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Abstract

The serial harnesses introduced by Hammersley describe the motion of a hypersurface of
dimension d embedded in a space of dimension d+1. The height assigned to each site i of Zd is
updated by taking a weighted average of the heights of some of the neighbors of i plus a “noise”
(a centered random variable). The surface interacts by exclusion with a “wall” located at level
zero: the updated heights are not allowed to go below zero. We show that for any distribution
of the noise variables and in all dimensions, the surface delocalizes. This phenomenon is related
to the so-called “entropic repulsion”. For some classes of noise distributions, characterized by
their tail, we give explicit bounds on the speed of the repulsion.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction and results

Hammersley [13] introduced the serial harness, a discrete-time stochastic process
that models the time evolution of a hypersurface of dimension d embedded in a d+1
dimensional space. A quantity Yn(i)∈R stays for the height of the surface at site i∈Zd

at (integer) time n¿ 0. The initial conDguration is the Eat surface Y0(i) = 0 for all i.
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Under the evolution, at each moment n¿ 0 the height at each site is substituted by
a weighted average of the heights at the previous moment plus a symmetric random
variable.
Let P={p(i; j)}i; j∈Zd be a stochastic matrix, i.e. p(i; j)¿ 0 and

∑
j p(i; j)=1, which

satisDes p(i; j) = p(0; j − i) =: p(j − i) (homogeneity),
∑

j jp(j) = 0, and p(j) = 0
for all |j|¿v for some v (Dnite range). Assume also that P is truly d-dimensional:
{j∈Zd : p(j) �= 0} generates Zd.
Let E = (
; (
n(i); i∈Zd); n∈Z) be a family of i.i.d. integrable symmetric random

variables. Let P and E denote the probability and expectation in the probability space
generated by E. (We use preliminary n∈N in the deDnitions but later it will be useful
to have n∈Z.)
The serial harness (Yn; n¿ 0) is the discrete-time Markov process in RZd

deDned
by

Yn(i) =



0 if n= 0;∑
j∈Zd

p(i; j)Yn−1(j) + 
n(i) if n¿ 1: (1.1)

Here Yn(i) denotes the height of the serial harness at site i at time n. In other words,
the evolution is given by

Yn =PYn−1 + 
n; (1.2)

where 
n = (
n(i); i∈Zd). Since the “noise variable” 
 is symmetric and thus has
zero mean, we have that EYn(i) = 0 for all i; n. We can interpret p(i; j) as transition
probabilities of a random walk on Zd; let pm(i; j) be its m-step transition probabilities.
By homogeneity, pm(i; j) = pm(0; j − i) =: pm(j − i). Iterating (1.1)

Yn(i) =
n∑

r=1

∑
j∈Zd

pn−r(i; j)
r(j)
d=

n−1∑
r=0

∑
j∈Zd

pr(j)
r(j) (1.3)

for all n¿ 1; i∈Zd, where d= means equidistributed. Hammersley [13] obtained that

E(Yn(i))2 = �2s(n); (1.4)

where �2 is the variance of 
 and

s(n) :=
n−1∑
r=0

∑
j∈Zd

pr(j)2 (1.5)

is the expected number of encounters up to time n of two independent copies of a
random walk starting at 0 with transition probabilities P. Equality (1.4) follows im-
mediately from (1.3). Since s(n) ∼ √

n for d = 1, s(n) ∼ log n for d = 2 and s(n) is
uniformly bounded in n for d¿ 3 (see, for example, [18]), the surface delocalizes in
dimensions d6 2 and stays localized in dimensions d¿ 3. Toom [19] studies localiza-
tion of the surface and surface-diLerences in function of the decay of the distribution
of 
.
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We consider the serial harness interacting by exclusion with a wall located at the
origin. The wall process (Wn; n¿ 0) is the Markov process in (R+)Zd

deDned by

Wn(i) =



0 if n= 0;
∑

j∈Zd

p(i; j)Wn−1(j) + 
n(i)



