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Abstract

In this paper we extend the analysis in Benois et al. (Markov Process. Rel. Fields (1997)
175–198) by proving a strong large deviation principle for the empirical distribution of Ising spins
in d¿2 dimensions when the interaction is determined by a Kac potential and the temperature
is below the critical value. c© 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Large deviations is the natural setup for studying structure and geometry of interfaces.
At a phase transition the cost (i.e. the logarithm of the Gibbs probability) of a deviation
from equilibrium in a region inside the system may be “only” proportional to its
surface and not to its volume, as customary when there is no phase transition, because
the deviation may just involve a change of the phase in that region. The process
then looks atypical only in a neighborhood of the interface which thus characterizes
the deviation and the rate function of the deviation, namely its cost, is proportional
to the surface. Often in the applications the interface appears only implicitly in the
problem through a constraint imposed on the state of the system. In the classical
Wul� problem, for instance, the constraint consists in �xing the average magnetization
m. Suppose that at the inverse temperature � there are just two phases symmetric
under spin 
ip and call ±m� the corresponding values of the magnetization, then, if
the average magnetization m∈ (−m�; m�), both phases must be present and the Wul�
problem is to determine the shape of the interface separating the two phases. If a strong
large deviation principle (LDP) holds, a constraint problem for the spin system (for
a suitable class of constraints) can be reduced to a variational problem with the rate
function giving the cost of the interface.
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The (d=2)-dimensional, nearest-neighbor ferromagnetic Ising system is the most
remarkable example where all this has been developed, see Dobrushin et al. (1992),
Io�e (1994), Io�e (1995), P�ster (1991) P�ster and Velenik (1996). Unfortunately,
not many other models have been worked out so thoroughly. Here we study and solve
the problem under a simplifying feature, namely, we consider the ferromagnetic Ising
system with Kac potentials in d¿2 dimensions. As proposed by Kac et al. (1963) and
Lebowitz and Penrose (1966), we study the system by taking �rst the thermodynamic
limit (L→∞) and then the limit 
→ 0, where 
¿0 is the scaling parameter of the Kac
potential (Kac parameter). In Kac et al. (1963) and Lebowitz and Penrose (1966) this
procedure is applied to the analysis of the free energy, yielding a rigorous derivation
of the van der Waals theory. In Benois et al. (1997) the analysis is extended to the
study of interfaces and a weak LDP is proved which shows that the rate function is
the perimeter of the interface times the van der Waals surface tension. Here we prove
a strong LDP which, as mentioned earlier, allows to characterize the optimal shape of
the interface under a general class of constraints.
The order of the limits is very important, we emphasize that the scaling limit 
→ 0

is done here after the thermodynamic limit L→∞; the simultaneous limit with L
and 
 suitably related has been examined earlier in Alberti et al. (1996), Bellettini
et al. (1996) and Alberti and Bellettini (1996) where it is solved together with the
proof that the non-local van der Waals excess free energy functional �-converges to
the perimeter functional (times the van der Waals surface tension). Our analysis is
intermediate between this case and the other one with only L→∞ and 
¿0 maybe
very small but �xed, like in Cassandro and Presutti (1996), Bovier and Zahradnik
(1996), Bodineau and Presutti (1996) and Butt�a et al. (1997) where the goal was to
prove phase transitions at �xed 
¿0. Unfortunately, our techniques do not allow to
extend the analysis to the large deviations at �xed 
¿0 and we can only hope they
may provide a step forward in this direction.

2. Basic notation and main results

We use the same notation as in Benois et al. (1997) that we recall brie
y here for
the reader’s convenience.

2.1. Microscopic, mesoscopic and macroscopic representations of the system

We consider in this paper the Ising spin system with con�guration space {−1; 1}Zd ,
d¿2, its elements being denoted by �= {�(i); i∈Zd}, �(i) the spin at the site i. As
the spin con�gurations � give a complete description of the state of the system we
will refer to this as to the “microscopic representation” of the system. We will actually
restrict to tori � of Zd of side L=2n, n∈N, and use the following notation: for any
subset � of Zd, �� ∈{−1; 1}� denotes the restriction of � to �.
The macroscopic state of the system is instead determined by an order parameter

