥
r
∞

∥g∥
1−r
pol + c ∥g∥

r
∞

∥g∥
1−r
pol E[|L̂1|

p(1+ϵ)(1−r )
W h]

1
1+ϵ ; (117)

where we have estimated g with its norm ∞ and we have used the property (9) of g and that
0 ≤ W h

≤ 1. We observe that L̂1 is between Lh
1 and Lα,h1 hence |L̂1| ≤ |Lh

1 |+|Lα,h1 |. Moreover
we choose r such that p(1 + ϵ)(1 − r ) = α; therefore r = 1 −

α
p(1+ϵ) . In this way we have that

117) is upper bounded by

c ∥g∥
1−

α
p(1+ϵ)

∞ ∥g∥

α
p(1+ϵ)
pol log(h−

1
α ), (118)

here we have used that E[|L̂1|
α

W h] ≤ c log(h−
1
α ), that we justify now. Indeed, using

Lemma 2.1.5 in the appendix of [12] if α ∈ [1, 2] and Jensen inequality if α ∈ [0, 1), we
have

E[|L̂1|
α

W h] ≤ cE[(|Lh
1 |
α

+ |Lα,h1 |
α
)W h] ≤ cE[|

∫ 1

0

∫
|z|≤1

zµ̃h(ds, dz)|]

+ cE[|
∫ 1 ∫

gh(z)µ̃h(ds, dz)|]

0 |z|≤1
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+ cE[
∫ 1

0

∫
1≤|z|≤ϵ0h−

1
α

|z|αµ̄h(ds, dz)]

+ cE[
∫ 1

0

∫
1≤|z|≤ϵ0h−

1
α

|gh(z)|αµ̄h(ds, dz)].

e observe that, using Kunita inequality, the first term here above is bounded in L p and, as a
onsequence of the second point of Lemma 6, the second term here above so does. Concerning
he third term here above (and so, again, we act on the fourth in the same way), we have

cE[
∫ 1

0

∫
1≤|z|≤ϵ0h−

1
α

|z|αµ̄h(ds, dz)] ≤ c
∫

1≤|z|≤ϵ0h−
1
α

|z|α−1−αdz

≤ c log(h−
1
α ) ≤ c| log(h)|, (119)

here we have also used definition (102) of µ̄h .
Replacing (118) in (116) we get

E[|g(L̂1)∥
∫ 1

0

∫
|z|≤1

(gh(z) − z)µ̃h(ds, dz)∥HLh
1
(1)W h

|] ≤ Cq1q2 p2 h ∥g∥∞

+ Cq1q2 p2 h
1
α ∥g∥

1−
α
p +ϵ

∞ ∥g∥

α
p −ϵ

pol log(h−
1
α ), (120)

here we have taken another ϵ, using its arbitrariness. The constants depend also on it.
Let us now consider the large jumps term in (114). Using the second point of Lemma 6 and

he following basic inequality∫ 1

0

∫
1<|z|≤ϵ0h−

1
α

|z|δµh(ds, dz) ≤

∫ 1

0

∫
1<|z|≤ϵ0h−

1
α

|z|δ−1µh(ds, dz)

×

∫ 1

0

∫
1<|z|≤ϵ0h−

1
α

|z|µh(ds, dz)

for δ ≥ 1, we get it is upper bounded by

E[|g(L̂1)|
∫ 1

0

∫
1<|z|≤ϵ0h−

1
α

(h
1
α |z| + h|z|α)µh(ds, dz)

×

∫ 1

0

∫
1<|z|≤ϵ0h−

1
α

|z|µh(ds, dz)|HLh
1
(1)|W h]. (121)

We now use Holder inequality with p2 big and p1 next to 1 and we observe that, from the
econd point of Lemma 5, it follows

E[|
∫ 1

0

∫
1<|z|≤ϵ0h−

1
α

|z|µh(ds, dz)HLh
1
(1)|

p2 ]
1
p2 ≤ C p2 .

Hence (121) is upper bounded by

C p2E[|g(L̂1)|
p1

|

∫ 1

0

∫
1<|z|≤ϵ0h−

1
α

(h
1
α |z| + h|z|α)µh(ds, dz)|p1 W h]

1
p1 (122)

≤ C p2 ∥g∥∞ hE[|
∫ 1

0

∫
1<|z|≤ϵ0h−

1
α

|z|αµh(ds, dz)|
p1 ]

1
p1

+ C p2 h
1
αE[|g(L̂1)|

p1
|

∫ 1 ∫
1 |z|µh(ds, dz)|

p1 W h]
1
p1 . (123)
0 1<|z|≤ϵ0h− α
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Concerning the first term of (123), we use Lemma 2.1.5 in the appendix of [12] with p1 =

(1 + ϵ) ∈ [1, 2] and the definition of Fh given in (103), getting

E[|
∫ 1

0

∫
1<|z|≤ϵ0h−

1
α

|z|αµh(ds, dz)|1+ϵ]
1

1+ϵ ≤ E[
∫ 1

0

∫
1<|z|≤ϵ0h−

1
α

|z|α(1+ϵ)µ̄h(ds, dz)]
1

1+ϵ

≤ c(
∫

1<|z|≤ϵ0h−
1
α

|z|α(1+ϵ)−1−αdz)
1

1+ϵ ≤ ch−
ϵ

1+ϵ = ch−ϵ, (124)

here we have used the arbitrariness of ϵ in the last equality.
On the second term of (123) we act differently depending on whether or not α is more than

1. If it does, we act as we did in (117), considering p1 = 1 + ϵ < α and introducing r , this
time we set it such that the following equality holds:

p(1 + ϵ)(1 − r ) + (1 + ϵ) = α. (125)

We also use the property (9) on g, hence it is upper bounded by

C p2 h
1
α ∥g∥

r
∞

∥g∥
1−r
pol E[(1 + |L̂1|

p(1+ϵ)(1−r )
)|

∫ 1

0

∫
1<|z|≤ϵ0h−

1
α

|z|µh(ds, dz)|
1+ϵ

W h]
1

1+ϵ .

(126)

Now on the first term here above we use that 0 ≤ W h
≤ 1 and Lemma 2.1.5 in the appendix

of [12] as we did in (124) in order to get

E[|
∫ 1

0

∫
1<|z|≤ϵ0h−

1
α

|z|µh(ds, dz)|
1+ϵ

]
1

1+ϵ ≤ c. (127)

oreover we observe, as we have already done, that |L̂1| ≤ |Lh
1 | + |Lα,h1 | and that, from the

econd point of Lemma 6, there exists c > 0 such that |gh(z)| ≤ c|z|; so we get

E[|L̂1|
p(1+ϵ)(1−r )

|

∫ 1

0

∫
1<|z|≤ϵ0h−

1
α

|z|µh(ds, dz)|
1+ϵ

W h]
1

1+ϵ

≤ c + E[|
∫ 1

0

∫
1<|z|≤ϵ0h−

1
α

|z|µh(ds, dz)|
p(1+ϵ)(1−r )+(1+ϵ)

]
1

1+ϵ

≤ c(
∫

1<|z|≤ϵ0h−
1
α

|z|α|z|−1−αdz)
1

1+ϵ ≤ c
1

1 + ϵ
log(h−

1
α ) ≤ c| log(h)|, (128)

aving chosen a particular r just in order to have the exponent here above equal to α and
o having found out the same computation of (119). We have not considered the integral on
z| ≤ 1 because, as we have already seen above (119), the integral is bounded in L p and so
e simply get (127) again. From (125) we obtain r = 1 +

1
p −

α
p(1+ϵ) . Replacing it and using

(127) and (128) we get (126) is upper bounded by

C p2 h
1
α ∥g∥

1+
1
p −

α
p(1+ϵ)

∞ ∥g∥
−

1
p +

α
p(1+ϵ)

pol (c + | log(h)|)

= C p2 h
1
α ∥g∥

1+
1
p −

α
p(1+ϵ)

∞ ∥g∥
−

1
p +

α
p(1+ϵ)

pol | log(h)|. (129)



C. Amorino and A. Gloter / Stochastic Processes and their Applications 130 (2020) 5888–5939 5923

w
α

N

C

L

U

U

If otherwise α is less than 1, then the second term of (123) is upper bounded by

C p2 h
1
α ∥g∥∞ E[|

∫ 1

0

∫
1<|z|≤ϵ0h−

1
α

|z|µh(ds, dz)|
p1 W h]

1
p1 ≤ C p2 h

1
α ∥g∥∞ h

1
1+ϵ

−
1
α

= C p2 h
1

1+ϵ ∥g∥∞ , (130)

here we have taken p1 = 1 + ϵ and we have used the fact that 0 ≤ W h
≤ 1 and that, for

< 1,

E[|
∫ 1

0

∫
1<|z|≤ϵ0h−

1
α

|z|µh(ds, dz)|
1+ϵ

]
1

1+ϵ ≤ ch
1

1+ϵ
−

1
α .

