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Abstract

In this paper we study the transition densities for a large class of non-symmetric Markov processes
whose jumping kernels decay exponentially or subexponentially. We obtain their upper bounds which also
decay at the same rate as their jumping kernels. When the lower bounds of jumping kernels satisfy the weak
upper scaling condition at zero, we also establish lower bounds for the transition densities, which are sharp.
© 2018 Published by Elsevier B.V.
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1. Introduction
Letd € N, R? be the d-dimensional Euclidian space and R, = {x € R! : x > 0}. Define

L f(x) = lsiﬁ)lﬁk’sf(X) = lim (f(x +2) = f(x) k(x, 2)J (|zDdz, (1.1)

€ {zeR4:|z|>¢)
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2 P. Kim, J. Lee / Stochastic Processes and their Applications Xx (XXXX) XXX—Xxx

where « : R? x R — R, is a Borel function satisfying the following conditions: there exist
positive constants kg, k1, k3 and § € (0, 1) such that

ko <k(x,2) <k, «kx,2)=«(x,—z) forallx,ze R? (1.2)
and
lk(x,2) — k(y, 2)| < kalx — y|° forall x, y, z € R, (1.3)

The operator £“ can be regarded as the non-local counterpart of elliptic operators in non-
divergence form. In this context, the Holder continuity of x (-, z) in (1.3) is a natural assumption.

In [5], Zhen-Qing Chen and Xicheng Zhang studied £“ and its heat kernel when J(r) =
r~4=% r > 0and « € (0, 2). They proved the existence and uniqueness of the heat kernel and its
sharp two-sided estimates, cf. [5, Theorem 1.1] for details. The methods in [5] are quite robust
and have been applied to non-symmetric and non-convolution operators (see [2,3,6,7,13,12,10]
and references therein). In particular, the first named author, jointly with Renming Song and
Zoran Vondracek in [13], studied the operator £ and its heat kernel when J is comparable to
jumping kernels of subordinate Brownian motions and its Lévy exponent satisfies a weak lower
scaling condition at infinity. In this paper we consider the case that J(r) decays exponentially or
subexponentially when r — oo and we obtain sharp two-sided estimates for the heat kernel of
L.

Throughout this paper, we assume d € N, and that J : Ry — R, is continuous and
non-increasing function satisfying that there exist a continuous and strictly increasing function
¢ : [0, 1] - R with ¢(0) = 0, and constants b > 0,0 < 8 < 1 and a > 1 such that

-1

rf¢(r) < Jr) < rd;’(r), O<r<1 and J()<aexp(—brf), r>1. (14
In addition, we assume that J is differentiable in R, and
J'(r) . . . Ny
F— — is non-increasing in R . (1.5)

Our main assumption on ¢ is the following weak lower scaling condition at zero: there exist
a1 € (0,2] and a; > O such that
al(ﬁ)“l 5@, 0<r<R<I. (1.6)
r é(r)
Since we allow a; to be 2, to guarantee that J is to be a Lévy density, we also need the following
integrability condition for ¢ near zero:
bos
——ds = Cy < o0. (1.7)
0 ¢(s)
The monotonicity of J(r) and (1.7) ensure the existence of an isotropic unimodal Lévy process
in R? with the Lévy measure J(|x|)dx, which is infinite because of (1.6) and the lower bound in
(1.4).
Our goal is to obtain estimates of the heat kernel for £°. First we introduce the function
4 (t, x) which plays an important role for the estimates of heat kernel. Let us define the function
& and 6 as
2
— 0 <r < 1,
B(r) =12 [y gds (1.8)
(1)r?, r>1,
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and
1
— r=1,
0(r) == { T P(r) b
exp(—brﬂ)l{o<,g<1} =+ V_d_] exp(—gr)l{,g:”, r> 1.

-1
By (1.7), [y (yds is integrable so that & is well-defined. Note that $(1) = (2 fol %ds) =

(2Cp)~! is determined by Cy. Also, by Lemma 2.1 we will see that @ is a strictly increasing
function in Ry and lim, ;o @(r) = 0, which imply that there exists an inverse function ¢! :
Ry — R;.Fort > 0and r > 0 define 4(z, r) by

— @) —
g(t,}”)—g (t,r).—m/\e(r).
where a A b := min{a, b}. By an abuse of notation we also define
G(t,x) =9D, x) = Py AO(x]), >0, xeR?, (1.9)

so Y(t,x) = ¥(t, |x]). Note that the definition of () for § = 1 is simply technical and it is
harmless for readers to regard 6(r) as 1<y + exp(—%r)l{,>1} as the upper bound of heat
kernel for § = 1 in Theorems 1.1-1.3.

