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Abstract

The aim of this work is to obtain su�cient conditions for stability of multidimensional
jump-di�usion processes in the sense of stability in distribution and stability at the equilib-
rium solution. The technique employed is to construct appropriate Lyapunov functions. c© 1999
Elsevier Science B.V. All rights reserved.
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1. Introduction

We consider a n-dimensional jump-di�usion process {X x
t } satisfying

X x
t = x +

∫ t

0
�(X x

s−) ds+
∫ t

0
�(X x

s−) dBs +
∫ t

0

∫
c(X x

s−; u)�̃(ds; du); (1)

where �(x) and c(x; u) are Rn-valued and �(x) is n × m-matrix valued for x; u∈Rn.
Here {Bt} is a standard m-dimensional Brownian motion, and

�̃(ds; dy) = �(ds; dy)−�(dy) ds

is a compensated Poisson random measure on [0; ∞) × Rn which is independent of
{Bt}. Furthermore, we assume that there exists a positive constant L such that for any
x; y∈Rn,

|�(x)− �(y)|2 + ||�(x)− �(y)||2 +
∫

|c(x; u)− c(y; u)|2�(du)

6L|x − y|2; (2)

|�(x)|2 + ||�(x)||2 +
∫

|c(x; u)|2�(du)6L(1 + |x|2): (3)
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Here | | denotes Euclidean norm, and ‖ ‖ denotes matrix norm induced by Euclidean
norm in Rn. It is well-known that Eqs. (2) and (3) imply the existence of unique
solution {X x

t } of Eq. (1) whose almost all sample paths are in DRn [0;∞).
The jump-di�usion process can be considered as continuous Ito di�usions pertubated

by random jumps. This is one of the useful stochastic models which appears frequently
in many applications. In mathematical �nance theory, one of the principal interest is
focused on option pricing. In the classical Black–Sholes model, the security price is
expressed as a geometric Brownian Motion which is a solution of the linear stochas-
tic di�erential equation without jumps. But in practical situations, the prices contain
possible unpredictable jumps due to external inaccessible shocks. So the general semi-
martingale has been chosen for the security price model (Harrison and Pliska, 1981)
and turns out to be quite useful in many situations. In particular, jump-di�usion models
described as Ito process disturbed by Poisson process or random measure are general
enough to include most interesting cases that may arise. These models are discussed
in Aase (1982,1984,1986,1988), Jeanblanc-Picque and Pontier (1990), Merton (1976),
Merculio and Runggaldier (1993), and Mulinacci (1996) although the list is not the
most inclusive. As other applications of this model, there are damage level processes
of certain devices by environmental random stocks (Abdel-Hameed, 1984a,b; Esary et
al., 1973; Drosen, 1986), and the content of a dam and the level of a storage process
subject to input process and a release rule. (Moran, 1969; Cinlar and Pinsky, 1971;
Brockwell et al., 1982; Zakusilo, 1989,1990).
The main purpose of this work is to obtain su�cient criteria for the stability of

Eq. (1) in various senses. There is extensive literature concerning the stability theory
for Ito equations (i.e. Eq. (1) with c ≡ 0). Bucy (1965) discovered for Ito equations
that stochastic Lyapunov functions provide supermartingales and gave simple su�cient
criteria for stochastic stability and for stability of moments. Has’minskii (1967) gave
necessary and su�cient conditions for stability of linear Ito equations at the equlib-
rium solution using Lyapunov functions. In Arnold et al. (1984a,b), almost sure and
moment exponential stability of linear Ito equations were studied. More recently Mao
(1991,1994) and references therein) dealt with exponential stability theory for stochas-
tic di�erential equations driven by continuous semimartingales. For a detailed account
and further references concerning stability theory, the reader may consult the books by
Has’minskii (1980) and Mao (1991,1994).
We also consider the question of stability in distribution of {X x