Using (123), (124), (129) and (130) it follows

E[|g(L̂1)∥
∫ 1

0

∫
1≤|z|≤ϵ0h−

1
α

(gh(z) − z)µh(ds, dz)∥HLh
1
(1)W h

|]

≤ C p2 h1−ϵ
∥g∥∞ + C p2 h

1
α ∥g∥

1+
1
p −

α
p(1+ϵ)

∞ ∥g∥
−

1
p +

α
p(1+ϵ)

pol | log(h)|1α>1. (131)

ow from (114), (120), and (131) it follows

T̃2,1 ≤ Cq1q2 p2 h1−ϵ
∥g∥∞ + Cq1q2 p2 h

1
α ∥g∥

1−
α
p +ϵ

∞ ∥g∥

α
p −ϵ

pol | log(h)|

+ Cq1q2 p2 h
1
α ∥g∥

1+
1
p −

α
p +ϵ

∞ ∥g∥
−

1
p +

α
p −ϵ

pol | log(h)|1α>1. (132)

oncerning T̃2,2, it is already proved in Theorem 4.2 in [7] that

T̃2,2 ≤ ch ∥g∥∞ . (133)

et us now consider T̃1. Using (104) and (106) we can write

HLh
1
(W h) =

−W h L(Lh
1)

Γ (Lh
1, Lh

1)
+ L(

W h

Γ (Lh
1, Lh

1)
)Lh

1 − L(
Lh

1 W h

Γ (Lh
1, Lh

1)
).

With computations using that L is a self-adjoint operator we get

T̃1 = |E[g(Lα,h1 )W h] − E[g(Lα,h1 )
Γ (Lα,h1 , Lh

1)
Γ (Lh

1, Lh
1)

W h]| ≤ E[|g(L̂1)||
Γ (Lh

1 − Lα,h1 , Lh
1)

Γ (Lh
1, Lh

1)
|W h].

(134)

sing Eq. (104), we have

Γ (Lh
1 − Lα,h1 , Lh

1) =

∫ 1

0

∫
|z|< η

2 h−
1
α

ρ(z)(1 − g′

h(z))µh(ds, dz).

sing the third point of Lemma 6 we deduce the following on the event W h
̸= 0:

|Γ (Lh
1 − Lα,h1 , Lh

1)| ≤ c
∫ 1

0

∫
|z|≤ϵ0h−

1
α

ρ(z)(h
1
α |z| + h|z|α)µh(ds, dz)

≤ c
∫ 1 ∫

ρ(z)(h
1
α |z| + h|z|α)µh(ds, dz)
0 |z|≤1
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+ c
∫ 1

0

∫
1<|z|≤ϵ0h−

1
α

ρ(z)µh(ds, dz)

×

∫ 1

0

∫
1<|z|≤ϵ0h−

1
α

(h
1
α |z| + h|z|α)µh(ds, dz)

≤ c
∫ 1

0

∫
R
ρ(z)µh(ds, dz)(h

1
α + h) + c

∫ 1

0

∫
R
ρ(z)µh(ds, dz)

×

∫ 1

0

∫
1<|z|≤ϵ0h−

1
α

(h
1
α |z| + h|z|α)µh(ds, dz)

= c(h
1
α + h)Γ (Lh

1, Lh
1) + cΓ (Lh

1, Lh
1)

× (
∫ 1

0

∫
1<|z|≤ϵ0h−

1
α

(h
1
α |z| + h|z|α)µh(ds, dz)), (135)

here we have used that z is always less than 1 in the first integral and that, since ρ is a
ositive function, we can upper bound the integrals considering whole set R. Moreover, we
ave used the definition of Γ (Lh

1, Lh
1). Replacing (135) in (134) we get

T̃1 ≤ c(h
1
α + h)E[|g(L̂1)|] + cE[|g(L̂1)|

∫ 1

0

∫
1<|z|≤ϵ0h−

1
α

(h
1
α |z| + h|z|α)µh(ds, dz)]

=: T̃1,1 + T̃1,2. (136)

oncerning T̃1,1, we have

T̃1,1 ≤ ch ∥g∥∞ + ch
1
αE[|g(L̂1)|] ≤ ch ∥g∥∞ + ch

1
α ∥g∥

1−
α
p

∞ ∥g∥

α
p
pol | log(h)|, (137)

here in the last inequality we have acted exactly like we did in (117) and (118) with the
xponent on g that is exactly equal to 1 instead of 1 + ϵ and so we have chosen r such that

p(1−r ) = α. Let us now consider T̃1,2. We observe that it is exactly like (122) but with p1 = 1
nstead of p1 = 1 + ϵ, with the only difference that computing (124) now we get c log(h−

1
α )

instead of ch−ϵ and in the definition (125) we choose r such that p(1 − r ) + 1 = α. Acting
exactly like we did above it follows

T̃1,2 ≤ C p2 h| log(h)| ∥g∥∞ + C p2 h
1
α ∥g∥

1+
1
p −

α
p

∞ ∥g∥
−

1
p +

α
p

pol | log(h)|1α>1. (138)

sing (132), (133), (137) and (138), the lemma is proved. □

It follows Proposition 1, using also (108), (109) and (112). □
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ppendix

In this section we will prove the technical proposition and lemmas we have used.
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A.1. Proof of Lemma 1

Proof. We start proving 1. From the dynamic (3) of a it is

E[|at − as |
p] ≤ E[|

∫ t

s
b̃udu|

p] + E[|
∫ t

s
ãudWu |

p] + E[|
∫ t

s
âudŴu |

p]

+ E[|
∫ t

s

∫
R\{0}

γ̃u z µ̃(du, dz)|p]

+ E[|
∫ t

s

∫
R\{0}

γ̂u z µ̃2(du, dz)|p] =:

5∑
j=1

I j .

In the following, since we will act on the two Brownian motions W and Ŵ in the same way,
we will not report I3 anymore. Also considering the Poisson random measures, we will deal
only with I4 in detail, underlining that on I5 the same reasoning applies. We use Burkholder–
Davis–Gundy inequalities on the stochastic integral and Kunita inequality on the jump part, in
addition to a repeated use of Jensen inequality to get

I1 + I2 + I4 ≤ |t − s|p−1
∫ t

s
E[|b̃u |

p
]du + E[|

∫ s

t
(ãu)2du|

p
2 ]

+ E[
∫ s

t

∫
R\{0}

|γ̃u |
p
|z|pµ̄(du, dz)]

+ E[|
∫ s

t

∫
R\{0}

(γ̃u)2(z)2µ̄(du, dz)|
p
2 ] ≤ c|t − s|p

+ |t − s|
p
2 −1

∫ s

t
E[|ãu |

p]du

+

∫ t

s
E[|γ̃u |

p]ds(
∫
R\{0}

|z|p F(z)dz)

+ |t − s|
p
2 −1

∫ t

s
E[|γ̃u |

2]ds(
∫
R\{0}

|z|2 F(z)dz)

≤ c(|t − s|p
+ |t − s|

p
2 + |t − s| + |t − s|

p
2 ) ≤ c|t − s|,

ith the inequalities above holding true also because all the coefficients in the dynamic of a
re supposed to be bounded. The reasoning here above joint with A3 also yields that, for all
> 0, supt≥0 E[|at |

q ] < ∞.
The proof of 2 follows the same lines as the proof of 1 above.
As we proved in point 1 that the volatility has bounded moments, it is possible to get points

and 4 from Theorem 66 of [21] and Proposition 3.1 in [22]. The fifth point is showed in [1],
elow Lemma 1, and the last one in Section 8 of [10]. □