which speci�es the phase of the system (we will be working at a �xed temperature
for which there are just two pure equilibrium phases, i.e. two extremal, translationally
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invariant Gibbs states, see below). It is convenient to choose the order parameter u in
such a way that, at the two equilibrium phases, u has the values ±1. The two pure
phases are then represented by the two functions u(r) constantly equal to 1 and to −1.
We will suppose that the macroscopic region where our system is con�ned is the unit
torus T in Rd with center the origin. Then r ∈T and u(r)= 1 means that at r there is
the phase +1. Our goal is to investigate the structure of macroscopic states u(·) where
the order parameter takes both the value +1 and −1, but we will also consider states
where it takes non-equilibrium values (not in {±1}). As we will see, these states are
much less probable than the others. Thus, the order parameter ranges in some interval
[−A; A], A¿1 and the macroscopic con�gurations are elements of

X= L1(T; [−A; A]) (2.1)

with ‖u‖ denoting the L1(T) norm of u. The L1 norm re
ects the choice that two
macroscopic con�gurations will be considered close to each other if their di�erence is
small except possibly for a small fraction of the volume. The macroscopic observables
are then elements of C(X).
The order parameter as a function of the spin con�gurations will be de�ned later

via a limit procedure which involves empirical averages. To this end, it is convenient
to represent Ising con�gurations as functions on Rd. Let ê∈Rd be the point with
coordinates all equal to 1

2 and D the partition into unit cubes C with centers the points
i+ ê, i∈Zd. A face in common to two cubes is attributed to the one with the largest
center, so that the cube with center i+ ê contains i. We also use the notation C(r) for
the cube of D which contains r. Finally, D(‘), ‘∈{2n; n∈Z}, denotes the partition
into cubes C(‘) of side ‘ obtained by scaling D by ‘ and given a bounded function
f on Rd we de�ne the empirical averages (coarse graining) of f as

f(‘)(r)=
1
‘d

∫
C(‘)(r)

dr′f(r′): (2.2)

The macroscopic region corresponding to the tori � of side L is always the unit
torus T. The spin con�gurations are then represented by functions s∈L∞(T; {±1})
that are D(1=L)-measurable, i.e. constant on the cubes C(1=L) of D(1=L). The relation with
the microscopic representation is then given by

s(r)= �(i); Lr ∈C(i); (2.3)

where C(i) is the cube of D that contains i. In this way, the thermodynamic limit
L→∞ is represented as a continuum limit with the mesh 1=L of the coarse graining
going to 0.
In many instances it is convenient to work on an intermediate scale, the mesoscopic

scale, whose units are chosen so that the range of the interaction becomes 1. As we will
see, in microscopic units the range is 
−1, where 
, the Kac parameter, takes values
in {2−n}, we will always restrict to the case L
 := 
L¿1. The mesoscopic space is
then the torus L
T of Rd and the mesoscopic spin con�gurations are the functions
S ∈L∞(L
T; {±1}) which are D(1=L
)-measurable, so that

S(x)= s(L−1
 x); L
= 
L; S(x)= �(i); 
−1x∈C(i): (2.4)
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To distinguish the points in the various spaces we write (when possible) r for
macroscopic, x for mesoscopic and i for microscopic.

2.2. Kac interaction and Gibbs measures

For any 
¿0 and any bounded set � in Zd, we de�ne the energy of �� in interaction
with ��c as

H
(��|��c ) = − 1
2

∑
i 6=j∈�

J
(i; j)�(i)�(j)−
∑

i∈�; j∈�c
J
(i; j)�(i)�(j); (2.5)

where

J
(i; j) := 
dJ (
|i − j|); ∀i; j∈Zd (2.6)

and J is a non-negative, smooth function supported by [0; 1] and normalized so that∫
Rd
dr J (|r|)= 1: (2.7)

The conditional Gibbs probability of �� given ��c is

�
;�(��|��c ) =Z
;�(��c )−1 exp[−�H
(��|��c )]; (2.8)

where Z
;�(��c ) being the partition function. The Gibbs measure on the torus � of
side L will be denoted by �
;L.
The in�nite volume Gibbs measures �
 are the probabilities on {−1; 1}Zd whose

conditional probabilities satisfy Eq. (2.8). In Cassandro and Presutti (1996), and Bovier
and Zahradnik (1996) it is shown that if �¿1 there is 
�¿0 so that for all 
6
�
there are two distinct, translationally invariant Gibbs states �±
 , limits of the �nite
volume Gibbs states with all +1 and, respectively, all −1 boundary conditions. In
Butt�a et al. (1996) it is shown that these are the only extremal, translationally invariant
Gibbs states. Moreover, their magnetizations, ±m�; 
, converge when 
→ 0+ to ±m�,
where m� is the positive root of

m�= tanh{�m�}: (2.9)

