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Abstract

By using absolutely continuous lower bounds of the Lévy measure, explicit gradient estimates are
derived for the semigroup of the corresponding Lévy process with a linear drift. A derivative formula is
presented for the conditional distribution of the process at time t under the condition that the process jumps
before t . Finally, by using bounded perturbations of the Lévy measure, the resulting gradient estimates are
extended to linear SDEs driven by Lévy-type processes.
c⃝ 2010 Elsevier B.V. All rights reserved.
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1. Introduction

It is well-known that a Lévy process can be decomposed into two independent parts, i.e. the
diffusion part and the jump part. If the diffusion part is non-degenerate, regularity properties for
the semigroup of the Brownian motion can be easily confirmed for the Lévy semigroup. On the
other hand, when the Lévy process is a pure jump, existence and regularities of the transition
density have been derived by using conditions on the symbol or the Lévy measure (see [10–12]
and references within); see also [5,9] for heat kernel upper bounds for α-stable processes with

✩ Supported in part by WIMCS, SRFDP.
∗ Corresponding address: School of Mathematical Sci. and Lab. Math. Com. Sys., Beijing Normal University, Beijing

100875, China.
E-mail addresses: wangfy@bnu.edu.cn, F.Y.Wang@swansea.ac.uk.

0304-4149/$ - see front matter c⃝ 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.spa.2010.12.002

http://dx.doi.org/10.1016/j.spa.2010.12.002
http://www.elsevier.com/locate/spa
mailto:wangfy@bnu.edu.cn
mailto:F.Y.Wang@swansea.ac.uk
http://dx.doi.org/10.1016/j.spa.2010.12.002


F.-Y. Wang / Stochastic Processes and their Applications 121 (2011) 466–478 467

drifts. As a continuation to the recent work [15], where the coupling property and applications
are studied by using absolutely continuous lower bounds of the Lévy measure, this note aims to
derive gradient estimates of the Lévy semigroup in the same spirit.

Let L t be the Lévy process on Rd with symbol (see e.g. [1])

η(u) = i⟨u, b⟩ − ⟨Qu, u⟩ +

∫
Rd


ei⟨u,z⟩

− 1 − i⟨u, z⟩1{|z|<1}


ν(dz),

where b ∈ Rd , Q is a non-negatively definite d × d matrix, and ν is a Lévy measure on Rd .
In references the Lévy symbol is also called the characteristic exponent or the Lévy exponent,
and in e.g. [8], −η rather than η is called the Lévy symbol. It is well known that L t is a strong
Markov process on Rd generated by

L f := ⟨b, ∇ f ⟩ + Tr(Q∇
2 f ) +

∫
Rd


f (z + ·) − f − ⟨∇ f, z⟩1{|z|≤1}


ν(dz) (1.1)

for f ∈ C2
b(Rd).

Let Pt be the semigroup for the solution of the linear stochastic differential equation

dX t = AX t dt + dL t , (1.2)

where A is a d × d matrix. According to [4], we have

Pt f (x) =

∫
Rd

f (et Ax + y)µt (dy), (1.3)

where µt is the probability measure on Rd with characteristic function

µ̂t (z) = exp
[∫ t

0
η(es A∗

z)ds

]
, z ∈ Rd . (1.4)

Let Bb(Rd) be the set of all bounded measurable functions on Rd . We shall estimate ‖∇ Pt f ‖∞,
the uniform norm of the gradient ∇ Pt f , for t > 0 and f ∈ Bb(Rd). When the Lévy measure
is finite, with a positive probability the process does not jump before a fixed time t > 0. So, in
this case, the semigroup is not strong Feller and thus, does not have a finite uniform gradient
estimate. Therefore, to derive the uniform gradient estimate, it is essential to assume that ν is
infinite. Since ν is always finite outside a neighborhood of 0, the behavior of ν around the origin
will be crucial for the study.