+

if n¿ 1
(1.6)

for i∈Zd, where for a∈R, a+ = a ∨ 0 = max(a; 0); this can be reexpressed as

Wn = (PWn−1 + 
n)+: (1.7)

We say that the law of a random surface Z is an invariant measure for the wall process
if Z d=(
0 +PZ)+, with 
0 and Z independent. We show in Section 2 that

Wn6Wn+1 stochastically: (1.8)

This implies that Wn is stochastically nondecreasing and thus their laws converge to a
limit (that could give positive weight to inDnity). If the limit is nondegenerate, then it
is an invariant measure for the wall process. Monotonicity (1.8) implies in particular

�n := EWn(0)

is nondecreasing and thus converges either to a Dnite limit or to ∞. Our Drst result is
general and rules out the former possibility, showing however that �n goes to inDnity
slower than n.

Theorem 1.1. (a) There is no nondegenerate invariant measure for the wall process
(Wn); (b) Wn → ∞ in probability; (c) �n → ∞ as n → ∞; (d) �n=n → 0 as n → ∞.

This theorem is proven in Section 2.
Let F be the law of 
, MF(x) = P(
¿x) and deDne

L−
� := {F : MF(x)6 ce−c′x� ; x¿ 0; for some positive c; c′} (1.9)

L+
� := {F : MF(x)¿ ce−c′x� ; x¿ 0; for some positive c; c′} (1.10)

and

L� := L−
� ∩ L+

� : (1.11)

We next state our main result. It consists of upper and lower bounds for �n for
diLerent noise distributions.

Theorem 1.2. There exist constants c and C that may depend on the dimension such
that

(i) for d= 1 if F ∈L−
1

cn1=46 �n6Cn1=4
√
log n; (1.12)
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(ii) for d= 2, if F ∈L�, for some �¿ 1

c(log n)1=�∨1=26 �n6C log n; (1.13)

(iii) for d¿ 3, if F ∈L�, for some 16 � �= 1 + d=2

c(log n)1=�6 �n6C(log n)1=�∨2=(2+d); (1.14)

(iv) for d¿ 3 if F ∈L1+d=2

c(log n)2=(2+d)6 �n6C(log n)2=(2+d)(log log n)d=(2+d): (1.15)

Our upper bound in (1.15) can be slightly improved, see (6.4) and Remark 6.2
below. The lower bound in (i) can be shown to hold under weaker conditions; that
is also the case for some cases of (ii); see (6.7) and Remark 6.7 below. If the noise
distribution is in L� for some �¿ 1, then our lower and upper bounds to �n are of
the same order in the case that d¿ 3; 16 �¡ 1 + d=2 (which includes the Gaussian
case �= 2 for all such dimensions), and also in the case that d= 2; �= 1.
Theorems 1.1 and 1.2 catch the eLect of the “entropic repulsion” in a stochastically

moving surface interacting with a wall by exclusion.
Many papers deal with the problem of entropic repulsion in Equilibrium Statistical

Mechanics. The role of the entropic repulsion in the Gaussian free Deld was studied by
Lebowitz and Maes [15], Bolthausen et al. [3], Deuschel [8], Deuschel and Giacomin
[9] and Bolthausen et al. [2]. In the Ising, SOS and related models the matter was
discussed by Bricmont et al. [5], Bricmont [4], Cesi and Martinelli [6], Dinaburg and
Mazel [10], HolickOy and ZahradnOQk [14], and Ferrari and MartOQnez [12].
The exponent 1

4 for dynamic entropic repulsion in d=1 was predicted by Lipowsky
[16] using scaling arguments. This exponent was then found numerically by Mon
et al. [17], Binder [1], De Coninck et al. [7]. Dunlop et al. [11] proved bounds (slightly
worse than) (1.12) for a one-dimensional interface related to the phase separation line
in the two-dimensional Ising model at zero temperature. Funaki and Olla [20] studied
a one-dimensional model in a Dnite box rescaled as the square of the time.
The strategy to show part of Theorem 1.2 is to compare the wall process with a

“free process”—in our case the serial harness—as proposed by Dunlop et al. [11].
The following lemmas are the basic ingredients in this approach. The Drst two concern
moderate deviations of the serial harness Yn; they are then extended to the wall process
Wn in the last one.

