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Abstract

We give local and global existence and uniqueness results for multidimensional coupled FBSDEs for
generators with arbitrary growth in the control variable. The local existence result is based on Malliavin
calculus arguments for Markovian equations. Under additional monotonicity conditions on the generator
we construct global solutions by a pasting technique along PDE solutions.
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1. Introduction

Given a multidimensional Brownian motion W on a probability space, we consider the system
of forward and backward stochastic differential equations
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X t = x +

∫ t

0
bs(Xs, Ys) ds +

∫ t

0
σsdWs

Yt = h(XT ) +

∫ T

t
gs(Xs, Ys, Zs) ds −

∫ T

t
ZsdWs, t ∈ [0, T ]

(1.1)

where x is the initial value, T > 0 is a finite time horizon, and b, σ , g and h are given functions.
In this paper, we give conditions under which the system admits a unique solution in the case
where the value process Y is multidimensional and the generator g can grow arbitrarily fast in
the control process Z .

Our focus is on Markovian systems, in which the functions b, σ , g and h are deterministic. We
consider generators that are Lipschitz continuous in X and Y and locally Lipschitz continuous in
Z . For one-dimensional value processes the decoupled system (with b depending only on X ) has
been solved by Cheridito and Nam [6] based on Malliavin calculus arguments. In fact, using that
for Lipschitz continuous generators the trace of the Malliavin derivative of the value process Y
is a version of the control process, they show that the control process can be uniformly bounded,
hence enabling solvability for locally Lipschitz generators by a truncation argument. To solve
(1.1) in the multidimensional case we propose a Picard iteration scheme which yields a Cauchy
sequence in an appropriate Banach space under uniform boundedness of the control processes.
Using Malliavin calculus arguments the boundedness is guaranteed if the time horizon is small
enough. Here we make ample use of the method in Cheridito and Nam [6]. Moreover using the
PDE representation of Markovian Lipschitz FBSDEs as developed for instance in Delarue [8]
and a pasting procedure, we construct a unique global solution for generators with an additional
monotonicity-type condition and non-degeneracy of the volatility σ , see Theorem 2.5.

Systems such as (1.1) naturally appear in numerous areas of applied mathematics including
stochastic control and mathematical finance, see e.g. Yong and Zhou [30], El Karoui et al.
[12], Horst et al. [17], Kramkov and Pulido [22] and Bielagk et al. [3]. As shown for instance
in Ma et al. [25] and Cheridito and Nam [6], in the Markovian case, FBSDEs can be linked to
parabolic PDEs. More recently it is shown in Fromm et al. [15] that FBSDEs can be used in the
study of the Skorokhod embedding problem.

BSDEs and FBSDEs with Lipschitz continuous generators are well understood, we refer
to El Karoui et al. [12] and Delarue [8]. If Y is one-dimensional and g has quadratic growth
in the control process Z , BSDE solutions have been obtained by Kobylanski [21], Barrieu
and El Karoui [2] and Briand and Hu, Briand and Hu [4,5] under different assumptions on
the terminal condition ξ = h(XT ). We further refer to Delbaen et al. [9], Drapeau et al.
[11], Cheridito and Nam [6] and Heyne et al. [16] for results on one-dimensional BSDEs
and FBSDEs with superquadratic growth. Mainly due to the absence of comparison principle,
general solvability of multidimensional BSDEs with quadratic growth is less well understood.
Under smallness of the terminal condition solvability is shown in Tevzadze [28], see also Hu
and Tang [18], Luo and Tangpi [24], Jamneshan et al. [20], Cheridito and Nam [7], Frei [13]
and Xing and Z̆itković [29] for more recent developments.

To the best of our knowledge, Antonelli and Hamadène [1], Luo and Tangpi [24] and Fromm
and Imkeller [14] are the only works studying well-posedness of coupled FBSDEs with
quadratic growth. In Antonelli and Hamadène [1] the authors consider a one-dimensional
equation with one dimensional Brownian motion and impose monotonicity conditions on the
coefficient so that comparison principles for SDEs and BSDEs can be applied. A (non-necessarily
unique) solution is then obtained by monotone convergence of an iterative scheme. This
approach cannot be transferred to the present multidimensional case since comparison results
are not available. Fromm and Imkeller [14] consider fully coupled Markovian FBSDEs with
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multidimensional forward and value processes and locally Lipschitz continuous generators in
(Y, Z ). Using the technique of decoupling fields they obtain existence of a unique local solution
and provide an extension to a maximal time interval. Compared to Fromm and Imkeller [14], we
use an essentially different technique based on Malliavin calculus which guarantees the existence
of a uniformly Lipschitz decoupling field and Malliavin differentiability of solutions. Moreover,
we also construct a global solution. Although the non-Markovian system studied in Luo and
Tangpi [24] is the same as the one considered here, the techniques are essentially different. In
particular, the growth conditions in the present paper are weaker and we do not impose any
diagonally quadratic condition. Our main results can be extended to the non-Markovian setting
and to random diffusion coefficient (when σ depends on X and Y ) under stronger assumptions
involving the Malliavin derivatives of g and h, for details we refer to the Ph.D. thesis of Luo [23].

The paper is organized as follows. In the next section, we present the setting and main results.
In Section 3 we prove local solvability of multidimensional BSDE with superquadratic growth
and give conditions guaranteeing global solvability. Section 4 is dedicated to the proofs of the
main results.

2. Main results

Let (Ω ,F , (Ft )t∈[0,T ], P) be a filtered probability space, where (Ft )t∈[0,T ] is the augmented
filtration generated by a d-dimensional Brownian motion W , and F = FT for a finite time
horizon T ∈ (0, ∞). The product Ω × [0, T ] is endowed with the predictable σ -algebra. Subsets
of Rk and Rk×k , k ∈ N, are always endowed with the Borel σ -algebra induced by the Euclidean
norm |·|. The interval [0, T ] is equipped with the Lebesgue measure. Unless otherwise stated,
all equalities and inequalities between random variables and processes will be understood in
the P-almost sure and P ⊗ dt-almost sure sense, respectively. For p ∈ [1, ∞] and k ∈ N, we
denote by S p(Rk) the space of all predictable continuous processes X with values in Rk such
that ∥X∥S p(Rk ) := ∥supt∈[0,T ] |X t | ∥p < ∞, and by Hp(Rk) the space of all predictable processes
Z with values in Rk such that ∥Z∥Hp(Rk ) := ∥(

∫ T
0 |Zu |

2 du)1/2
∥p < ∞. Here, ∥ · ∥p denotes the

L p-norm.
Let l, m ∈ N be fixed. A solution of (1.1) with values in Rm

× Rl
× Rl×d can be obtained

under the following conditions:

(A1) b : [0, T ] × Rm
× Rl

→ Rm is a measurable function, bt (·, ·) is continuous for each
t ∈ [0, T ], and there exist k1, k2, λ1 ≥ 0 such that⏐⏐bt (x, y) − bt (x ′, y′)

⏐⏐ ≤ k1
⏐⏐x − x ′

⏐⏐+ k2
⏐⏐y − y′

⏐⏐ and

|bt (x, y)| ≤ λ1(1 + |x | + |y|)

for all x, x ′
∈ Rm and y, y′

∈ Rl .

(A2) σ : [0, T ] → Rm×d is a measurable function and there is λ2 ≥ 0 such that |σt | ≤ λ2 for all
t ∈ [0, T ].

(A3) h : Rm
→ Rl is a continuous function and there exists k5 ≥ 0 such that⏐⏐h(x) − h(x ′)

⏐⏐ ≤ k5
⏐⏐x − x ′

⏐⏐
for all x, x ′

∈ Rm .
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(A4) g : [0, T ]×Rm
×Rl

×Rl×d
→ Rl is a measurable function and

∫ T
0 |gt (0, 0, 0)| dt < +∞.

Moreover, the function gt (·, ·, ·) is continuous for each t ∈ [0, T ] and there exist k3, k4 ≥ 0
and a nondecreasing function ρ : R+ → R+ such that⏐⏐gt (x, y, z) − gt (x ′, y, z)

⏐⏐ ≤ k3
⏐⏐x − x ′

⏐⏐ (2.1)

for all x, x ′
∈ Rm , y ∈ Rl and z ∈ Rl×d such that |z| ≤ M := 8λ2k5

√
dl and⏐⏐gt (x, y, z) − gt (x, y′, z′)

⏐⏐ ≤ k4
⏐⏐y − y′

⏐⏐+ ρ
(
|z| ∨

⏐⏐z′
⏐⏐) ⏐⏐z − z′

⏐⏐
for all x ∈ Rm , y, y′

∈ Rl and z, z′
∈ Rl×d .

