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Abstract

This paper provides a novel proof for the sufficiency of certain well-known criteria that guarantee
the martingale property of a continuous, nonnegative local martingale. More precisely, it is shown that
generalizations of Novikov’s condition and Kazamaki’s criterion follow directly from the existence of
Föllmer’s measure. This approach allows to extend well-known criteria of martingality from strictly positive
to only nonnegative, continuous local martingales.
c⃝ 2012 Elsevier B.V. All rights reserved.

Keywords: Local martingale; Stochastic exponential; Föllmer’s measure; Uniform integrability; Lower function; Bessel
process

1. Introduction

Fix a continuous, nonnegative local martingale Z L of the form Z L
= E(L) := exp(L−⟨L⟩/2)

on some filtered probability space (Ω ,F, {Ft }t≥0,P). Here, L denotes another continuous local
martingale on [0, T0) with L0 = 0, where T0 is the first hitting time of zero by Z L . The
stopping time T0 is also the first hitting time of infinity by the quadratic variation ⟨L⟩, as we
will demonstrate below. We refer the reader to Section 2.1 for the precise definition of a local
martingale on a stochastic interval [0, T0).
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We are interested in establishing sufficient conditions that guarantee that Z L is a (uniformly
integrable) martingale, namely, that Z L satisfies Z L

t = E[Z L
T |Ft ] for some fixed time horizon

T ∈ [0,∞]. Towards this end, let T denote the set of all stopping times τ for which there exists
some nτ ∈ N with τ ≤ (T − 1/nτ )∧ nτ . Then, in Section 2, we shall prove the following result:

Theorem 1 (Abstract Version of the Novikov–Kazamaki Conditions). Let f : R × [0,∞) →

[0,∞) denote a continuous function such that

lim sup
t↑∞

f (Bt + t, t) · exp


−Bt −
t

2


= ∞

almost surely for some (and thus, for any) Brownian motion B. If

sup
τ∈T


E


f (Lτ , ⟨L⟩τ )1{Z L
τ >0}


< ∞, (1)

then Z L is a (uniformly integrable) martingale on [0, T ].

Theorem 1 applied to f (x, y) = exp(y/2) now directly implies the sufficiency of

E


exp


1
2
⟨L⟩T


< ∞

(Novikov’s condition) and, applied to f (x, y) = exp(x/2), the sufficiency of

sup
τ∈T

E


exp


1
2

Lτ


< ∞ (2)

(Kazamaki’s criterion) for the uniform integrability and martingale property of a strictly positive
local martingale Z L . Both these criteria can be embedded in a large family of sufficient conditions
that we shall study in Section 3. To begin with, define, for any a ∈ R and any measurable function
φ : [0,∞) → R, the process

SL ,a,φ
:= exp


aL +


1
2

− a


⟨L⟩ − |a − 1|φ(⟨L⟩)


1{Z L>0}.

We shall need the concept of a lower function, which we shall briefly review in the Appendix
for the reader’s convenience. For the present discussion, it is sufficient to note that a continuous
function is a lower function if and only if lim supt↑∞(Bt − φ(t)) = ∞ holds almost surely for
some (and thus, for any) Brownian motion B.

We now are ready to formulate a generalized version of Novikov’s condition and Kazamaki’s
criterion:

Corollary 1 (Novikov’s Condition and Kazamaki’s Criterion). The stochastic exponential Z L
=

E(L) is a (uniformly integrable) martingale on [0, T ] if, for some a ∈ R \ {1} and some
continuous lower function φ, we have

sup
τ∈T


E


SL ,a,φ
τ


< ∞. (3)

Applied to a strictly positive local martingale Z L , (3) with a = 0 and φ = 0 implies Novikov’s
condition (as ⟨L⟩ is increasing) and a = 1/2 and φ = 0 implies Kazamaki’s criterion.
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Proof. Define f : R × [0,∞) → [0,∞) by

f (x, y) = exp


ax +


1
2

− a


y − |a − 1|φ(y)


for all (x, y) ∈ R×[0,∞) and let B denote some Brownian motion. Then observe that SL ,a,φ

=

f (L , ⟨L⟩)1{Z L>0} and that

lim sup
t↑∞

f (Bt + t, t) · exp


−Bt −
t

2


= lim sup

t↑∞

exp ((a − 1)Bt − |a − 1|φ(t)) = ∞.

Thus, an application of Theorem 1 yields the statement. �

We emphasize that Corollary 1 has been proven before, at least for strictly positive local
martingales Z L ; we shall give an overview of the relevant literature below. However, our proof
is, to the best of our knowledge, new and seems to be shorter and simpler than the existing proofs.
It relies on the existence of Föllmer’s measure, as constructed in [28]. Such a probability measure
is defined for any local martingale, and, in particular, yields a necessary and sufficient condition
for the martingale property of Z L in terms of an explosion of the quadratic variation ⟨L⟩ of L .
With this condition, the theorem can easily be proved by contradiction. Indeed, (1) guarantees
that explosions of ⟨L⟩ cannot occur under Föllmer’s measure.

Review of extant literature

We shall provide some pointers to the relevant literature on local and true martingales. The
following list is by no means close to being complete.

Girsanov [14] posed the problem of deciding whether a stochastic exponential is a true
martingale or not. Gikhman and Skorohod [13] and Liptser and Shiryaev [25] provided sufficient
conditions for the martingale property of a stochastic exponential. These conditions were then
first generalized by Novikov [31] and later by Kazamaki [19], who derived the cases φ ≡ 0 and
a = 0 or a = 1/2, respectively, in (3). Krylov [22] provides a simple proof of these results.