.2. Proof of Proposition 3

roof. In order to show (25), we reformulate (∆X J
i )2ϕ

∆
β
n
(∆X i ) as

(∆X J
i )2[ϕ

∆
β
n
(∆X i ) − ϕ

∆
β
n
(∆X J

i )] + (∆X J
i )2[ϕ

∆
β
n
(∆X J

i ) − ϕ
∆
β
n
(∆X̃ J

i )]

+ (∆X J
i − ∆X̃ J

i )2ϕ
∆
β
n
(∆X̃ J

i ) (139)

+ 2∆X̃ J
i (∆X J

i − ∆X̃ J
i )ϕ

∆
β
n
(∆X̃ J

i ) + (∆X̃ J
i )2ϕ

∆
β
n
(∆X̃ J

i ) =:

5∑
I n
k (i).
k=1
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Comparing (25) with (139) it turns out that our goal is to show that
∑4

k=1 I n
k (i) = oL1

∆
β(2−α)+1
n ). In the sequel will prove that

∑4
k=1 E[|I n

k (i)|] ≤ c∆β(2−α)+1
n ; the same reasoning

pplies to the conditional version, that is
∑4

k=1 Ei [|I n
k (i)|] ≤ Ri (∆

β(2−α)+1
n ).

Let us start considering I n
1 (i). We know that ∆X i = ∆X c

i +∆X J
i , where we have denoted

y ∆X c
i the continuous part of the increments of the process X . We study

I n
1 (i) = I n

1,1 + I n
1,2 := I n

1 (i)1{
|∆Xi |≥3∆β

n

} + I n
1 (i)1{

|∆Xi |<3∆β
n

}, (140)

aving omitted the dependence upon i in I n
1,1 and I n

1,2 in order to make the notation easier.

oncerning I n
1,1, we split again on the sets

{
|∆X J

i | ≥ 2∆β
n

}
and

{
|∆X J

i | < 2∆β
n

}
. Recalling

hat ϕ(ζ ) = 0 for |ζ | ≥ 2∆β
n , we observe that if |∆X J

i | ≥ 2∆β
n then I n

1,1 is just 0. Otherwise,
f |∆X J

i | < 2∆β
n , then it means that |∆X c

i | must be more than ∆
β
n , so we can use (34). In the

equel the constant c may change value from line to line. Using the bound on (∆X J
i )2 and the

oundedness of ϕ we get

E[|I n
1,1|] ≤ c∆2β

n E[1{
|∆Xi |≥3∆β

n ,|∆X J
i |<2∆β

n

}] ≤ c∆2β
n P(|∆X c

i | ≥ ∆β
n ) ≤ c∆

2β+( 1
2 −β)r

n .

(141)

ence
1

∆
1+β(2−α)
n

E[|I n
1,1|] ≤ c∆

( 1
2 −β)r−1+αβ

n , (142)

hat goes to 0 for n → ∞ since for each choice of β ∈ (0, 1
2 ) and α ∈ (0, 2) we can always

find r big enough such that the exponent on ∆n is positive.
We now consider I n

1,2 on the sets
{
|∆X J

i | ≥ 4∆β
n

}
and

{
|∆X J

i | < 4∆β
n

}
. Using the

boundedness of ϕ we have

E[|I n
1,2|1

{
|∆X J

i |≥4∆β
n

}] ≤ cE[(∆X J
i )21{

|∆Xi |<3∆β
n ,|∆X J

i |≥4∆β
n

}].

We observe that also in this case |∆X i | < 3∆β
n and |∆X J

i | ≥ 4∆β
n involve |∆X c

i | ≥ ∆
β
n .

Moreover (∆X J
i )2

≤ c(∆X i )2
+ c(∆X c

i )2
≤ c∆2β

n + c(∆X c
i )2, hence

E[|I n
1,2|1

{
|∆X J

i |≥4∆β
n

}] ≤ c∆2β
n P(|∆X c

i | ≥ ∆β
n ) + cE[(∆X c

i )21{
|∆Xc

i |≥∆
β
n

}]

≤ c∆
2β+r ( 1

2 −β)
n + cE[(∆X c

i )4]
1
2 P(|∆X c

i | ≥ ∆β
n )

1
2 ≤ c∆

[2β+r ( 1
2 −β)]∧[1+

r
2 ( 1

2 −β)]
n , (143)

here we have used Cauchy–Schwarz inequality, (34) and the sixth point of Lemma 1.
herefore we get

1

∆
1+β(2−α)
n

E[|I n
1,2|1

{
|∆X J

i |≥4∆β
n

}] ≤ c∆
[r ( 1

2 −β)−1+αβ]∧[ r
2 ( 1

2 −β)−β(2−α)]
n , (144)

hat converges to 0 for n → ∞ since we can always find r ≥ 1 such that the exponent ∆n is
ositive.

In order to conclude the study of I n
1 (i), we study I n

1,21{
|∆X J

i |<4∆β
n

}.

E[|I n
1,2|1

{
|∆X J

i |<4∆β
n

}] ≤ c
ϕ′


∞
∆−β

n E[(∆X J
i )2

|∆X i − ∆X J
i |1{

|∆Xi |≤3∆β
n ,|∆X J

i |≤4∆β
n

}],

(145)
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where we have used the smoothness of ϕ. Using Holder inequality and the sixth point of
Lemma 1 it is upper bounded by

c∆−β
n E[|∆X c

i |
p]

1
p E[|(∆X J

i )2q1{
|∆Xi |≤3∆β

n ,|∆X J
i |≤4∆β

n

}]
1
q

≤ c∆
1
2 −β

n E[|(∆X J
i )2q1{

|∆Xi |≤3∆β
n ,|∆X J

i |≤4∆β
n

}]
1
q . (146)

ow, since our indicator function 1{
|∆Xi |≤3∆β

n ,|∆X J
i |≤4∆β

n

} is less than 1{
|∆X J

i |≤4∆β
n

}, we can

use the first point of Lemma 3. Through the use of the conditional expectation we get

E[|(∆X J
i )2q1{

|∆Xi |≤3∆β
n ,|∆X J

i |≤4∆β
n

}]
1
q ≤ c∆

1+β(2q−α)
q

n E[Ri (1)] ≤ c∆
1+β(2q−α)

q
n . (147)

eplacing (147) in (146) and taking q small (next to 1), we obtain E[|I n
1,2|1

{
|∆X J

i |<4∆β
n

}] ≤

∆
1
2 +β+1−αβ−ϵ

n . It follows
E[|I n

1,2|1
{
|∆X J

i |<4∆β
n

}]

∆
β(2−α)+1
n

≤ c∆
1
2 −β−ϵ

n , (148)

hat goes to 0 for n → ∞ since we can always find an ϵ as small as the exponent on ∆n is
positive, for β ∈ (0, 1

2 ).
Let us now consider I n

2 (i).

