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Let Xi’, , X:: be an array of independent random vectors such that X;‘, , X;‘,IBl have distribution 

function F, and X;:,H,+, , , X:: have distribution function G with F # G. In this paper we propose an 

estimator 8,, of the changepoint 0 and show that n(C),, ~ 0) = O(ln n) with probability one. 

AMS 1980 Subject Classifications: Primary 62605; Secondary 60F15. 
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1. Introduction 

Consider a triangular array XT,. . . , Xl:, n 2 1, of rowwise independent random 

vectors in Rd defined on a probability space (0, &, p). Suppose that for some 

o<e<1, x; )...) x;,,, have distribution function (d.f.) F, and X;,,sI+, , . . . , Xz 

have d.f. G, with F # G, both unknown. 13 resp. [no] is called the changepoint for 

the underlying d.f. The problem of estimating 0 has found much interest in the 

literature. A review of available nonparametric methods is contained in Csorg6 and 

Horvath (1988b). The fundamental idea in all these approaches is to compare, for 

each 0 s t G 1, the subsamples Xy , . . . , X;,,, and XrncI+, , . . . , X”, . E.g., Darkhovskh 

(1976) and Carlstein (1988) considered the empirical functions 

of the subsamples X;, . . . , X;,,,, and X;n,l+, , . . . , Xl:, respectively. For each fixed 

0 s t c 1 one may apply Kiefer’s (1961) exponential bound together with Borel- 

Cantelli to get 

sup IN4 - ,@)I + 0 and sup I/r:(x)--h,(x)l+O 
.Y x 

with probability one. Here, 

,h(x) = 1 (,~H)tF(x)+l(,>H)[~F(x)+(t-e)G(x)l 
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and 

h,(x) = l~re~[(~-~)~(x)+(l -e)G(x)l+l,,>o,(l -t)G(x). 

Carlstein (1988) compared the vectors (appropriately weighted) 

,D”= (,h"(X:))lSiSn and 0: = (h:(X7))1sisn 

andchose8,tobethatvaluetinA,={l/n,2/n,...,(n-l)/n}forwhichS(,D”,D~) 

is maximal. Here S is a suitable norm on the n-dimensional Euclidean space. He 

proved that with probability one 

I@,--el=o(n-“) for each 6~;. 

Diimbgen (1990) derived an in-probability statement, namely 

10, - 8(= O(n-‘) in probability. 

CsiirgB and Horvath (1988a) introduced a U-statistic :ype process and investigated 

its large sample behavior for testing the ‘hypothesis of no changepoint’. In this 

paper we use their approach to define an estimate 8, of 8. A new exponential 

inequality for the tails of 13, - 8 is proved which in particular yields 

le,-el=O(n’lnn) with probability one. 

2. Main results 

Now, let K : RZd + R! be a bounded (measurable) kernel. Set 

P= KC-T y)F(dy)F(dxL 7= K(x, y)G(dy)G(dx) 

and 

A= K(x, y)F(dy)G(dx). 

Observe that both p and T equal zero if K is antisymmetric: 

K(x, Y) = -K(Y, xl, 

as is K (x, y) = sgn(x - y) or, more generally, 

K(x, Y) = @(X-Y), with $ skew-symmetric. 

The resulting estimate may be viewed as a robust version of the 8, pertaining to 

Cc, = id (when d = l), which in this case leads to a successive comparison of the 

means of the two subsamples. 
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Boundedness of K is essential in order to guarantee the existence of the above 

integrals and (in proofs) the applicability of some standard exponential bounds for 

sums of independent random variables. For unbounded kernels some extra integra- 

bility conditions will be required. In place of the exponential bounds the Marcin- 

kiewicz-Zygmund inequality may then serve as a substitute. We prefer to state the 

results for bounded K’s, however, since in this case the conditions are completely 

carried by the given K rather than by the unknown F and G. 

Put 

r(f) = 
II 

K(x,y),h(dy)h,(dx), 0~ ts 1. 

It is easily seen that 

Moreover, r is continuous on [0, l] and differentiable at t # 0. Under suitable 

assumptions on K, 0 is the unique maximizer (resp. minimizer) of r. The following 

procedure for constructing 0, is therefore obvious. Define 

r,(t) = K(x,y),h”(dy)h:(dx) = n-2 i ; K(X;, X;) 
,=nr+, ,=I 

on A,,, the empirical analogue of r. Set 

e = arg min rn( t) if e minimizes r, 
n 

1 arg max rn( t) if e maximizes r. 

8, from (2.1) is related to Darkhovskh’s (1976) estimator, if we put 

(2.1) 

K(x, Y) = lix+). (2.2) 

Apart from the fact that 0 maximizes (resp. minimizes) r, we need the following 

assumption on r: 

Ir(t)-r(O)IzLlt-81, some positive L. (2.3) 

Condition (2.3) is satisfied if r’(t), f # 8, is bounded away from zero. For anti- 

symmetric K, 

r(t) = l,,,,,tA(l- f3)+ lft,s)(l - r)AB. 

So, if A is positive, say, 8 is the unique maximizer of r and 

The quantity A serves as a means to measure the ‘distance’ 

(2.3) is obviously true. 

between F and G. 

In a real data situation A is unknown. Hence even for antisymmetric kernels it 

is not known whether 0 minimizes or maximizes r. It follows from our bounds 

however (see Remark 1 in Section 3) that r,, + r uniformly with probability one. So 

r,, is likely to exhibit whether r is a U-type or hat-type function. In other words, if, 

e.g., r, is U-shaped, we take for 0, the minimizer of r,,. 
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Typically the kernel K cannot discriminate between all F # G, i.e., there may 

exist F f G for which A = 0. The situation is similar for two-sample linear rank 

statistics based on a given score function. In each case, specific knowledge of possible 

changes may help one to choose appropriate kernels. E.g., to detect changes in 

location we may take K(x, y) = $(x-y), with I,!J skew-symmetric and strictly increas- 

ing. For a change in scale we may take the same I,!J and put K(x,y) = $(x2-y2). 