Novikov [33,32] observed that it is possible to include lower functions in the criterion for the
special cases a = 0 and a = 1/2 under some Gaussian assumptions. This has been generalized
to any continuous local martingale, again for the cases a = 0 and a = 1/2, by Cherny and
Shiryaev [5].

Lepingle and Mémin [23] showed the sufficiency of the uniform integrability of {SL ,a,0
τ }τ∈T

with a ∈ [0, 1) for the martingale property of E(L). Okada [34] extended this result by allowing
lower functions of the form φ(t) = C

√
t . The most general result in the form of Corollary 1, for

strictly positive local martingales, has been provided by Kazamaki and Sekiguchi [20].
If either the local martingale L or Z L satisfies additional structural assumptions, then one

can often give more precise sufficient, and possibly also necessary conditions. For example, if L
is a BMO martingale, then Z L is always a martingale, as shown in [20]. If L is a stochastic
integral of solutions to an SDE, Engelbert and Schmidt [10] and Stummer [46] discuss the
martingale property of Z L ; see also [29,30] for a complete characterization of martingality in the
one-dimensional case. The question of martingality for a strongly Markovian process is treated
in [8,21,1,15]. We refer to Mayerhofer et al. [26] and the references therein for necessary and
sufficient conditions for Z L being a martingale if L is an affine process.

We remark that the case of a discontinuous local martingale L has also been deeply
studied. For an overview of the literature, we refer to Lepingle and Mémin [24], Kallsen and
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Shiryaev [17], Cheridito et al. [4], and Protter and Shimbo [39]. Finally, we note that Elworthy
et al. [9] provide a precise formula for the expectation of a continuous local martingale in
terms of the tails of its quadratic variation. For further pointers to this literature, we refer to
Rheinländer [41].

2. A new proof for Novikov- and Kazamaki-type conditions

In this section, we present the proof of Theorem 1. To the best of our knowledge, it is a novel
argument, which is based on the existence of a certain probability measure, constructed via an
extension theorem applied to a consistent family of probability measures generated by stopped
versions of the local martingale Z L . With this tool at hand, the proof reduces to a very short
argument.

2.1. Extended stochastic exponential

In the spirit of Appendix A in [3], we call a stochastic process L a continuous local martingale
on [0, τ ) for some predictable positive stopping time τ > 0 if the stopped process Lτ· := L ·∧τ is
a continuous local martingale for any stopping timeτ < τ . With τ = ∞ we have the usual class
of continuous local martingales.

Lemma 1 (Extended Stochastic Exponential). Fix a predictable positive stopping time τ > 0
and a continuous local martingale L on [0, τ ) and consider the exponential local martingale
Z L

= E(L) = exp(L − ⟨L⟩/2) on [0, τ ). Then the random variable Z L
τ := limt↑τ Z L

t exists, is
nonnegative, and satisfies {limn↑∞⟨L⟩τn < ∞} = {Z L

τ > 0} almost surely.

Proof. Doob’s downcrossing inequality yields that Z L
τ(ω)(ω) exists for almost all ω ∈ Ω ; see

the proof of Theorem 1.3.15 in [18] with ∞ replaced by τ and n replaced by τn for all n ∈ N
for a nondecreasing sequence of stopping times {τn}n∈N with limn↑∞ τn = τ . Next, observe that
Z L
τ = 0 if and only if log(Z L

τ ) = −∞ and that

log


Z L
t


= ⟨L⟩t


L t

⟨L⟩t
−

1
2


for all t ∈ (0, τ ) with ⟨L⟩t > 0. Thus, to prove the statement it is sufficient to show that
limt↑τ L t/⟨L⟩t exists and is real. This, however, follows directly from an application of the
Dambis–Dubins–Schwarz theorem; see also Exercise V.1.16.3 and Proposition V.1.8 in [40]. �

Set E(L)τ+t := E(L)τ := lims↑τ E(L)s for all t ≥ 0 for a continuous local martingale L
on [0, τ ). Then, for any nonnegative continuous local martingale Z , there exists a continuous
local martingale L on [0, T0), measurable with respect to the filtration generated by Z , such that
Z = Z L

:= E(L), where T0 denotes the first hitting time of zero by Z . For a positive continuous
local martingale Z , this is Proposition VIII.1.6 in [40].

2.2. Change of measure for continuous local martingales

In this subsection, we provide a generalization of Girsanov’s theorem, proven in its modern
version by Van Schuppen and Wong [47], to nonnegative local martingales. This generalization
goes back to Föllmer [12], who constructed a similar probability measure on the product space
Ω × [0,∞], endowed with the predictable sigma-field, for a nonnegative supermartingale, such
that its expectation can be represented as the probability of a certain event. Meyer [28] observed
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that such a probability measure can already be constructed on certain spaces (Ω ,F) if the
supermartingale is a local martingale. We shall follow here this approach, which was then taken
on by Delbaen and Schachermayer [6], Pal and Protter [35], Fernholz and Karatzas [11], Ruf [42],
and many others.