I n
2 (i) = I n

2 (i) 1{
|∆X J

i |≤2∆β
n

} + I n
2 (i) 1{

|∆X J
i |>2∆β

n

} =: I n
2,1 + I n

2,2. (149)

oncerning the first term of (149), we have

E[|I n
2,1|] ≤ ∆−β

n

ϕ′


∞
E[(∆X J

i )2
|∆X J

i − ∆X̃ J
i |1{

|∆X J
i |≤2∆β

n

}]

≤ c∆−β
n E[(∆X J

i )41{
|∆X J

i |≤2∆β
n

}]
1
2 E[|∆X J

i − ∆X̃ J
i |

2
]

1
2 , (150)

where we have used the smoothness of ϕ and Cauchy–Schwarz inequality. Using again the first
point of Lemma 3, we have that

E[(∆X J
i )41{

|∆X J
i |≤2∆β

n

}]
1
2 = E[Ei [(∆X J

i )41{
|∆X J

i |≤2∆β
n

}]]
1
2

≤ ∆
1+β(4−α)

2
n E[Ri (1)] ≤ c∆

1
2 +2β−

αβ
2

n . (151)

e now introduce a lemma that will be proved later:

emma 8. Suppose that A1–A4 hold. Then

1. ∀q ≥ 2 we have

E[|∆X J
i − ∆X̃ J

i |
q
] ≤ c∆2

n, (152)

2. for q ∈ [1, 2] and α < 1, we have

E[|∆X J
i − ∆X̃ J

i |
q
]

1
q ≤ c∆

1
2 +

1
q

n . (153)

Replacing (151) and (152) in (150) we get

E[|I n
|] ≤ c∆

−β+
1
2 +2β−

αβ
2 +1

= c∆
3
2 +β−

αβ
2 . (154)
2,1 n n
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Hence
E[|I n

2,1|]

∆
1+β(2−α)
n

≤ c∆
1
2 −β+

αβ
2

n , (155)

hat goes to 0 for n → ∞ since the exponent on ∆n is positive for β < 1
2(1−

α
2 ) , that is always

rue with α and β in the intervals chosen.
We now want to show that also I n

2,2 is oL1 (∆β(2−α)+1
n ). We split I n

2,2 on the sets

|∆X̃ J
i | ≤ 2∆β

n

}
and

{
|∆X̃ J

i | > 2∆β
n

}
. We observe that, by the definition of ϕ, I n

2,2 is null

n the second set. Adding and subtracting ∆X̃ J
i in I n

2,21{
|∆X̃ J

i |≤2∆β
n

} we have

E[|I n
2,2|1

{
|∆X̃ J

i |≤2∆β
n

}] ≤ cE[(∆X J
i − ∆X̃ J

i )2
|ϕ

∆
β
n
(∆X J

i )

− ϕ
∆
β
n
(∆X̃ J

i )|1{
|∆X̃ J

i |≤2∆β
n ,|∆X J

i |>2∆β
n

}]

+ cE[(∆X̃ J
i )2

|ϕ
∆
β
n
(∆X J

i ) − ϕ
∆
β
n
(∆X̃ J

i )|1{
|∆X̃ J

i |≤2∆β
n

}]. (156)

n the second term of (156) we can act exactly as we have done in I n
2,1, with ∆X̃ J

i instead of
X J

i (and so using (30) instead of (29)). We get

E[(∆X̃ J
i )2

|ϕ
∆
β
n
(∆X J

i ) − ϕ
∆
β
n
(∆X̃ J

i )|1{
|∆X̃ J

i |≤2∆β
n

}] ≤ c∆
3
2 +β−

αβ
2

n . (157)

oncerning the first term of (156), by the definition of ϕ we know it is

E[(∆X J
i −∆X̃ J

i )2
| − ϕ

∆
β
n
(∆X̃ J

i )|1{
|∆X̃ J

i |≤2∆β
n ,|∆X J

i |>2∆β
n

}] ≤ cE[(∆X J
i −∆X̃ J

i )2] ≤ c∆2
n,

(158)

here in the last inequality we have used (152). Using (156)–(158) it follows

E[|I n
2,2|] = E[|I n

2,2|1
{
|∆X̃ J

i |≤2∆β
n

}] ≤ c∆
3
2 +β−

αβ
2

n + c∆2
n = c∆

3
2 +β−

αβ
2

n , (159)

onsidering that ∆2
n is negligible compared to ∆

3
2 +β−

αβ
2

n since β < 1
2(1−

α
2 ) . Hence

E[|I n
2,2|]

∆
1+β(2−α)
n

≤ c∆
1
2 −β+

αβ
2

n , (160)

hat goes to 0 for n → ∞.
Concerning I n

3 (i), we have

E[|I n
3 (i)|] ≤ cE[(∆X J

i − ∆X̃ J
i )2] ≤ c∆2

n, (161)

where the last inequality follows from (152). Hence I n
3 (i) = oL1 (∆β(2−α)+1

n ), indeed

E[|I n
3 (i)|]

∆
1+β(2−α)
n

≤ c∆1−2β+αβ
n , (162)

that goes to 0 for n → ∞ considering that the exponent on ∆n is positive for β < 1
2−α

,
condition that is always satisfied for β ∈ (0, 1 ) and α ∈ (0, 2).
2
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Let us now consider I n
4 (i). Using Cauchy–Schwarz inequality it is

E[|I n
4 (i)|] ≤ cE[(∆X J

i − ∆X̃ J
i )2]

1
2 E[(∆X̃ J

i )2ϕ2
∆
β
n
(∆X̃ J

i )]
1
2 ≤ c∆n∆

1
2 +

β
2 (2−α)

n

= c∆
3
2 +β−

αβ
2

n , (163)

here we have used (152) and the first point of Lemma 3. It follows
E[|I n

4 (i)|]

∆
1+β(2−α)
n

≤ c∆
1
2 −β+

αβ
2

n , (164)

hat goes to 0 for n → ∞ since the exponent on ∆n is more than 0 if β < 1
2(1−

α
2 ) , that is

always true. Using (139), (142), (144), (148), (155), (160), (162) and (164) we obtain (25).
In order to prove (27), we use again reformulation (139). Replacing it in the left hand side

of (27) it turns out that our goal is to show that
n−1∑
i=0

(
4∑

k=1

I n
k (i)) f (X ti ) = oP(∆

( 1
2 −ϵ̃)∧(1−αβ−ϵ̃)

n ). (165)

sing a conditional on Fti version of (149), (154) and (159) we have
n−1∑
i=0

Ei [|I n
2 (i) f (X ti )|] ≤

1
n

n−1∑
i=0

Ri (∆
3
2 +β−

αβ
2 −1−ϵ

n ) =
1
n

n−1∑
i=0

Ri (∆
1
2 +β−

αβ
2 −ϵ

n ).

ince β(1 −
α
2 ) is always more than zero and, ∀ϵ̃ > 0 we can always find ϵ smaller than it,

e get
n−1∑
i=0

I n
2 (i) f (X ti ) = oL1 (∆

1
2 −ϵ̃

n ) = oL1 (∆
( 1

2 −ϵ̃)∧(1−αβ−ϵ̃)
n ). (166)

From a conditional version of (161) we get that
∑n−1

i=0 I n
3 (i) f (X ti ) is upper bounded in L1 norm

y the L1 norm of 1
n

∑n−1
i=0 Ri (∆2−1−ϵ

n ) =
1
n

∑n−1
i=0 Ri (∆1−ϵ

n ) and so

n−1∑
i=0

I n
3 (i) f (X ti ) = oL1 (∆

( 1
2 −ϵ̃)∧(1−αβ−ϵ̃)

n ). (167)

sing a conditional version of (163) we get that
∑n−1

i=0 I n
4 (i) f (X ti ) is upper bounded in L1

orm by the L1 norm of 1
n

∑n−1
i=0 Ri (∆

3
2 +β−

αβ
2 −1−ϵ

n ) =
1
n

∑n−1
i=0 Ri (∆

1
2 +β−

αβ
2 −ϵ

n ), hence

n−1∑
i=0

I n
4 (i) f (X ti ) = oL1 (∆

( 1
2 −ϵ̃)∧(1−αβ−ϵ̃)

n ). (168)

oncerning I n
1 (i), we consider I n

1,1(i) and I n
1,2(i) as defined in (140). Using a conditional version

f (141) on I n
1,1(i) it follows that n

1
2 −ϵ̃

∑n−1
i=0 I n

1,1(i) f (X ti ) is upper bounded in L1 norm by the

L1 norm of 1
n

∑n−1
i=0 Ri (∆

( 1
2 −β)r+2β−1−

1
2 +ϵ̃

n ) =
1
n

∑n−1
i=0 Ri (∆

( 1
2 −β)r+2β−

3
2 +ϵ̃

n ), that goes to zero
ecause we can find r big enough such that the exponent on ∆n is positive, hence

n−1∑
I n
1,1(i) f (X ti ) = oL1 (∆

1
2 −ϵ̃

n ) = oL1 (∆
( 1

2 −ϵ̃)∧(1−αβ−ϵ̃)
n ). (169)
i=0
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Acting as we did in the proof of (25), we consider I n
1,2(i) on the sets