2.3. Large deviations

Our order parameter is the ratio of the magnetization density with its equilibrium
value m�; 
, and since the absolute value of the magnetization density cannot exceed 1,
we take A in Eq. (2.1) so that A¿m−1

�; 
 , for all 
6
�. We will de�ne the order
parameter as a function of the spin con�gurations by a limit procedure. Starting from
a spin con�guration �, we �rst go to its macroscopic representation s and then, recalling
the de�nition (2.2) of the empirical averages, we take as an approximation for the order
parameter the (normalized) coarse grained con�gurations s(”)=m�; 
. Our limit procedure
is to �rst take the thermodynamic limit L→∞, then ”→ 0 and eventually 
→ 0 (it
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would be much nicer if we could avoid the last limit and keep 
¿0 �xed). In Theorem
1.2 of Benois et al. (1997) it is proved that for all 
 small enough

lim
L→∞

�
;L(‖s(”)=m�; 
 ∓ 1‖6�)= 1
2

for all �¿0 and all ”¿0. In the thermodynamic limit therefore the probability con-
centrates on the two pure phases where the order parameter is constantly equal to 1
or to −1. Regarding the coarse grained con�gurations s(”)=m�; 
 as elements of X, see
Eq. (2.1), we will prove in the next theorem a LDP in X for s(”)=m�; 
. However, as the
LDP holds unchanged for s(”)=m�, we will rather state it for the latter, for notational
simplicity.
The rate function in the LDP is the following one. Let K =BV (T; {±1}) and denote

by P(u), u∈K , the perimeter of the set {u=1} and by ��¿0 the van der Waals surface
tension, see Eq. (1.20) in Benois et al. (1997), we de�ne the functional I on X as

I(v)=
{
��P(v) if v∈K;
+∞ else:

(2.10)

Notice that I is a good rate function in the sense that it is lower semi-continuous and
its level sets are compacts, as the sets

Ka= {u∈K :P(u)6a} (2.11)

are compact in X, see Dal Maso (1993).
Now, we can state the main result of the paper, that is a strong LDP for s(”)=m�.

Theorem 2.1. For any closed subset F of X,

lim sup

→0

lim sup
”→0

lim sup
L→∞



�Ld−1

log �
;L(m−1
� s

(”) ∈F)6− inf
u∈F

I(u) (2.12)

and for any open subset G of X,

lim inf

→0

lim inf
”→0

lim inf
L→∞



�Ld−1

log �
;L(m−1
� s

(”) ∈G)¿− inf
u∈G

I(u): (2.13)

Recalling that in our scheme the observables are elements f of C(X) the physically
most interesting questions concern the events

{u∈X: |f(u)− c|¡�};
�¿0, namely the probability that a measurement of f gives the value c with toler-
ance �. By Theorem 2.1, using the lower semi-continuity and compactness of the rate
function I(·) we have, calling g= |f − c|,

lim
�→0

lim

→0

lim
”→0

lim
L→∞



�Ld−1

log �
;L(g(m−1
� s

(”))¡�)= − inf
g(u)=0

I(u) (2.14)

(this is a shorthand for the statement that the right-hand side is the limit both with all
lim sup and all lim inf on the left-hand side). Eq. (2.14) thus states that the probability
of having g=0 is reduced to the variational problem about the minimizer of the rate
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function under the constraint {g=0}. Our proofs actually show that we can interchange
the limits �→ 0 and 
→ 0, provided we change the normalization writing m−1

�; 
s
(”)

instead of m−1
� s

(”). The special case where g(v)= ‖u− v‖, u∈K ≡BV (T; {±1}), had
already been worked out in Benois et al. (1997). The case

g(v)=
∣∣∣∣
∫

T

dr v(r)− s
∣∣∣∣ ; |s|¡m�

corresponds to the Wul� problem.
The lower bound (2.13) is a straight consequence of the weak LDP proved in Benois

et al. (1997), its proof will be omitted. The upper bound follows from a proof that
the coarse grained magnetization s(”) is exponentially supported by neighborhoods of
the compact sets Ka, see Proposition 3.1. This is the main technical point in the paper
that will be proved in the next section, using contours and Peierls estimates. The upper
bound (2.12) is proved in Section 4 using the exponential tightness and the upper
bound of the weak LDP established in Benois et al. (1997), the proof is classical and
it is reported for the sake of completeness.