t }. To be more
precise, we ask whether P(X x

t ∈ dy) converges weakly as t → ∞ to a probability
measure which is independent of x. For nondegenerate one-dimensional di�usion pro-
cesses without jumps (i.e. c ≡ 0, and � 6= 0) under weaker conditions than Eqs. (2)
and (3), complete characterizations are known for positive recurrence and null recur-
rence. Moreover, positive recurrence is equivalent to stability in distribution and to
the existence of unique invariant probability measure, respectively. Also for nonde-
generate multidimensional di�usion processes without jumps, su�cient conditions for
positive recurrence, null recurrence, and existence of invariant measure are obtained in
Bhattacharya (1978) and Has’minskii (1967). Furthermore, for a class of degenerate
multidimensional, di�usion processes without jumps, su�cient conditions for stability
in distribution and existence of invariant probability measures are proved in Basak and
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Bhattacharya (1992). In this article, we extend the previous results for continuous dif-
fusions to multidimensional jump-di�usion processes (possibly degenerate), and obtain
su�cient conditions for stability in distribution and stochastic and exponential stabilities
at equilibrium using an appropriate stochastic Lyapunov function. A major di�culty
in �nding the right Lyapounov function here is that we have the integro-di�erential
operator as the in�nitesimal generator instead of the usual elliptic di�erential operator
for a continuous di�usion.
The paper is organized as follows: In Section 2, the results for stability in distri-

bution are given. Section 3 is devoted to the results for stabilities at the equilibrium
solution such as stochastic asymptotic stability and a.s. exponential stability. Finally,
some examples are added at the end of Section 3. Throughout this work, we denote a
positive �nite generic constant by C, whose value di�ers from line to line.

2. Stability in distribution

Recall that the standing hypotheses (2) and (3) hold. Before presenting the main
result, we de�ne stability in distribution which we deal with in this section.

De�nition 1. {X x
t } is called stable in distribution if P(X x

t ∈ dy) converges weakly as
t → ∞ to some probability measure which is independent of x.

Throughout this work, we set, for simplicity,

a(x) = �(x)�(x)T;

ã(x; y) = (�(x)− �(y))(�(x)− �(y))T;

�̃(x; y) = �(x)− �(y);

c̃(x; y; u) = c(x; u)− c(y; u):

We also de�ne following integrals which will be used frequently:

J1(x) ≡
∫ (

ln
|x + c(x; u)|

|x|
)2

�(du);

I1(x; y) ≡
∫ (

ln
|x − y + c̃(x; y; u)

|x − y|
)2

�(du):

For a symmetric positive-de�nite matrix P, we de�ne

JP
2 (x)≡

2xTP�(x)
xTPx

− 2(Px)Ta(x)Px
(xTPx)2

+
trace(a(x)P)

xTPx

+
∫ (

ln
(x + c(x; u))TP(x + c(x; u))

xTPx
− 2xTPc(x; u)

xTPx

)
�(du);

I P2 (x; y)≡
2(x − y)TP�̃(x; y)
(x − y)TP(x − y)

− 2(P(x − y))Tã(x; y)P(x − y)
((x − y)TP(x − y))2
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+
trace(ã(x; y)P)
(x − y)TP(x − y)

+
∫ {

ln
(x − y + c̃(x; y; u))TP(x − y + c̃(x; y; u))

(x − y)TP(x − y)

−2(x − y)TPc̃(x; y; u)
(x − y)TP(x − y)

}
�(du):

The main result of this section is as follows:

Theorem 1 (Stability in distribution). (1) Assume that there exist a positive-de�nite
symmetric matrix P and positive constants M1; N such that

sup
|x|¿N

J1(x)¡∞; (4)

sup
|x|¿N

JP
2 (x)¡−M1: (5)

Then {P(X x
t ∈ dy); t¿0} is tight for each x; and there exists an invariant probability

measure.
(2) Assume that there exist a positive-de�nite symmetric matrix P and a positive

constant M2 such that

sup
x 6=y

I1(x; y)¡∞; (6)

sup
x 6=y

IP2 (x; y)¡−M2: (7)

Then {P(X x
t ∈ dy); t¿0} is stable in distribution; and there exists the unique invariant

probability measure.

To establish the proof, we use a Lyapunov function of the type

V (t; x) = e�t(xTPx)�

for appropriate � and �, and prove that V (t; X x
t ) is a supermartingale. Basically, the

proofs for parts (1) and (2) of Theorem 1 are similar in nature although they need
slight modi�cation from each other. To prove part (2) of Theorem 1, it su�ces to show
that {P(X x

t ∈ dy); t¿0} is tight and there exists �¿ 0 such that for every compact K

lim sup
t→∞

sup
x;y∈K

E|X x
t − X y

t |2� = 0; (8)

from which the stability in distribution follows. Moreover, it is easy to show that {X •
t }

is weak Feller under Eqs. (2) and (3). Therefore, the existence and uniqueness of the
invariant probability measure follow from the tightness of {P(X x

t ∈ dy)} and condition
(8), respectively.