{
|∆X J

i | ≥ 4∆β
n

}
and

|∆X J
i | < 4∆β

n

}
. Again, from (143) and the arbitrariness of r > 0 it follows

n−1∑
i=0

I n
1,2(i)1{

|∆X J
i |≥4∆β

n,i

} f (X ti ) = oL1 (∆
( 1

2 −ϵ̃)∧(1−αβ−ϵ̃)
n ). (170)

hen |∆X J
i | < 4∆β

n we act in a different way, considering the development up to second
rder of ϕ

∆
β
n
, centered in ∆X J

i :

I n
1,2(i)1{

|∆X J
i |<4∆β

n

} = [(∆X J
i )2∆X c

i ϕ
′

∆
β
n
(∆X J

i )∆−β
n

+ (∆X J
i )2(∆X c

i )2ϕ′′

∆
β
n
(Xu)∆−2β

n ]1{
|∆Xi |≤3∆β

n , |∆X J
i |<4∆β

n

} =

=: Î n
1 (i)1{

|∆Xi |≤3∆β
n , |∆X J

i |<4∆β
n

} + Î n
2 (i)1{

|∆Xi |≤3∆β
n , |∆X J

i |<4∆β
n

},
here Xu ∈ [∆X J

i ,∆X i ]. Now, acting like we did in (145), (146) and (147), taking q next to
we get

Ei [| Î n
2 (i)1{

|∆Xi |≤3∆β
n , |∆X J

i |<4∆β
n

}|] ≤ Ri (∆1+β(2−α)−ϵ+1−2β
n ) = Ri (∆2−αβ−ϵ

n ).

ince for each ϵ̃ > 0 we can find an ϵ such that ϵ̃ − ϵ > 0 it follows, taking the conditional
xpectation

n−1∑
i=0

Î n
2 (i)1{

|∆Xi |≤3∆β
n , |∆X J

i |<4∆β
n

} f (X ti ) = oL1 (∆1−αβ−ϵ̃
n ) = oL1 (∆

( 1
2 −ϵ̃)∧(1−αβ−ϵ̃)

n ). (171)

oncerning Î n
1 (i)1{

|∆Xi |≤3∆β
n , |∆X J

i |<4∆β
n

}, we no longer consider the indicator function because

t is

(∆X J
i )2∆X c

i ϕ
′

∆
β
n
(∆X J

i )∆−β
n + (∆X J

i )2∆X c
i ϕ

′

∆
β
n
(∆X J

i )∆−β
n (1{

|∆Xi |≤3∆β
n , |∆X J

i |<4∆β
n

} − 1)

and the second term here above is different from zero only on a set smaller that
{
|∆X i | ≥ 3∆β

n

}
or

{
|∆X J

i | ≥ 4∆β
n

}
, on which we have already proved the result (see the study of I n

1,1(i) in

169) and I n
1,2(i) in (170)). We want to show that

n−1∑
i=0

Î n
1 (i) f (X ti ) = oP(∆

( 1
2 −ϵ̃)∧(1−αβ−ϵ̃)

n ). (172)

We start from the reformulation

Î n
1 (i) = ∆X c

i ∆
−β
n [(∆X J

i )2(ϕ′

∆
β
n
(∆X J

i ) − ϕ′

∆
β
n
(∆X̃ J

i )) + (∆X J
i − ∆X̃ J

i )2ϕ′

∆
β
n
(∆X̃ J

i )

+ 2∆X̃ J
i (∆X J

i − ∆X̃ J
i )ϕ′

∆
β
n
(∆X̃ J

i ) + (∆X̃ J
i )2ϕ′

∆
β
n
(∆X̃ J

i )] =

4∑
j=1

Î n
1, j (i).

and we observe that, after have used Holder inequality and have remarked that ϕ′

∆
β
n

acts like

ϕ β , we can act on Î n as we did on I n , on Î n as on I n and on Î n as on I n . So we get,

∆n 1,1 2 1,2 3 1,3 4
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using also Holder inequality and the sixth point of Lemma 1,

Ei [| Î n
1,1(i) + Î n

1,2(i) + Î n
1,3(i)|] ≤ Ri (∆

1
2 −β

n )(Ei [|I n
2 (i)|q ]

1
q + E[|I n

3 (i)|q ]
1
q + E[|I n

4 (i)|q ]
1
q ).

(173)

Now, taking q next to 1, we need the following lemma that we will prove later:

Lemma 9. Suppose that A1–A4 hold. Then, ∀ϵ > 0,

Ei [|I n
2 (i)|1+ϵ

+ |I n
3 (i)|1+ϵ

+ |I n
4 (i)|1+ϵ]

1
1+ϵ ≤ Ri (∆

3
2 +β−

αβ
2 −ϵ

n ), (174)

ith I n
2 (i), I n

3 (i) and I n
4 (i) as defined in (139).

From (173) and (174) it follows
n−1∑
i=0

[ Î n
1,1(i) + Î n

1,2(i) + Î n
1,3(i)] f (X ti ) = oL1 (∆

1
2 −ϵ̃

n ) = oL1 (∆
( 1

2 −ϵ̃)∧(1−αβ−ϵ̃)
n ). (175)

n
∑n−1

i=0 Î n
1,4 f (X ti ) =:

∑n−1
i=0 ζn,i we want to use Lemma 9 in [9]. By the independence

etween L and W we get

1

∆
1
2 −ϵ̃

n

n−1∑
i=0

Ei [ζn,i ] =
1

∆
1
2 −ϵ̃

n

n−1∑
i=0

f (X ti )∆
−β

n,i Ei [(∆X̃ J
i )2ϕ′

∆
β
n
(∆X̃ J

i )]Ei [∆X c
i ] = 0 (176)

and

∆
−2( 1

2 −ϵ̃)
n

n−1∑
i=0

f 2(X ti )∆
−2β
n,i Ei [(∆X̃ J

i )4ϕ′2
∆
β
n
(∆X̃ J

i )]Ei [(∆X c
i )2] ≤ c∆2ϵ̃+2β−αβ

n , (177)

where we have also used the sixth point of Lemma 1 and the first point of Lemma 3. Using
(176) and (177) we have

n−1∑
i=0

Î n
1,4 f (X ti ) = oP(∆

( 1
2 −ϵ̃)∧(1−αβ−ϵ̃)

n )

that, joint with (175) and the fact that the convergence in norm 1 implies the convergence in
probability, give us (172). Using also (166)–(171) we get (165) and so (27).

In order to prove (26), we reformulate ∆X J
i ϕ∆β

n
(∆X i ) as we have already done in (139)

getting

(
∫ ti+1

ti
asdWs)∆X J

i ϕ∆β
n
(∆X i ) = (

∫ ti+1

ti
asdWs)(∆X J

i )[ϕ
∆
β
n
(∆X i ) − ϕ

∆
β
n
(∆X J

i )]

+ (
∫ ti+1

ti
asdWs)(∆X J

i )[ϕ
∆
β
n
(∆X J

i ) − ϕ
∆
β
n
(∆X̃ J

i )]

+ (
∫ ti+1

ti
asdWs)(∆X J

i − ∆X̃ J
i )ϕ

∆
β
n
(∆X̃ J

i ) (178)

+ (
∫ ti+1

t
asdWs)(∆X̃ J

i )ϕ
∆
β
n
(∆X̃ J

i ) =:

4∑
Ĩ n

j (i).

i j=1
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Comparing (178) with (26) it turns out that our goal is to prove that 1
∆
β(2−α)+1
n,i

∑3
j=1 E[| Ĩ n

j (i)|]

→ 0, for n → ∞ (again, acting as we do in the sequel it is also possible to show that∑3
j=1 Ei [| Ĩ n

j (i)|] ≤ Ri (∆
β(2−α)+1
n,i ). Let us start considering Ĩ n

1 (i). Using Holder inequality, its
expected value is upper bounded by

E[|
∫ ti+1

ti
asdWs |

p1 ]
1
p1 E[|∆X J

i |
p2

|ϕ
∆
β
n
(∆X i ) − ϕ

∆
β
n
(∆X J

i )|
p2 ]