Let us compare ¢ with the following function defined by
1

1oy " e alx))

_1
rd &(r)

G(t,x) =9, |x|) =

(1.10)

By [13, Proposition 2.1] and our Lemma 3.3 we see that ¢ is the function used for the upper heat
kernel estimate in [13] (see Remark 2.3 for details). It is easy to see that 4(¢, x) < c¥(¢, x) (see
Lemma 2.2). Here is our main result.

Theorem 1.1. Let L be the operator in (1.1). Assume that jumping kernel J satisfies (1.4) and
(1.5), that ¢ satisfies (1.6) and (1.7), and that « satisfies (1.2) and (1.3). Then, there exists a
unique jointly continuous function p(t, x, y) on R. x RY x RY solving

8lpK(tv'x7 y)z‘CKpK(t7'v }’)(x)’ x#yv (111)

and satisfying the following properties:
(i) (Upper bound) For every T > 1, there is a constant ¢; > 0 such that for all t € (0, T] and
x,y e R4,

P, x,y) < cit9(, x — y). (1.12)

(ii) (Fractional derivative) For any x,y € RY with x # vy, the map t — LXp“(t, -, y)(x) is
continuous, and for each T > 1, there exists a constant c; > 0 such that for all t € (0, T],
eel0,1]and x,y € RY,

L9 p(t, - M| < Dt x = ). (1.13)
(iii) (Continuity) For any bounded and uniformly continuous function f : R? — R,

lim sup / P x, ) f(ndy — f(x)| =0. (1.14)

t}0 rerd |JRA
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Furthermore, such unique function p“(t,x,y) satisfies the following lower bound: for every
T > 1, there exists a constant c3, ¢4 > 0 such that forallt € (0, T],

A ON e =yl <@ (0)
“t,x,y)>c ’ - _ 1.15
P ) 3{rJ(|x—y|>, =yl > s @7 0) (-1
The constants ¢;, i = 1,...,4, depend onlyond, T, a, ay, a1, b, B, Co, 8, ko, k1 and k».

The upper bound of the fractional derivative of p* in (1.13), which is a counterpart of [13, (1.12)],
will be used to prove the uniqueness of heat kernel.

We emphasize here that unlike [13, (1.21)] we obtain (1.15) without any upper weak scaling
condition on ¢. The estimates in (1.12) and (1.15) in Theorem 1.1 are not sharp in general.
However, when the jumping kernel J satisfies

J(r) > ayexp(—=birfty, r>1, (1.16)

and ¢ satisfies weak scaling condition at zero, that is,
¢(R) S az(ﬁ)az’
@(r) r
for some a; > 0 and ap € (0, 2), then the lower bound in (1.15) is comparable to that
in [9, Theorem 1.2], which is lower heat kernel estimates for symmetric Hunt process with
exponentially decaying jumping kernel. We remark here that, under the assumption (1.17), the
constant «; in (1.6) must be in (0, 2).

Note that ¢ is comparable to @ under (1.6) and (1.17). Therefore, under additional assump-
tions (1.16) and (1.17) we have the following corollary.

0<r<R<1 1.17)

Corollary 1.2. Let L* be the operatorin (1.1). Assume that jumping kernel J satisfies (1.4), (1.5)
and (1.16), that ¢ satisfies (1.6) and (1.17), and that « satisfies (1.2) and (1.3). Then, the heat
kernel p*(t, x, y) for L satisfies the following estimates: for every T > 1, there is a constant
¢ > 0 such that forallt € (0, Tland x, y € R,

ol (¢1(t)d A

t
e = yl?p(lx — YI))

< Kt, , < _lt_d/\ ! >’ —_ <1,
= p( xy)_c(¢ (1) TR YT lx —yl =

and
¢ 'texp(=bi|x = y|P1) < pF(t.x,y) <ctB(x =y, |x—y| > L
The constant ¢ depends ond, T, a, ay, ay, @1, a2, b, by, B, B1, Co, 8, ko, k1 and k.