We will make use of the following lower bound condition of ν:

ν(dz) ≥ |z|−d S(|z|−2)1{|z|<r0}dz, (1.5)

where r0 ∈ (0, ∞] is a constant and S is a Bernstein function with S(0) = 0. Let

c0 =

∫
{|z|≤e−‖A‖}

(1 − cos z1)|z|
−ddz,

λ0 =

∫
Rd

(r0 ∨ |z|)−d S((r0 ∨ |z|)−2)dz,

where z1 stands for the first coordinate of z, and ‖A‖ is the operator norm of A. We have
c0 ∈ (0, ∞). Since S(r) ≤ cr holds for some constant c ∈ (0, ∞), we have λ0 < ∞. In
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particular, if r0 = ∞ then λ0 = 0. We will estimate ‖∇ Pt f ‖∞ by using the upper bound of A
and the function

α(t) :=

∫
∞

0

1
√

r
e−t S(r)dr, t > 0.

Obviously, if limr→∞
S(r)
log r = ∞ then α(t) < ∞ for all t > 0.

Theorem 1.1. Let (1.5) hold and let c0, λ0, α(t) be defined above, let θ ∈ R be such that
A ≤ −θ I . Then there exists a constant c1 ∈ (0, ∞) depending only on d and θ such that

‖∇ Pt f ‖∞ ≤ ‖ f ‖∞c1eλ0(t∧1)−θ+t

α(c0(t ∧ 1)) +

(t ∧ 1)S(r−2
0 )

r0


(1.6)

holds for any t > 0 and f ∈ Bb(Rd). If moreover A = 0, then there exists c1 depending on d
such that

‖∇ Pt f ‖∞ ≤ ‖ f ‖∞eλ0t


1
√

2π
α(c0t) +

c1(1 − e−tλ0)S(r−2
0 )

r0λ0


(1.7)

holds for any t > 0 and f ∈ Bb(Rd), where λ0 =
1−e−tλ0

r0λ0
= 0 for r0 = ∞.

Now, we consider the gradient estimate for the semigroup associated to the linear SDE driven
by a Lévy-type process. Let σ(x, dy) be a signed kernel on Rd , i.e. for each x ∈ Rd , σ(x, ·) is
a signed measure while for each measurable set A, σ(·, A) is a measurable function. We call σ

bounded if

‖σ‖∞ := sup
x∈Rd

|σ(x, ·)|(Rd) < ∞.

Let L+σ
t be the Lévy-type process with jump measure

q(x, dz) := ν(dz − x) + σ(x, dz)

for a bounded σ . In other words, there exist b ∈ Rd and non-negatively definite d × d-matrix Q
such that L+σ

t is generated by

L +σ f (x) = L f (x) +

∫
Rd


f (z) − f (x)


σ(x, dz) =: L f (x) + σ f (x) (1.8)

for f ∈ C2
b(Rd), where L is in (1.6). Let P+σ

t be the semigroup associated to the linear SDE

dX t = AX t dt + dL+σ
t .

Combining Theorem 1.1 with a standard perturbation argument, we prove the following result
on the gradient estimate of P+σ

t .

Corollary 1.2. If (1.5) holds for some S such that
 1

0 α(t)dt < ∞, then there exists a constant
c ∈ (0, ∞) such that

‖∇ P+σ
t f ‖∞ ≤ c


α(c0(t ∧ 1)) + ‖σ‖∞


‖ f ‖∞, t > 0, f ∈ Bb(Rd)

holds for any bounded σ .
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To illustrate our results, we consider below two typical choices of S.