1
p2 . (179)

e now act on E[|∆X J
i |

p2
|ϕ

∆
β
n
(∆X i ) − ϕ

∆
β
n
(∆X J

i )|p2 ]
1
p2 as we did in the study of I n

1 (i):

|∆X J
i |

p2
|ϕ

∆
β
n
(∆X i ) − ϕ

∆
β
n
(∆X J

i )|
p2

= |∆X J
i |

p2
|ϕ

∆
β
n
(∆X i )

− ϕ
∆
β
n
(∆X J

i )|p21{
|∆Xi |≥3∆β

n

}
+ |∆X J

i |
p2

|ϕ
∆
β
n
(∆X i ) − ϕ

∆
β
n
(∆X J

i )|
p21{

|∆Xi |<3∆β
n

} =: Ĩ n
1,1 + Ĩ n

1,2.

oncerning Ĩ n
1,1, if |∆X J

i | ≥ 2∆β
n it is just 0, otherwise we can act exactly as we have done

n I n
1,1, taking p2 = 2. Hence, ∀r ≥ 1,

E[| Ĩ n
1,1|]

1
2 ≤ (c∆

2β+r ( 1
2 −β)

n )
1
2 = c∆

β+
r
2 ( 1

2 −β)
n . (180)

et us now consider Ĩ n
1,2. If |∆X J

i | ≥ 4∆β
n , we act again like we did on I n

1,2, taking p2 = 2. It
ields again

E[| Ĩ n
1,2|1

{
|∆X J

i |≥4∆β
n

}]
1
2 ≤ c∆

β+
r
2 ( 1

2 −β)
n . (181)

If |∆X J
i | < 4∆β

n we use the smoothness of ϕ and Holder inequality getting

E[| Ĩ n
1,2|1

{
|∆X J

i |<4∆β
n

}] ≤ ∆−β
n E[|∆X J

i |
p2

|ϕ′(ζ )|p2
|∆X c

i |
p21{

|∆Xi |<3∆β
n ,|∆X J

i |<4∆β
n

}]
1
p2

≤ ∆−β
n E[|∆X c

i |
p2 p]

1
p2 p E[|ϕ′(ζ )|p2 q

|∆X J
i |

p2 q
1{

|∆Xi |<3∆β
n ,|∆X J

i |<4∆β
n

}]
1

p2 q , (182)

with ζ a point between ∆X J
i and ∆X i .

Now we observe that, if |∆X c
i | ≥

∆
β
n

4 , then taking p2 q = 1 + ϵ we have

E[|ϕ′(ζ )|1+ϵ
|∆X J

i |
1+ϵ

1{
|∆Xi |<3∆β

n ,|∆X J
i |<4∆β

n ,|∆Xc
i |≥

∆
β
n

4

}]
1

1+ϵ ≤ c∆
β+r ( 1

2 −β) 1
1+ϵ

n

where we have used the bound on |∆X J
i | given by the indicator function, the boundedness

f ϕ′ and (34). Otherwise, by the definition of ϕ, we know that |ϕ′(ζ )| ̸= 0 only if |ζ | ∈

(∆β
n , 2∆β

n ). Then ∆
β
n ≤ |ζ | ≤ |∆X i | + |∆X J

i | ≤ 2|∆X J
i | + |∆X c

i | ≤ 2|∆X J
i | +

∆
β
n

4 , hence

|∆X J
i | ≥

3
8∆

β
n ≥

∆
β
n

4 and so we can say it is

E[|ϕ′(ζ )|1+ϵ
|∆X J

i |
1+ϵ

1{
|∆Xi |<3∆β

n ,|∆X J
i |<4∆β

n ,|∆Xc
i |<

∆
β
n

4

}]
1

1+ϵ

≤ cE[|∆X J
i |

1+ϵ
1{

∆
β
n

4 ≤|∆X J
i |<4∆β

n ,

}].
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Using the second point of Lemma 3, passing through the conditional expected value we get it
is upper bounded by

∆1+β(1+ϵ−α)
n E[Ri (1)] ≤ c∆1+β(1+ϵ−α)

n .

Hence

E[|ϕ′(ζ )|1+ϵ
|∆X J

i |
1+ϵ

1{
|∆Xi |<3∆β

n ,|∆X J
i |<4∆β

n

}]
1

1+ϵ ≤ c∆
[β+r ( 1

2 −β)−ϵ]∧[1+β(1+ϵ−α)] 1
1+ϵ

n

= c∆
[1+β(1+ϵ−α)] 1

1+ϵ
n . (183)

he last equality follows from the fact that, for each choice of β ∈ (0, 1
2 ) and α ∈ (0, 2), we

can always find r ≥ 1 and ϵ > 0 such that β + r ( 1
2 − β) − ϵ > 1 + β(1 + ϵ − α).

Replacing (183) in (182) and using the sixth point of Lemma 1 we have that

E[| Ĩ n
1,2|1

{
|∆X J

i |<4∆β
n

}]
1
p2 ≤ c∆

[ 1
2 −β+1+β(1+ϵ−α)] 1

p2
n = c∆

( 3
2 −αβ−ϵ) 1

p2
n = c∆

3
2 −αβ−ϵ

n , (184)

he last equality follows from the choice of both p2 and q next to 1. Using (180), (181) and
184) we get

E[|∆X J
i |

p2
|ϕ

∆
β
n
(∆X i ) − ϕ

∆
β
n
(∆X J

i )|
p2 ]

1
p2 ≤ c∆

[β+
r
2 ( 1

2 −β)]∧[ 3
2 −αβ−ϵ]

n = c∆
3
2 −αβ−ϵ

n .

(185)

eplacing (33) and (185) in (179) it follows

E[| Ĩ n
1 (i)|] ≤ c∆2−αβ−ϵ

n , (186)

ence
E[| Ĩ n

1 (i)|]

∆
1+β(2−α)
n

≤ c∆1−2β−ϵ
n . (187)

Since we can always find an ϵ > 0 such that 1 − 2β − ϵ > 0, the expected value above goes
o 0 for n → ∞.

Concerning Ĩ n
2 (i), we split again on Ĩ n

2,1 := Ĩ n
2 (i)1{

|∆X J
i |≤2∆β

n

} and Ĩ n
2,2 := Ĩ n

2 (i)1{
|∆X J

i |>2∆β
n

}.

E[| Ĩ n
2,1|] = E[| Ĩ n

2 (i)|1{
|∆X J

i |≤2∆β
n

}] ≤ c∆−β
n E[|

∫ ti+1

ti
asdWs∥∆X J

i ∥∆X J
i

− ∆X̃ J
i |1{

|∆X J
i |≤2∆β

n

}]

≤ c∆−β
n E[|

∫ ti+1

ti
asdWs |

2
|∆X J

i |
2
1{

|∆X J
i |≤2∆β

n

}]
1
2 E[|∆X J

i − ∆X̃ J
i |

2
]

1
2

≤ c∆1−β

n,i E[|
∫ ti+1

ti
asdWs |

2p]
1

2p E[|∆X J
i |

2q
1{

|∆X J
i |≤2∆β

n

}]
1

2q ,

where we have used Cauchy–Schwarz inequality, (152) and Holder inequality. Now we take p
big and q next to 1, using (33) and the first point of Lemma 3 we get

E[| Ĩ n
|] ≤ c∆

1−β+
1
2 +

1
2 +

β
2 (2−α)−ϵ

(188)
2,1 n
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and so
1

∆
1+β(2−α)
n

E[| Ĩ n
2,1|] ≤ ∆

1−2β+
αβ
2 −ϵ

n . (189)

t goes to 0 for n → ∞ because we can always find an ϵ > 0 such that the exponent in ∆n is
positive. Let us now consider Ĩ n

2,2 = Ĩ n
2,21{

|∆X̃ J
i |≤2∆β

n

} + Ĩ n
2,21{

|∆X̃ J
i |>2∆β

n

}. From the definition

of ϕ, Ĩ n
2,21{

|∆X̃ J
i |>2∆β

n

} = 0.