We remark that most of the statements in Theorem 2 have been proven before, for example
in [3]. However, for the convenience of the reader, we collect the important steps of the proof:

Theorem 2 (Change of Measure for Continuous Local Martingales). Let Ω = Cabs
1 ([0,∞),

[0,∞]) be the set of paths ω : [0,∞) → [0,∞] with ω(0) = 1 that satisfy ω(t) =

ω(t∧T0(ω)∧T∞(ω)) for all t ≥ 0, where T0(ω) and T∞(ω) denote the first hitting times of 0 and
∞ by ω, and which are continuous on [0,T∞(ω)). Let {Ft }t≥0 denote the filtration generated by
the canonical process X, defined by X t (ω) := ω(t) for all t ≥ 0, and set F =


t≥0

Ft . Let P
be a probability measure on (Ω , F) such that X is a (nonnegative) localP-martingale (starting
in 1).

Then there exists a unique probability measure Q on (Ω , F) such that

EQ


1
Xρ


Y 1{1/Xρ>0}


= EP Y 1{Xρ>0}


, (4)

where we set, for sake of notation, ∞·0 := 0, for all random variables Y taking values in [0,∞]

and being measurable with respect to Fρ for some stopping time ρ with ρ ≤ t for some t ≥ 0.
Furthermore, if X = E(L) for some P-local martingale L on [0,T0) then L := L − ⟨L⟩ is a
Q-local martingale on [0,T∞) and 1/X = E(−L).
Proof. Let Rn denote the first hitting time of level n by X , let Sn denote the first hitting time
of level 1/n by X , and set τn = Rn ∧ n for all n ∈ N. Then, for all n ∈ N, define a
probability measure Qn on (Ω , Fτn ) by dQn = Xτn dP|Fτn

and observe that the family of
probability measures {Qn}n∈N is consistent, that is, Qn+i |Fτn

= Qn for all i, n ∈ N, and thatF = FT0∧T∞
=


n∈N
Fτn by using Lemma 1.3.3 in [45]. Exactly as in [28] and Section 6

in [12] it follows that (Ω , Fτn ) is standard in the sense of Definition V.2.2 of Parthasarathy [36]
for all n ∈ N and that the remaining assumptions of the Extension Theorem V.4.1 in [36] are
satisfied yielding the existence of a probability measure Q on (Ω , F) such that Q|Fτn

= Qn for
all n ∈ N.

The fact that zero is an absorbing state of X implies that

Q

Xρ = 0


= lim

n↑∞
Q

{Xρ = 0} ∩ {ρ < τn}


= lim

n↑∞
Qn


{Xρ = 0} ∩ {ρ < τn}


= lim

n↑∞
EP Xτn 1{Xρ=0}∩{ρ<τn}


= 0.

This yields in conjunction with monotone convergence, for any stopping time ρ with ρ ≤ t for
some t ≥ 0 and A ∈ Fρ , that

EQ


1
Xρ

1A


= EQ


1

Xρ
1A∩{ρ<T∞}


= lim

n↑∞
EQ


1

Xρ
1A∩{ρ<τn}∩{Xρ>0}


= lim

n↑∞
EP  Xτn

Xρ
1A∩{ρ<τn}∩{Xρ>0}


= lim

n↑∞

P A ∩ {ρ < τn} ∩ {Xρ > 0}


=P A ∩ {Xρ > 0}

,
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where the third equality follows from the observation that Q is absolutely continuous with respect
to P on Fτn with Radon–Nikodym derivative Xτn and the fourth equality follows by taking
conditional expectation. Now, (4) follows by another application of the monotone convergence
theorem. The uniqueness of Q follows from plugging ρ = τn ∧ Sn and Y = Xρ1A for all A ∈ Fρ

and n ∈ N into (4) and observing that F =


n∈N
Fτn∧Sn , similar to above.

It remains to show that L , as defined in the statement, is a Q-local martingale on [0,T∞).
Towards this end, observe that Q(limn↑∞ τn ∧ Sn = T∞) = 1. Thus, it is sufficient to prove
that Lτn∧Sn is a Q-local martingale. Using that P and Q are equivalent on Fτn∧Sn , this follows
directly from Girsanov’s theorem; see for example Theorem VIII.1.4 in [40]. �

Note that we may omit the indicators in (4) if X is a strictly positive true P-martingale by
Girsanov’s theorem. For generalP-local martingales X , the event that 1/X hits zero might have
positive Q-probability; however, it has zero P-probability since X is a P-local martingale. The
next corollary shall be essential:

Corollary 2. In the setup of Theorem 2, X is a trueP-martingale if and only if Q(1/X t = 0) =

0 for all t > 0.

Proof. The statement follows by plugging ρ = t and Y = X t into (4). �

We remark that a similar statement as in Corollary 2 is already proven in Section 3.7 of
McKean [27], under additional structural assumptions on the local martingale L .

Remark 1 (Construction of Canonical Probability Space). A canonical probability space
(Ω , F ,P) in the sense of Theorem 2 can always be assumed when checking whether a continuous
nonnegative local martingale Z L with Z L

0 = 1, defined on some probability space (Ω ,F ,P),
is a (uniformly integrable) martingale. To see this, first note that Z L is a true martingale if
and only if EP

[Z L
T ] = 1. Then define the mapping Θ : Ω → Ω by Θ(ω) = Z L(ω), which

is always well-defined, possibly after getting rid of a nullset. To complete this transformation,
define P := P ◦ Θ−1. Now, observe that the canonical process on Ω has the same distribution
under P as Z L has under P. In particular, the canonical process (defined on Ω ) is a uniformly
integrable martingale underP if and only if Z L (defined on Ω ) is one under P. �

2.3. Proof of Theorem 1

We can assume, without loss of generality, first, that our probability space is the canonical
one of Theorem 2 by Remark 1, and second, that T = 1, as we can always consider the local
martingale Z L

tT for T < ∞ or Z L
tan(π t/2) for T = ∞. Thus, we need to prove that Z L is a true

martingale on [0, 1]. By Corollary 2 it is sufficient to show that Q(H) = 0 for the probability
measure Q of Theorem 2 and for

H :=


E

−L1 = 0


=
L1 = ∞


Q-almost surely, where the identity follows from Lemma 1 and where we have set L = L −⟨L⟩.
Assume the opposite, to wit, Q(H) > 0. Then observe that the sequence of stopping times
{τi }i∈N defined as

τi := inf


t ≥ 0 : f

L t +
Lt , Lt exp


−L t −

Lt
2


≥ i


∧

i − 1
i
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satisfies limi↑∞
Lτi = L1 on the complement of the set H and,

lim
i↑∞

f
Lτi +

L
τi
,
L

τi


exp


−Lτi −

L
τi

2


= ∞ (5)

on H . This holds because the continuous Q-local martingale L on [0,T0), where T0 denote the
first hitting time of zero by E(−L), can be represented as a time-changed Brownian motion; to
wit, L t = B

⟨L⟩t
for t < T0 and some Q-Brownian motion B. Thus, we obtain that

∞ = lim
i↑∞

EQ


f
Lτi +

L
τi
,
L

τi


exp


−Lτi −

L
τi

2


= lim

i↑∞
EP


f
Lτi + ⟨L⟩τi , ⟨L⟩τi


1{Z L

τi
>0}


≤ sup

τ∈T


EP


f (Lτ , ⟨L⟩τ )1{Z L
τ >0}


< ∞

by Fatou’s inequality, (4), and the assumption. The apparent contradiction gives Q(H) = 0. �
We remark that the random variable on the left-hand side of (5) is finite Q-almost surely if

X is a (uniformly integrable) martingale. However, this random variable nevertheless could have
infinite expectation under Q. This is exactly the situation when the condition of Theorem 1 fails
despite X being a true martingale.

3. A further analysis of the Novikov–Kazamaki conditions

In this section, we study the condition in (3), which we reformulate in Section 3.1. Then, in
Section 3.2, we introduce an ordering of local martingales according to the condition in (3).
Finally, in Section 3.3, we discuss Kazamaki [19]’s original condition, which only involves
deterministic times.

3.1. Modified Novikov–Kazamaki conditions

In this subsection, we shall derive a modified version of the condition in (3). To begin with,
we obtain the following useful result, similarly to Corollary 1. This observation generalizes
Proposition 5 in [20] to allow for certain functions φ with linear growth and for nonnegative
local martingales ZaL ; see also Remark 3 in the Appendix:

Corollary 3 (Martingale Property of ZaL ). Fix any a ∈ R \ {0, 1}. Then the stochastic
exponential ZaL is a (uniformly integrable) martingale on [0, T ] if (3) holds for some continuous
function φ with lim inft↑∞ φ+(t)/t < |a − 1|/2 or, slightly more general, with φ(t) =

|a − 1|t/2 − φ(t), where φ denotes a continuous function with lim supt↑∞
φ(t) = ∞.

Proof. Similar to the proof of Corollary 1, define f : R × [0,∞) → [0,∞) by

f (x, y) = exp


x +


1
2

− a


y

a2 − |a − 1|φ
 y

a2


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for all (x, y) ∈ R × [0,∞) and let B denote some Brownian motion. Then note that SL ,a,φ
=

f (aL , a2
⟨L⟩)1{ZaL>0} and that

lim sup
t↑∞

f (Bt + t, t) · exp


−Bt −
t

2


= lim sup

t↑∞

exp


|a − 1|


|a − 1|

2
·

t

a2 − φ


t

a2


= ∞.

Thus, an application of Theorem 1 yields the statement. �

We directly obtain the following modified version of the Novikov–Kazamaki conditions:

Corollary 4 (Modified Kazamaki’s Criterion). The stochastic exponential Z L is a (uniformly
integrable) martingale on [0, T ] if, for some a ∈ R \ {0, 1} and some continuous function φ as
in Corollary 3, we have that

sup
τ∈T


E


SL/a,a,φ
τ


< ∞ (6)

with T as in Corollary 1.

Proof. The statement follows from Corollary 3 after replacing L by L/a. �

For example, using a = 1/2 and φ(x) = dx for some d ∈ [0, 1/4), (6) simplifies to

sup
τ∈T


E

exp(Lτ − 2d⟨L⟩τ )1{Z L

τ >0}


< ∞. (7)

For illustration, consider the case of L being a Brownian motion, stopped as soon as it hits
c + 2dt for some constant c > 0. Obviously, the condition in (7) then holds; therefore, we have
that Z L is a uniformly integrable martingale, a well-known result; see [43,44,5], and Examples 1
and 2 in [20] for more general statements in this context. Another application of the last corollary
directly yields the following observation:

Corollary 5 (Another Criterion). The stochastic exponential Z L is a (uniformly integrable)
martingale on [0, T ] if for some strictly positive continuous function ψ : [0,∞] → (0,∞]

with lim supt↑∞ ψ(t) = ∞, we have that

sup
τ∈T


E


Z L
τ ψ(⟨L⟩τ )


< ∞

with 0 · ∞ := 0.