3. Exponential tightness

For any set A⊂L1(T) and any �¿0 we denote by A� the �-neighborhood of A in
the L1-norm, that is

A�=
{
u∈L1(T): inf

v∈A
‖u− v‖6�

}
: (3.1)

In this section we will prove “weak exponential tightness” in the sense that:

Proposition 3.1. There is a constant c¿0 such that for any a¿0 and �¿0

lim sup

→0

lim sup
”→0

lim sup
L→∞



�Ld−1

log �
;L(m−1
� s

(”) =∈K�a )6− ca: (3.2)

Outline of the proof. After recalling from Benois et al. (1997) the basic de�nitions
of the block spin con�gurations � and of the corresponding contours �, we will use
these notions to construct ±1 valued, random variables T (x), x∈L
T, with the prop-
erty that with large probability for a large P(T )6aLd−1
 (P(T ) the perimeter of the
boundary of the set {T = + 1}). T will be obtained from � by “erasing the small
contours” and by putting T = ±1 in the “large contours” in some careful way that will
be speci�ed below. In Lemma 3.2 we will then show that P(T )6aLd−1
 with large
probability for a large and in Lemma 3.3 that � is super-exponentially close in L1-
norm to T . With these ingredients we will then prove Proposition 3.1 at the end of the
section.
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3.1. Block spins and contours

Given k and h in N, �¿0, we de�ne the block spin �∈L∞(L
T; {0;±1}) as a
function of the coarse grained con�guration S(2

−k ) ∈L∞(L
T; [−1; 1])

�(x)=

{
±1 if |S(2−k )(y)∓ m�|¡� for all y∈C(2h)(x);
0 otherwise:

(3.3)

We also de�ne the block spin � induced by a function m∈L∞(�; [−1; 1]) using the
analogous of Eq. (3.3)
The point x is called correct, or, equivalently, �(x) is correct, if �(x) 6= 0 and

�(y)= �(x) on the cubes C(2
h) that are ?-connected to C(2

h)(x). x is incorrect if it is
not correct.
Each maximal ?-connected component of the incorrect set is the support of a contour,

the contour � is de�ned by its support and by the values of the block spins on its
support. When there is no risk of confusion, we may denote by � only its support.
We denote by #� the number of block cubes C(2

h) in the spatial support of � and
by |�| its length (|�|=2hd#�). Ext(�) is the largest connected component of �c and
Int(�)=Ext(�)c; �nally, vol(�) denotes the number of block cubes C(2

h) in Int(�).
If � is a contour produced by a spin con�guration �, we write �⇒� and we say
that {�1; : : : ; �k} is a collection of compatible contours if there is a spin con�guration
which produces all of them. In the same way, we write m⇒� when the block spin �
is induced by m∈L∞(�; [−1; 1]).

3.2. Non local excess free energy functional; Peierls estimates

Let � be a D(1) measurable set in Rd (or in a torus) and m∈L∞(�; [−1; 1]). The
excess free energy F�(m) of m in � is given by

F�(m) =
∫
�

dx [f(m(x))− f(m�)]

+
1
4

∫ ∫
�×�

dx dy J (|x − y|)[m(x)− m(y)]2; (3.4)

where

f(m)=−m
2

2
− �−1i(m); (3.5)

i(m)=−1− m
2

log
1− m
2

− 1 + m
2

log
1 + m
2

: (3.6)

The functional, that already appears in Lebowitz and Penrose (1966) has a clear in-
terpretation in terms of free energy. The term i(m) has the meaning of entropy (Eq.
(3.6) is the entropy of a ±1 Bernoulli scheme with average m); the double product
obtained by expanding the square in Eq. (3.4) clearly corresponds to the interaction
energy in Eq. (2.5); the squares m(x)2 + m(y)2 arising from the same term simplify
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with the contribution to the �rst integral in Eq. (3.4) obtained by taking for f(m(x))
the �rst term on the r.h.s. of Eq. (3.5). In the case we consider where �¿1, f is a
double well function with minima ±m� and the minimizer of F�(m) is the function
constantly equal to m� (or to −m�). Consequently, the minimum of F� is equal to 0
and f(m�) is the free energy density (after the Lebowitz–Penrose limit 
→ 0).