Comparing to [13], Corollary 1.2 provides further precise heat kernel estimates for the
operator (1.1) with exponential decaying function J. We remark here that, when § > 1, the
estimates of p“(t, x, y) are different and so the result in Corollary 1.2 does not hold even for
symmetric Lévy processes. See [4,15]. We will address this interesting case somewhere else.

More properties of the heat kernel p“(¢, x, y) are listed in the following theorems.

Theorem 1.3. Suppose that the assumptions of Theorem 1.1 are satisfied.
(1) (Conservativeness) For all (t, x) € Ry x R¢,

/ P, x,y)dy=1. (1.18)
R4
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(2) (Chapman—Kolmogorov equation) For all s,t > 0 and x, y € R,

/dp“(t,x,z)pk(s,z,y)dz=p“(t+s,x,y). (1.19)
R

(3) (Holder continuity) For every T > 1 and y € (0, a1) N (0, 1], there is a constant c; > 0 such
that forall0 <t < T and x, x', y € R? with either x # y or x' # y,

P, x, ) = p@, X )l < ellx =Xt @7 ) (G, x — ) VL@, X = y).  (1.20)

(4) (Gradient estimate) Further assume that oy € (2/3,2) and oy + 8 > 1. Then, for every
T > 1, there is a constant ¢y > 0 such that forall 0 <t <T and x,y € R4 with x #y,

IVep“(t, x, ) < 2@~ (Ot G (2, x — y). (1.21)
The constants ¢; and ¢, dependond, T, a, ay, a1, b, B, Co, v, 8, ko, k1 and k».

For ¢t > 0, define the operator P/ by
PEf(x) = /d Pt x, f(dy, xeRY, (1.22)
R

where f is a nonnegative (or bounded) Borel function on R?, and let Py = 1d. Then by
Theorem 1.3, (P));>¢ is a Feller semigroup with the strong Feller property. Let Cj‘g(Rd ) be the
space of bounded twice differentiable functions in RY whose second derivatives are uniformly
Holder continuous.

Theorem 1.4. (1) (Generator) Let ¢ > 0. Forany f € CZ’S(R‘I), we have
s 1 K K
1z1f51 n (P fx) — f(x) = Lf(x), (1.23)

and the convergence is uniform. (2) (Analyticity) The semigroup (P/);>o of L* is analytic in
LP(RY) for every p € [1, 00).

In this paper, we defined the function ¥(¢, x) from the conditions on J directly, while
in [13] the function p(#, x) is defined by the characteristic exponent of an isotropic unimodal
Lévy process with jumping kernel J(x)dx. The reason is that, in our situation, it is more
convenient than using characteristic exponent to describe exponential decaying jumping kernel.
See Remark 2.3 for the connections between two definitions.

As [13], the approach in this paper is based on the method originally developed in [5].
In Section 2, we introduce basic setup and scaling inequalities. In addition, we obtain some
convolution inequalities at Proposition 2.8 in Section 2.2. The results in Section 2.2 are similar
to [13, Lemma 2.6], although our function (¢, x) is smaller than that in [13].

In Section 3, we discuss gradient estimates for the heat kernel of isotropic unimodal Lévy
process with jumping kernel J(|x|)dx, which follow from the results in [11,12]. We only use
Proposition 3.2 in the proof of our main theorem, but Proposition 3.1 itself is of independent
interest.

In Section 4, we obtain some useful estimates on functions involving the heat kernel for the
isotropic Lévy process whose jumping kernel is J(|x|)dx. In Section 4.1, we improve inequalities
in Proposition 3.2 and 4.1-4.2 for the symmetric Lévy processes whose jumping kernel is
RK(x)J(]x])dx, where K(x) is symmetric and bounded between two positive constants. As [13,
Section 3], we also observe the continuous dependency of the heat kernel p* with respect to the
jumping kernel R(x)J(|x|)dx.
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In Section 5, we follow the Levi’s construction in [13, Section 4]. Note that as in [13, Section
4], many results in Section 5 are derived from the estimates in Sections 2 and 4 so that we can
follow [13] for the most of proofs. Finally we provide the proofs of Theorems 1.1, 1.3 and 1.4 in
Section 6.