Lemma 1.3. If the distribution of 
 is in L−
1 , then in d6 2 there exist constants

k; c; c′ ¿ 0 such that for all K ¿ 0 and 06 l6 n

P[Yl(0)¿K
√
s(n) log n]6 knc−c′K : (1.16)

Lemma 1.4. If the distribution of 
 is in L−
� for some �¿ 1, then in d¿ 3 there

exist constants k; c; c′ ¿ 0 such that, for all K ¿ 0 and 06 l6 n

(i) if � �= 1 + d=2, then

P[Yl(0)¿K(log n)1=�∨2=(2+d)]6 knc−c′K ; (1.17)
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(ii) if �= 1 + d=2, then

P[Yl(0)¿KLn(1 + 2=d)]6 knc−c′K ; (1.18)

where Ln(·) is de<ned in (6.1) below.

Lemma 1.5. The bounds of Lemmas 1.4 and 1.3 hold for l= n if we replace Yn with
Wn, possibly with worse constants k; c.

We conclude this introduction with a remark concerning the form (1.6) of the in-
teraction with the wall. Two other choices are also natural. First, if the noise would
push the process below zero, simply do nothing. Or, in the same case, only take the
convex combination without a noise. Formally, these two cases are, respectively,

W ′
0(i) =W ′′

0 (i) ≡ 0

and for n¿ 1

W ′
n(i) =




∑
j∈Zd

p(i; j)W ′
n−1(j) + 
n(i) if this is positive;

W ′
n−1(i) otherwise

(1.19)

and

W ′′
n (i) =




∑
j∈Zd

p(i; j)W ′′
n−1(j) + 
n(i) if this is positive;

∑
j∈Zd

p(i; j)W ′′
n−1(j) otherwise:

(1.20)

Coupling W;W ′; W ′′ by the same realization of the noise variables, one sees that,
stochastically, both W ′¿W and W ′′¿W . This implies immediately that any lower
bound for �n (in particular the ones in this paper) hold for �′

n := EW ′
n(0) and �′′

n :=
EW ′′

n (0) as well. These dominations also imply immediately the validity of the results of
Theorem 1.1 (a)–(c) for W ′ and W ′′. For the analogue of Theorem 1.1 (d), domination
does not help (it goes in the wrong direction). An argument along the same lines as the
one for W can be made for W ′′ straightforwardly; see paragraphs containing (2.14) and
(3.2). Under the assumption that P(0; 0)¿ 0, one can also make a similar argument
for W ′; otherwise, the matter is more delicate, and we do not have an argument.
As for upper bounds for �′

n; �
′′
n , the ones we get for �n also hold for both of them,

since the proof only relies on the free process started at some height r dominating
stochastically the wall process started at the same height, and this holds for all three
choices.

2. Delocalization

In this section we show Theorem 1.1. The wall process is attractive, i.e.

if W 6W ′ then (PW + 
0)+6 (PW ′ + 
0)+ a:s: (2.1)
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coordinatewise, which implies

if Wn6W ′
n stochastically; then Wn+16W ′

n+1 stochastically: (2.2)

Since for the process with initial Eat surface 0 ≡ W06W1 a.s. this implies (1.8).
Theorem 1.1 is a consequence of the following three lemmas:

Lemma 2.1. There is no invariant measure for (Wn) with <nite mean.

Proof. Suppose there exists an invariant measure �o with Dnite mean mo. Let I=[−c; c]
be the support of the distribution of 
. Then there exists 0¡c′ ¡c such that P[
¡
−c′]¿ 0 and, by Markov’s inequality, for any n, P[

∑
j pn(0; j)W (j)¡ 2mo]¿ 1

2 ,
where pn are the n-step transition probabilities.
The preceding implies that the process started from the invariant measure �o reaches

the wall at the origin in n′ =2mo=c′ steps with strictly positive probability. This yields
a positive drift, contradicting the assumption.