F�(m) measures the excess free energy of m with respect to the equilibrium value
of the magnetization and is therefore related to the rate function, in the scaling limit

→ 0+. In Lemma 6.5 of Benois et al. (1997) it is shown that if �= {�1; : : : ; �k} is a
collection of compatible contours, then

�
;L(�⇒�)6 exp

[
−�
−d

�∑
i=1

(
inf
m⇒�i

F�i(m)− o
(1)|�i|
)]
; (3.7)

where o
(1) vanishes with 
. Moreover, by Theorem 6.2 of Benois et al. (1997), there
is a constant �¿0 (� depends on � and k and can be chosen as �= c�22−kd) such that
for any contour �

inf
m⇒�

F�(m)¿� #�; (3.8)

where #� was de�ned as the number of cubes of size 2h in �.
Therefore,

log �
;L(�⇒�)6− �
−d
�∑
i=1

(
1
2
inf
m⇒�i

F�i(m) +
(
�=2− o
(1)2hd

)
#�i

)
: (3.9)

We �x �′¿0 and for �⊂L
T, m∈L∞(�; [−1; 1]) we consider

�m(x)=
{−1 if S(1)(x)6− m� + �′;
1 otherwise:

(3.10)

We will prove in the appendix that there is c¿0 depending only on �′, such that

N±(m)6cF�(m); (3.11)

where N±(m) is the number of pairs of cubes C in � which are connected and where
�m has opposite signs.

3.3. The set of small contours and the random variable T (x)

We denote by 
b, b∈ (0; 1=d), the set of all the contours with length less than Lb

and we de�ne T (x), x∈L
T, as follows. If x belongs to Int(�), where �∈
b is
maximal in 
b (it is not contained in the interior of any other contour of 
b), then
T (x)= ± 1 according to the sign of the cubes in Ext(�) ?-connected to the boundary
of �. If x is not in a contour, we set T (x)= �(x) and �nally, if x belongs to a
contour � =∈
b, we consider a minimizer m? of infm⇒�F�(m) and put T (x)=�m?(x).
We also de�ne t(r)=T (L
r).
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Lemma 3.2. There is a constant c¿0 such that for any a¿0

lim sup

→0

lim sup
L→∞



�Ld−1

log �
;L(P(T )¿aLd−1
 )6− ca: (3.12)

Proof. Let �= {�1; : : : ; ��} be the collection of long contours produced by a spin con-
�guration. We �rst remark from the de�nition of the variable T that we can bound its
perimeter P(T ) proportionally to

∑�
i=1 N

±
i . N

±
i is the number of couples of connected

cubes C(1) in the support of �i where �m?i has opposite signs, m
?
i being the minimizer

of infm⇒�i F�i(m). So using Eq. (3.11), there is a constant c
′¿0 (depending only on

�′) such that

�
;L(P(T )¿aLd−1
 )6
∑
�∈Gc′a

�
; L (�⇒�); (3.13)

where Gc′a is the set of all the collections of compatible contours �= {�1; : : : ; ��} such
that �i =∈
b,

∑
iF�i(m

?
i )¿c

′aLd−1
 . Notice that �6Ld−b
 since the total length of the
contours cannot exceed Ld
 . Then applying Eq. (3.9) for �∈Gc′a

log �
;L(�⇒�)6− �
−d
[
c′aLd−1
 =2 + (c�22−kd − o
(1)2hd)

�∑
i=1

#�i

]
: (3.14)

Thus, for 
 small enough the r.h.s. of Eq. (3.13) is bounded above by

exp(−c′a�
−dLd−1
 =2)


1 + ∑

� : |�|¿Lb

exp(−c�
−d�22−(k+h)d|�|=2)



Ld−b



: (3.15)

Moreover, using a well-known combinatorial argument (see, for instance, Theorem 6.3
of Benois et al. (1997)), if 
 is su�ciently small, then the previous term is less than

exp(−c′a�
−1Ld−1=2)[1 + Ld
 exp(−c��22−(k+h)d
b−dLb=8)]L
d−b

 (3.16)

and the lemma follows.