(A5) There exists a constant K ≥ 0 such that⏐⏐gt (x, y, z) − gt (x ′, y, z) − gt (x, y′, z′) + gt (x ′, y′, z′)
⏐⏐

≤ K
⏐⏐x − x ′

⏐⏐ (⏐⏐y − y′
⏐⏐+ ⏐⏐z − z′

⏐⏐)
for all t ∈ [0, T ], x, x ′

∈ Rm , y, y′
∈ Rl and z, z′

∈ Rl×d .

Our main result ensures local existence and uniqueness for the coupled FBSDE (1.1) under the
previous assumptions. The proof is given in Section 4.

Theorem 2.1. Assume that (A1)–(A5) hold. Then there exists a constant C > 0 depending
on k1, k2, k3, k4, k5, λ2, l and d, such that the FBSDE (1.1) has a unique solution (X, Y, Z ) ∈

S2(Rm) × S2(Rl) × S∞(Rl×d ) with |Z t | ≤ M, whenever T ≤ C.

Local existence results have been obtained in [14, Theorem 3] and [24, Theorem 2.1] in
essentially different settings and with different methods. Let us mention that our technique allows
to obtain existence of solutions of coupled FBSDEs with Burger type nonlinearities at least for
small enough time horizons.

Example 2.2. Assume that T is small enough, b, σ and h satisfy (A1)–(A3), with |h| ≤ λ5 for
some λ5 ≥ 0. Then for each k ≥ 1 the FBSDE⎧⎪⎪⎨⎪⎪⎩

X t = x +

∫ t

0
bs(Xs, Ys) ds +

∫ t

0
σsdWs

Yt = h(XT ) +

∫ T

t
Ys |Zs |

k ds −

∫ T

t
ZsdWs, t ∈ [0, T ]

(2.2)

admits a solution (X, Y, Z ) ∈ S2(Rm) × S∞(Rl) × S∞(Rl×d ). The details are given in
Section 4.2. ♢

Remark 2.3. The condition (A5) is the minimal condition needed to ensure Lipschitz continuity
in y, z of the Malliavin derivative of gt (X t , y, z) for a given SDE solution X , see e.g. El Karoui
et al. [12] and Cheridito and Nam [6] for details. When the generator g is of the form
gt (x, y, z) := f 1

t (x) + f 2
t (y) + f 3

t (z) for some functions f 1, f 2 and f 3, then (A5) is satisfied.
Moreover, let us mention that an advantage of our method is that it implies Malliavin

differentiability of the forward process X and the value process Y in the solution (X, Y, Z ) of the
FBSDE (1.1) obtained in Theorem 2.1. We refer to Section 4.3 for details. ♦
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Remark 2.4. The following counterexample shows that in general, even in the one-dimensional
case, coupled systems do not have a unique global solution. Consider the FBSDE⎧⎪⎪⎨⎪⎪⎩

X t =

∫ t

0
Yu du

Yt =

∫ T

t
k Xu du −

∫ T

t
Zu dWu .

This equation can be rewritten as

Yt =

∫ T

t

∫ s

0
kYu du ds −

∫ T

t
Zu dWu . (2.3)

It is shown in [10, Example 3.2] that if T
√

k < π
2 then the BSDE with time-delayed generator

(2.3) has a unique solution whereas if T
√

k =
π
2 , Eq. (2.3) may not have any solution and if it

has one, there are infinitely many. ♦

Next, we would like to find conditions under which Theorem 2.1 can be extended to obtain
global solvability. In the present setting, under additional assumptions, a pasting method based
on PDEs allows to get global existence and uniqueness for the FBSDE (1.1).

(A6) There exist K4 ≥ 0 satisfying K4 ≥ 2e2k1T k2
2 T (k2

5 + k3T ) + k3 + ρ2(M̄
√

dl) with

M̄ = 8λ2 K5
√

dl and K5 =

√
2(k2

5 + k3T )ek1T such that

l∑
i=1

(yi
− y′i )

(
gi

t (x, y, z) − gi
t (x, y′, z)

)
≤ −K4

⏐⏐y − y′
⏐⏐2

for all x ∈ Rm , y, y′
∈ Rl and z ∈ Rl×d .

(A7) There exist K1, K4 ≥ 0 satisfying
√

2K1k2
5(K4 − ρ2(M

√
dl)) ≥ k2k2

5 + k3 such that

m∑
i=1

(x i
− x ′i)

(
bi

t (x, y) − bi
t (x

′, y)
)

≤ −K1
⏐⏐x − x ′

⏐⏐2,
l∑

i=1

(yi
− y′i)

(
gi

t (x, y, z) − gi
t (x, y′, z)

)
≤ −K4

⏐⏐y − y′
⏐⏐2

for all x, x ′
∈ Rm , y, y′

∈ Rl and z ∈ Rl×d .

Theorem 2.5. Assume that (A1)– (A5) hold and there exist λ3, λ4, λ5 > 0 such that1⎧⎪⎪⎨⎪⎪⎩
|bt (x, y)| ≤ λ1(1 + |y|)
⟨x, σtσ

∗

t x⟩ ≥ λ3|x |
2

|gt (x, y, z)| ≤ λ4(1 + |y| + ρ(|z|) |z|)
|h(x)| ≤ λ5

(2.4)

for all t ∈ [0, T ], x, x ′
∈ Rm , y, y′

∈ Rl and z, z′
∈ Rl×d . Then, if (A6) (respectively (A7))

is satisfied, the FBSDE (1.1) has a unique global solution (X, Y, Z ) ∈ S2(Rm) × S∞(Rl) ×

S∞(Rl×d ) such that |Z t | ≤ M̄ (respectively |Z t | ≤ M).

1 σ ∗
t is the transpose matrix of σt .
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Remark 2.6. Assumptions (A6) and (A7) can be understood as monotonicity conditions on
the generator and the drift coefficient. These conditions are satisfied for instance when the
components of g (resp. b) are linear in y (resp. x). In fact, if there is a function f with values in
Rl such that gt (x, y, z) := −K4 y + ft (x, z), then g satisfies (A6), and suitable conditions on f
guarantee that g satisfies (A4) and (A5) as well. ♦

Remark 2.7. We emphasize that the boundedness conditions of b and g in the variable x in
(2.4) are needed only for global solvability. These conditions are not necessary for existence and
uniqueness on short enough time horizons. ♦

Notice that Theorem 2.5 yields existence of a decoupling field, see [14]. In particular, the
boundedness of Z yields uniform Lipschitz continuity of the decoupling field.

Theorem 2.1 relies on an existence result for multidimensional BSDEs presented in Nam [26]
and revisited in the next section.

3. Multidimensional BSDEs with bounded Malliavin derivatives

Let us introduce the spaces of Malliavin differentiable random variables and stochastic
processes D1,2(Rl) and L1,2

a (Rl). For a thorough treatment of the theory of Malliavin calculus
we refer to Nualart [27]. Let M be the class of smooth random variables ξ = (ξ 1, . . . , ξ l) of the
form

ξ i
= ϕi

(∫ T

0
hi1

s dWs, . . . ,

∫ T

0
hin

s dWs

)
where ϕi is in the space C∞

p (Rn
;R) of infinitely continuously differentiable functions whose

partial derivatives have polynomial growth, hi1, . . . , hin
∈ L2([0, T ];Rd ) and n ≥ 1. For every

ξ in M let the operator D = (D1, . . . , Dd ) : M → L2(Ω × [0, T ];Rd ) be given by

Dtξ
i
:=

n∑
j=1

∂ϕi

∂x j

(∫ T

0
hi1

s dWs, . . . ,

∫ T

0
hin

s dWs

)
hi j

t , 0 ≤ t ≤ T, 1 ≤ i ≤ l,

and the norm ∥ξ∥1,2 := (E[|ξ |
2
+
∫ T

0 |Dtξ |
2 dt])1/2. As shown in Nualart [27], the operator D

extends to the closure D1,2(Rl) of the set M with respect to the norm ∥·∥1,2. A random variable ξ

is Malliavin differentiable if ξ ∈ D1,2(Rl) and we denote by Dtξ its Malliavin derivative. Denote
by L1,2

a (Rl) the space of processes Y ∈ H2(Rl) such that Yt ∈ D1,2(Rl) for all t ∈ [0, T ], the
process DYt admits a square integrable progressively measurable version and

∥Y∥
2
L1,2

a (Rl )
:= ∥Y∥H2(Rl ) + E

[∫ T

0

∫ T

0
|Dr Yt |

2 dr dt
]

< ∞.

We next consider a system of superquadratic BSDEs of the form

Yt = ξ +

∫ T

t
gu(Yu, Zu)du −

∫ T

t
ZudWu (3.1)

satisfying the following conditions:

(B1) g : Ω × [0, T ] × Rl
× Rl×d

→ Rl is a measurable function and there exist a constant
B ∈ R+ and a nondecreasing function ρ : R+ → R+ such that⏐⏐gt (y, z) − gt (y′, z′)

⏐⏐ ≤ B
⏐⏐y − y′

⏐⏐+ ρ
(
|z| ∨

⏐⏐z′
⏐⏐) ⏐⏐z − z′

⏐⏐
for all t ∈ [0, T ], y, y′

∈ Rl and z, z′
∈ Rl×d .
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(B2) ξ ∈ D1,2(Rl) and there exist constants Ai j ≥ 0 such that |D j
t ξ i

| ≤ Ai j for all i = 1, . . . , l,
j = 1, . . . , d and t ∈ [0, T ].