Proof. The statement follows from Corollary 4 with a = 2 and φ(t) = t/2 − log(ψ(4t)). �

Corollary 3 also yields the following equivalent formulation of the condition in (3):

Corollary 6 (Submartingality of SL ,a,0). The condition in (3) holds for φ ≡ 0 if and only if
SL ,a,0 is a P-submartingale on [0, T ].

Proof. First, observe that the submartingality of SL ,a,0 on [0, T ] implies (3) directly. For the
reverse direction, note that ZaL is a true P-martingale by Corollary 3 and generates a new
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probability measure Qa via Girsanov’s theorem. This observation and the fact that

SL ,a,0
= ZaL

· exp


1
2
(a − 1)2 ⟨L⟩


1{ZaL>0} (8)

yield that

EP


SL ,a,0
T


= lim

t↑T
EQa


exp


1
2
(a − 1)2 ⟨L⟩t


≤ sup
τ∈T


EP


SL ,a,φ
τ


< ∞,

and similarly that SL ,a,0 is a P-submartingale. �

3.2. Novikov–Kazamaki orders

In the following, we classify the local martingales L that satisfy the condition in (3):

Definition 1 (Local Martingales of (Novikov–Kazamaki) Order a). We call a local martingale
L a local martingale of (Novikov–Kazamaki) order a for some a ∈ R with respect to some
measurable function φ if (3) is satisfied for this choice of a and φ. We denote by N Kφ(a) the
class of all local martingales of order a with respect to φ. �

It is clear that N Kφ(a) contains all constant local martingales L ≡ const; thus, N Kφ(a) ≠ ∅.
Furthermore, if φ is bounded from below, we have that L ∈ N Kφ(1) for any local martingale
L . Since Novikov’s condition implies Kazamaki’s criterion, we further have N K0(0) ⊂

N K0(1/2) ⊂ N K0(1). The next corollary generalizes this observation:

Corollary 7 (Novikov–Kazamaki Orders). For a < b < 1 < c < d and for any continuous
lower function φ we have

N Kφ(a) ⊂ N Kφ(b) and N Kφ(c) ⊃ N Kφ(d),

where all inclusions are strict if φ ≡ 0.

Proof. Fix e ∈ R \ {1} and f ∈ (e, 1) or f ∈ (1, e) depending on the sign of e − 1 and
L ∈ N Kφ(e). Then Z L is a (uniformly integrable) martingale by Corollary 1 and defines a new
probability measure Q by dQ = Z L

T dP. An application of Jensen’s inequality yields

EP


SL , f,φ
τ


= EQ exp


( f − 1)Lτ − | f − 1|φ(⟨L⟩τ )


= EQ


exp


(e − 1)Lτ − |e − 1|φ(⟨L⟩τ )

 f −1
e−1


≤


EP


SL ,e,φ
τ

 f −1
e−1

with L = L − ⟨L⟩, for all τ ∈ T . This yields the asserted inclusions. The strictness of the
inclusions follows from Example 3. �

The last result is, apart from the claim of the strictness of the inclusions, Proposition 1
in [20].
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3.3. Kazamaki’s criterion with deterministic times

In his original paper, Kazamaki [19] only considered true martingales L . He then formulated
his criterion without stopping times; more precisely, he showed that it is sufficient for the
martingale property of Z L to only require (3) for constant times τ ≡ c ∈ [0, T ) if L is a
true martingale. Indeed, if L is a martingale and a = 1/2, (3) then follows directly from Jensen’s
inequality. However, for L only a local martingale the finite supremum over deterministic times
is usually not sufficient. Example 4 illustrates this point. The precise result is as follows:

Proposition 1 (Deterministic Times). If either

sup
t∈[0,T )

EP


SL ,a,0
t


< ∞ or EP


SL ,a,0

T


< ∞, (9)

then the following conditions are equivalent for any a ∈ R:

(i) the process ZaL is a uniformly integrable P-martingale;
(ii) the process SL ,a,0 is a P-submartingale on [0, T ].

Furthermore, any of these conditions then implies that
(iii) the process Z L is a uniformly integrable P-martingale.

Proof. The fact that (i) implies (ii) follows from (8) and the computation

EP


SL ,a,0
t

Fs


= ZaL

s EQa


exp


1
2
(a − 1)2 ⟨L⟩t

Fs


≥ ZaL

s exp


1
2
(a − 1)2 ⟨L⟩s


= SL ,a,0

s

for s < t , where Qa is defined by dQa
= ZaL

T dP. The finiteness of EP
[SL ,a,0

T ] follows as in
Corollary 6. Corollaries 3 and 6 yield the reverse direction. The necessity of (iii) is basically the
statement of Corollary 1. �

Example 5 illustrates that (iii) does not necessarily imply (ii) or (i). Indeed, in order to use the
same argument as in the step from (i) to (iii), one would need, given the martingale property of
Z L with corresponding measure Q, a condition like

EQ


exp


1
2
(a − 1)2 ⟨L⟩T


= EP


SaL ,1/a,0

T


< ∞,

replacing (9), which translates into

EQ exp

(a − 1)LT


= EP


SL ,a,0

T


< ∞,

where L = L − ⟨L⟩.
If supt∈[0,T ) EP

[SL ,a,0
t ] = ∞, no conclusions can be drawn. Indeed, in Remark 2, we discuss

two processes L(1), L(2), for which this supremum is infinite for a = 0 but one of them generates
a martingale through stochastic exponentiation, the other one does not.