Example 1.3. (1) If ν(dz) ≥ c|z|−d−α1{|z|≤r0} for some c, r0 > 0 and α ∈ (0, 2), then

‖∇ Pt f ‖∞ ≤
c′

(t ∧ 1)1/α
e−θ+t

‖ f ‖∞, t > 0, f ∈ Bb(Rd)

holds for some constant c′
∈ (0, ∞). If α ∈ (1, 2), then there exists a constant c ∈ (0, ∞) such

that

‖∇ P+σ
t f ‖∞ ≤ c‖ f ‖∞

 1

(t ∧ 1)1/α
+ ‖σ‖∞


, t > 0, f ∈ Bb(Rd)

holds for any bounded σ .
(2) If ν(dz) ≥ c|z|−d log1+ε(1 + |z|−2)1{|z|≤r0} for some c, r0, ε > 0, then

‖∇ Pt f ‖∞ ≤ c1‖ f ‖∞ exp[c2t−1/ε
− θ+t], t > 0, f ∈ Bb(Rd)

holds for some constants c1, c2 ∈ (0, ∞).

Note that for the α-stable process one has (see Corollary 2.2(2) below for a more general
result)

sup
‖ f ‖∞≤1

‖∇ Pt f ‖∞ ≥
c

t1/α

for some constant c > 0. Thus, the upper bound in Example 1.3(1) is sharp.
The main idea of the proof is to compare the process with the S-subordinate semigroup of

the Brownian motion. To this end, we shall study in the next section the gradient estimate for
subordinate semigroups. We will see that to compare the original semigroup with the subordinate
semigroup, the error term is given by the conditional distribution of a compound Poisson process
under the condition that the process jumps before time t . Thus, in Section 3 we will study the
gradient estimate for the corresponding conditional distribution for compound Poisson processes.
In this case, a derivative formula is presented. By combining results derived in Sections 2 and
3, we prove Theorem 1.1 in Section 4. Finally, the proofs of Corollary 1.2 and Example 1.3 are
addressed in Section 5.

2. Gradient estimates for subordinate semigroups

This section is a counterpart of the recent work [7] where a dimension-free Harnack inequality
is investigated for subordinate semigroups, see e.g. [14] and references within for potential theory
and historical remarks on subordinations of the Brownian motion.

Let (E, ρ) be a Polish space. For a function f on E , define

|∇ f |(x) := lim sup
y→x

| f (y) − f (x)|

ρ(x, y)
, x ∈ E .

Let P0
t be a (sub-)Markov semigroup on Bb(E) such that for some positive function ϕ on (0, ∞),

|∇ P0
t f | ≤ ‖ f ‖∞ϕ(t), t > 0, f ∈ Bb(E) (2.1)

holds. We intend to estimate the gradient of a subordinate semigroup P S
t of P0

t induced by a
Bernstein function S. More precisely, for any t ≥ 0 let µS

t be the probability measure on [0, ∞)
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with the Laplace transformation∫
∞

0
e−λsµS

t (ds) = e−t S(λ), λ ≥ 0. (2.2)

Then the S-subordination of P0
t is given by

P S
t =

∫
∞

0
P0

s µS
t (ds), t ≥ 0. (2.3)

The following assertion follows immediately from (2.3) and the dominated convergence theorem.

Theorem 2.1. If (2.1) holds with


∞

0 ϕ(s)µS
t (ds) < ∞, then

|∇ P S
t f | ≤ ‖ f ‖∞

∫
∞

0
ϕ(s)µS

t (ds), f ∈ Bb(E).

In particular, we have the following explicit gradient estimates by using known results on
diffusion semigroups.

Corollary 2.2. (1) Let E be a complete connected Riemannian manifold and P0
t be the diffusion

semigroup generated by 1 + Z for a vector field Z on E such that

Ric − ∇Z ≥ 0

holds. Then

‖∇ P S
t f ‖∞ ≤

‖ f ‖∞
√

2π

∫
∞

0

1
√

r
e−t S(r)dr, t > 0, f ∈ Bb(E).

(2) Let P0
t be generated by 1 on Rd . We have

sup
‖ f ‖∞≤1

‖∇ P S
t f ‖∞ ≥

1
√

2 π

∫
∞

0

1
√

r
e−t S(r)dr.

Proof. (1) It is well-known that the curvature condition implies (cf. [2])

P0
t f 2

− (P0
t f )2

≥ t |∇ P0
t f |

2.