(B3) g·(0, 0) ∈ H4(Rl) and there exist Borel-measurable functions qi j : [0, T ] → R+ satisfying∫ T
0 q2

i j (t)dt < ∞ such that for every pair (y, z) ∈ Rl
× Rl×d with

|z| ≤ Q :=

√2
d∑

j=1

( l∑
i=1

A2
i j +

l∑
i=1

∫ T

0
q2

i j (t)dt
)

one has

• g·(y, z) ∈ L1,2
a (Rl) with |D j

u gi
t (y, z)| ≤ qi j (t) for all i = 1, . . . , l, j = 1, . . . , d and

u ∈ [0, T ],
• for almost all u ∈ [0, T ] one has⏐⏐Du gt (y, z) − Du gt (y′, z′)

⏐⏐ ≤ Ku(t)
(⏐⏐y − y′

⏐⏐+ ⏐⏐z − z′
⏐⏐)

for all t ∈ [0, T ], y, y′
∈ Rl and z, z′

∈ Rl×d for some R+-valued adapted process
(Ku(t))t∈[0,T ] satisfying

∫ T
0 ∥Ku∥

4
H4(R) du < ∞.

The following is an extension of Cheridito and Nam [6, Theorem 2.2] to the multidimensional
case. It was proved in Nam [26] under slightly different assumptions. For instance, we do not
assume a monotonicity-type condition on y ↦→ gt (y, z) for every z. Our results rely on the
techniques of [6]. For the sake of completeness we give the proof.

Theorem 3.1. Assume that (B1)–(B3) hold and T ≤
log(2)

2B+ρ2(Q)+1
. Then the BSDE (3.1) admits a

unique solution in S4(Rl) × S∞(Rl×d ) and |Z t | ≤ Q.

Consider the following stronger versions of the conditions (B1) and (B3):

(B1′) g is continuously differentiable in (y, z) and there exist constants B ∈ R+ and ρ ∈ R+ such
that

⏐⏐∂y gt (y, z)
⏐⏐ ≤ B and |∂zgt (y, z)| ≤ ρ for all t ∈ [0, T ], y, y′

∈ Rl and z, z′
∈ Rl×d .

(B3′) The condition (B3) holds for all (y, z) ∈ Rl
× Rl×d .

Lemma 3.2. If (B1′), (B2) and (B3′) hold, then the BSDE (3.1) admits a unique solution
(Y, Z ) ∈ S4(Rl) × H4(Rl×d ) and

|Z j
t |

2
≤

( l∑
i=1

A2
i j +

l∑
i=1

∫ T

t
q2

i j (s)e−

(
2B+ρ2

+1
)

(T −s)ds
)

e
(

2B+ρ2
+1
)

(T −t)

for all j = 1, . . . , d. (3.2)

Proof. By (B2), each component ξ i of ξ has bounded Malliavin derivative, which implies by
[6, Lemma 2.5] that E[|ξ i

|
p] < ∞ for all p ≥ 1. It follows from El Karoui et al. [12, Theorem

5.1 and Proposition 5.3] that the BSDE (3.1) has a unique solution (Y, Z ) ∈ S4(Rl) ×H4(Rl×d ),
which is Malliavin differentiable. Moreover for every i = 1, . . . , l and j = 1, . . . , d , the process
(D j

r Y i
t , D j

r Z i
t )t∈[0,T ] has a version (U i j,r

t , V i j,r
t )t∈[0,T ] which satisfies

U i j,r
t = 0, V i j,r

t = 0, for 0 ≤ t < r ≤ T,
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and is the unique solution in S2(Rl) × H2(Rl×d ) of the BSDE

U j,r
t = D j

r ξ +

∫ T

t
∂y gs(Ys, Zs)U j,r

s + ∂zgs(Ys, Zs)V j,r
s + D j

r gs(Ys, Zs)ds

−

∫ T

t
V j,r

s dWs .

Applying Itô’s formula to |U j,r
t |

2 yields

|U j,r
t |

2
= |D j

r ξ |
2
−

∫ T

t
2U j,r

s V j,r
s dWs

+

∫ T

t
2U j,r

s ∂y gs(Ys, Zs)U j,r
s + 2U j,r

s ∂zgs(Ys, Zs)V j,r
s

+ 2U j,r
s D j

r gs(Ys, Zs) − |V j,r
s |

2ds

≤ |D j
r ξ |

2
−

∫ T

t
2U j,r

s V j,r
s dWs +

∫ T

t
2B|U j,r

s |
2
+ 2ρ|U j,r

s | |V j,r
s |

+ 2

√ l∑
i=1

q2
i j (s)|U j,r

s | − |V j,r
s |

2
ds

≤ |D j
r ξ |

2
−

∫ T

t
2U j,r

s V j,r
s dWs +

∫ T

t

(
2B + ρ2

+ 1
)
|U j,r

s |
2
+

l∑
i=1

q2
i j (s)ds.

Using condition (B3) and taking conditional expectation in the above inequality yields

|U j,r
t |

2
≤ E

[ l∑
i=1

A2
i j +

∫ T

t

(
2B + ρ2

+ 1
)
|U j,r

s |
2
+

l∑
i=1

q2
i j (s)ds

⏐⏐⏐Ft

]
. (3.3)

By El Karoui et al. [12, Proposition 5.3] the process Z is a version of the trace (U t
t )t∈[0,T ] of the

Malliavin derivative of Y . Hence (3.2) follows from (3.3) by applying Gronwall’s inequality. □

Proof of Theorem 3.1. Define the Lipschitz continuous function g̃ by

g̃t (y, z) =

{
gt (y, z) if |z| ≤ Q,

gt (y, Qz/|z|) if |z| > Q.
(3.4)

By Cheridito and Nam [6, Lemma 2.5], the condition (B2) implies E
[
|ξ |

p] < +∞ for all
p ∈ [1, ∞). Thus, ξ ∈ L p for all p ≥ 1. Therefore, it follows from El Karoui et al. [12, Theorem
5.1] that the BSDE corresponding to (g̃, ξ ) has a unique solution (Y, Z ) ∈ S4(Rl) × H4(Rl×d ).
For x = (y, z) ∈ Rl+l×d let β ∈ C∞(Rl+l×d ) be the mollifier

β(x) :=

⎧⎨⎩λ exp
(

−
1

1 − |x |
2

)
if |x | < 1,

0 otherwise,

where the constant λ ∈ R+ is chosen such that
∫
Rl+l×d β(x)dx = 1. Set βn(x) := nl+l×dβ(nx),

n ∈ N \ {0}, and define

gn
t (ω, x) :=

∫
Rl+l×d

g̃t (ω, x ′)βn(x − x ′)dx ′

so that for each n > 0 the function gn satisfies (B1′) and (B3′) with the constant ρ replaced
by ρ(Q). By Lemma 3.2 the BSDE corresponding to (gn, ξ ) has a unique solution (Y n, Zn) in
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S4(Rl) × H4(Rl×d ) which satisfies

|Zn, j
t |

2
≤

(
l∑

i=1

A2
i j +

l∑
i=1

∫ T

t
q2

i j (s)e−

(
2B+ρ2(Q)+1

)
(T −s)ds

)
e
(

2B+ρ2(Q)+1
)

(T −t)

≤

(
l∑

i=1

A2
i j +

l∑
i=1

∫ T

0
q2

i j (s)ds

)
e
(

2B+ρ2(Q)+1
)

T
.

Since T ≤
log(2)

2B+ρ2(Q)+1
we obtain

|Zn, j
t |

2
≤ 2

(
l∑

i=1

A2
i j +

l∑
i=1

∫ T

0
q2

i j (s)ds

)
for all j = 1, . . . , d.