4. Examples

In this section, we discuss several examples to highlight some of the results of the first
sections. To begin with, as we allow for local martingales L such that Z L has positive probability
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to hit zero in the criterion in (3), we now provide an example of a nonnegative martingale Z L

hitting zero to which the criterion could be applied to:

Example 1 (Stopped Brownian Motion). The goal of this example is to show that the condition
in (3) can be applied to the case of a Brownian motion stopped when it hits zero. Towards this
end, set

L · = 1{B·>0}


·

0

1
Bt

dBt = 1{B>0}


log(B·)+

1
2


·

0

1

B2
t

dt


,

where B denotes a Brownian motion stopped when it hits zero. We know from optional stopping
that Z L

= B is a martingale over any finite time horizon. However, we shall not use this prior
knowledge but instead check the criterion in (3) directly. Let us consider the case a = 2. We
obtain that

SL ,2,0
· = 1{B·>0} B2

· exp


−
1
2


·

0

1

B2
t

dt


≤ B2

· .

Thus, (3) now holds since B2 is a submartingale over any finite time horizon T < ∞. �

From now on, we shall always assume that T = 1. The next example illustrates how
Proposition 1 can be applied to check the martingale property of a stochastic exponential:

Example 2 (Iterative Application of Kazamaki’s Criterion). In this example, we study a family
{L(c)}c∈R of P-martingales and their corresponding stochastic exponentials. To begin with, we
introduce the P-martingale I by

It :=

 t

0
BsdBs =

1
2
(B2

t − t),

where B denotes a Brownian motion, and observe that Formula 1.9.3(1) on p. 168 in [2] yields
that

EP exp(α It − β⟨I ⟩t )

< ∞ (10)

for all α ∈ R and β ∈ (0,∞). Now, set L(c) := cI for some c ∈ R and observe that Kazamaki’s
criterion in (2) holds, due to the martingality of L(c), if and only if c < 2; as otherwise

EP


exp


L(c)1

2


= EP


exp


cB2

1

4


exp


−

c

4


= ∞.

Now consider the case c ≥ 2. We want to prove that Z L(c) is a P-martingale. Towards this end,

set a = 3/4 in (3) and check that E[SL(c),3/4,0
1 ] < ∞ by (10). Thus, Proposition 1 yields that is

sufficient to check whether Z L(c1) is a martingale for c1 = 3c/4. If c1 < 2, we are done as above.
Otherwise, we iterate the argument until eventually cn = (3/4)nc < 2 for some sufficiently large
n ∈ N.

As B under the measure generated by Z L(c) has Ornstein–Uhlenbeck dynamics, this example
shows that the Wiener and Ornstein–Uhlenbeck measures are equivalent on finite time horizons.
We also refer to Exercise IX.2.10 in [40] for a different argument based on a study of the
explosion time of a certain diffusion. �

We now construct local martingales with different Novikov–Kazamaki orders as introduced
in Section 3.2:



J. Ruf / Stochastic Processes and their Applications 123 (2013) 404–421 415

Example 3 (Novikov–Kazamaki Orders). We want to construct a family of martingales
{L(a)}a∈R\{1} such that L(a) ∉ N K0(a) but L(a) ∈ N K0(b) for all b ∈ (a, 1] or b ∈ [1, a),
depending on the sign of a − 1. Towards this end, we modify Example 2. To begin with, we
introduce a family {B(a)}a∈R\{1} of P-Ornstein–Uhlenbeck processes with B(a)0 = 0 and with
dynamics

dB(a)t = −
1

a − 1
B(a)t dt + dBt ,

where B denotes again a P-Brownian motion. We now consider the family of P-local martingales
{L(a)}a∈R\{1} defined as

L(a)t :=
1

a − 1

 t

0

B(a)s dBs .

The equivalence of the Wiener and Ornstein–Uhlenbeck measure, which we observed in
Example 2, yields that ZL(a) is a P-martingale and thus generates a probability measure Q(a)

by dQ(a)
= ZL(a)1 dP. Define the Q(a)-martingale

L(a)t := L(a)t −

L(a)
t
=

1
a − 1

 t

0

B(a)s dB(a)s =
1

2(a − 1)

B(a)t

2
− t


,

where B(a) is a Q(a)-Brownian motion, and observe that

EP


S
L(a),b,0
1


= EQ(a)


exp


(b − 1)L(a)1


= EQ(a)

exp

b − 1
a − 1

·

B(a)1

2

2




· exp


−
b − 1
a − 1

·
t

2


,

which is finite for all b ∈ (a, 1] or b ∈ [1, a), but infinite for b = a. Thus, L(a) ∉ N K0(a), but
Corollary 6 implies that L(a) ∈ N K0(b) for all b ∈ (a, 1] or b ∈ [1, a), respectively. �

The next example discusses a local martingale L for which exp(L) is not a submartingale,
despite having finite expectation:

Example 4 (Two-Dimensional Bessel Process I). In order to be consistent with Example 5, we
here work under a probability measure Q. Let R denote a two-dimensional Q-Bessel process
starting in R0 = 1 with dynamics

dRt =
1

2Rt
dt + dBt ,

where B denotes a Q-Brownian motion. Existence and uniqueness of the solution to this SDE
is guaranteed by the results in Section 3.3.C of Karatzas and Shreve [18]. Let us study the local
martingale

L · := −
1
2


·

0

1
Rt

dBt = −
log(R·)

2
. (11)

The Q-local martingale Z L cannot be a true Q-martingale. If it were, R would be a Brownian
motion under the corresponding measure and thus hit zero with positive probability. This event,
however, has probability zero under Q. Therefore, Z L is a strict Q-local martingale.