Lemma 3.3. For any �¿0 and for 
 small enough,

lim sup
L→∞



�Ld−1

log �
;L(‖T − �‖¿�Ld
 )=−∞: (3.17)

Proof. From the de�nition of T , we get that

‖T − �‖62hd+1
∑
�∈
b

vol(�) + 2
∑
� =∈
b

|�|: (3.18)

By the Peierls estimates 3.9, for any �¿0

lim sup
L→∞



�Ld−1

log �
;L


∑
� =∈
b

|�|¿�Ld



=−∞; (3.19)
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provided 
 is small enough. So we are reduced to study the cost of the event

B(�) :=




∑
�∈
b

vol(�)¿�|L
|d

 : (3.20)

Let D(‘) be the partition of L
T into cubes Ai of side ‘=10(L
)b and let N = ‘−dLd

be the number of these cubes. We call daB, a∈Rd, B⊂Rd, the translate by a
of B.

A geometric remark. There are n vectors {ej} such that the following holds. Let � be
a contour in 
b and �∩Ai 6= ∅. Then there is j∈{1; : : : ; n} so that �¡d‘ejAi, by this
meaning that � is strictly contained in d‘ejAi and the distance from the complement
of d‘ejAi is ¿2

h+10, 2h the side of the cubes in the de�nition of the block spins. As
a consequence,∑

Ai

∑
{ej}

∑
�∈
b

1{�¡d‘ej Ai}vol(�)¿
∑
�∈
b

vol(�): (3.21)

If we de�ne for any vector e ∈ Rd

Be(�) :=



∑
Ai

∑
�∈
b

1{�¡d‘eAi}vol(�)¿�|
L|d

 ; (3.22)

then

B(�)⊂
n⋃
j=1

Bej (�=n): (3.23)

It is therefore enough to prove that for any �¿0 and any e∈Rd

lim sup
L→∞



�Ld−1

log �
;L(Be(�))=−∞: (3.24)

For notational simplicity we take in the following e=0, dropping when possible the
subscript 0 (e=0).
For each cube Ai we de�ne a random variable �i with values in {0; 1} as follows.

We set �i=1 if

∑
�∈
b

1{�¡Ai}
vol(�)
|Ai| ¿�

′; �′=
�
2
: (3.25)

Otherwise we set �i=0.
We want to prove that

B0(�)⊂
{
1
N

N∑
i=1

1{�i=1}¿�
′
}
: (3.26)
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Calling M the number of i’s such that �i=1, we suppose, by contradiction, that
M¡�′N . Then

1
|
L|d

N∑
i=1

∑
�∈
b

1{�¡Ai}vol(�)6
1
N
(�′(N −M) +M)¡� (3.27)

and Eq. (3.26) is proved.
Let @Ai be the union of all the blocks in Ai connected to Aci and @D the union of

all @Ai. By conditioning on S@D we get

�
;L(B0(�))6E�
; L


 ∑

{ai}∈{0;1}N
1{
∑

ai¿�′N}

N∏
i=1

�
;L(�i= ai|S@D)

 : (3.28)

Thus,

�
;L(B0(�))62N sup
S@D

sup
{
∑

ai¿�′N}

∏
{ai=1}

�
;L (�i=1| S@D
)
: (3.29)

Let Bi be the intersection of Ai and the union of all the contours that intersect @Ai.
The set of spin con�gurations that give rise to Bi is not in the �-algebra generated by
the spins in Bi itself. We then de�ne �Bi which is obtained as follows. We �rst add to
Bi all the block cubes that are ?-connected to Bi and then repeat the operation starting
from this new set, call B?i this second set. We next consider all the block cubes that
are ?-connected to @D, the union of this set and B?i is the set �Bi.
The set of spin con�gurations that give rise to Bi is in the �-algebra generated by

the spins in �Bi. Moreover, if �¡Ai then �∩Bi= ∅.
After conditioning in Eq. (3.29) on S �Bi we use the Chebishev inequality and get

�
;L(�i=1|S �Bi)6
1
�′

∑
C⊂ Ai\Bi

|C|
|Ai|

∑
�

1{C⊂ Int(�)}�
;L(�|S �Bi); (3.30)

where by an abuse of notation the sum is over all ?-connected sets � with |�|6Lb

and such that �⊂Ai\Bi; C is a block cube and �
;L(�|S �Bi) is the probability that �
is the spatial support of a contour.
Then