Lemma 2.2. Every invariant measure for (Wn) dominates stochastically

lim
n
P(Wn ∈ ·):

Proof. Attractiveness (2.2) implies that the law of Wn is stochastically nondecreasing
and hence converges to a limit. Since the initial Eat conDguration is dominated by any
other, any invariant measure dominates stochastically that limit.

Consider the family of processes ((Wk
n ; n¿ k); k ∈Z) deDned by

Wk
n =

{
0 if n= k;

(PWk
n−1 + 
n)+ if n¿ k + 1:

(2.3)

(Wk
n ; n¿ k) is the wall process evolving from time k on, having Eat conDguration at

initial time k. It is clear that for k¿ 0

W−k
0

d=W 0
k (=Wk): (2.4)

Since 0 = Wk
k 6Wk−1

k , by attractiveness (2.1), Wk
n 6Wk−1

n for all n¿ k, and in
particular

Wk
0 6Wk−1

0 (2.5)

so that W−∞
0 = limk→∞ W−k

0 is well deDned (but could be inDnity).

Lemma 2.3. W−∞
0 (and hence W−∞

n for all n) is almost surely identically in<nity.

Proof. The event {W−∞
0 = ∞} belongs to the tail �-algebra of {
k : k6 0} and is

thus trivial. Write

W−∞
0 = (
0 +PW−∞

−1 )+ = · · · (2.6)

= (
0 +P(
−1 + · · ·P(
−k+1 +PW−∞
−k )+ · · ·)+)+ (2.7)

¿Uk +PkW−∞
−k (2.8)
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for k ¿ 0, where Uk=
∑k−1

i=0 Pi
−i. Notice that Uk is symmetric and that Uk and W−∞
−k

are independent: Uk is a function of (
i : −k + 16 i6 0) while W−∞
−k is function of

(
i : i6− k). Since W−∞
−k

d=W−∞
0 , for all k¿ 0

W−∞
0 ¿Vk +PkW−∞

0 ; stochastically (2.9)

with Vk
d=Uk , Vk and W−∞

0 independent.
A key observation is that W−∞

0 is ergodic for spatial shifts. This follows from the
fact that W−∞

0 is a function of 
n(i)’s for a cone of indices (n; i) in −N × Zd with
vertex in (0; x). Now, E(W−∞

0 )=∞, the Ergodic Theorem implies that PkW−∞
0 → ∞

almost surely as k → ∞. Indeed,

PkW−∞
0 (0) =

∑
i∈Zd

pk(i)W−∞
0 (i)¿

c
kd=2

∑
|i|6k

W−∞
0 (i) → ∞ (2.10)

as k → ∞, by the Ergodic Theorem. We have used the positivity of W−∞
0 and the well

known Local Central Limit Theorem estimate to the eLect that inf |i|6kpk(i)¿ c=kd=2

for some c¿ 0. For this estimate, aperiodicity is required; we leave the necessary and
straightforward adaptations for the periodic case to the reader.
Now, (2.9), (2.10) and the symmetry of Vk imply that for arbitrary M ¿ 0

P(W−∞
0 ¿M)¿ lim inf

k→∞
P(Vk +PkW−∞

0 ¿M) (2.11)

¿ lim inf
k→∞

P(Vk¿ 0)P(PkW−∞
0 ¿M) (2.12)

¿
1
2
lim inf
k→∞

P(PkW−∞
0 ¿M) =

1
2
: (2.13)

Thus P(W−∞
0 =∞)¿ 1

2 and triviality implies P(W
−∞
0 =∞) = 1.