This shows |Zn
t | ≤ Q. Since gn converges uniformly in (t, ω, y, z) to g̃, using the procedure of

the proof of Cheridito and Nam [6, Theorem 2.2], it follows that (Y n, Zn) converges to (Y, Z )
in S2(Rl) × H2(Rl×d ), so that |Z t | ≤ Q. Since g̃(y, z) = g(y, z) for all (y, z) ∈ Rl

× Rl×d with
|z| ≤ Q, it follows that (Y, Z ) is the unique solution of the BSDE corresponding to (ξ, g) in
S4(Rl) × S∞(Rl×d ). □

Corollary 3.3. Suppose (B1)–(B3) hold, T ≤
log(2)

2B+ρ2(Q)+1
and (Y, Z ) ∈ S4(Rl) × S∞(Rl×d ) is

the solution of the BSDE (3.1). Then Yt ∈ D1,2(Rl) for all t ∈ [0, T ] and for every j = 1, . . . , d,
one has

|D j
r Yt |

2
≤ 2

( l∑
i=1

A2
i j +

l∑
i=1

∫ T

0
q2

i j (s)ds
)

for all r ∈ [0, t]. (3.5)

Proof. Since |Z | ≤ Q is bounded, (Y, Z ) solves the BSDE with terminal condition ξ

and generator g̃ defined by (3.4). If g satisfies (B1′) and (B3′), then the result follows from
Lemma 3.2. Otherwise consider the sequence of smooth functions gn converging to g as defined
in the proof of Theorem 3.1. Let (Y n, Zn) ∈ S4(Rl) × H4(Rl×d ) be the solutions to the BSDEs
corresponding to (gn, ξ ), which converge to (Y, Z ) in S2(Rl) × H2(Rl×d ). By Lemma 3.2
(Y n

t , Zn
t ) ∈ D1,2(Rl) × D1,2(Rl×d ) for each t ∈ [0, T ] and the arguments in the proof of

Theorem 3.1 imply

|D j
r Y n

t |
2

≤ 2

(
l∑

i=1

A2
i j +

l∑
i=1

∫ T

0
q2

i j (s)ds

)
j = 1, . . . , d, r, t ∈ [0, T ].

Hence, supn∈NE[
∫ T

0 |D j
r Y n

t |
2

dr ] < ∞ for each t ∈ [0, T ]. Since (Y n
t ) converges to Yt in L2, it

follows from Nualart [27, Lemma 1.2.3] that Yt ∈ D1,2(Rl) and (Dr Y n
t ) converges to Dr Yt in

the weak topology of H2(Rl×d ). Thus, Dr Yt satisfies (3.5). □

As a consequence to Theorem 3.1, we give a condition for global solvability of fully coupled
systems of BSDEs. For the remainder of this section we put

∆n :=
log(2)

2B + ρ2(2n Q) + 1
, n ∈ N.

Proposition 3.4. Assume that (B1)–(B2) hold, that there exists N ∈ N such that
∑N

n=0∆n ≥ T ,
and (B3) holds with Q replaced by 2N Q. Then the BSDE (3.1) has a unique solution in
S4(Rl) × S∞(Rl×d ) and |Z t | ≤ 2N Q.
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Proof. If T ≤ ∆0 then the result follows from Theorem 3.1. Otherwise, if T > ∆0 it follows
by the same arguments as in the proof of Theorem 3.1 that the BSDE (3.1) has a unique solution
(Y 0, Z0) in S4(Rl) × S∞(Rl×d ) on the interval [T − ∆0, T ]. Moreover, Z0 satisfies |Z0

t | ≤ Q
and by Corollary 3.3 one has Y 0

T −∆0
∈ D1,2(Rl) and for every r ≤ T − ∆0,

|D j
r Y 0

T −∆0
|
2

≤

l∑
i=1

2|Ai j |
2
+

l∑
i=1

∫ T

0
2|qi j (t)|2dt for all j = 1, . . . , d.

Since g satisfies (B3) for all (y, z) ∈ Rl
× Rl×d such that |z| ≤ cQ, again by Theorem 3.1 the

BSDE (3.1) with terminal condition Y 0
T −∆0

has a unique solution (Y 1, Z1) in S4(Rl)×S∞(Rl×d )
on [(T − ∆0 − ∆1) ∨ 0, T − ∆0], and

|D j
r Y 1

(T −∆0−∆1)∨0|
2

≤

l∑
i=1

22
|Ai j |

2
+

l∑
i=1

∫ T

0
(22

+ 2)|qi j (t)|2dt, for all j = 1, . . . , d

|Z1
t | ≤ 2Q, t ∈ [(T − ∆0 − ∆1) ∨ 0, T − ∆0] .

Repeating the previous arguments, for N ≥ 2 the BSDE (3.1) has a unique solution (Y N , Z N )
in S4(Rl) × S∞(Rl×d ) on [(T −

∑N
n=0∆n) ∨ 0, (T −

∑N−1
n=0 ∆n) ∨ 0] with terminal condition

Y(T −
∑N−1

n=0 ∆n )∨0. Moreover,

|D j
r Y N

(T −
∑N

n=0 ∆n )∨0
|
2

≤

l∑
i=1

2N
|Ai j |

2
+

l∑
i=1

∫ T

0
(

N∑
k=1

2k)|qi j (t)|2dt for all j = 1, . . . , d

|Z N
t | ≤ 2N Q, t ∈

[
(T −

N∑
n=0

∆n) ∨ 0, (T −

N−1∑
n=0

∆n) ∨ 0
]
.

Hence, the pair (Y, Z ) given by

Y := Y 01[T −∆1,T ] +

N∑
n=1

Y n1[
(T −

∑n
i=0 ∆i)∨0,(T −

∑n−1
i=0 ∆i )∨0

]

Z := Z01[T −∆1,T ] +

N∑
n=1

Zn1[
(T −

∑n
i=0 ∆i)∨0,(T −

∑n−1
i=0 ∆i )∨0

]
solves (3.1) and its uniqueness follows from Theorem 3.1. □

Remark 3.5. The condition
∑N

n=0∆n ≥ T for some N ∈ N does not guarantee global solvability
of multidimensional BSDEs with superquadratic growth. In fact, if ρ(x) ≥ C(1+

√
x) for all x ≥

0, then
∑

n≥0∆n < ∞. However, it does guarantee global solvability for BSDEs whose generator
grows slightly faster than the linear function. For instance, if ρ(x) ≤ C(1 +

√
log(1 + x)) one

has
∞∑

n=0

log(2)
2B + ρ2(2N Q) + 1

≥

∞∑
n=0

log(2)
2B + 2C2(1 + log(2N (1 + Q))) + 1

=

∞∑
n=0

log(2)
2B + 2C2(1 + log(1 + Q) + n log(2)) + 1

= ∞.

Note also that global solvability of strict subquadratic systems has been established by Cheridito
and Nam [7]. ♦
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4. Coupled FBSDE with superquadratic growth

4.1. Proof of Theorem 2.1

Step 1: We first assume that h, b and g are continuously differentiable in all variables. Let us
define

C1 :=
k2

5

k2
3

∧
log 2

k1
∧

λ2

k2 M
∧

log 2
2k4 + ρ2(M) + 1

with M := 8k5λ2
√

dl. We will show that for T ≤ C1, the sequence (Xn, Y n, Zn) given by
X0

= 0, Y 0
= 0, Z0

= 0 and⎧⎪⎪⎨⎪⎪⎩
Xn+1

t = x +

∫ t

0
b(Xn+1

u , Y n
u ) du +

∫ t

0
σu dWu

Y n+1
t = h(Xn+1

T ) +

∫ T

t
gu(Xn+1

u , Y n+1
u , Zn+1

u ) du −

∫ T

t
Zn+1

u dWu, n ≥ 1

is well defined and that
⏐⏐Zn

t

⏐⏐ ≤ M for all n ∈ N and t ∈ [0, T ]. The process X1 is well defined,
X1

t belongs to D1,2(Rm) for every t and the process (Dr X t )t∈[0,T ] satisfies the linear equation

Dr X1
t = 0, 0 ≤ t < r ≤ T,

Dr X1
t =

∫ t

r
(∂x bDr X1

u + ∂ybDr Y 0
u ) du + Dr

(∫ t

r
σu dWu

)
, 0 ≤ r ≤ t ≤ T,

with Dr (
∫ t

r σu dWu) = σ1[r,t], see Nualart [27, Lemma 2.2.1 and Theorem 2.2.1]. Hence, since
b is Lipschitz continuous, we have⏐⏐Dr X1

t

⏐⏐ ≤

∫ t

r
k1 Dr X1

u du + σr and
⏐⏐Dr X1

t

⏐⏐ ≤ λ2eT k1 ,

where the second estimate comes from Gronwall’s inequality. We will now show that since
T ≤ C1, h(X1

T ) and g(X1, ·, ·) satisfy (B1)–(B3). In fact, since h is continuously differentiable
and X1

T ∈ D1,2(Rm), it follows from the chain rule, see for instance Nualart [27, Proposition
1.2.4], that h(X1

T ) ∈ D1,2(Rl) and |D j
r (h(X1

T ))| = |∂x h(X1
T )D j

r X1
T | ≤ λ2k5eT k1 for all r ∈ [0, T ],

j = 1, . . . , d . Using T ≤
log 2
k1

, we deduce that h(X1
T ) satisfies (B2) with Ai j := 2λ2k5.