�
;L(�i=1|S �Bi)6
1
�′

|C|
|Ai|

Lb
∑
l=4

∑
�⊂ Ai\Bi; |�|=l

ld�
; L(�|S �Bi): (3.31)

By the Peierls estimate

�
;L(�i=1|S �Bi)6
1
�′
ce−c

′
−d
: (3.32)

Then, from Eq. (3.29)

�
;L(B0(�))6
(
2c
�′

)N
e−c

′
−d�′N : (3.33)

recalling N = ‘−dLd
 , ‘=10L
b

 and 0¡b¡1=d, we get Eq. (3.24).
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Lemma 3.4. For any a¿0 and �¿0,

lim sup
”→0

sup
u∈Ka

sup
‖u−v‖6�

‖u− v(”)‖6�: (3.34)

Proof. Let u be a function in Ka, then for any �¿0, there exists w� ∈BV (T; {±1})
such that the boundary of the set {w�=+1} is a C∞ surface, ‖u − w�‖6� and
|P(u) − P(w�)|6�, see Giusti (1984). We de�ne the D(”)-measurable function w̃(”)�
as ±1 according to the sign of the coarse grained w(”)� . Remark that since w� has a
regular boundary, the volume of the cubes C(”) ∈D(”) where w̃(”)� 6=w� is going to 0
with ” and as a consequence we have

lim sup
”→0

‖w̃(”)� − u‖6�: (3.35)

Let v∈L1(T) such that ‖u− v‖6�. As w̃(”)� is D(”)-measurable

‖v(”) − w̃(”)� ‖6‖v− w̃(”)� ‖: (3.36)

We deduce from this inequality that

‖u− v(”)‖6‖u− v‖+ 2‖w̃(”)� − u‖ (3.37)

and from Eq. (3.35) that for any �¿0

lim sup
”→0

sup
‖u−v‖6�

‖u− v(”)‖6�+ 2�: (3.38)

The compactness of Ka implies that the supremum over u∈Ka in Eq. (3.34) can be
written as a maximum over a �nite number of elements of Ka. Thus, the lemma follows
from Eq. (3.38).

Proof of Proposition 3.1. We �rst relate the mesoscopic coarse grained con�guration
S(2

h) to the variable T : we observe that

‖S(2h) − m�T‖6�Ld
 +
∫
dr 1{|S(2h)−m�T |¿�}6�L

d

 + ‖�− T‖: (3.39)

Fix a¿0 and �¿0, then, recalling that t(r)=T (L
r),

�
;L(m−1
� s

(”) =∈K�a )6�
;L(P(t)¿a)+�
;L(‖m−1
� s

(”) − t‖¿�; P(t)6a): (3.40)

From Lemma 3.4, there exists ”(�) such that for any 0¡”¡”(�), the last term of the
r.h.s. of the previous inequality is bounded above by

�
;L(‖m−1
� S

(2h) − T‖¿�Ld
 =2) (3.41)

and using Eq. (3.39) with �¡m��=4, we obtain

�
;L(‖m−1
� s

(”) − t‖¿�; P(t)6a)6�
;L(‖�− T‖¿�m�Ld
 =4): (3.42)
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Finally, by Eq. (3.40) and Lemma 3.3,

lim sup

→0

lim sup
”→0

lim sup
L→∞



�Ld−1

log �
;L(m−1
� s

(”) =∈K�a )

6 lim sup

→0

lim sup
L→∞



�Ld−1

log �
;L(P(T )¿aLd−1
 ) (3.43)

and Lemma 3.2 concludes the proof.