Proof of Theorem 1.1. (a) is immediate consequence of Lemmas 2.2 and 2.3: any
invariant surface dominates stochastically W−∞

0 and W−∞
0 is almost surely identically

inDnity. (b) follows from Lemma 2.3 and (2.4). (c) follows from the identity �n =
EWn(0) = EW−n

0 and the monotone convergence theorem. Finally, in (3.2) below it is
shown that

�n − �n−1 = E
∫ ∞

PWn−1

P(
¿x) dx: (2.14)

Since 
 is integrable and PWn−1 increases to inDnity in probability, (2.14) converges
to zero, and we get (d).

3. A generic lower bound

From (1.7),

Wn(i) = (PWn−1(i) + 
n(i))+

=PWn−1(i) + 
n(i) + (−PWn−1(i)− 
n(i))+: (3.1)
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Taking expectations, since 
 is symmetric,

�n = �n−1 + E
∫ ∞

PWn−1

P(
¿x) dx: (3.2)

As
∫ ∞
y P(
¿x) dx is a convex function of y,

�n¿ �n−1 +
∫ ∞

E(PWn−1)
P(
¿x) dx = �n−1 + E(
 − �n−1)+: (3.3)

For s¿ 0, let G(s) = E(
 − s)+, H (s) = s + G(s), and �(t) be such that∫ �(t)
0 [G(s)]−1 ds= t.

Theorem 3.1. �n¿ �(n) for all n¿ 0.

Remark 3.2. This general lower bound does not depend on the dimension.

Corollary 3.3. If the distribution of 
 belongs to L+
� for some �¿ 0, then there

exists c2 = c2(�)¿ 0 such that

�n¿ c2(log n)1=�: (3.4)

Corollary 3.4. Suppose that the distribution of 
 decays at most polynomially, i.e.
P(
¿x)¿ c0x−� for all x¿ 1 and some positive constants c0 and �¿ 1. Then there
exists c1 = c1(�)¿ 0 such that

�n¿ c1n1=�: (3.5)

Proof of Theorem 3.1. Notice Drst that �(t) is a solution of

�(t) =
∫ t

0
G(�(s)) ds

and thus satisDes

�(n) = �(n − 1) +
∫ n

n−1
G(�(s)) ds:

Notice also that G(x) is decreasing and H (x) is increasing. We prove the lemma by
induction. First, �0 = �(0) = 0. Suppose that �n−1¿ �(n − 1). Then,

�(n) = �(n − 1) +
∫ n

n−1
G(�(s)) ds6 �(n − 1) + G(�(n − 1))

=H (�(n − 1))6H (�n−1)6 �n;

where the last inequality is (3.3).

Proof of Corollary 3.4. Note that

G(x) = E(
 − x)+ =−
∫ +∞

x
(y − x) dP[
¿y] =

∫ +∞

x
P[
¿y] dy
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and thus

g(t) :=
∫ t

0

ds
G(s)

=
∫ t

0

ds∫ +∞
s P[
¿y] dy

: (3.6)

Thus, from the assumption in the statement of Corollary 3.4

g(t)6
1
c0

∫ t

0

ds
1=(� − 1)s1−� =

� − 1
c0�

t� (3.7)

and

�(t)¿ c1t1=�

follows immediately.

Proof of Corollary 3.3. As above, we have

g(t)6
1
c

∫ t

0

ds∫ +∞
s e−c′y� dy

6 c1

∫ t

0
ec2s

�
ds6 c3ec4t

�
(3.8)

and the result follows.

4. Moderate deviations for the serial harness

The proofs of Lemmas 1.3 and 1.4 are based on the behavior of E(e*Yn(0)) for small
and large *, established in Lemmas 4.1 and 4.3 below.

Lemma 4.1. Let *n be a sequence of positive numbers such that

M*n := *n=
√
s(n)6 1: (4.1)

Then there exists a constant c such that for all 06 l6 n

E[e M*nYl(0)]6 ec*
2
n : (4.2)

Proof. For all 06 l6 n

E[e M*nYl(0)] =
l−1∏
r=0

∏
j∈Zd

E[e M*npr( j)
]6
l−1∏
r=0

∏
j∈Zd

ec
M*2npr( j)2

= exp{c*2ns(n)−1s(l)}6 ec*
2
n ;

where c=E(e
) and we have used that for a symmetric random variable W , if |*|6 1,
then

E(e*W )6 1 + E(eW )*26 eE(e
W )*2 (4.3)

and the fact that s(·) is nondecreasing.