E[| Ĩ n
2,2|1

{
|∆X̃ J

i |≤2∆β
n

}] = E[|
∫ ti+1

ti
asdWs∥∆X̃ J

i ∥ϕ
∆
β
n
(∆X J

i )

− ϕ
∆
β
n
(∆X̃ J

i )|1{
|∆X̃ J

i |≤2∆β
n ,|∆X J

i |>2∆β
n

}]

+ E[|
∫ ti+1

ti
asdWs∥∆X J

i − ∆X̃ J
i ∥ϕ

∆
β
n
(∆X J

i )

− ϕ
∆
β
n
(∆X̃ J

i )|1{
|∆X̃ J

i |≤2∆β
n ,|∆X J

i |>2∆β
n,i

}]

≤ c∆
2−

αβ
2 −ϵ

n + E[|
∫ ti+1

ti
asdWs∥∆X J

i − ∆X̃ J
i ∥ − ϕ

∆
β
n
(∆X̃ J

i )|],

here we have acted exactly like we did in Ĩ n
2,1, using that ∆X̃ J

i is less than 2∆β
n . We have also

used that, by the definition of ϕ, evaluated in ∆X J
i it is zero. Now we use Holder inequality,

33) and the boundedness of ϕ to get

E[| Ĩ n
2,2|] ≤ c∆

2−
αβ
2 −ϵ

n + E[|
∫ ti+1

ti
asdWs |

p]
1
p E[|∆X J

i − ∆X̃ J
i |

q
]

1
q

≤ c∆
2−

αβ
2 −ϵ

n + c∆
1
2
n E[|∆X J

i − ∆X̃ J
i |

q
]

1
q .

ow, if α < 1 we use (153), with q = 1 + ϵ, getting

E[| Ĩ n
2,2|] ≤ c∆

2−
αβ
2 −ϵ

n + c∆
1
2 +

1
2 +

1
1+ϵ

n = c∆
2−

αβ
2 −ϵ

n . (190)

herefore, for α < 1, we have
1

∆
1+β(2−α)
n

E[|I n
2,2|] ≤ c∆

1−2β+
αβ
2 −ϵ

n . (191)

e can find an ϵ > 0 such that the exponent on ∆n is positive hence, if α < 1, then
I n
2,2 = oL1 (∆1+β(2−α)

n ). Otherwise, if α ≥ 1, we use (152) having taken q = 2. We get

E[| Ĩ n
2,2|] ≤ c∆

2−
αβ
2 −ϵ

n + c∆
1
2 +1
n = c∆

3
2
n .

t follows that, for α ≥ 1, it is
1

∆
1+β(2−α)
n

E[|I n
2,2|] ≤ c∆

1
2 −β(2−α)
n . (192)

e observe that the exponent on ∆n is more than 0 if β < 1
2

1
(2−α) , that is always true for

∈ (0, 1 ) and α ∈ [1, 2).
2
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To conclude, we use on Ĩ3(i) Holder inequality, (33), the boundedness of ϕ and then we act
as we did on Ĩ n

2,2, using (153) or (152), depending on whether or not α is less than 1. In the
case α < 1 we get

1

∆
1+β(2−α)
n

E[| Ĩ n
3 (i)|] ≤

1

∆
1+β(2−α)
n

c∆
1
2 +

1
2 +

1
1+ϵ

n = c∆1−β(2−α)−ϵ
n , (193)

hat goes to 0 for n → ∞ since we can always find ϵ > 0 such that the exponent on ∆n is
ositive. Otherwise it follows

1

∆
1+β(2−α)
n

E[| Ĩ n
3 (i)|] ≤

1

∆
1+β(2−α)
n

c∆
3
2
n = c∆

1
2 −β(2−α)
n,i . (194)

he exponent on ∆n is positive if β < 1
2

1
(2−α) , that is always true since we are in the case

α ≥ 1. Hence Ĩ n
3 (i) = oL1 (∆1+β(2−α)

n ).
From (187)–(194) and the reformulation (178), it follows (26).
Replacing reformulation (178) in the left hand side of (28), it turns out that the theorem is

proved if
n−1∑
i=0

(
3∑

k=1

Ĩ n
k (i)) f (X ti ) = oL1 (∆

( 1
2 −ϵ̃)∧(1−αβ−ϵ̃)

n ). (195)

sing a conditional version of Eqs. (186), (188), (190), (193) and (194) (adding in the last two
(2 − α) in the exponent of ∆n) we easily get (195) and so (28). □

.3. Proof of Lemma 4

roof. By the definition of d(ζn), as in law we have that Sα1 = −Sα1 , we get d(ζn) = d(|ζn|)
and thus we can assume that ζn > 0. Using a change of variable we obtain

d(ζn) = E[(Sα1 )2ϕ(Sα1 ζn)] =

∫
R

z2ϕ(zζn) fα(z)dz = (ζn)−3
∫
R

u2ϕ(u) fα(
u
ζn

)du. (196)

e want to use an asymptotic expansion of the density (see Theorem 7.22 in [15], with d = 1
nd σ = 1) which states that, if z is big enough, then a development up to order N of
fα(z) is

cα
|z|1+α

+
1
π

1
|z|

N∑
k=2

ak

k!
(|z|−α)k

+ o(|z|−αN ), (197)

or some coefficients ak . We therefore take M > 0 big enough such that, for u
ζn
> M , we can

use (197). Hence the right hand side of (196) can be seen as

(ζn)−3
∫

|u|≤ζn M
u2ϕ(u) fα(

u
ζn

)du + (ζn)−3
∫

|u|>ζn M
u2ϕ(u) fα(

u
ζn

)du =: I n
1 + I n

2 . (198)

e have that, ∀ϵ̂ > 0, I n
1 = o(ζ−ϵ̂

n ). Indeed, using that ϕ and fα are both bounded, we
et

I n
1
−ϵ̂

≤ ζ−3+ϵ̂
n

∫
u2du ≤ cζ ϵ̂n , (199)
ζn |u|≤ζn M
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that goes to zero because we have assumed that ζn → 0. I n
2 is

(ζn)−3
∫

|u|>ζn M
u2ϕ(u)cα(ζn)1+α

|u|
−1−αdu + (ζn)−3

×

∫
|u|>ζn M

u2ϕ(u)[ fα(
u
ζn

) −
cα

|u|
1+α

|ζn|
1+α]du. (200)

The first term here above can be seen as

(ζn)α−2cα

∫
R

|u|
1−αϕ(u)du − (ζn)α−2cα

∫
|u|≤ζn M

|u|
1−αϕ(u)du

= (ζn)α−2cα

∫
R

|u|
1−αϕ(u)du + o((ζn)−ϵ̂).

ndeed, using that ϕ is bounded, we have

1
(ζn)−ϵ̂

|(ζn)α−2cα

∫
|u|≤ζn M

|u|
1−αϕ(u)du| ≤ c(ζn)ϵ̂+α−2

∫
|u|≤ζn M

|u|
1−αdu ≤ c(ζn)ϵ̂ . (201)

hat goes to zero for n → ∞.
Replacing (199), (200) and (201) in (198) and comparing it with (90), it turns out that our

oal is to show that the second term of (200) is o(ζ (−ϵ̂)∧(2α−2−ϵ̂)
n ). Using on it (197) with N = 2,

hich implies | fα(z) −
cα

|z|1+α | ≤
c

|z|1+2α for |z| > M and some c > 0, we can upper bound it

ith c(ζn)2α−2
∫
|u|≤ζn M |u|

1−2αdu. By the definition of ϕ we have∫
|u|>ζn M

|u|
1−2αϕ(u)du =

∫
−ζn M

−2
(−u)1−2αϕ(u)du +

∫ ζn M

2
u1−2αϕ(u)du ≤ c + c(ζn)2−2α.

(202)

herefore we get that the second term of (200) is upper bounded by

cζ 2α−2
n + c.

he first term here above is clearly o(ζ 2α−2−ϵ̂
n ) while the second is o(ζ−ϵ̂

n ), hence the sum is
(ζ (−ϵ̂)∧(2α−2−ϵ̂)

n ). The lemma is therefore proved. □

.4. Proof of Lemma 8

roof. We observe that, ∀α ∈ [0, 2], we have

E[|∆X J
i − ∆X̃ J

i |
2
] = E[(

∫ ti+1

ti

∫
R

[γ (Xs−) − γ (X ti )]zµ̃(ds, dz))2]

= E[
∫ ti+1

ti

∫
R

[γ (Xs−) − γ (X ti )]
2
|z|2µ̄(ds, dz)]

≤ c
∫ ti+1

ti
E[|Xs − X ti |

2]ds
∫
R

|z|2 F(z)dz ≤ c
∫ ti+1

ti
∆nds ≤ c∆2

n,

(203)
here we have used Ito isometry, the regularity of γ and the third point of Lemma 1.