Finally, these kernels also work if G is an e-contaminated F: 

G=(l-.e)F+slf. 

In this case 

h=E K(x, y)F(dy)H(dx), 

so that the above conclusions apply to F and H if H results from F by a change 

in location or scale. 

Theorem 2.1. Assume that 0 is the unique maximizer (minimizer) of r, and that (2.3) 

is satisfied. Also let K be a bounded kernel. Then there exist positive constants C, and 

C, such that for all e > 0 (and n 2 n, = n,( F, G, 6, K )), 

P(n18,-[nB]/nl~4sL~‘)~C,n2eXp[-C,E]. 

C, is universal, while C, may depend on K. 

From Theorem 2.1 and Borel-Cantelli we immediately get: 

Corollary 2.2. With probability one, 

nlf3,-0J=O(lnn). 0 

For the special case (2.2), Darkhovskh (1976) proved 13, + 0 in probability. 

3. Proofs 

We shall only consider the case when 0 and 0, maximize r and r,,, respectively. 

Along with r,, and r, define 

I;,(t)=ULr,(t) 

= l{nrS[ns]) 
1 

tp([ne]-nt)+tA(n-[nt?]) 

n n 1 

+ l{nt>[nfI]) 
[n0]A(l-t)+(l-t)7(nt-[nt?]) 

9 
n n 

for t E A,,. The following lemma turns out to be crucial. 
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Lemma 3.1. There exist positive constants C,, C, such that for each E > 0, 

P 
sup J;;Ir,(t)-r,(s)--r,(t)+r,(s)l 

2 E s C,n’exp[-C,e’]. 
.S<t;S,rril,, Jt--s > 

Proof. For s < t, we have, omitting the upper index n, 

n’[m(t) - r,(s)1 = i g K(X;,Xj)- 2 z K(X,, Xj). 
i=nf+l j=ns+* i=ns+l j=l 

A similar expansion holds for !,. We shall only bound the second term, the analysis 

for the first being similar. Introduce 

R,(Y) = K(x, y)F(dx) and R,(Y) = K(x, y)G(dx). 
I I 

Then 

E[K(xi2 xj) I x* 9 . . . 9 xn~l = Hi(xj) 9 

where H, = R, for i c [no] and H, = R2 for i > [n0]. Set 

s = S(s, t)) = no& .=t !I! [K(X,, Xj) - H,(Xj)]. 
t ns+l j-1 

For any h > 0, Markov’s inequality yields 

P(S> F) <exp[-h&WILE g ‘f [... 
i=ne+* n j=l 

By independence, 

U{ . ’ .)1X,=x ,,..., X,,,=x,,,J=E[ew(h i_i+, St)] 
nr 

= FI Uexp h&l, 
i=nr+l 

where 

t3.Y 

6j=nP’j~, [K(X,,x,)-H,(x,)], ns+lsiSnt, 

are independent and centered random variables. Assume w.1.o.g. that K is bounded 

by 1 in absolute values. Then each 6, is bounded by c = 2. From inequality (4.16) 

in Hoeffding (1963), 

lE(exp h&) G exp(2h*), (3.1) 

so that integrating out gives 

$(s> E) ~exp[-hsw+2n(t-s)h*]. 
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The right-hand side is minimized for h = s/4- yielding 

P(Ss e)Gexp[-is’]. 

Similarly, for P( S G -E). It remains to bound 

T= T(s, t) = *J& =t !Z [Ht(Xj)PEHi(Xj)I. 
I nT+l .j=l 

Observing 

with 

Pj = h .=g , [Hi(X,)=EHi(Xj)I 
I nst 

being independent, bounded and centered, application of (3.1) to pi yields, similar 

to before, 

P((TIs~)G2exp[-&*]. 

Since the cardinality of A,, is n - 1, this completes the proof of the lemma. 0 

Corollary 3.2. For each e > 0, 

~(J;;~r~(~,)-r,([~~ll~~-T,~~,~+~,~~~~ll~~l~~Jr~,-~~~ll~l~ 

c C,n’exp[-C,c*]. 0 

We are now in the position to give: 

Proof of Theorem 2.1. Since 0, maximizes r, on A,,, 

0s r,(e,) - r,([dln> 

=r,(~n)-r,([~~l/~)-r,~~,~+~,~~~~ll~~+r,~~,>-~,([~~ll~). 

By Corollary 3.2, up to an event of probability less than or equal to Con2 exp(-C,&*), 

the first sum is less than .F/ 0, - [no]/ nl n-l. Check that, as a consequence of (2.3), 

for some finite D and all n 2 n,, 

r,(e,)-?n([ne]/n)s-Lie,-[ne]/nj+D\e,-[ne]/nl/n 

s -g(e, -[ne]/nl. 

Conclude that 

Ie,-[ne]/nl<(2/L)dIe,-[ne]/nln-‘. 

Replace E* by E to get the assertion of the theorem. 0 
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Remark 1. Similar to Lemma 3.1 one may show that 

~(sup\/;;lr.(t)-i,,(t)l~~)~C~~ exp[-C,&‘]. 

By Borel-Cantelli we thus get with probability one, 

;;.J Jr,(t) - r,(f)l= O(W). 
n 

Since 

sup jr,(t)-r(t)l=O(n-‘), 
TE 4, 

we obtain with probability one, 

supIr,(t)-r(t)l=O(~)=o(l). 
l=A,, 
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