Similarly, by (A4) and using that the function x ↦→ g(x, y, z) is continuously differentiable,
it follows that g.(X1

. , y, z) ∈ L1,2
a (Rl) and

⏐⏐D j (gi
. (X1, y, z))

⏐⏐ ≤ λ2k3eT k1 , j = 1, . . . , d for
all (y, z) ∈ Rl

× Rl×d such that |z| ≤ M and, due to (A5), applying the same argument to
ĝt (x, y, y′, z, z′) := gt (x, y, z) − gt (x, y′, z′) yields

|D j
r gt (X1

t , y, z) − D j
r gt (X1

t , y′, z′)| ≤ Kλ2eT k1 .

Using T ≤
k2

5
k2

3
∧

log 2
k1

, we deduce that g.(X1
. , y, z) satisfies (B3) with qi j = 2λ2k3 and

Ku(t) := 2Kλ2. Moreover due to (A4), the function (t, y, z) ↦→ gt (X1
t , y, z) satisfies (B1).

Therefore, by T ≤
log 2

2k4+ρ2(M)+1
, Theorem 3.1 ensures that (Y 1, Z1) exists. Consider the

function g̃ defined by

g̃t (x, y, z) =

{
gt (x, y, z) if |z| ≤ M
gt (x, y, zM/|z|) if |z| > M.

Since (Y 1, Z1) also solves the BSDE with terminal condition h(X1
T ) and a Lipschitz generator

g̃(X1, ·, ·), it follows from Lemma 3.2 and its proof that (Y 1
t , Z1

t ) ∈ D1,2(Rl) × D1,2(Rl×d ) for
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all t ∈ [0, T ] and Dt Y 1 is bounded and it holds Z1
t = Dt Y 1

t . In addition, we have
⏐⏐Dr X1

t

⏐⏐ ≤ 4λ2

and
⏐⏐Dr Y 1

t

⏐⏐ ≤ M .

Now let n ∈ N, assume that (Xn
t , Y n

t , Zn
t ) ∈ D1,2(Rm) × D1,2(Rl) × D1,2(Rl×d ), Zn

t = Dt Y n
t

and
⏐⏐Dr Xn

t

⏐⏐ ≤ 4λ2,
⏐⏐Dr Y n

t

⏐⏐ ≤ M for all r, t ∈ [0, T ]. The process Xn+1 is well defined, for each
t ; Xn+1

t belongs to D1,2(Rm) and it holds

Dr Xn+1
t = 0, 0 ≤ t < r ≤ T,

Dr Xn+1
t = σr +

∫ t

r
(∂x bDr Xn+1

u + ∂ybDr Y n
u ) du, 0 ≤ r ≤ t ≤ T .

Since ∂x b, ∂yb and σ are bounded by k1, k2 and λ2 respectively, it follows from Gronwall’s
inequality that⏐⏐Dr Xn+1

t

⏐⏐ ≤ eT k1

(
λ2 + k2

∫ T

0

⏐⏐Dr Y n
u

⏐⏐ du
)

.

Hence,⏐⏐Dr Xn+1
t

⏐⏐ ≤ eT k1 (λ2 + k2T M) < ∞ (4.1)

so that since T ≤
λ2

k2 M , we have
⏐⏐Dr Xn+1

t

⏐⏐ ≤ 4λ2. As above, h(Xn+1
T ) and g.(Xn+1, y, z)

are Malliavin differentiable and satisfy (B1)–(B3) with Ai j := 4λ2k5, qi j = 2λ2k3 and
Ku(t) := 2Kλ2. It then follows again from Theorem 3.1 that (Y n+1, Zn+1) exists and |Zn+1

| ≤

M is bounded. Since (Y n+1, Zn+1) also solves the BSDE with terminal condition h(Xn+1
T )

and Lipschitz continuous generator g̃t (Xn+1, ·, ·), Lemma 3.2 and its proof guarantee that
(Y n+1

t , Zn+1
t ) ∈ D1,2(Rl) × D1,2(Rl×d ) for all t ∈ [0, T ] and Dt Y n+1 is bounded and it holds

Zn+1
t = Dt Y n+1

t , with
⏐⏐Dr Y n+1

t

⏐⏐ ≤ M .
Step 2: Now we show that there is a positive constant C2 depending on k1, k2, k3, k4, k5, λ2, l and
d, such that if T ≤ C2, then (Xn, Y n, Zn) is a Cauchy sequence in S2(Rm)×S2(Rl)×H2(Rl×d ).
Using (A1) we can estimate the norm of the difference Xn+1

t − Xn
t as

|Xn+1
t − Xn

t |
2

≤ 2
(∫ t

0
k1|Xn+1

s − Xn
s |ds

)2

+ 2
(∫ t

0
k2|Y n

s − Y n−1
s |ds

)2

.

Thus

sup
0≤t≤T

|Xn+1
t − Xn

t |
2

≤ 2
(∫ T

0
k1|Xn+1

s − Xn
s |ds

)2

+ 2
(∫ T

0
k2|Y n

s − Y n−1
s |ds

)2

.

Taking expectation on both sides and using Cauchy–Schwarz inequality, we have

E
[

sup
0≤t≤T

|Xn+1
t − Xn

t |
2
]

≤ 2T k2
1 E
[∫ T

0
|Xn+1

s − Xn
s |

2
ds
]

+ 2T k2
2 E

×

[∫ T

0
|Y n

s − Y n−1
s |

2
ds
]

≤ 2T 2k2
1 E
[

sup
0≤t≤T

|Xn+1
t − Xn

t |
2
]

+ 2T 2k2
2 E
[

sup
0≤t≤T

|Y n
t − Y n−1

t |
2
]

.

Choosing T to be small enough so that 2T 2k2
1 ≤

1
2 , it follows

E
[

sup
0≤t≤T

|Xn+1
t − Xn

t |
2
]

≤ 4T 2k2
2 E
[

sup
0≤t≤T

|Y n
t − Y n−1

t |
2
]

. (4.2)
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On the other hand, applying Itô’s formula to eβt
|Y n+1

t − Y n
t |

2, β ≥ 0, we have

eβt
|Y n+1

t − Y n
t |

2
= eβT

|h(Xn+1
T ) − h(Xn

T )|
2
− 2

∫ T

t
eβs(Y n+1

s − Y n
s )(Zn+1

s − Zn
s )dWs

−

∫ T

t
eβs(Zn+1

s − Zn
s )2ds −

∫ T

t
βeβs(Y n+1

s − Y n
s )2ds

+ 2
∫ T

t
eβs(Y n+1

s − Y n
s )
[
gs(Xn+1

s , Y n+1
s , Zn+1

s )

− gs(Xn
s , Y n

s , Zn
s )
]

ds.

Hence, due to the condition (A3) and the boundedness of (Zn), it holds

eβt
|Y n+1

t − Y n
t |

2
+

∫ T

t
eβs(Zn+1

s − Zn
s )2ds

≤ eβT
⏐⏐h(Xn+1

T ) − h(Xn
T )
⏐⏐2 − 2

∫ T

t
eβs(Y n+1

s − Y n
s )(Zn+1

s − Zn
s )dWs

−

∫ T

t
βeβs(Y n+1

s − Y n
s )2ds + 2

∫ T

t
eβsρ(M)

⏐⏐Y n+1
s − Y n

s

⏐⏐ ⏐⏐Zn+1
s − Zn

s

⏐⏐ ds

+ 2
∫ T

t
eβsk7

⏐⏐Y n+1
s − Y n

s

⏐⏐ ⏐⏐Xn+1
s − Xn

s

⏐⏐ ds + 2
∫ T

t
eβsk4

⏐⏐Y n+1
s − Y n

s

⏐⏐2ds.

With some positive constants α1, α2, it follows from (A3) and Young’s inequality that

eβt
|Y n+1

t − Y n
t |

2
+

∫ T

t
eβs(Zn+1

s − Zn
s )2ds ≤ eβT k2

5 |X
n+1
T − Xn

T |
2

− 2
∫ T

t
eβs(Y n+1

s − Y n
s )(Zn+1

s − Zn
s )dWs + α2

∫ T

t
eβs

|Xn+1
s − Xn

s |
2
ds

+

(
(ρ(M))2

α1
+

k2
3

α2
+ 2k4 − β

)∫ T

t
eβs(Y n+1

s − Y n
s )2ds

+ α1

∫ T

t
eβs

|Zn+1
s − Zn

s |
2
ds. (4.3)

Letting β =
(ρ(M))2

α1
+

k2
3

α2
+ 2k4 and taking expectation on both sides above, we have

E
[
eβt

|Y n+1
t − Y n

t |
2
]

+ E
[∫ T

t
eβs(Zn+1

s − Zn
s )2ds

]
≤ eβT k2

5 E
[
|Xn+1

T − Xn
T |

2
]

+ α1 E
[∫ T

t
eβs

|Zn+1
s − Zn

s |
2ds

]
+ α2 E

[∫ T

t
eβs

|Xn+1
s − Xn

s |
2
ds
]

.