184 P.A. Ferrari et al. / Stochastic Processes and their Applications 114 (2004) 175–190

Proof of Lemma 1.3.

P[Yl(0)¿K
√
s(n)log n] = P[ M*nYn(0)¿ log nc

′K ]6 n−c′KE[e M*nYn(0)];

where *n = c′′√log n, for an appropriate constant c′′, and Lemma 4.1 yields the
result.

For the proof of Lemma 1.4, we will use that in d¿ 3

s := lim
n→∞s(n)¡∞: (4.4)

We will also need the following converse of (4.3):

Lemma 4.2. If the distribution of W is in L−
� for some �¿ 1, then there exists a

constant c such that

E(e*W )6 ec*
+

(4.5)

for all *¿ 1, where + = �=(� − 1).

Proof. We have that

Ee*W 6 1 + c
∫ ∞

0
e*xe−c′x� dx = 1 + c1

∫ ∞

0
e*̃xe−x� dx; (4.6)

where *̃= *=c1=�. Now, we write the integral in (4.6) as∫ (2*̃)+−1

0
e*̃x dx +

∫ ∞

(2*̃)+−1
e*̃x−x� dx:

The former integral is bounded above by ec
′′′*+ . The latter one is bounded above by a

uniform constant.

Lemma 4.3. In d¿ 3, if the distribution of 
 is in L−
� for some �¿ 1, then there

exists a constant c such that for all large q

E(eqYn(0))6



ecq

+∨(1+2=d)
if � �= 1 + d=2;

ecq
1+2=dlog q if �= 1 + d=2;

(4.7)

where + = �=(� − 1) as before.

Proof.

E(eqYn(0))6
∞∏
k=0

∏
x∈Zd

E(eqpk (x)
)6
∏

k; x:qpk (x)¿1

ec(qpk (x))
+ ∏
k; x:qpk (x)61

ec(qpk (x))
2

= exp


c


 ∑
k; x:qpk (x)¿1

(qpk(x))+ +
∑

k; x:qpk (x)61

(qpk(x))2





 : (4.8)
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We now estimate the expression within square brackets in (4.8). If +¿ 2 or, equiva-
lently, 1¡�6 2, then that expression is bounded above by

q+
∑
k; x

p2
k(x) = q+s: (4.9)

For the case 1¡+¡ 2 (equivalently, �¿ 2), we use the well known estimate on
pk := supx∈Zdpk(x): there exists a constant C such that for all k¿ 1

pk6Ck−d=2 (4.10)

(see e.g. [18]) to conclude that the expression within square brackets in (4.8) is
bounded above by

q+
(Cq)2=d∑
k=0

p+−1
k + q2

∞∑
k=(Cq)2=d

pk6C′q+
(Cq)2=d∑
k=1

k−d(+−1)=2 + C′′q1+2=d (4.11)

for some constants C′; C′′. The result follows.

Proof of Lemma 1.4. Let Qn be a sequence of positive numbers such that Qn=o(log n)
and qn = (log n)=Qn. Then

P[Yl(0)¿KQn]6P[qnYl(0)¿K(log n)]6 n−KE(eqnYl(0)): (4.12)

We can thus use Lemma 4.3 for qn. Therefore, if 1¡� �= 1 + d=2, making Qn =
(log n)1=�∨2=(2+d), we have qn = (log n)1−(1=�∨2=(2+d)) = (log n)1=+∧d=(d+2) and thus, from
(4.7)

P[Yl(0)¿K(log n)1=�∨2=(2+d)]6 nc−K : (4.13)