Lemma 1. Suppose that Eqs. (6) and (7) hold. Then there exists �¿ 0 such that for
any compact K; Eq. (8) holds.
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Proof. For a compact set K and x; y∈K with x 6= y, we write

X x
t − X y

t = x − y +
∫ t

0
(�(X x

s )− �(X y
s )) ds+

∫ t

0
(�(X x

s )− �(X y
s )) dBs

+
∫ t

0

∫
(c(X x

s ; u)− c(X y
s ; u))�̃(ds; du):

Let �=inf{t¿0: X x
t =X y

t }, and v(x)= (xTPx)�, where �¿ 0 will be chosen later. Let


(x; y; u) =
(x − y + c̃(x; y; u))TP(x − y + c̃(x; y; u))

(x − y)TP(x − y)
:

By generalized Ito’s formula, we have, for �¿ 0

E(v(X x
t∧� − X y

t∧�)e
�(t∧�)) = v(x − y) + E

∫ t∧�

0
Lv(X x

s ; X
y
s )e

�s ds

+E
∫ t∧�

0
v(X x

s − X y
s )�e

�s ds;

where

Lv(x; y)≡ (∇v(x − y))T�̃(x; y) +
1
2

n∑
i; j=1

ãij(x; y)
@2v

@xi@xj
(x − y)

+
∫
{v(x − y + c̃(x; y; u))− v(x − y)− (∇v(x − y))Tc̃(x; y; u)}�(du)

= �v(x − y)
[
2(x − y)TP�̃(x; y)
(x − y)TP(x − y)

−2(1− �)(P(x − y))Tã(x; y)P(x − y)
((x − y)TP(x − y))2

+
trace(ã(x; y)P)
(x − y)TP(x − y)

+
1
�

∫ {
(
(x; y; u))� − 1− 2�(x − y)TPc̃(x; y; u)

(x − y)TP(x − y)

}
�(du)

]
:

Now we note that as � → 0,

1
�
((
(x; y; u))� − 1) = ln 
(x; y; u) + �

2
(ln 
(x; y; u))2e�;

where � ≡ �(�; u; x; y) lies between 0 and � ln 
(x; y; u). We show that for � small,

sup
x 6=y∈K

∫
(ln 
(x; y; u))2e��(du)¡∞: (9)

For x 6= y, we set 
(x; y; u) ≡ 
= 1 + 
1 + 
2, where


1 ≡ 
1(x; y; u) =
2c̃(x; y; u)TP(x − y)
(x − y)TP (x − y)

;


2 ≡ 
2(x; y; u) =
c̃(x; y; u)TPc̃(x; y; u)
(x − y)TP(x − y)

:
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We note that∫

¿2
(ln 
)2e��(du)6C

∫

1+
2¿1

(
1(x; y; u) + 
2(x; y; u))�(du)

6C
∫

1¿
2∨1=2

2 
1�(du) + C
∫

2¿
1∨1=2

2
2�(du)

6C
∫

1¿
2∨1=2


21�(du) + C
∫

2¿
1∨1=2


2�(du)

6C
∫ |c̃(x; y; u)|2

|x − y|2 �(du)

which, in conjuction with Eq. (6), yields Eq. (9). Therefore we have

Lv(x; y) = �v(x − y){IP2 (x; y) + �O(1)};
where O(1) is uniformly bounded for any x and y. Using Eq. (7), we choose 0¡
�0¡ 1=2 so that for any x and y,

Lv(x; y)6−M2�0v(x − y)=2;

and for 0¡�¡M2�0=2, we have

E(v(X x
t∧� − X y

t∧�)e
�(t∧�))6v(x − y):

Also, by the uniqueness of the solution of Eq. (1), we have, for any t ¿ 0,

E(v(X x
t − X y

t ))6e
−�tv(x − y);

from which the assertion follows.