Putting α1 =
1
2 and α2 = 1, the previous estimate yields

E
[∫ T

0
eβs(Zn+1

s − Zn
s )2ds

]
≤ 2eβT k2

5 E
[
|Xn+1

T − Xn
T |

2
]

+ E
[∫ T

0
eβs

|Xn+1
s − Xn

s |
2
ds
]

.
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Next, taking conditional expectation with respect to Ft in (4.3) gives

eβt
|Y n+1

t − Y n
t |

2
+ E

[∫ T

t
eβs(Zn+1

s − Zn
s )2ds

⏐⏐⏐⏐Ft

]
≤ eβT k2

5 E
[
|Xn+1

T − Xn
T |

2
⏐⏐⏐⏐Ft

]
+ α1 E

[∫ T

t
eβs

|Zn+1
s − Zn

s |
2ds

⏐⏐⏐⏐Ft

]
+ α2 E

[∫ T

t
eβs

|Xn+1
s − Xn

s |
2ds

⏐⏐⏐⏐Ft

]
.

Thus, by Burkholder–Davis–Gundy inequality, with a positive constant c1 and α1 =
1
2 , α2 = 1,

we have

E
[

sup
0≤t≤T

eβt
|Y n+1

t − Y n
t |

2
]

≤ c1eβT k2
5 E
[
|Xn+1

T − Xn
T |

2
]

+ c1
1
2

E
[∫ T

0
eβs

|Zn+1
s − Zn

s |
2
ds
]

+ c1 E
[∫ T

0
eβs

|Xn+1
s − Xn

s |
2ds

]
≤ 2c1eβT k2

5 E
[
|Xn+1

T − Xn
T |

2
]

+ 2c1 E
[∫ T

0
eβs

|Xn+1
s − Xn

s |
2
ds
]

.

It now follows from (4.2) that

E
[

sup
0≤t≤T

|Y n+1
t − Y n

t |
2
]

+ E
[∫ T

0
(Zn+1

s − Zn
s )2ds

]
≤ 8(c1 + 1)eβT (k2

5 + T )T 2k2
2 E
[

sup
0≤t≤T

|Y n
t − Y n−1

t |
2
]

.

Taking T small enough so that

8(c1 + 1)eβT (k2
5 + T )T 2k2

2 ≤
1
2
,

we obtain that (Xn, Y n, Zn) is a Cauchy sequence in S2(Rm) × S2(Rl) × H2(Rl×d ). Thus, it
suffices to define C2 by the conditions⎧⎪⎨⎪⎩

2T 2k2
1 ≤

1
2

8(c1 + 1)eβT (k2
5 + T )T 2k2

2 ≤
1
2
.

By continuity of b, g and h we have the existence of a solution (X, Y, Z ) in S2(Rm) × S2(Rl) ×

H2(Rl×d ) of FBSDE (1.1) and it follows from the boundedness of (Zn) that |Z t | ≤ M . The
uniqueness in S2(Rm)×S2(Rl)×S∞(Rl×d ) follows from the boundedness of Z and by repeating
the above arguments on the difference of two solutions.
Step 3: If one of the functions b, g or h is not differentiable, we apply the technique of the
proof of Theorem 3.1. Namely, we use an approximation by the smooth functions defined
as follows: For n ∈ N, let β1

n , β2
n and β3

n be nonnegative C∞ functions with support on
{x ∈ Rm

: |x | ≤
1
n }, {x ∈ Rm+l

: |x | ≤
1
n } and {x ∈ Rm+l+l×d

: |x | ≤
1
n } respectively,

and satisfying
∫
Rm β1

n (r )dr = 1,
∫
Rm+l β2

n (r )dr = 1 and
∫
Rm+l+l×d β3

n (r )dr = 1. We define the
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convolutions

bn
t (x, y) :=

∫
Rm+l

bt (x ′, y′)β2
n (x ′

− x, y′
− y)dx ′dy′, hn(x)

:=

∫
Rm

h(x ′)β1
n (x ′

− x)dx ′,

gn(u, x, y, z) :=

∫
Rm+l+l×d

g(u, x ′, y′, z′)β3
n (x ′

− x, y′
− y, z′

− z)dx ′dy′dz′.

It is easy to check that bn satisfies (A1) with the constants k1, k2 and 2λ1 and that gn and hn

satisfy (A4)–(A5) and (A3), respectively, with the same constants. From Steps 1 and 2, there
exists a positive constant C̄ independent of n such that if T ≤ C̄ , FBSDE (1.1) with parameters
(bn, hn, gn) admits a unique solution (Xn, Y n, Zn) ∈ S2(Rm) × S2(Rl) × S∞(Rl×d ) and

|Zn
t | ≤ M.

By the Lipschitz continuity conditions on b and h and the locally Lipschitz condition of g, the
sequences (bn) and (hn) converge uniformly to b and h on Rm+l and Rm , respectively, and (gn)
converges to g uniformly on Rm+l

× Λ for any compact subset Λ of Rl×d . Combining these
uniform convergences with the boundedness of Zn , similar to above, there exists a constant C̃
depending on k1, k2, k3, k4, k5, λ2, l and d such that if T ≤ C̃ , (Xn, Y n, Zn) is a Cauchy sequence
in the Banach space S2(Rm) × S2(Rl) × H2(Rl×d ).

In fact, for any m, n ∈ N, using Cauchy–Schwarz inequality we have⏐⏐Xn
t − Xm

t

⏐⏐2 ≤ T
∫ T

0

⏐⏐bn
u (Xn

u , Y n
u ) − bm

u (Xm
u , Y m

u )
⏐⏐2 du.

Thus, taking the supremum with respect to t and then expectation on both sides giveXn
− Xm

2
S2(Rm )

≤ 3T
∫ T

0
(
⏐⏐bn

u (Xn
u , Y n

u ) − bu(Xn
u , Y n

u )
⏐⏐2 +

⏐⏐bm
u (Xm

u , Y m
u ) − bu(Xm

u , Y m
u )
⏐⏐2

+
⏐⏐bu(Xn

u , Y n
u ) − bu(Xm

u , Y m
u )
⏐⏐2)du

≤ 3T
∫ T

0
(
⏐⏐bn

u (Xn
u , Y n

u ) − bu(Xn
u , Y n

u )
⏐⏐2 +

⏐⏐bm
u (Xm

u , Y m
u ) − bu(Xm

u , Y m
u )
⏐⏐2) du

+ 3k2
1 T 2

Xn
− Xm

2
S2(Rm ) + 3k2

2 T 2
Y n

− Y m
2
S2(Rl ) (4.4)

where the second inequality follows from (A1). On the other hand, applying Itô’s formula as in
Step 2, one has⏐⏐Y m

t − Y n
t

⏐⏐2 +

∫ T

t

⏐⏐Zn
u − Zm

u

⏐⏐2 du

≤
⏐⏐hn(Xn

T ) − h(Xn
T )
⏐⏐2 +

⏐⏐hm(Xm
T ) − h(Xm

T )
⏐⏐2 + k2

5

⏐⏐Xn
T − Xm

T

⏐⏐2
− 2

∫ T

t
(Y n+1

s − Y n
s )(Zn+1

s − Zn
s )dWs

+

∫ T

t

⏐⏐Y n
u − Y m

u

⏐⏐ (
⏐⏐gn

u (Xn
u , Y n

u , Zn
u ) − gu(Xn

u , Y n
u , Zn

u )
⏐⏐

+
⏐⏐gm

u (Xm
u , Y m

u , Zm
u ) − gu(Xm

u , Y m
u , Zm

u )
⏐⏐+ k3

⏐⏐Xn
u − Xm

u

⏐⏐+ k4
⏐⏐Y n

u − Y m
u

⏐⏐
+ ρ(M)

⏐⏐Zn
u − Zm

u

⏐⏐)du. (4.5)
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Taking expectation, due to Young’s inequality we haveZn
− Zm

2
H2(Rl×d )

≤ E[
⏐⏐hn(Xn

T ) − h(Xn
T )
⏐⏐2] + E[

⏐⏐hm(Xm
T ) − h(Xm

T )
⏐⏐2] + (k2

5 +
1
2

T k2
3)

×
Xn

− Xm
2
S2(Rm )

+
1
2

T
Y n

− Y m
2
S2(Rl ) +

1
2

∫ T

0

⏐⏐gn
u (Xn

u , Y n
u , Zn

u ) − gu(Xn
u , Y n

u , Zn
u )
⏐⏐2

+
⏐⏐gm

u (Xm
u , Y m

u , Zm
u ) − gu(Xm

u , Y m
u , Zm

u )
⏐⏐2du

+
1
2

T k2
4ρ

2(M)
Y n

− Y m
2
S2(Rl ) +

1
2

Zn
− Zm

2
H2(Rl×d ).

On the other hand, taking conditional expectation in (4.5) and then the supremum with respect
to t and then expectation on both sides, we have due to Young’s inequalityY n

− Y m
2
S2(Rl )