If �=1+d=2, we make Qn=Ln(1+2=d), and thus qn=(log n)=Ln(1+2=d)=‘n(1+2=d).
From (4.7) and the deDnition of ‘n(1 + 2=d) (above (6.1) below)

P[Yl(0)¿KLn(1 + 2=d)]6 nc−K : (4.14)

For �= 1, we have

EeYn(0) =
∏
k; x

Eepk (x)
6 ec
∑

k; x p
2
k (x) = ecs; (4.15)

where we have used (4.3). Thus, we obtain that

P[Yn(0)¿K log n]6Cn−K :

5. Moderate deviations for the wall process

In this section we show Lemma 1.5. Introduce new processes W 0; r
n and Y 0; r

n , which
have the same evolution as Wn, respectively Yn, but are started at time zero at height
r ∈N. That is, W 0; r

0 (i) = Y 0; r
0 (i) = r, for all i∈Zd.
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Let

an =



2K(log n)1=�∨2=(2+d) for the extension of (1:17);

2KLn(1 + 2=d) for the extension of (1:18);

2K
√
s(n) log n; for the extension of (1:16):

(5.1)

Then

P[Wn(0)¿ an]6P[W 0; r
n (0)¿ an]

= P[W 0; r
n (0)¿ an;W 0; r

n (0) = Y 0; r
n (0)]

+P[W 0; r
n (0)¿ an;W 0; r

n (0) �= Y 0; r
n (0)]

6P[Y 0; r
n (0)¿ an] (5.2)

+P[W 0; r
n (0) �= Y 0; r

n (0)]: (5.3)

To get a bound for the probability in (5.2) of the form (1.16)–(1.18), we take r=an=2
and use (1.16)–(1.18).
The probability in (5.3) is treated as follows. Note that W 0; r

n (0) and Y 0; r
n (0) diLer

if a discrepancy occurs in the cone (v is the maximal speed of a discrepancy)

{(l; j)∈N0 × Zd : l6 n; |j|6 v(n − l)}; (5.4)

i.e.,

{Y 0; r
n (0) �= W 0; r

n (0)}= {Y 0; r
l (j)¡ 0 for some (l; j) with l6 n; |j|6 v(n − l)}:

Since Y 0; r
n (0) has the same law as Yn(0) + r and by symmetry, we have

P[Y 0; r
l (j)¡ 0] = P[Yl(j)¡−r] = P[Yl(j)¿r]: (5.5)

Hence,

P[Y 0; r
n (0)6W 0; r

n (0)] = P[∃ (l; j) with l6 n; |j|6 v(n − l) : Yl(j)¿r]

6
n∑

l=0

∑
|j|6v(n−l)

P[Yl(j)¿r]:

Taking r = an=2 as before and using (1.16)–(1.18), we obtain

P[Y 0; r
n (0) �= W 0; r

n (0)]6 knc−c′K
n∑

l=0

∑
|j|6v(n−l)

16 k ′nc
′′−c′K (5.6)

for some k ′; c′′.

6. Bounds for the wall process

For /¿ 1, deDne ‘n(/) as the solution of x/ log x = log n, and let

Ln(/) = (log n)=‘n(/): (6.1)
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Note that

(log n)1−1=/6Ln(/)6 (log n)1−1=/(log log n)1=/ for all n: (6.2)

Theorem 6.1. Suppose that the distribution of 
 belongs to L−
� for some �¿ 1. If

d¿ 3, then there exists c3 = c3(�; d)¿ 0 such that

(i) if 16 � �= 1 + d=2, then

�n6 c3(log n)1=�∨2=(2+d); (6.3)

(ii) if �= 1 + d=2, then for all 0¿ 0 we have

�n6 c3Ln(1 + 2=d); (6.4)

If d= 2, then there exists c3 such that

�n6 c3 log n: (6.5)

Remark 6.2. From (6.4) and (6.2), a slightly weaker alternative to (6.4) is

�n6 c3(log n)2=(2+d)(log log n)d=(2+d): (6.6)

We now restrict attention to the class of exponentially decaying noise distributions.
When the noise distribution is in L�, �¿ 1, the results in Corollary 3.3 and Theorem
6.1 are our best explicit bounds (to leading order) for d¿ 3 and d = 2; 16 �6 2.
For d= 1; �¿ 1 and d= 2; �¿ 2, we have better bounds, which we discuss now.