Proof of Theorem 1. Suppose that Eqs. (4) and (5) hold. By the similar argument
as in Lemma 1, Eqs. (4) and (5) imply that there exists 0¡�1¡ 1=2 such that for
|x|¿N

2xTP�(x)
xTPx

− 2(1− �1)
(Px)Ta(x)Px
(xTPx)2

+
trace(a(x)P)

xTPx

+
1
�1

∫ [(
(x + c(x; u))TP(x + c(x; u))

xTPx

)�1
− 1

−2�1x
TPc(x; u)
xTPx

]
�(du)¡−M1=2: (10)

Let g∈C2(0;∞) be nonnegative and nondecreasing on [0;∞); g(�) = ��1 for � large
and h(x) = g(xTPx). De�ne Zt = e�th(X x

t ) where �=M1�1=2. Then by the generalized
Ito’s formula,

EZt = h(x) + E
∫ t

0
e�s(�h(X x

s ) + L̃h(X x
s )) ds;
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where

L̃h(x)≡ (∇h(x))T�(x) +
1
2

n∑
i; j=1

aij(x)
@2h

@xi@xj
(x)

+
∫
(h(x + c(x; u))− h(x)− (∇h(x))Tc(x; u))�(du):

Eq. (10) implies that for |x|¿N ,

�h(x) + L̃h(x)60:

Therefore, we have, for some �nite constant CN ,

sup
t¿0

Eh(X x
t )6h(x) +

CN

�
;

which implies the tightness in part (1). Existence of an invariant probability measure
follows easily by the weak Feller property of {X •

t } (see the comment made before
Lemma 1). To complete the proof of part (2), it su�ces to show that Eqs. (6) and
(7) imply Eq. (5) for large |x|. By using a similar argument as in Lemma 1, we have
that as � → 0,

JP
2 (x) = IP2 (x; 0) +

2xTP�(0)
xTPx

− 2(Px)T(�(0)�(x)T + �(x)�(0)T − �(0)�(0)T)Px
(xTPx)2

+
trace[(�(0)�(x)T + �(x)�(0)T − �(0)�(0)T)P]

xTPx

+
1
�

∫ [(
(x + c(x; u))TP(x + c(x; u))

xTPx

)�

−
(
(x + c̃(x; 0; u))TP(x + c̃(x; 0; u))

xTPx

)�
− 2�xTPc(0; u)

xTPx

]
�(du)

+�O(1);

where O(1) is uniformly bounded for any x. Fix �2¿ 0 so that

sup
x
(−M2 + �2O(1))¡ 0:

It remains to show that as |x| → ∞; J P
2 (x)− IP2 (x; 0)−�2O(1)→ 0: We limit ourselves

to prove that as |x| → ∞
(Px)T(�(0)�(x)T + �(x)�(0)T − �(0)�(0)T)Px

(xTPx)2
→ 0 (11)

and ∫ [(
(x + c(x; u))TP(x + c(x; u))

xTPx

)�2
−
(
(x + c̃(x; 0; u))TP(x + c̃(x; 0; u))

xTPx

)�2

−2�2 x
TPc(0; u)
xTPx

]
�(du)→ 0; (12)
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since the other terms can be treated similarly. To prove Eq. (11), we observe that

(xTPx)−2(Px)T(�(0)(�(x)− �(0))T + (�(x)− �(0))�(0)T + �(0)�(0)T)Px

6(xTPx)−2|Px|2(2||�(0)||||�(x)− �(0)||+ ||�(0)||2)
6C(|x|−1 + |x|−2):

Let f(x; u) denote the integrand in Eq. (12). Since for each u;

lim
|x|→∞

f(x; u) = 0;

it su�ces to show that

lim sup
l→∞

sup
|x|¿1

∫
|f(x; u)|¿l

|f(x; u)|�(du) = 0:

Set

�≡ �(x; u) ≡ c(x; u)TPc(x; u) + 2xTPc(x; u)
xTPx

;

�≡ �(x; u) ≡ c̃(x; 0; u)TPc̃(x; 0; u) + 2xTPc̃(x; 0; u)
xTPx

;

and

B ≡ B(x) ≡ {u: |f(x; u)|¿l}:
Note that

|�|6 �
�

( |c(x; u)|2
|x|2 +

2|c(x; u)|
|x|

)
;

|�|6 �
�

( |c̃(x; 0; u)|2
|x|2 +

2|c̃(x; 0; u)|
|x|

)
;

where �¿ 0 is the smallest eigenvalue and �¿ 0 is the largest eigenvalue of P. Fix
�¿ 0 so that

�
�
(�2 + 2�) =

1
2
:

Let

A1 =
{
u:

|c(x; u)|
|x| 6�;

|c̃(x; 0; u)|
|x| 6�

}
;

A2 =
{
u:

|c(x; u)|
|x| ¿�;

|c̃(x; 0; u)|
|x| 6�

}
;

A3 =
{
u:

|c(x; u)|
|x| 6�;

|c̃(x; 0; u)|
|x| ¿�

}
;

A4 =
{
u:

|c(x; u)|
|x| ¿�;

|c̃(x; 0; u)|
|x| ¿�

}
:

For u∈A1;

|f(x; u)| =
∣∣∣∣(1 + �)�2 − (1 + �)�2 − 2�2xTPc(0; u)

xTPx

∣∣∣∣
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=
∣∣∣∣1 + �2�− �2(1− �2)

2
(1 + �1)�2−2�2 − (1 + �2�)

+
�2(1− �2)

2
(1 + �1)�2−2�2 − 2�2xTPc(0; u)

xTPx

∣∣∣∣
6 �2

(
c(x; u)TPc(x; u)

xTPx
+

c̃(x; 0; u)TPc̃(x; 0; u)
xTPx

)

+
( |�|2
(1− |�1|)2−�2

+
|�|2

(1− |�1|)2−�2

)
�2(1− �2)

2

6 2;

where |�1| ≡ |�1(x; u)|6|�(x; u)|, |�1| ≡ |�1(x; u)|6|�(x; u)|. Hence∫
B∩A1

|f(x; u)|�(du) = 0 if l¿ 2:

For u∈A2;

|f(x; u)| =
∣∣∣∣(1 + �)�2 − ((1 + �)�2 − 1− �2�)− 1− �2� − �2

2xTPc(0; u)
xTPx

∣∣∣∣
6
((

�
�
+
1
�

) |c(x; u)|
|x|

)2�2
+

�2(1− �2)
2

|1 + �1|�2−2|�|2

+1 + �2

∣∣∣∣ c̃(x; 0; u)TPc̃(x; 0; u) + 2xTPc(x; u)xTPx

∣∣∣∣
6
(
�
�
+
1
�

)2�2 ( |c(x; u)|
|x|

)2�2
+ 2 +

�2�|c̃(x; 0; u)|2
�|x|2 +

2�2�|c(x; u)|
�|x|

6C
|c(x; u)|

|x| :

Therefore∫
A2∩B

|f(x; u)|�(du)6C
l

∫ |c(x; u)|2
|x|2 �(du):

For u∈A3, using a similar argument, we have∫
A3∩B

|f(x; u)|�(du)6C
l

∫ |c̃(x; 0; u)|2
|x|2 �(du):

For u∈A4, we observe that

|f(x; u)|6 (1 + |�|)�2 + (1 + |�|)�2 + �2
|2xTPc̃(x; 0; u)|

xTPx
+ �2

|2xTPc(x; u)|
xTPx

6
((

�
�
+
1
�

) |c(x; u)|
|x|

)2�2
+
((

�
�
+
1
�

) |c̃(x; 0; u)|
|x|

)2�2

+ �2
2�|c̃(x; 0; u)|

�|x| + �2
2�|c(x; u)|

�|x|

6C
( |c(x; u)|

|x| +
|c̃(x; 0; u)|

|x|
)

:
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Hence∫
A4∩B

|f(x; u)|�(du)6C
l

∫ ( |c(x; u)|2
|x|2 +

|c̃(x; 0; u)|2
|x|2

)
�(du):

The proof is completed by using Eqs. (2) and (3).

3. Stability at the equilibrium solution

In this section we assume that �(0) = �(0) = c(0; u) ≡ 0 so that Eq. (1) admits
the zero solution as an equilibrium solution. We obtain asymptotic stochastic stability
under some appropriate conditions in Theorem 2 and a.s. exponential stability under
the stronger conditions in Theorem 3. The basic strategy used here is rather simple
and well-known to specialists (see Has’minskii, 1980; Mao, 1991,1994). Before we
establish the main results, we introduce the notion of stochastic asymptotic stability
and a.s. exponential stability.