≤ E[
⏐⏐hn(Xn

T ) − h(Xn
T )
⏐⏐2] + E[

⏐⏐hm(Xm
T ) − h(Xm

T )
⏐⏐2] + k2

5

Xn
− Xm

2
S2(Rm )

+
1
2

T
Y n

− Y m
2
S2(Rl ) +

1
2

∫ T

0

⏐⏐gn
u (Xn

u , Y n
u , Zn

u ) − gu(Xn
u , Y n

u , Zn
u )
⏐⏐2

+
⏐⏐gm

u (Xm
u , Y m

u , Zm
u ) − gu(Xm

u , Y m
u , Zm

u )
⏐⏐2du

+
1
2

T k2
3

Xn
− Xm

2
S2(Rm ) +

1
2

T k2
4ρ

2(M)
Y n

− Y m
2
S2(Rl )

+
1
2

Zn
− Zm

2
H2(Rl×d ).

Combining (4.4) and (4.1) we observe that if T is small enough so that⎧⎪⎨⎪⎩
3k2

1 T 2
≤

1
2

1
2

T + 3k2
5k2

2 T 2
+

3
2

T 3k2
3k2

2 +
1
2

T k2
4ρ

2(M) ≤
1
2

then, the uniform convergence of (bn), gn and (hn) to b, g and h ensure that (Xn, Y n, Zn) is a
Cauchy sequence. The verification that the limit (X, Y, Z ) of the sequence (Xn, Y n, Zn) solves
the FBSDE (1.1) uses continuity of the functions b, h and g, and that |Z t | ≤ M is a consequence
of the boundedness of (Zn). Taking C := C̃ ∧ C̄ concludes the proof. □

4.2. Proof of Example 2.2

Let k ≥ 1, g(y, z) = y|z|k and R :=
λ5eT Mk

1−2Mk eT Mk with T < 1
Mk log( 1

2Mk ) ∧ 1. The
function g restricted to the ball {y : |y| ≤ R} × {z : |z| ≤ M} is Lipschitz continuous,
i.e. |g(y, z) − g(y′, z′)| ≤ Mk

|y − y′
| + 2RMk−1

|z − z′
| for all |y|, |y′

| ≤ R and |z|, |z′
| ≤ M .

Thus, it can be extended to a Lipschitz continuous function g̃ with the same Lipschitz constants
on Rl

×Rl×d . In particular, g̃ satisfies the conditions of Theorem 2.1. Thus, the FBSDE (2.2) with
generator g replaced by g̃ admits a unique solution (X̃ , Ỹ , Z̃ ) ∈ S2(Rm) × S2(Rl) × S∞(Rl×d )
with |Z̃ | ≤ M . Moreover, one has

|Ỹt | ≤ λ5 + E
[∫ T

t
Mk

|Ỹs | + 2RMk−1
|Z̃s | ds |Ft

]
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so by Gronwall’s inequality and boundedness of Z̃ , it follows that

|Ỹt | ≤ (λ5 + 2RMk)eT Mk
= R.

That is, g̃(Ỹt , Z̃ t ) = g(Ỹt , Z̃ t ), showing that (X̃ , Ỹ , Z̃ ) solves the FBSDE (2.2) with genera-
tor g. □

4.3. Proof of Remark 2.3

By construction, for T sufficiently small, there is a sequence (Xn, Y n, Zn) ∈ S2(Rm) ×

S2(Rl) × S∞(Rl×d ) converging in S2(Rm) × S2(Rl) × S2(Rl×d ) to the solution (X, Y, Z ) of
the FBSDE (1.1). Moreover, for each t ∈ [0, T ] it holds (Xn

t , Y n
t , Zn

t ) ∈ D1,2(Rm) × D1,2(Rl) ×

D1,2(Rl×d ) with |Dr Xn
t | ≤ 4λ2 and |Dr Y n

t | ≤ M for all r ∈ [0, T ]. For t ∈ [0, T ] one has

∥Xn
t − X t∥L2 + ∥Y n

t − Yt∥L2 → 0.

Thus, it follows from [27, Proposition 1.2.3] that (X t , Yt ) ∈ D1,2(Rm) × D1,2(Rl). □

4.4. Proof of Theorem 2.5

First assume that (A6) is satisfied. If T ≤ C , then the result follows from Theorem 2.1.
Assume T > C and let h̃ M̄ : R → R be a continuously differentiable function whose

derivative is bounded by 1 and such that h̃′

M̄
(a) = 1 for all −M̄ ≤ a ≤ M̄ and

h̃ M̄ (a) =

⎧⎨⎩
(M̄ + 1) if a > M̄ + 2
a if |a| ≤ M̄
−(M̄ + 1) if a < −(M̄ + 2).

An example of such a function is given by

h̃ M̄ (a) =

{(
−M̄2

+ 2M̄a − a(a − 4)
)
/4 if a ∈ [M̄, M̄ + 2](

M̄2
+ 2M̄a + a(a + 4)

)
/4 if [−(M̄ + 2), −M̄],

see Imkeller and dos Reis [19]. By the assumptions (A3) the function g̃ : [0, T ] × Rm
× Rl

×

Rl×d
→ Rl defined by

g̃t (x, y, z) := gt (x, y, h M̄ (z)) (4.6)

with h M̄ (z) := (h̃ M̄ (zi j ))i j being Lipschitz continuous in all variables. Thus, it follows
from Delarue [8, Theorem 2.6] that the equation⎧⎪⎪⎨⎪⎪⎩

X̃ t = x +

∫ t

0
bu(X̃u, Ỹu) du +

∫ t

0
σu dWu

Ỹt = h(X̃T ) +

∫ T

t
g̃u(X̃u, Ỹu, Z̃u) du −

∫ T

t
Z̃u dWu, t ∈ [0, T ]

(4.7)

admits a unique solution (X̃ , Ỹ , Z̃ ) ∈ S2(Rm) × S∞(Rl) × S∞(Rl×d ). Moreover, there exists a
Lipschitz continuous function θ : [0, T ] × Rm

→ Rl bounded by K5 such that Ỹt = θ (t, X̃ t )
for all t ∈ [0, T ]. In fact, for every x, x ′

∈ Rd , t ∈ [0, T ] and i = 1, . . . , l, it follows by Itô’s
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formula that

|θ (t, X̃ x
t ) − θ (t, X̃ x ′

t )|2

= |h(X̃ x
T ) − h(X̃ x ′

T )|2 −

∫ T

t
2

l∑
i=1

(
θ i (u, X̃ x

u ) − θ i (u, X̃ x ′

u )
) (

Z̃ x,i
u − Z̃ x ′,i

u

)
dWu

+

∫ T

t
2

l∑
i=1

(
θ i (u, X̃ x

u ) − θ i (u, X̃ x ′

u )
) (

gi
u(X̃ x

u , Ỹ x
u , Z̃ x

u ) − gi
u(X̃ x ′

u , Ỹ x ′

u , Z̃ x ′

u )
)

du

≤ |h(X̃ x
T ) − h(X̃ x ′

T )|2 −

∫ T

t
2

l∑
i=1

(
θ i (u, X̃ x

u ) − θ i (u, X̃ x ′

u )
) (

Z̃ x,i
u − Z̃ x ′,i

u

)
dWu

+

∫ T

t
2|θ (u, X̃ x

u ) − θ (u, X̃ x ′

u )|
(

k3|X̃ x
u − X̃ x ′

u | + ρ(M̄
√

dl)|Z̃ x
u − Z̃ x ′

u |

)
du

−

∫ T

t
2K4|θ (u, X̃ x

u ) − θ (u, X̃ x ′

u )|2 + |Z̃ x
u − Z̃ x ′

u |
2
du

≤ |h(X̃ x
T ) − h(X̃ x ′

T )|2 −

∫ T

t
2

l∑
i=1

(
θ i (u, X̃ x

u ) − θ i (u, X̃ x ′

u )
) (

Z̃ x,i
u − Z̃ x ′,i

u

)
dWu

+

∫ T

t
k3|X̃ x

u − X̃ x ′

u |
2
−

(
2K4 − k3 − ρ2(M̄

√
dl)
)

|θ (u, X̃ x
u ) − θ (u, X̃ x ′

u )|
2
du.

Since by Gronwall’s lemma we have

|X̃ x
s − X̃ x ′

s | ≤ (|X̃ x
t − X̃ x ′

t | + k2

∫ s

t
|Ỹ x

u − Ỹ x ′

u | du)ek1T , s ∈ [t, T ],

it holds⏐⏐⏐θ (t, X̃ x
t ) − θ (t, X̃ x ′

t )
⏐⏐⏐2

≤ E
[

2e2k1T (k2
5 + k3T )|X̃ x

t − X̃ x ′

t |
2

+

[
2e2k1T k2

2 T (k2
5 + k3T ) + k3 + ρ2(M̄

√
dl) − K4

]
×

∫ T

t
|θ (u, X̃ x

u ) − θ (u, X̃ x ′

u )|2 du | Ft

]
≤ 2e2k1T (k2

5 + k3T )|X̃ x
t − X̃ x ′

t |
2
.