This implies that

‖∇ P0
t f ‖∞ ≤

1
√

t
‖ f ‖∞.

Then the proof of (1) is finished by combining this with Theorem 2.1 and noting that∫
∞

0

µS
t (ds)
√

s
=

∫
∞

0

1
√

2π

∫
∞

0

1
√

r
e−rsdrµS

t (ds)

=
1

√
2π

∫
∞

0

1
√

r

∫
∞

0
e−rsµS

t (ds) dr =
1

√
2π

∫
∞

0
r−1/2e−t S(r)dr.

(2) Let P0
t be generated by 1 on Rd . We have

P0
s f (x) =

1

(4πs)d/2

∫
Rd

e−|x−y|
2/(4s) f (y)dy.
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Take

f (x) = 1[0,∞)(x1) − 1(−∞,0)(x1).

We have ‖ f ‖∞ = 1 and

P0
s f (x) =

1

2
√

πs

∫
∞

0
e−(r−x1)

2/(4s)dr −

∫ 0

−∞

e−(r−x1)
2/(4s)dr


=

1

2
√

πs

∫
∞

−x1

e−r2/(4s)dr −

∫
−x1

−∞

e−r2/(4s)dr


.

So,

d
dx1

P0
s f (x) =

1
√

πs
e−x2

1/(4s)
≤

1
√

πs
, s > 0, x ∈ Rd .

Combining this with (2.3) and using the dominated convergence theorem, we arrive at

d
dx1

P S
t f (x)


x=0

=
1

√
π

∫
∞

0

1
√

s
µS

t (ds) =
1

√
2 π

∫
∞

0

1
√

r
e−t S(r)dr. �

3. A derivative formula

Let ν(dz) ≥ ρ0(z)dz =: ν0(dz) for some non-negative measurable function ρ0 on Rd such
that

λ0 :=

∫
Rd

ρ0(z)dz ∈ (0, ∞). (3.1)

Let (L0
t )t≥0 be the compound Poisson process with Lévy measure ν0. Then L0

t can be realized
as

L0
t =

Nt−
i=1

ξi , t ≥ 0, (3.2)

where Nt is the Poisson process with rate λ0 and {ξi } are i.i.d. random variables on Rd which
are independent of (Nt )t≥0 and have common distribution ν0/λ0. Here, we set

∑0
i=1 ξi = 0

by convention. Let (L1
t )t≥0 be the Lévy process which is independent of (L0

t )t≥0 and has Lévy
measure ν − ν0, such that

L t := L1
t + L0

t , t ≥ 0 (3.3)

is the Lévy process with symbol η. As we explained in the Introduction, to ensure the strong
Feller property for a jump process, it is essential to restrict on the event that the process jumps
before a fixed time. Thus, instead of Pt , it is natural for us to investigate the gradient estimate for
P1

t defined by

P1
t f (x) = E


f (X x

t )1{Nt ≥1}


, f ∈ Bb(Rd), t > 0,

where X x
t solves (1.2) with initial data x . The following result provides a derivative formula for

this operator, which can be regarded as the jump counterpart of the Bismut–Elworthy–Li formula
for diffusion processes [3,6].
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Theorem 3.1. Let ρ0 be non-negative and differentiable such that ν(dz) ≥ ρ0(z)dz, λ0 :=
Rd ρ0(z)dz ∈ (0, ∞), and∫

Rd


sup

x :|x−z|≤ε

|∇ρ0|(x)


dz < ∞ (3.4)

holds for some ε > 0. Then for any t > 0 and f ∈ Bb(Rd),

∇ P1
t f (x) = −E


f (X x

t )1{Nt ≥1}

1
Nt

Nt−
i=1

eA∗τi ∇ log ρ0(ξi )

, (3.5)

where τi is the i-th jump time of (Nt )t≥0 and A∗ is the transposition of A. Consequently, if
A ≤ −θ I then

‖∇ P1
t f ‖∞ ≤ ‖ f ‖∞

eθ−t (1 − e−λ0t )

λ0

∫
Rd

|∇ρ0|(z)dz, t > 0, f ∈ Bb(Rd).