Theorem 6.3. If the distribution of 
 is in L−
1 , then for d6 2, there exist constants

c; C ¿ 0 such that

c
√
s(n)6 �n6C

√
s(n)log n; (6.7)

where s(n) is de<ned in (1.5). In particular

(i) for d= 1

cn1=46 �n6Cn1=4
√
log n; (6.8)

(ii) for d= 2

c
√
log n6 �n6C log n: (6.9)

Remark 6.4. The lower bound in (6.7) actually holds under the weaker assumption
that E(
2)¡∞. See Remark 6.7 below.

We prove Drst the lower bound (6.7). The Drst step is to calculate the variance of
the serial harness, which will give us the proper scaling. From (1.3) we get (this is
already contained in Hammersley [13]) E Yn(0) = 0 and E Yn(0)2 = �2s(n).
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The correct scaling for the serial harness is therefore s(n)1=2, and we deDne accord-
ingly

Ỹ n(0) ≡ s(n)−(1=2)Yn(0): (6.10)

Analogously we deDne W̃ n(0) for the wall process. We now show that Ỹ n(0) is uni-
formly integrable (with respect to n).

Lemma 6.5. The process (Ỹ n(0))n satis<es supn E(e|Ỹ n(0)|)¡∞.

Proof. By symmetry of the 
, E(e|Ỹ n(0)|)6 2E(eỸ n(0))6 2ec, where the last inequality
follows from Lemma 4.1 with *n ≡ 1.

From Lemma 6.5 it follows immediately that s(n)−1Yn(0)2 is uniformly integrable.

Lemma 6.6. There exists a constant c¿ 0 such that for all n

E|Ỹ n(0)|¿c: (6.11)

Proof. Clearly, for any positive M

E[Ỹ n(0)2] = E[Ỹ n(0)21{|Ỹ n(0)|¿M}] + E [Ỹ n(0)21{{|Ỹ n(0)|6M}}]
6 E [Ỹ n(0)21{|Ỹ n(0)|¿M}] +ME[|Ỹ n(0)|]: (6.12)

Since Ỹ n(0)2 is uniformly integrable, for each 0¿ 0 we can choose M ¿ 0 such that

E [Ỹ n(0)21{|Ỹ n(0)|¿M}]¡0 (6.13)

uniformly in n. Thus

E [|Ỹ n(0)|]¿ E [Ỹ n(0)2]− 0
M

=
�2 − 0
M

¿c¿ 0 (6.14)

for some 0¿ 0.

We Dnally prove the result about the wall process by coupling it with the serial
harness using the same disorder variables E. By symmetry

E [|Ỹ n(0)|] = E [(Ỹ n(0))+] + E [(−Ỹ n(0))+] = 2E [(Ỹ n(0))+]: (6.15)

On the other hand, by construction, W̃ n(0)¿ (Ỹ n(0))+, and therefore,

E [W̃ n(0)]¿ E [(Ỹ n(0))+]¿
1
2
E [|Ỹ n(0)|]¿ c′ ¿ 0: (6.16)

This proves the lower bound (6.7).
The upper bounds (6.3)–(6.5) and (6.9) follow from Lemma 1.5 in the same, fol-

lowing way. Let an be as in (5.1) and bn = an=(2K). Then

�n=bn = E[Wn(0)=bn] =
∫ ∞

0
P(Wn(0)¿Kbn) dK

6 c=c′ + k
∫ ∞

c=c′
nc−c′K dK6C

for some constant C.
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Remark 6.7. The lower bound in (6.7) actually holds under the weaker assumption
that E(
2)¡∞, since this is enough to have Ỹ n(0)2 uniformly integrable.
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