In this paper, we use the following notations. We will use “:=" to denote a definition, which
is read as “is defined to be”. For any two positive functions f and g, f < g means that
there is a positive constant ¢ > 1 such that ¢! g < f < cg on their common domain of
definition. Denote diam(A) = sup{|x — y| : x,y € A} and o(dz) = o4(dz) be a uniform
measure in the sphere {z € R? : |z| = 1}. For a function f : R, x R — R, we define
f,x£2)=ft,x+2)+ f(t,x —z)and

Spt,x;2) = ft,x+2)+ ft,x —2)—2f¢,x)= ft,x £2) — 2f(t, x). (1.24)

Throughout the rest of this paper, the positive constants T, a, a;, o1, b, B, 8, ko, k1, k2 and C;,
i =0,1,2,..., canbe regarded as fixed. In the statements of results and the proofs, the constants
¢i =ci(a,b,c,...),i =0,1,2,..., denote generic constants depending on a, b, c, ..., whose
exact values are unimportant. They start anew in each statement and each proof.
2. Preliminaries

In this section we first study some elementary properties of @ defined in (1.8).
Lemma 2.1. Assume that ¢ satisfies (1.6) and (1.7). Then, @ is continuous and strictly

increasing in (0, 1], and satisfies

D(r) < ¢(r), 0<r=<1l .1

(7 =55 =)
a| — =< <|{—), O<r <R, 2.2)
r d(r) r

where a; > 0 and oy € (0, 2] are constants in (1.6). In particular, (2.1) implies lim, o $(r) =0

and

Proof. Since ¢ is continuous in (0, 1], @ is continuous in R by definition. Also, since ¢ is
strictly increasing, we have

2 7‘2

-
<
7 = 7
2/, ﬁds 2/, ﬁds

To show that @ is strictly increasing, it suffices to observe that for0 < r < 1,

() = ([ ae) = [ (- #)
=|r —ds | =2r s|————]ds <0.
20(r) o ¢(s) 0 o) &)
Now we prove (2.2). Clearly, by the definition of @, (2.2) holds for 1 <r < R.
For 0 <r < R < 1, we have R?/®(R) = fOR(s/qS(s))ds > [, (s/@(s))ds = r?/ &(r), which
implies the second inequality in (2.2). Also, by change of variables and (1.6)
P(R) 2@(R) / _ 2@(R) / (r/R)t (r/R)dt
o(r) ¢(S) ¢((r/R)t)

- ZQB(R)/ dt > a ‘”ZQ(R)/ L —al(R)O”.
R o ¢((F/R)f) r ¢(1) r

P(r) = = ¢(r).

Please cite this article in press as: P. Kim, J. Lee, Heat kernels of non-symmetric jump processes with exponentially decaying jumping kernel,
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For R > 1 >r > 0, using #(R) = &(1)R? and above estimates we have

o 2 2
a1<§) | = “IR— = 2R _ DR 2D < R
re D(r) P(1) d(r) ~ r?

r

Note that our main results hold for all ¥ < T, while the definition of ¢ in (1.9) is independent
of T. To make our proofs simpler, we introduce a family of auxiliary functions which will be
used mostly in proofs.

Let T > &(1) and define ¢ : (0, T] x (0, 00) — (0, c0) by

1
. < o ),
t@;l(t)d = ©
S o\
Gr(t,r) = { rid(r) 0 <r 2.3)
< o7 N(D),
5 Cr b »
Crexp(—=br”)log<1 + prEs) CXP(—gr)lﬁ:h r> &7 (T),

where Cr := T~ &~ 1(T) 4 exp(b @’I(T)ﬁ)lo<,g<1 +77! @’I(T)exp(g @’I(T))l,g:l. Note that
r +— “r(t, r) is continuous and non-increasing (due to such choice of Cr).

Recall that ¢ (t, r) is defined in (1.10). In the following lemma we show that ¢ and ¥ (¢, x)
are comparable and less than 7 (t,r).

Lemma 2.2. (a) Let T > &(1). Then, there exists a constant ¢; = c¢(T) > 0 such that
i 'Gr(t.r) <9 r) < 19t r) (2.4)

foranyt € (0,T]andr > 0.
(b) There exists a constant ¢, > 0 such that

G(t,r) < 2 9(t,r). 2.5)
foranyt > 0 and r > 0. The constant ¢, depends ond, b, T, ®~(T), B and Cy, and c, depends
ond,b, B and Cy.

Proof. (a) Define

r o), r< ¢~ NT),

0 — b
D=, exp(—brP)lo_py + Crr—d~! exp(— ) 1g1, r> & \(T).