Proof. We shall make use of a formula for random shifts of the compound Poisson process
derived in [15]. Let Λ(dw) be the distribution of L0

:= (L0
t )t≥0 which is a probability measure

on the path space

W =

 ∞−
i=1

xi 1[ti ,∞) : i ∈ N, xi ∈ Rd
\ {0}, 0 ≤ ti ↑ ∞ as i ↑ ∞


equipped with the σ -algebra induced by {w → wt : t ≥ 0}.

Let (τ, ξ) be a [0, t]×Rd -valued random variable such that the joint distribution of (L0, τ, ξ)

is

g(w, s, z)Λ(dw)dsν0(dz).

Let 1wt = wt − wt− and

U (w) =

−
1wt ≠0

g(w − 1wt 1[t,∞), t, 1wt ).

By [15, Corollary 2.3], for any bounded measurable function F on the path space of L0, one has

E

F1{U>0}


(L0) = E

 F1{U>0}

U


(L0

+ ξ1[τ,∞)). (3.6)

Now, let (τ, ξ) be independent of (L1
t , L0

t )t≥0 with distribution

1
tλ0

1[0,t](s)dsν0(dz).

We have g(w, s, z) =
1

λ0t 1[0,t](s). Since τ is independent of L0 so that with probability one

τ (≤ t) is not a jump time of L0, and since ξ ≠ 0 a.s., we have

U (L0
+ ξ1[τ,∞)) =

Nt + 1
λ0t

.

Since Yt :=
 t

0 e(t−s)AdL1
s is independent of

eAt x +

∫ t

0
eA(t−s)dL0

s ,
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it follows from (3.6) that for any z0 ∈ Rd and ε ∈ (−1, 1),

P1
t f (x + εz0) = E


f


Yt + eAt (x + εz0) +

∫ t

0
eA(t−s)dL0

s


1{Nt ≥1}


= λ0tE


f

Yt + eAt (x + εz0) +

 t
0 eA(t−s)d{L0

+ ξ1[τ,∞)}s


Nt + 1


= λ0tE


f

Yt + eAt x +

 t
0 eA(t−s)d{L0

+ (ξ + εeAτ z0)1[τ,∞)}s


Nt + 1


. (3.7)

On the other hand, since the joint distribution of (L0, τ, ξ + εeAτ z0) is

1
λ0t

1[0,t](s)
ρ0(z − εeAs z0)

ρ0(z)
Λ(dw)dsν0(dz),

(3.6) holds for ξ ′
:= ξ + εeτ Az0 in place of ξ with

U (L0) =
1

λ0t

Nt−
i=1

ρ0(ξi − εeτi Az0)

ρ0(ξi )
.

Consequently, for any F ≥ 0, using FU in place of F in (3.6) one obtains

E


F(L0)U (L0)1{Nt ≥1}


= EF(L0

+ ξ ′1[τ,∞)).

Taking nt (w) =
∑

s≤t 1{1ws≠0} and

F(w) =
f

z +

 t
0 e(t−s)Adws


nt (w)

1{nt (w)≥1}, w ∈ W

for z ∈ Rd , we arrive at

1
λ0t

E


f


z +

∫ t

0
e(t−s)AdL0

s


1{Nt ≥1}

Nt

Nt−
i=1

ρ0(ξi − εeAτi z0)

ρ0(ξi )



= E


f

z +

 t
0 eA(t−s)d{L0

+ (ξ + εeAτ z0)1[τ,∞)}s


Nt + 1


, z ∈ Rd .

Combining this with (3.7), we obtain

P1
t f (x + εz0) = E


f (X x

t )1{Nt ≥1}

1
Nt

Nt−
i=1

ρ0(ξi − εeAτi z0)

ρ0(ξi )


.