416 J. Ruf / Stochastic Processes and their Applications 123 (2013) 404–421

Proposition 1 now yields that Y := SL,1/2,0 = exp(L/2) = R−1/4 is not a Q-submartingale,
even given that we can check that

EQ [Yt ] = EQ


R−1/4
t


< ∞ (12)

for all t ∈ [0, 1]; see also Exercise 3.3.37 in [18]. We emphasize that − log(R)/4 is a local
Q-martingale and thus, Y has a strictly positive drift:

dYt =
1

32
Y 9

t dt −
1
4

Y 5
t dBt .

Thus, Y is not a Q-supermartingale either. Otherwise, it also would be a local Q-supermartingale.
This is, however, not possible due to its strictly positive drift. �

The next example continues the discussion in Example 4 in order to provide an example for
the lack of sufficiency of (iii) for (ii) in Proposition 1:

Example 5 (Two-Dimensional Bessel Process II). We continue our discussion of the two-
dimensional Q-Bessel process of Example 4. For L defined in (11) compute

dZ−L
t =

1

2
√

Rt
exp


−

1
8

 t

0

1

R2
s

ds


dBt

and note that

EQ


Z−L 
1


≤ EQ

 1

0

1
2Rt

dt

 ≤


EQ [R1] < ∞.

Now, the Burkholder–Davis–Gundy inequalities (see for example Theorem 3.3.28 in [18]) or
the results in [9] (see (13)) imply that Z−L is a Q-martingale and thus defines an equivalent

probability measure P by dP/dQ = Z−L
1 .

We then have that Z L is a P-martingale, where we set L = L + ⟨L⟩. Let us now consider
a = 3/2 in the Novikov–Kazamaki criterion. We obtain EP

[SL ,3/2,0
1 ] = EQ

[exp(L1/2)] < ∞,
where the inequality is the same as in (12). However, SL ,3/2,0 is not a P-submartingale since
exp(L/2) is not a Q-submartingale, as discussed in Example 4. This illustrates that (iii) does not
necessarily imply (ii) in Proposition 1. �

Remark 2 (On the Quadratic Variation). The representation of the expectation of a nonnegative
continuous local martingale Z as

E[ZT ] = Z0 − lim
y↑∞


yP


⟨Z⟩T ≥ y


(13)

for any T > 0 in [9] implies that two continuous local martingales Z L(1) and Z L(2) with
identically distributed quadratic variations are either both true martingales or both strict local
martingales. This observation and Novikov’s condition, which is a condition on the quadratic
variation of the stochastic logarithm L of a strictly positive continuous local martingale Z L , raise
the question whether the true martingality of Z L(1) also implies the one of Z L(2) if the quadratic
variation processes of the logarithms agree, that is, if ⟨L(1)⟩ ≡ ⟨L(2)⟩.

A simple counter-example, complementing the one in [19], is provided in Examples 4 and 5,
where a Q-local martingale L leads to a true Q-martingale Z−L , but a strict Q-local martingale
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ZL despite the obvious fact that ⟨L⟩ ≡ ⟨−L⟩. One might now wonder whether the loss of
the martingale property is due to the change of sign in the logarithm, which also changes
the instantaneous correlation of the stochastic exponential with the driving Brownian motion.
Although this is, by construction of the example, true in this specific case, there exist examples
of local martingales L(1), L(2) with sign(L(1)) = sign(L(2)) and ⟨L(1)⟩ ≤ ⟨L(2)⟩ such that Z L(1)

is a strict local martingale while Z L(2) is a true martingale; or such that Z L(1) is a non-uniformly
integrable local martingale while Z L(2) is a uniformly integrable martingale.

One such example is discussed on p. 297 in [20]. There, a Brownian stopping time τ is
constructed such that L = Bτ for some Brownian motion B leads to a non-uniformly integrable
local martingale Z L . On the other hand, by means of Corollary 3, it can be shown that Z2L is
a uniformly integrable martingale. Another such example is constructed in [7], where two local
martingales L(1), L(2) are considered with ⟨L(1) + L(2)⟩ = ⟨L(1)⟩ + ⟨L(2)⟩ ≥ ⟨L(1)⟩ such that
Z L(1) is a non-uniformly integrable local martingale, but Z L(1)+L(2) is a uniformly integrable
martingale. �

In the next example, we study the martingale property of stochastic exponentials related to the
three-dimensional Bessel process:

Example 6 (Three-Dimensional Bessel Process). We study the three-dimensional Bessel
process, denoted here by R, with initial value R0 = 1 and with dynamics

dRt =
1
Rt

dt + dBt

for some Brownian motion B. Existence and uniqueness of the solution to this SDE is again
guaranteed by the results in Section 3.3.C of Karatzas and Shreve [18].