Note that r — 07(r) is strictly decreasing and Or(P7(1)) =
we can obtain

W forany O < ¢ < T. Thus

Or(r) < ifand only if ¢ < &(r). 2.6)

1
-1ty
By (2.3) and (2.6) we have

Yr(t,r)= A Op(r). 2.7

1
1o~ 1(r)d
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Let
1<r<51;;3](T) a0 exp(brﬂ) for 0<pB <1,
Mp:=q"" r b
sup exp(=r) for =1
l<r<®—1(T) o(r) 5
and
inf exp(br? for 0<B <1,
_ Jisr=o1y rd 0(r) pbr) P
mr = b
inf exp(=r for =1
1<r<a-1(1) D(r) p(5 ) d
Then, for0 < 8 < 1,
1
— =0 s <1,
B0 7(r) r=
—1 -1 _
0(r) = {exp(—brf) > M T M;'or(r), 1 <r< & (D),
exp(—brfy < m;'0r(r), l<r< o YD),
exp(—br?) = C;'0r(r), r> o Y(T)
and for g = 1,
1
— =0 , <1,
rdlcﬁ(r) Z(r) : h=
-1 _ -l -1
9(}’): mexp(—gr)zMT W—MT 91"(}"), 1 <r < P (T),
exp(—brP) < m;'0r(r), 1 <r< & (D),
1 b A _
prrey CXP(—gr) = C7'0r(r), r> & 4T).

Thus, forany 0 < g < l andr > 0,
(LAM ACHOr(r) <0(r) < (1 vmp' v CrHor ().
Using this and (2.7) we arrive (2.4).
(b) Clearly we have 9(¢,r) = 4(t,r) forr < 1.Foranyr > 1 and 0 < 8 < 1 we have

f!;(t, r)=

-1
o) > (igrl)sd ¢(S)eXp(—bsﬁ)) exp(—brf) = c(B)9(t, r).

Similarly, forr > 1l and 8 =1

L_> q‘)(s)e ( ’ ) i exp( b) (g, r)
——— sup — exp(——s ——exp(—=r)=c 1),
rd+2¢(1) — SZI; s PS rart P

Combining above estimates with (2.4) we arrive (2.5) with ¢; = ¢(B8) A cfl. O

Eé(t,r) =

In the following remark we will see that our Ef(t, x) and the function p(z, x) in [13] are
comparable.

Remark 2.3. Let r(t, r) := ¥~ "¢~ A [ty (r~")r~¢] as in [13], where v is the characteristic
exponent with respect to the Lévy process whose jumping kernel is J(|y[)dy. By Lemma 3.3 we
have y(r—1)~' < &(@r) forall r > 0, which implies that r(¢,r)/t < ¢(¢, r) for all r > 0. Thus,
by [13, Proposition 2.1] we conclude that ¢(¢, x) is comparable to the function p(z, x) in [13].
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2.1. Basic scaling inequalities

We start with weak scaling condition for the inverse function of @. In this subsection we
assume that ¢ satisfies (1.6).

Lemma 2.4. Forany (0 <r < R,
Riup  97'(R) /ey R\ 1/
—_ < < —_ 2.8
(r) — 4571(’,) —al (}") ( )

where a; and a are constants in (1.6).

Proof. Letting (r, R) = (&~ '(r), "' (R)) in (2.2), we have that for 0 < r < R,
»(R) R (97 (R) - & '(R)\2
W) =T sy =)
which implies (2.8). 0

)" <

Now we introduce some scaling properties of ¢ which will be used throughout this paper.

Lemma 2.5. Let T > 1 and 0 < ¢&. Then, there exist constants ¢y, c; > 0 such that for any
O0<t<T,xeRlandzeR? satisfying ®(|z|) < t,

G(et,x) < c19(t, x) (2.9)
and

G(t,x +2) < 9t x), (2.10)
where c| depends only on d, ay, ay, €, and c; depends only ond, T, ay, a1, b, B and Cy.

Proof. (a) Since t — ¥(t, x) is non-increasing, we can assume £ < 1 without loss of generality.
By (2.8), there is a constant ¢;(¢) > 1 satisfying

1 [ C1
st d(et)d T tP-1()d

fort < T. Thus, we arrive

|
st P 1(st)d to-1(r)d
(b) We claim that (2.10) holds with the function %7 (¢, x). In other words, there exists a constant
¢> > 0 such that

Y(et,x) = AO(x]) < AO(|x]) < a1¥9(t, x).