Therefore, for any ε ≠ 0 we have

P1
t f (x + εz0) − P1

t f (x)

ε
= E


f (X x

t )1{Nt ≥1}

1
Nt

Nt−
i=1

ρ0(ξi − εeAτi z0) − ρ0(ξi )

ερ0(ξi )


. (3.8)

Noting that for i ≤ Nt one has τi ≤ t so that eAτi z0 is bounded, and noting that for each i one
has

lim
ε↓0

ρ0(ξi − εeAτi z0) − ρ0(ξi )

ερ0(ξi )
= −⟨eAτi z0, ∇ log ρ0(ξi )⟩ = −⟨z0, eA∗τi ∇ log ρ0(ξi )⟩,
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by (3.4) we are able to use the dominated convergence theorem to derive (3.5) by letting ε → 0
in (3.8). �

4. Proof of Theorem 1.1

4.1. Proof of (1.7) for A = 0

We shall first consider the case where r0 = ∞ then pass to finite r0 by using Theorem 3.1.
(I) For r0 = ∞, i.e.

ν(dz) ≥ |z|−d S(|z|−2)dz. (4.1)

Then

η1(u) :=

∫
Rd


ei⟨u,z⟩

− 1 − i⟨u, z⟩1{|z|<1}


|z|−d S(|z|−2)dz

η2(u) := η(u) − η1(u)

= i⟨u, b⟩ − ⟨Qu, u⟩ +

∫
Rd


ei⟨u,z⟩

− 1 − i⟨u, z⟩1{|z|<1}


ν(dz) − |z|−d S(|u|

2)dz


provide two Lévy symbols. Noting that S(|z|−2) ≥ 1{|z|≤|u|−1}S(|u|
2) and

−

∫
{|z|≤|u|−1}


ei⟨u,z⟩

− 1 − i⟨u, z⟩1{|z|<1}


|z|−ddz =

∫
{|z|≤|u|−1}

(1 − cos⟨u, z⟩)|z|−ddz

=

∫
{|z|≤1}


1 − cos

 u

|u|
, z


|z|−ddz

=

∫
{|z|≤1}

(1 − cos z1)|z|
−ddz = c0 ∈ (0, ∞),

we see that

u → η(u) + c0S(|u|
2)

= η2(u) +

∫
Rd


ei⟨u,z⟩

− 1 − i⟨u, z⟩1{|z|<1}


|z|−d

S(|z|−2) − S(|u|
2)1{|z|≤|u|−1}


dz

is also a Lévy symbol. Let P S
t be the semigroup of the Lévy process with Lévy symbol

−c0S(| · |
2), and let P̃ S

t be the one with Lévy symbol η + c0S(| · |
2). We have

Pt = P S
t P̃ S

t . (4.2)

Since P S
t is the c0S-subordination of the semigroup generated by 1 on Rd , according to

Corollary 2.2 for E = Rd and Z = 0,

‖∇ P S
t f ‖∞ ≤ ‖ f ‖∞

∫
∞

0

1
√

2πr
e−c0t S(r)dr =

1
√

2π
α(c0t)‖ f ‖∞. (4.3)

Combining this with (4.2) we derive

‖∇ Pt f ‖∞ ≤
1

√
2π

α(c0t)‖ f ‖∞. (4.4)

Thus, the desired assertion holds if r0 = ∞.
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(II) For r0 ∈ (0, ∞). Take

ρ0(z) = (r0 ∨ |z|)−d S((r0 ∨ |z|)−2).

Then

ν̄(dz) := ν(dz) + ρ0(z)dz ≥ |z|−d S(|z|−2)dz. (4.5)

Let L̄0
t be the compound Poisson process with Lévy measure ρ0(z)dz, and let

P̄1
t f (x) = E


1{τ̄1≤t} f (x + L̄0

t )

,

where τ̄1 is the first jump time of L̄0
t . Let L t be the Lévy process with Lévy symbol η which is

independent of L̄0
t . Then L̄ t := L t + L̄0

t is the Lévy process with Lévy symbol

u → η(u) +

∫
Rd

(cos⟨u, z⟩ − 1)ρ0(z)dz.