De�nition 2. (1) The zero solution is called stochastically stable if there exists r =
r(�1; �2), for any �1¿ 0 and �2¿ 0 such that for any |x|¡r,

P
(
sup
t¿0

|X x
t |¡�1

)
¿ 1− �2:

(2) The zero solution is called stochastically asymptotically stable if it is stochasti-
cally stable and for any �¿ 0 there exists r = r(�) such that for any |x|¡r,

P
(
lim
t→∞ |X x

t |= 0
)
¿ 1− �:

De�nition 3. Eq. (1) is called almost surely exponential stable if there exists an M ¿ 0
independent of x satisfying

lim sup
t→∞

1
t
log|X x

t |6−M a:s:

Now we introduce stopping times: for �¿ 0, let

T� = inf{t¿0; |X x
t |¡�};

T0 = lim
�↓0

T�;

�� = inf{t¿0; |X x
t | ¿ �}: (13)

We start with three lemmas for Theorem 2.

Lemma 2. Suppose that sup0¡|x|6n J1(x)¡∞ for each n. Then X x
t 6= 0 and X x

t− 6=
0 a:s: for any t¿0 if x 6= 0.
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Proof. We observe that T0 = inf{t¿0;Xt− =0 or Xt =0} a.s. Assume that there exist
t0 and n such that |x|6n− 1, and

P(G) ≡ P
{
T06t0; sup

t6t0
|X x

t |6n− 1
}

¿ 0:

De�ne

g(r) = |ln r| for r ¿ 1=� or 0¡r¡�;

g∈C2(0;∞), and inf r¿0g(r)¿ 0, where 0¡�¡ 1 is chosen su�ciently small. Let
h(x) = g(xTPx) and

L̃h(x) = Ah(x) + Bh(x);

where

Ah(x)≡ (∇h(x))T�(x) +
1
2
�i; jaij(x)

@2h
@xi@xj

(x)

= 2g′(xTPx)xTP�(x) + 2g′′(xTPx)(Px)Ta(x)Px + g′(xTPx)trace(a(x)P);

Bh(x)≡
∫ {

h(x + c(x; u))− h(x)− (∇h(x))Tc(x; u)
}
�(du)

=
∫ {

g
(
(x + c(x; u))TP(x + c(x; u))

)− g(xTPx)

−2g′(xTPx)xTPc(x; u)}�(du):

De�ne

V (t; x) = e−�th(x);

for some �¿ 0: By the generalized Ito’s formula,

E(e−�(t0∧T�∧�n)h(X x
t0∧T�∧�n)) = h(x) + E

∫ t0∧T�∧�n

0
e−�s(−�h(X x

s ) + L̃h(X x
s ))ds:

Now we claim that for 0¡ |x|6n;

L̃h(x)6Cn for some Cn; (14)

which implies that for 0¡ |x|6n;

L̃h(x)− �nh(x)60

for some �n ¿ 0: Then we obtain for � su�ciently small

h(x)¿ E(e−�n(t0∧T�∧�n)h(X x
t0∧T�∧�n))

¿ E(e−�nT�h(X x
T�
)�G)

¿ e−�nt0 ln(��2)−1P(G);

where � is the largest eigenvalue of P. Therefore letting � → 0 in

P(G)6
h(x)e�nt0

ln(��2)−1
;
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we get a contradiction. Finally, it remains to show Eq. (14). From the de�nition of h,
it is easy to see that supx Ah(x)¡∞. To complete the argument, let F(x; u) denote
the integrand in the expression for Bh(x). We show that for any x and u,

|F(x; u)|6C1

(
ln
|x + c(x; u)|

|x|
)2
+ C2

|c(x; u)|2
|x|2 (15)

for some C1 and C2. Instead of carrying out tedious calculations depending on the
di�erent values of x and x+c(x; u), we demonstrate them in a few cases. For example,
if xTPx¡�; and (x + c(x; u))TP(x + c(x; u))¡�; then we write

F(x; u) =−ln(1 + �(x; u)) + �(x; u)− c(x; u)TPc(x; u)
xTPx

;

where

�(x; u) =
2xTPc(x; u) + c(x; u)TPc(x; u)

xTPx
:

It is not hard to show that Eq. (15) holds. If xTPx¡� and (x + c(x; u))TP(x +
c(x; u))¿ 1=�; then

|F(x; u)| =
∣∣∣∣ln((x + c(x; u))TP(x + c(x; u)) + ln xTPx +

2xTPc(x; u)
xTPx

∣∣∣∣
6 |ln(1 + �(x; u))|+ |�(x; u)|+ 2|ln xTPx|+ c(x; u)TPc(x; u)

xTPx

6C2

( |c(x; u)|
|x|

)2

since |�(x; u)|¿ 1=�2 − 1 is large for su�ciently small �.