Let us consider the local martingales

L(1)· :=


·

0

1
Rt

dBt = log(R·)−
1
2


·

0

1

R2
t

dt, L(2) = −L(1) (14)

and the corresponding stochastic exponentials Z L(1) and Z L(2) , where the identity in (14) follows
from Itô’s rule. Since sup0≤t<∞ EP

[1/R2
t ] < ∞, the local martingales L(1) and L(2) are actually

true martingales on any finite time horizon; see Exercise II.20(d) in [38] and Section 3.2 of
Karatzas and Shreve [18]. It is clear that ⟨L(1)⟩ ≡ ⟨L(2)⟩. Let us now compute Z L(1) and Z L(2) :

Z L(1)
t = exp


log(Rt )−

1
2

 t

0

1

R2
s

ds −
1
2

 t

0

1

R2
s

ds


= Rt exp


−

 t

0

1

R2
s

ds


= 1 +

 t

0
exp


−

 s

0

1

R2
u

du


dBs,

Z L(2)
t = exp


− log(Rt )+

1
2

 t

0

1

R2
s

ds −
1
2

 t

0

1

R2
s

ds


=

1
Rt
.

It is well-known that the reciprocal of a three-dimensional Bessel process is a strict local
martingale; see Exercise 3.3.36 in [18]. However, since Z L(1) can be represented as a stochastic
integral with respect to Brownian motion of a bounded, continuous process, it is a true martingale.
This yields another example for two true martingales L(1), L(2), such that ⟨L(1)⟩ ≡ ⟨L(2)⟩, but
Z L(1) is a true martingale while Z L(2) is not.
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Indeed, the quadratic variations
Z L(1)


t
=

 t

0
exp


−2

 s

0


Z L(2)

u

2
du


ds,

Z L(2)

t
=

 t

0


Z L(2)

s

4
ds

have quite different tail behavior. We remark that Z L(1) is one of these instances for which
Novikov’s condition does not hold (since otherwise Z L(2) would be a true martingale), but Z L(1)

is a true martingale.
Let us now study Kazamaki’s criterion, which states that E(L) is a true martingale for

some local martingale L if exp(L/2) is a submartingale; see Corollary 6. This condition is
also sufficient, although not necessary, for E(L) being a true martingale, and is weaker than
Novikov’s condition; see Corollary 7. To start, consider the two processes C = exp(L(1)/2) and
D = exp(L(2)/2) = 1/C . Itô’s formula yields the dynamics

dCt =
Ct

2Rt


dBt +

1
4Rt

dt


,

dDt =
Dt

2Rt


−dBt +

1
4Rt

dt


;

these dynamics look very similar.
We argued above that both L(1)/2 and L(2)/2 are true martingales. Exponentials of

martingales are, by Jensen’s inequality, submartingales, provided they are integrable. This
observation, and the fact that Z L(2) is not a martingale, yields directly that EP

[Dt ] = ∞ for
all t > 0. On the other side, we obtain from (14) that 0 ≤ Ct ≤

√
Rt . However, R has

finite positive moments; indeed the moments of R p and B p+1 agree for any p > −1, whereB denotes a Brownian motion starting in R0 and being stopped in zero. This follows from the
well-known connection of Brownian and Bessel measure; see for example [37]. We remark that
the moments of C can also be explicitly computed by means of Formula 1.20.8 on p. 386 in
[2]. Thus, Z L(1) represents an example that does not satisfy Novikov’s condition, but satisfies
Kazamaki’s criterion.

One might wonder what the dynamics of R are under the probability measureQ corresponding
to the Radon–Nikodym derivative Z L(1) . By Girsanov’s theorem, R has dynamics

dRt =
2
Rt

dt + dBt

where B is a Q-Brownian motion. Thus, R is a Q-Bessel process of dimension five; see Section
3.3.C of Karatzas and Shreve [18].

In Section 3.3, we discussed the obvious fact that the supremum over deterministic times is, in
general, smaller than the supremum over stopping times. The three-dimensional Bessel process
yields a simple illustration of this fact. We already observed that sup0≤t≤1 EP

[1/R2
t ] < ∞.

Consider now any n ∈ N and the first hitting time τn of 1/n by R and infinity otherwise. Then
we obtain that EP

[1/R2
τn∧1] ≥ nEP

[1/Rτn∧11{τn≤1}] = nP(τn ≤ 1) → ∞ as n ↑ ∞, whereP denotes the probability measure under which R is Brownian motion. Here, P(τn ≤ 1) does
not tend to zero as it represents the probability of a Brownian motion started in 1 to hit 0 before
time 1. �
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Appendix. Lower functions

The formulation of Corollary 1 contains the notion of lower functions, which we briefly recall
here.

Definition 2 (Lower and Upper Function). Let B denote a Brownian motion on some probability
space (Ω ,F ,P) and let φ : [0,∞) → R be a continuous function. Define the event

G := {ω ∈ Ω : Bs(ω) < φ(s) for all s ≥ t (ω)for some t (ω) > 0}.

If P(G) = 0 (P(G) = 1), then φ is called a lower (upper) function.

Due to Blumenthal’s zero–one law we have that either P(G) = 0 or P(G) = 1, thus any
continuous function is either a lower or an upper function; see Section 1.8 in [16] and Section
2 in [5]. Lower functions are, for example, all constant functions or the functions φ(t) = C

√
t

or φ(t) =


2t log(log(t)); this can be checked by an application of Kolmogorov’s test; see
Problem 1.8.3 in [16].

The following result appears as Lemma 2.2 in [5]. It is a corollary of Girsanov’s formula.

Lemma 2 (Limits Involving Lower and Upper Functions). If φ1 is a continuous lower function
and φ2 is a continuous upper function, then

lim sup
t↑∞

(Bt − φ1(t)) = ∞; and lim sup
t↑∞

(Bt − φ2(t)) = −∞.

Remark 3 (Functions of Linear Growth). Observe that lim inft↑∞ φ+(t)/t = 0 for any lower
function φ, where we denote by φ+ the positive part of a function φ. However, the function
φ(t) =


3t log(log(t)) illustrates that sublinear growth is not sufficient for a function being

lower. �
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