Therefore,

P̄t f (x) := E f (x + L̄ t )

= E


f (x + L t )1{τ̄1>t}


+ E


f (x + L t + L̄0
t )1{τ̄1≤t}


= e−λ0t Pt f (x) + P̄1

t Pt f (x).

This implies that

Pt f (x) = eλ0tP̄t f − P̄1
t Pt f )(x). (4.6)

According to (4.5) and (I), (4.4) holds for P̄t in place of Pt , i.e.

‖∇ P̄t f ‖∞ ≤
1

√
2π

α(c0t)‖ f ‖∞. (4.7)

On the other hand, we have

|∇ρ0(z)| ≤ 1{|z|≥r0}


d|z|−d−1S(r−2

0 ) + 2|z|−d−3S′(|z|−2)

.

Since S′ is decreasing, S is increasing and S(0) = 0, from this we may find a constant c
depending only on d such that∫

Rd


sup

x :|x−z|<r0/2
|∇ρ0(x)|


dz ≤ c

∫
∞

r0

r−2S(r−2
0 ) + r−2S′(r−2/4)


dr

= c
∫

∞

r0

 S(r−2
0 )

r2 −
2
r

d
dr

S(r−2/4)


dr ≤
c

r0
S(r−2

0 ) +
2c

r0
S(r−2

0 /4) ≤
3c

r0
S(r−2

0 ).

Therefore, it follows from Theorem 3.1 with θ = 0 that

‖∇ P̄1
t f ‖∞ ≤

3cS(r−2
0 )(1 − e−λ0t )

r0λ0
‖ f ‖∞

≤
3cS(r−2

0 )t

r0
‖ f ‖∞, t > 0. (4.8)

Combining this with (4.6) and (4.7) we obtain the desired gradient estimate (1.7).
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4.2. Proof of (1.6) for A ≠ 0

(III) We first observe that it suffices to prove (1.6) for t ∈ (0, 1]. Assume that (1.6) holds for
t ∈ (0, 1]. By the semigroup property we have

|∇ Pt f | ≤ |∇ Pt∧1(P(t−1)+ f )| ≤ c1α(c0(t ∧ 1))‖ f ‖∞, t > 0

for some constant c0, c1 ∈ (0, ∞). So, the desired inequality (1.6) holds for θ ≤ 0. Next, since
A ≤ −θ I implies that |X x

t − X y
t | ≤ e−θ t

|x − y|, we have

|Pt f (x) − Pt f (y)|

|x − y|
≤

|EP1 f (X x
t−1) − EP1 f (X y

t−1)|

|x − y|

≤ e−θ(t−1)E


|P1 f (X x
t−1) − P1 f (X y

t−1)|

|X x
t−1 − X y

t−1|


.

Letting y → x and using the assertion for t = 1 and the dominated convergence theorem, we
arrive at

|∇ Pt f (x)| ≤ e−θ(t−1)
|∇ P1 f (X x

t−1)| ≤ c1e−θ(t−1)α(c0(t ∧ 1))‖ f ‖∞, t > 1.

That is, (1.6) holds also for t > 1 with a different constant c1.

(IV) For r0 = ∞ and t ∈ (0, 1]. Let

η1(u) =

∫
Rd


ei⟨u,z⟩

− 1 − i⟨u, z⟩1{|z|<1}


|z|−d S(|z|−2)dz

=

∫
Rd


cos⟨u, z⟩ − 1


|z|−d S(|z|−2)dz,

and η2 = η − η1. By (4.1), both η1 and η2 are Lévy symbols. We have

η1(es A∗

u) + c0S(|u|
2) =

∫
Rd


cos⟨z, es A∗

u⟩ − 1

|z|−d S(|z|−2)dz + c0S(|u|

2)