Lemma 3. Suppose that sup06=|x|6n J1(x)¡∞ for each n; and there exist a symmetric
positive-de�nite matrix P and positive constants M3 and r0 such that

sup
06=|x|¡r0

JP
2 (x)¡−M3:

Then the zero solution is stochastically stable.

Proof. Let �¡ |x|¡r¡r0, and v(y)=(yTPy)� where �¿ 0 will be determined later.
Then by the generalized Ito’s formula, in conjuction with a similar argument used in
the proof of Theorem 1, we have

Ev(X x
t∧T�∧�r ) = v(x) + E

∫ t∧T�∧�r

0
L̃v(X x

s ) ds;

where

L̃v(y) = �(yTPy)�(JP
2 (y) + �O(1))
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and O(1) is uniformly bounded for |y|¡r0: Recall the notion L̃v from the proof of
Theorem 1. Hence for some �3¿ 0,

E(|X x
T�
|2�3 : {T� ¡ t ∧ �r}) + E(|X x

t∧�r |2�3 : {t ∧ �r6T�})

=E(|X x
t∧T�∧�r |2�3 )6

�
�
|x|2�3 ;

where � and � are the smallest and the largest eigenvalue of P respectively. Letting
� ↓ 0, we have

E(|X x
t∧�r |2�3 : {t ∧ �r6T0})6�

�
|x|2�3 ;

hence

E(|X x
�r |2�3 : {�r6t})6E(|X x

�r∧t |2�3 )6
�
�
|x|2�3

since T0 =∞ a.s. by Lemma 2. By letting t → ∞ in

P(�r6t)6
�
�

( |x|
r

)2�3
;

we have

P
(
sup
t¿0

|X x
t |6r

)
¿1− �

�

( |x|
r

)2�3
:

Lemma 4. Suppose that the conditions in Lemma 3 hold. Then for {X x
t } with �¡

|x|¡r¡r0;

E(T� ∧ �r)¡∞:

Proof. For �¡ |x|¡r¡r0, let v(x) = (yTPy)�3 where �3 is chosen in the proof of
Lemma 3. Then we have

Ev(X x
T�∧�r∧t)− v(x) = E

∫ T�∧�r∧t

0
L̃v(X x

s ) ds;

where for �¡ |y|¡r,

L̃v(y)6−M3�3(yTPy)�3 =2

6−M3�3(��2)�3 =2

≡ −
(�):

Hence we let t → ∞ in

E(T� ∧ �r ∧ t)6
v(x)

(�)

and obtain the desired result.

Theorem 2 (Stochastic asymptotic stability). Suppose that the conditions in Lemma
3 hold. Then the zero solution is stochastically asymptotically stable.
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Proof. By Lemma 3, for 0¡r¡r0 and �¿ 0, there exists � such that for |x|¡�,

P
(
sup
t
|X x

t |¡r
)

¿ 1− �: (16)

Furthermore for r1¡�, there exists �1 such that for |x|¡�1,

P
(
sup
t
|X x

t |¡r1

)
¿ 1− �:

Then by Lemma 4 and Eq. (16) we have for |x|¡� and 0¡r1¡�,

P
(
lim sup
t→∞

|X x
t |6r1

)
¿ P

(
T�1 ¡∞; sup

t¿T�1

|X x
t |¡r1

)

¿ (1− �)2:

Letting r1 → 0, the conclusion follows.

Now we shall discuss the almost sure exponential stability of {X x
t }. Again the tech-

nique is fairly standard and is based on the use of Lyapounov functions. Distinct
Lyapounov functions will be employed depending on di�erent purposes.