C. Amorino and A. Gloter / Stochastic Processes and their Applications 130 (2020) 5888–5939 5937

u

T

w

i
M
b

u
t
i

s

We have in this way proved (152) and showed that (153) holds with q = 2. For q > 2,
sing Kunita inequality and acting like we did here above we get

E[|∆X J
i − ∆X̃ J

i |
q
] ≤ E[

∫ ti+1

ti

∫
R

[γ (Xs−) − γ (X ti )]
q
|z|qµ̄(ds, dz)]

+ E[(
∫ ti+1

ti

∫
R

[γ (Xs−) − γ (X ti )]
2
|z|2µ̄(ds, dz))

q
2 ]

≤ c
∫ ti+1

ti
E[|Xs − X ti |

q ]ds + E[(
∫ ti+1

ti
|Xs − X ti |

2ds)
q
2 ] ≤ c∆2

n

+ c∆
q
2 −1
n

∫ ti+1

ti
E[|Xs − X ti |

q ]ds = c∆2
n + c∆

q
2 −1
n ≤ c∆2

n,

where we have also used Jensen inequality.
In order to prove (153) we observe that, if α < 1, then we have

E[|∆X J
i − ∆X̃ J

i |] ≤ E[|
∫ ti+1

ti

∫
|z|≥2∆β

n

[γ (Xs−) − γ (X ti )]zµ̃(ds, dz)|]

+ E[|
∫ ti+1

ti

∫
|z|≤2∆β

n

[γ (Xs−) − γ (X ti )]zµ̃(ds, dz)|]. (204)

he first term in the right hand side of (204) is upper bounded byγ ′


∞
E[

∫ ti+1

ti

∫
|z|≥2∆β

n

|Xs− − X ti ||z|F(z)dzds]

≤ c
∫ ti+1

ti

∫
|z|≥2∆β

n

E[|Xs− − X ti |
2]

1
2 ds|z|F(z)dz

≤ c
∫ ti+1

ti
∆

1
2
n (

∫
|z|≥2∆β

n

|z|F(z)dz)ds ≤ c∆
3
2
n , (205)

here we have used the compensation formula, the regularity of γ , Cauchy–Schwarz inequality

n order to use the third point of Lemma 1 and the boundedness of the integral for |z| ≥ 2∆β
n .

oreover, acting in the same way, the second term in the right hand side of (204) is upper
ounded byγ ′


∞
E[

∫ ti+1

ti

∫
|z|≤2∆β

n

|Xs− − X ti ||z|F(z)dzds]

≤ c
∫ ti+1

ti
∆

1
2
n (

∫
|z|≥2∆β

n

|z|−αdz)ds ≤ c∆
3
2 +β(1−α)
n , (206)

sing again compensation formula, the regularity of γ and Cauchy–Schwarz inequality in order
o use the third point of Lemma 1. We have also used the third point of A4 and computed the
ntegral on z. Using (204)–(206) we get

E[|∆X J
i − ∆X̃ J

i |] ≤ c∆
3
2 ∧[ 3

2 +β(1−α)]
n = c∆

3
2
n , (207)

ince α < 1 and so (1 − α) > 0. We now use interpolation theorem (see below Theorem 1.7
in Chapter 4 of [5]) getting

E[|∆X J
− ∆X̃ J

|
q
]

1
q ≤ E[|∆X J

− ∆X̃ J
|]θ (E[|∆X J

− ∆X̃ J
|
2
]

1
2 )1−θ ,
i i i i i i
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with 1
q = θ +

1−θ
2 , hence θ =

2
q − 1. Using (203) and (207) it follows

E[|∆X J
i − ∆X̃ J

i |
q
]

1
q ≤ c∆

3
2 θ
n ∆1−θ

n,i = c∆
1
2 θ+1
n = c∆

1
q +

1
2

n ,

here we have also replaced θ . □

.5. Proof of Lemma 9

roof. We want to use a conditional version of the interpolation theorem, therefore we have
o estimate the norm 2 of I n

2 (i), I n
3 (i) and I n

4 (i). Observing that ϕ is a bounded function and
sing Kunita inequality we get

Ei [|I n
2 (i)|2] ≤ Ei [|∆X J

i |
4] ≤ cEi [

∫ ti+1

ti

∫
R

|γ (Xs−)|4|z|4µ̄(ds, dz)]

+ cEi [(
∫ ti+1

ti

∫
R

|γ (Xs−)|2|z|2µ̄(ds, dz))2]

≤ c(
∫
R

|z|4 F(z)dz)Ei [
∫ ti+1

ti
|γ (Xs−)|4ds]

+ cEi [(
∫
R

|z|2 F(z)dz)2(
∫ ti+1

ti
|γ (Xs−)|2ds)2]

≤ Ri (∆n) + Ri (∆2
n) = Ri (∆n), (208)

here in the last inequality we have also used the polynomial growth of γ and the fifth point
f Lemma 1.

Concerning the norm 2 of I n
3 (i), we use the conditional version of the first point of Lemma 8

or q = 2 to get

Ei [|I n
3 (i)|2] ≤ Ei [|∆X J

i − ∆X̃ J
i |

4] ≤ Ri (∆2
n). (209)

e now consider I n
4 (i). Using Cauchy–Schwarz inequality and a conditional version of both

he first point of Lemma 8 for q = 2 and (30) in Lemma 3, where ϕ acts like the indicator
unction, we have

Ei [|I n
4 (i)|2]

1
2 ≤ cEi [|∆X J

i − ∆X̃ J
i |

4]
1
2 Ei [|∆X̃ J

i ϕ∆β
n
(∆X̃ J

i )|4]
1
2 ≤ Ri (∆

3
2 +

β
2 (4−α)

n ). (210)

sing interpolation theorem it follows, ∀ j ∈ {2, 3, 4},

Ei [|I n
j (i)|1+ϵ]

1
1+ϵ ≤ Ei [|I n

j (i)|]θ (Ei [|I n
j (i)|2]

1
2 )1−θ , (211)

with θ such that 1
1+ϵ

= θ +
1−θ

2 , hence θ =
2

1+ϵ
− 1 = 1 −

2ϵ
1+ϵ

.
From a conditional version of (149), (154), (159) and Eqs. (208) and (211) it follows

Ei [|I n
2 (i)|1+ϵ]

1
1+ϵ ≤ Ri (∆

3
2 +β−

αβ
2

n )θ Ri (∆
1
2
n )1−θ

= Ri (∆
( 3

2 +β−
αβ
2 )(1−

2ϵ
1+ϵ

)+ ϵ
1+ϵ

n )

= Ri (∆
3
2 +β−

αβ
2 −

ϵ
1+ϵ

(2+2β−αβ)
n,i ). (212)

ince 2+2β−αβ is always more than zero we can just see the exponent on ∆n,i as 3
2+β−

αβ

2 −ϵ.
From a conditional version of (161), (209) and (211) it follows

E [|I n(i)|1+ϵ]
1

1+ϵ ≤ R (∆2)θ R (∆ )1−θ
= R (∆1+θ ) = R (∆

2−
2ϵ

1+ϵ ). (213)
i 3 i n i n i n i n
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T

In the same way, using a conditional version of (163), (210) and (211) it follows

Ei [|I n
4 (i)|1+ϵ]

1
1+ϵ ≤ Ri (∆

( 3
2 +β−

αβ
2 )(1−

2ϵ
1+ϵ

)+ 2ϵ
1+ϵ

( 3
2 +2β−

αβ
2 )

n ) = Ri (∆
3
2 +β−

αβ
2 +

2βϵ
1+ϵ

n ). (214)

he result (174) is a consequence of (212), (213), (214) and that 2 is always more than
3
2 + β −

αβ

2 . □
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