=

∫
Rd


cos


z,

es A∗

u

|es A∗u|


− 1


|z|−d S(|z|−2

|es A∗

u|
2)dz + c0S(|u|

2)

=

∫
Rd


cos z1 − 1


|z|−d

S(|z|−2
|es A∗

u|
2) − S(|u|

2)1{|z|≤e−‖A‖}


dz

=

∫
Rd


ei⟨u,z⟩

− 1 − i⟨u, z⟩1{|z|<1}


|z|−d

S(|z|−2
|es A∗

u|
2) − S(|u|

2)1{|z|≤e−‖A‖}


dz.

Since for s ∈ [0, 1]

S(|z|−2
|es A∗

u|
2) ≥ S(|u|

2)1{|u|≤e−‖A‖},

this implies that

u → η1(es A∗

u) + c0S(|u|
2)

is a Lévy symbol. In particular, there exists a probability measure πt on Rd with log-characteristic
function

log π̂t (u) =

∫ t

0
η(es A∗

u)ds + tc0S(|u|
2)
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=

∫ t

0
η2(es A∗

u)ds +

∫ t

0


η1(es A∗

u)ds + c0S(|u2
|)

ds.

Now, letting P S
t be the semigroup for the Lévy process with Lévy symbol −c0S(|·|2), and letting

P̃t f (x) =

∫
Rd

f (x + z)πt (dz),

we obtain from (1.3), (1.4) and the definition of πt that

Pt f (x) = P S
t P̃t f (et Ax).

Combining this with (4.3) we obtain

‖∇ Pt f ‖∞ ≤ ‖ f ‖∞α(c0t).

(V) For t ∈ (0, 1] and r0 ∈ (0, ∞). Let ρ0, L̄0
t and L̄ t be in (II). Let

P̄1
t f (x) = E


f


et Ax +

∫ t

0
e(t−s)AdL̄0

s


1{τ̄1≤t}


,

P̄t f (x) = E f


et Ax +

∫ t

0
e(t−s)AdL̄s


.

Then (4.6) holds. Since (4.1) holds for ν̄ in place of ν, according to (IV) and the argument leading
to (4.8) using Theorem 3.1, there exists a constant c ∈ (0, ∞) depending only on d and θ such
that

‖∇ P̄t‖∞ ≤ ‖ f ‖∞α(c0t), ‖∇ P̄1
t f ‖∞ ≤

cS(r−2
0 )t

r0
‖ f ‖∞.

Combining this with (4.6) we derive the desired gradient estimate (1.6).

5. Proofs of Corollary 1.2 and Example 1.3

Proof of Corollary 1.2. Since the gradient estimate ‖∇ P+σ
t f ‖∞ ≤ c(t)‖ f ‖∞ is equivalent to

|P+σ
t f (x) − P+σ

t f (y)| ≤ c(t)‖ f ‖∞|x − y|, x, y ∈ Rd ,

by the monotone class theorem it suffices to prove for f ∈ C2
b(Rd). By (1.8), in this case we

have

d
ds

Ps P+σ
t−s f = Ps(L − L +σ )P+σ

t−s f = −Ps(σ P+σ
t−s f ), s ∈ [0, t].

Consequently,

P+σ
t f = Pt f +

∫ t

0
Ps(σ P+σ

t−s f )ds.

Combining this with Theorem 1.1, we finish the proof. �

Proof of Example 1.3. (1) follows immediately from Theorem 1.1 and Corollary 1.2 by taking
S(r) = crα/2. To prove (2), we take

Sε(r) = log1+ε(1 + r1/(1+ε)).
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According to [13], for any Bernstein function S and any δ > 1, r → Sδ(r1/δ) is again a Bernstein
function. In this case we have

ν(dz) ≥ c1{|z|≤r0∧1}|z|
−d Sε(|z|

−2)dz.

Then the desired gradient estimate follows immediately from Theorem 1.1. �
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