Gr(t,x +2) < 2%, x), xeRY &(z]) <t

Since r +— %r(t, r) is non-increasing, it suffices to show that there exists ¢3 > 0 such that for
any0) <t <Tandr > 0,

Gr(t,r) < c3expb P O (t, r + 7' (1)). (2.11)

Indeed, since 0 < t < T, (2.11) implies our claim with ¢, = c3 exp(b®~'(T)P).
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We prove (2.11) by considering several cases separately. Firstly when r < &~(T) — &71(¢),
using (2.3) we have

1
r+ @71 (r + &~1(2))
1

Gr(t,r+ o7 (1) =

> A !
TR PRI()) (2r)dd(2r)

1 1
2 Cq (t@l(l’)d A }’d@(}")> = C4g7‘(t,r),

The second line above follows from (2.2).
When » > & /(T)and 0 < B < 1, using (2.3) and triangular inequality »# + &~!(r)f >
(r + 27 1(1))? we get

Gr(t,r + 7(1))

exp(—b(r + o71(1))?) = exp(=b &~ (1)? — brP)
= exp(—b S ()" (1, 1).

Similarly, for > &~!(T) and B = 1 we have

Gr(t,r+ &' (t)) = Cr exp(—l—’v + o7'(1)

1
( + Qs—l(t))d-H

Cr oo D= —@ (r)——r)

=27 exp(—g S O)Gr(1.1) = 27 exp(—b O™ (O)Fr (1. 7).

When &~ 1(T) — ¢7!(t) < r < &~(T), combining above estimates we arrive
Gr(t,r+ 07'(0) = 27 exp(=b & )G (1, 27I(T)) = esexp(—=b ™ (1)) (1, 7).

Note that r — %(t, r) is continuous at r = &~ !(T). Therefore, we conclude (2.11). Applying
(2.4) for (2.11) we arrive our desired estimate (2.10). [

2.2. Convolution inequalities

In this section, we obtain some convolution inequalities for 4(z, x) which will be used for
Levi’s method in Section 5. To get these inequalities we will use some estimates in [13, Section
2]. Note that by Remark 2.3 we already have convolution inequalities for G(t, x) (e.g. [13,
Proposition 2.8]). For a, b > 0, let B(a, b) = fol s — s)lds = % be the beta
function.

Using (2.8), the proof of the following lemma is same as the one in [13, Lemma 2.3]. Thus
we skip the proof.

Lemma 2.6. Assume that ¢ satisfies (1.6) and y,§ > 0, n,0 € R are constants satisfying
1,50(¥/2) + 1, c0(y /o) +8/2 4+ 1 —1n > 0. Then for every t > 0, we have

/ s (s)Y (t —s) P D7Vt — 5)’ ds
0
<B@G2+1—0,p/2+ 1=t 01 (1)r (2.12)

Please cite this article in press as: P. Kim, J. Lee, Heat kernels of non-symmetric jump processes with exponentially decaying jumping kernel,
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For 0 < s < t,let g(s) = t# + (2% — 1)s? — (¢t + 5)P. Then we can easily check that
g(0) = g(t) =0 and

/ - “n =0, s € [0, kt],
g() =B (2 — DsP! — (1t +5) 1){501 s € [ 11,

1
where k == (2% — 1)7-T — 1)~ € (0, 1) is the constant satisfying g’(kt) = 0. Thus, we conclude
that g(s) > 0 for any 0 < s < ¢, which implies

PP >+ +02-25)1tP AnsP), forall0<pB <landt,s > 0. (2.13)

Using (2.13) we prove the following lemma, which we need for our convolution inequalities.

Lemma 2.7. (a) Let 0 < B < 1 and b > 0. Then, there exists a constant ¢; > 0 such that for
any x € RY,

| exp(=bix = 21F = blzl)dz < exp—blxl 2.14)
(b) There exists a constant ¢; > 0 such that for any x € R¢ with |x| > 1,

[ = 2 A D A Dz < e 2.15)
The conﬂimnt c1 depends only on b, d and B, and ¢, depends only on d.
Proof. (a) Let

¢ = 2fd exp(—b(2 — 29)|z/P)dz < oo.
Using (2.13) ffr the second line, we arrive

[ expiobix =2l ~ bizifidz < [ | exp(-blxiP)exp(~b2 = 22l A lx = 21F))dz
R R
< exp(—blx /") ( |, expi-bez — 211z
R4

+/ exp(—b(2 — 2P)|x — z|f‘)dz>
]Rd
= ¢y exp(—b|x|?).