4. Upper bound

Upper bound 2.12 will follow from the exponential tightness (see Proposition 3.1)
if for any closed subset F of L1(T) and for any a¿0,

lim
�→0

lim sup

→0

lim sup
”→0

lim sup
L→∞



�Ld−1

log �
;L(m−1
� s

(”) ∈ (F ∩Ka)�)

6− inf
u∈ F

I(u): (4.1)

From the compactness of the level set Ka, there exists a �nite subset F(a; �) of F ∩Ka
such that

(F ∩Ka)�⊂
⋃

u∈ F(a;�)
B(u; 2�); (4.2)

where B(u; �) is the ball with center u and radius � for the L1-norm. Therefore,

lim sup
”→0

lim sup
L→∞



�Ld−1

log �
;L(m−1
� s

(”) ∈ (F ∩Ka)�)

6 max
u∈F(a;�)

lim sup
”→0

lim sup
L→∞



�Ld−1

log �
;L(m−1
� s

(”) ∈B(u; 2�)): (4.3)

Let ua; �; 
 ∈F(a; �) be the function for which the above maximum is obtained. Then
using again the compactness of Ka, there are sequences of positive numbers �n and 
k
going to 0 such that ua; �n; 
k is converging in L

1 to some function ua ∈F ∩Ka as k and
then n go to in�nity. So, for any �¿0,

lim
�→0

lim sup

→0

lim sup
”→0

lim sup
L→∞



�Ld−1

log �
;L(m−1
� s

(”) ∈ (F ∩Ka)�)

6 lim sup

→0

lim sup
”→0

lim sup
L→∞



�Ld−1

log �
;L(m−1
� s

(”) ∈B(ua; �)): (4.4)

Now, from the proof of the upper bound of the weak large deviation principle in
Benois et al. (1997)

lim
�→0

lim sup

→0

lim sup
”→0

lim sup
L→∞



�Ld−1

log �
;L(m−1
� s

(”) ∈B(ua; �))

6−I(ua)6− inf
u∈F

I(u): (4.5)

This inequality together with Eq. (4.4) implies Eq. (4.1).
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Appendix

In this appendix we will prove inequality (3.11), the proof is similar to one in
Bodineau and Presutti (1996). Observe that, in de�nition (3.4) of the excess free-
energy functional, f(m�) is the minimum of f(m) so that Eq. (3.4) is the sum of
two-non negative terms.
We �x �′¿0 and for any function m∈L∞(�; [−1; 1]) we consider

	m(x)=



1 if S(1)(x)¿m� − �′;
−1 if S(1)(x)6−m� + �′;
0 otherwise:

(A.1)

Notice that the function �m de�ned in Eq. (3.10) sati�es �m=1 if 	m¿0 and �m=−1
if 	m=−1. We denote by N 0(m) the number of cubes C in � where 	m=0 and by
N±(m) the number of pairs of cubes C in � which are connected and where 	m has
opposite signs. Then Eq. (3.11) is a straight consequence of the following lemma

Lemma A.1. There is a constant c¿0 (depending on �′) such that for any m∈L∞(�;
[−1; 1])

N 0(m) + N±(m)6cF�(m): (A.2)

Proof. We start from a geometric remark. Let e1; : : : ; en be the unit coordinate vectors
of Rd, e0 = 0 and deD be the translate of the partition D by the vector e. If C1 and
C2 are two connected cubes in D(1), then there exists 06i6n and C ∈deiD(2) such
that C1 ∪C2⊂C and C ⊂�. We denote by D( j), 06j6d, the collection of all the
cubes of dejD

(2) that are in �. We also denote by D(−1) the unit cubes in �. Finally,
we let N±

j (m), 06j6d, be the number of cubes in D( j) where 	m takes both values
1 and −1. So

N±(m)6
d∑
j=0

N±
j (m): (A.3)

Then dropping out the interaction between cubes,

F�(m)¿
1

d+ 2

d∑
j=−1

∑
C∈D( j)

FC(mC); (A.4)

where mC is the restriction of m to C. We de�ne

�C(x)=
∫
C

dy J (x − y) (A.5)

and

FC(m) =
∫
C

dx �C(x)[f(m(x))− f(m�)]

+
1
4

∫ ∫
C×C

dx dy J (|x − y|)[m(x)− m(y)]2: (A.6)
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Since �C61, FC6FC . Moreover, FC is a lower semi-continuous functional for the
weak topology because

FC(m) =−�−1
∫
C

dx �C(x)i(m(x))

− 1
2

∫ ∫
C×C

dx dy J (|x − y|)m(x)m(y)− |C|f(m�): (A.7)

By convexity, the �rst term is lower semi-continuous while the second one is con-
tinuous. Therefore, there is c′¿0 depending only on �′ such that FC(m)¿c′ for any
cube C in D(−1) where 	m=0 and any cube C in D( j) where 	m takes both values 1
and −1.
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