Thus, ⏐⏐⏐θ (t, X̃ x
t ) − θ (t, X̃ x ′

t )
⏐⏐⏐ ≤ K5|X̃ x

t − X̃ x ′

t |.

Let C̄ := C(k1, k2, k3, k4, K5, λ2, l, d) and put N = ⌊T/C̄⌋, where ⌊a⌋ denotes the integer
part of a, and ti := i C̄ , i = 0, . . . , N and tN+1 = T . Since t1 ≤ C̄ , by Theorem 2.1 the FBSDE⎧⎪⎪⎨⎪⎪⎩

X t = x +

∫ t

0
bu(Xu, Yu) du +

∫ t

0
σu dWu

Yt = θ (t1, X t1 ) +

∫ t1

t
gu(Xu, Yu, Zu) du −

∫ t1

t
Zu dWu, t ∈ [0, t1]



Please cite this article in press as: M. Kupper, et al., Multidimensional Markovian FBSDEs with super-quadratic growth, Stochastic Processes and
their Applications (2018), https://doi.org/10.1016/j.spa.2018.03.024.

M. Kupper et al. / Stochastic Processes and their Applications ( ) – 19

admits a unique solution (X1, Y 1, Z1) such that
⏐⏐Z1

t

⏐⏐ ≤ M̄ with M̄ = 8λ2 K5
√

dl for all
t ∈ [0, t1]. Therefore, (X1, Y 1, Z1)1[0,t1] = (X̃ , Ỹ , Z̃ )1[0,t1]. Similarly, we obtain a family
(X i , Y i , Z i ) of solutions of the FBSDEs⎧⎪⎪⎨⎪⎪⎩

X t = X̃ ti−1 +

∫ t

ti−1

bu(Xu, Yu) du +

∫ t

ti−1

σu dWu

Yt = θ (ti , X ti ) +

∫ ti

t
gu(Xu, Yu, Zu) du −

∫ ti

t
Zu dWu, t ∈ [ti−1, ti ]

such that (X i , Y i , Z i )1[ti−1,ti ] = (X̃ , Ỹ , Z̃ )1[ti−1,ti ], i = 1, . . . , N + 1. Define

X :=

N+1∑
i=1

X i 1[ti−1,ti ], Y :=

N+1∑
i=1

Y i 1[ti−1,ti ] and Z :=

N+1∑
i=1

Z i 1[ti−1,ti ].

Then, (X, Y, Z ) ∈ S2(Rm) × S∞(Rl) × S∞(Rl×d ) is the unique solution of the FBSDE (1.1)
satisfying |Z t | ≤ M̄ for all t ∈ [0, T ]. In fact, it is clear that (X, Y, Z ) ∈ S2(Rm) × S∞(Rl) ×

S∞(Rl×d ) as a finite sum of elements of the same space. Let t ∈ [0, T ] and i = 1, . . . , N + 1
such that t ∈ [ti−1, ti ]. We have

x +

∫ t

0
bu(Xu) du +

∫ t

0
σu du = x +

i∑
j=1

(∫ t j ∧t

t j−1

bu(X j
u ) du +

∫ t j ∧t

t j−1

σu dWu

)
= X i

t = X t

and

h(XT ) +

∫ T

t
gu(Xu, Yu, Zu) du −

∫ T

t
Zu dWu

= h(X N+1
T ) +

N+1∑
j=i

(∫ t j

t j−1∨t
gu(X j

u , Y j
u , Z j

u ) du −

∫ t j

t j−1∨t
Z j

u dWu

)
= Y i

t = Yt .

That is, (X, Y, Z ) satisfies Eq. (1.1). □
In the case where (A7) is satisfied, the proof is similar and we only need to provide the

argument for the Lipschitz continuity of θ . If T ≤ C , then the result follows from Theorem 2.1.
Assume T > C and let h̃M : R → R be a suitable truncating function and g̃ : [0, T ] × Rm

×

Rl
× Rl×d

→ Rl defined by

g̃t (x, y, z) := gt (x, y, hM (z)) (4.8)

with hM (z) := (h̃M (zi j ))i j . It follows from Delarue [8, Theorem 2.6] that the equation⎧⎪⎪⎨⎪⎪⎩
X̃ t = x +

∫ t

0
bu(X̃u, Ỹu) du +

∫ t

0
σu dWu

Ỹt = h(X̃T ) +

∫ T

t
g̃u(X̃u, Ỹu, Z̃u) du −

∫ T

t
Z̃u dWu, t ∈ [0, T ]

(4.9)

admits a unique solution (X̃ , Ỹ , Z̃ ) ∈ S2(Rm) × S∞(Rl) × S∞(Rl×d ). Moreover, there exists a
Lipschitz continuous function θ : [0, T ] × Rm

→ Rl bounded by k5 such that Ỹt = θ (t, X̃ t ) for
all t ∈ [0, T ]. In fact, for every x, x ′

∈ Rd , t ∈ [0, T ] and i = 1, . . . , l applying Itô’s formula
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we have

|θ (t, X̃ x
t ) − θ (t, X̃ x ′

t )|2

= |h(X̃ x
T ) − h(X̃ x ′

T )|2 −

∫ T

t
2

l∑
i=1

(
θ i (u, X̃ x

u ) − θ i (u, X̃ x ′

u )
) (

Z̃ x,i
u − Z̃ x ′,i

u

)
dWu

+

∫ T

t
2

l∑
i=1

(
θ i (u, X̃ x

u ) − θ i (u, X̃ x ′

u )
) (

gi
u(X̃ x

u , Ỹ x
u , Z̃ x

u ) − gi
u(X̃ x ′

u , Ỹ x ′

u , Z̃ x ′

u )
)

du

≤ |h(X̃ x
T ) − h(X̃ x ′

T )|2 −

∫ T

t
2

l∑
i=1

(
θ i (u, X̃ x

u ) − θ i (u, X̃ x ′

u )
) (

Z̃ x,i
u − Z̃ x ′,i

u

)
dWu

+

∫ T

t
2|θ (u, X̃ x

u ) − θ (u, X̃ x ′

u )|
(

k3|X̃ x
u − X̃ x ′

u | + ρ(M
√

ld)|Z̃ x
u − Z̃ x ′

u |

)
du

−

∫ T

t
2K4|θ (u, X̃ x

u ) − θ (u, X̃ x ′

u )|2 + |Z̃ x
u − Z̃ x ′

u |
2
du

≤ |h(X̃ x
T ) − h(X̃ x ′

T )|2 −

∫ T

t
2

l∑
i=1

(
θ i (u, X̃ x

u ) − θ i (u, X̃ x ′

u )
) (

Z̃ x,i
u − Z̃ x ′,i

u

)
dWu

+

∫ T

t
2k3|θ (u, X̃ x

u ) − θ (u, X̃ x ′

u )| |X̃ x
u − X̃ x ′

u | −

(
K4 − ρ2(M

√
ld)
)

× |θ (u, X̃ x
u ) − θ (u, X̃ x ′

u )|
2
du.

Since for s ∈ [t, T ],

|X̃ x
s − X̃ x ′

s |
2

≤ |X̃ x
t − X̃ x ′

t |
2
+

∫ s

t
−2K1|X̃ x

u − X̃ x ′

u |
2
+ 2k2|X̃ x

u − X̃ x ′

u | |Ỹ x
u − Ỹ x ′

u | du,

it holds⏐⏐⏐θ (t, X̃ x
t ) − θ (t, X̃ x ′

t )
⏐⏐⏐2

≤ E
[

k2
5 |X̃

x
t − X̃ x ′

t |
2
+

∫ s

t
−2K1k2

5 |X̃
x
u − X̃ x ′

u |
2
+ (2k2k2

5 + 2k3)|X̃ x
u − X̃ x ′

u |

× |Ỹ x
u − Ỹ x ′

u | du

+

(
ρ2(M

√
ld) − K4

) ∫ T

t
|θ (u, X̃ x

u ) − θ (u, X̃ x ′

u )| du | Ft

]
≤ k2

5 |X̃
x
t − X̃ x ′

t |
2
.

Thus, ⏐⏐⏐θ (t, X̃ x
t ) − θ (t, X̃ x ′

t )
⏐⏐⏐ ≤ k5|X̃ x

t − X̃ x ′

t |.

Having proved this Lipschitz continuity property, the rest of the proof is exactly the same as in
the first part. □

Remark 4.1. With the techniques presented above, it is hard to consider systems where the
drift b depends on z, since we do not have good enough estimates on the Malliavin derivative
of the control process Z . Similarly, when the diffusion coefficient σ is a function of x, y or
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z, we lose the estimates on the Malliavin derivatives of the solutions. These cases (even in the
non-Markovian situation) can nevertheless be considered under stronger assumptions, we refer
to [23] for details. ♦
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