Theorem 3 (Almost sure exponential stability). Suppose that there exist a symmetric
positive-de�nite matrix P and a constant M4 such that

sup
x 6=0

J1(x)¡∞; sup
x 6=0

JP
2 (x)¡M4:

Then for any x 6= 0; X x
t 6= 0 and X x

t− 6= 0 a:s: for any t and

lim sup
t→∞

ln|X x
t |

t
6

M4

2
a:s:

Proof. The �rst part is proved in Lemma 2. Let v(x)= ln(xTPx)� where �¿ 0 will be
chosen later. Fix x 6= 0 and write X x

t = Xt . Then by the generalized Ito’s formula,

v(Xt) = v(x) +
∫ t

0
L̃v(Xs) ds+

∫ t

0
�(s) dBs +

∫ t

0

∫
 (s; u)�̃(ds; du)

where

�(s) = 2�(X T
s PXs)−1X T

s P�(Xs);

 (s; u) = v(Xs + c(Xs; u))− v(Xs);

L̃v(y) = �JP
2 (y):

We set

Mt =
∫ t

0
�(s) dBs +

∫ t

0

∫
 (s; u)�̃(ds; du)

and

At =
∫ t

0
|�(s)|2=2 ds+

∫ t

0

∫ (
e (s;u) − 1−  (s; u)

)
�(du) ds:
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Then {exp(Mt − At)} forms a martingale, hence for any t and �¿ 0,

P
(
sup
06s6t

(Ms − As)¿�
)
6e−�:

Set �=2 log n, and t = n. Then by Borel–Cantelli lemma, there exists n0(w) such that
for n¿n0(w), and t6n,

Mt62 log n+ At:

Therefore for t6n, and n¿n0(w),

v(Xt)6 v(x) +
∫ t

0
L̃v(Xs) ds+ 2 log n+ At

= v(x) + 2 log n+ �
∫ t

0
(X T

s PXs)−1
{
2X T

s P�(Xs)

− 2(1− �)
X T
s Pa(Xs)PXs

X T
s PXs

+ trace(a(Xs)P)
}
ds

+
∫ t

0

∫ {(
(Xs + c(Xs; u))T(Xs + c(Xs; u))

X T
s PXs

)�
− 1

− 2�X
T
s Pc(Xs; u)
X T
s PXs

}
�(du) ds

= v(x) + 2 log n+ �
∫ t

0
JP
2 (Xs) ds+ �2tO(1)

6 v(x) + 2 log n+ �M4 + �2tO(1)

for su�ciently small �¿ 0 where O(1) is uniformly bounded for any t and w. For
given �¿ 0, �x �¿ 0 so that �O(1)¡�. Then for n− 16t ¡n, and n¿n0(w),

ln(X T
t PXt)
t

6
v(x)
�t

+
2 log n

�(n− 1) +M4 + �;

which implies that

lim sup
t→∞

ln(X T
t PXt)
t

6M4 + �:

Then the conclusion follows easily.

Finally we provide some examples.

Example 1. Let �(x)=�x; �(x)�(x)T =a(x)=�2|x|2I , and c(x; u)=�(u)x, where �(u)
is real-valued. Suppose

∫
�(u)2�(du)¡∞. Set

M ≡ �2(n− 2) + 2� + 2
∫
(ln|1 + �(u)| − �(u))�(du):

Then M ¡ 0 implies almost sure exponential stability of Eq. (1). In particular, if n=
m=1, M ¡ 0 provides a necessary and su�cient condition for almost sure exponential



208 I.-S. Wee / Stochastic Processes and their Applications 80 (1999) 193–209

stability of Eq. (1), since then the solution of Eq. (1) in this case can be written
explicitly as

X x
t = x exp

{
t
[
� − �2

2
+
∫
(ln|1 + �(u)| − �(u))�(du)

]}

×exp
(
�Wt +

∫ t

0

∫
ln|1 + �(u)|�̃( dt; du)

)
:

Example 2. Let

dXt = AXt dt + �

(
X2(t)

−X1(t)

)
dBt +

∫
c

(
u1X1(t)

u2X2(t)

)
�̃( dt; du);

where

A=

(
0 1

1 0

)
:

It is known that if c = 0, and x 6= 0,

lim inf
t→∞

ln|X x
t |

t
¿

�2

2
− 1 a:s: (Mao; 1994; p:170)

Suppose that∫
|u|2 ∧ |u|�(du)¡∞:

Then taking P = I , it is not hard to show that

2 +
∫

f(u)�(du)¡ 0

provides a su�cient condition for almost sure exponential stability, where

f(u) =


 ln

(
1 +

c(u1 + u2)
2

)
− cu1 + cu2 + 2c2u1u2

2 + c(u1 + u2)
if u1 6= u2;

ln(1 + cu1)2 − 2cu1 if u1 = u2:
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