This proves (2.14).
(b) Using |x —z| ' A |z|™! < 2]x|7", we have

/d(lx — 27 A D2 A Ddz
R

2
<(= it (/ (241 A 1)dz +/ (x — 214" A l)dz>
x| lx—z|>lzl lx—zl<lzl
2
<(—)*! (/ (|z|“’—1A1)dz+/ (|x—z|“’“A1)dz> = colx| 7
|X| R4 R4
This concludes the lemma. [

Fory,§ e R,t >0and x € R4 we define
Gt x) = 7@ (IxP ADG(t,x) and Fo(t,x) = &7 (1) (|x|° A DD (2, x).
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Note that 4)(t,x) = ¥(t, x), and gif(t, x) is comparable to the function p(z, x) in [13] by
Remark 2.3. Also, we can easily check that for T > &(1),

Gy (1,x) < (TG (1, %), (t,x) €0, TIxRY,  y, <y, (2.16)

GOt x) <921, x), (t,x) € (0,00) xR, 0<8 <8. (2.17)
We record the following inequality which immediately follows from (2.16) and (2.17): for any
T > &(1),8 >0and (¢, x) € (0, T] x R¢,

(D +9))t,x) < (&I + )D(t,x) <20 (T)’Y(t, x). (2.18)

Now we are ready to introduce convolution inequalities for ¥4(¢, x).

Proposition 2.8. Assume that ¢ satisfies (1.6). Let T > 1 and 0 < @ < «aj.
(a) There exists a constant ¢ = c(d, T, ay, «, oy) > 0 such that forany 0 <t < T, § € [0, o]
and y € R,

lséﬁ(t,x)dx <ct '@y (2.19)
]R{

(b) There exists C = C(a, T) = C(d, T, a1, a, o1, b, B) > 0 such that for all x € R¢, 81,8, > 0
withd; + 86 <o, y1, 2 € Rand0 <s <t <T,

s x = DF s 2 dz <C(( =) @7 @ = sy R o7 (2 1, )

+ Ol —sysT o ()2 Pty (s )

+ (¢ —95)" o7t — B2, x)

+ o7t — s)Vls*l@*l(s)h”zszf'(t,x)). (2.20)
In particular, letting y| = y, = 81 = 8, = 01in (2.20) we have

Gt —s5,x —2)9(s,2)dz < 2C(s™" + (t — 5)7")¥ (¢, x). (2.21)
R4

(c) Forallx € R, 0 <t < T, 68,8 > 0and 0,n € [0,1] satisfying 61 + 8, < «,
1, >0(n1/2)+1y, <0(y1/o1)+681/2+1-60 > 0and 1,,>0(y2/2)+1,,<0(v2 /1) +82/2+1—1 > 0,
we have a constant Cy > 0 satisfying

t
/ / (t— s)l’G%fll (t—s,x — z)sl’"%)fj(s, z7)dzds
0 Jrd

o7 s s
<yt (gyol imisreny, T D s %yf+n+5]) (%) (2.22)

forany 0 <t < T and x € RY. Moreover, when yy, y» > 0 we further have

5 5
c2:4c3<%+1—9,”2;2+1—n). (2.23)

Proof. (a) See [13, Lemma 2.6(a)].

(b) By (2.4), it suffices to show (2.20) with the function (%7)}(r,x) = @) (x| A
1)%r(t, x). Without loss of generality we assume T > ¢(1) and for notational convenience
we drop T in the notations so we use 4(¢, x) and g}f(t, x) instead of 47 (¢, x) and (%T)‘f,(t, x)
respectively.
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First let |x| < &@~'(T). By Remark 2.3 and [13, Lemma 2.6(b)], we already have that there
exists ¢; > 0 satisfying

/15%311 (t—s5,x— Z)%:f;(s, 2)dz <c <(t _ s la i — sy gl ) ndr x)
Rd

+ o7\t — s @ (52t (r x)
+ (1 —5)' 7t — BT (L1, x)
+ o —s)Vls*lds*‘(s)VMzgf(fl(t,x)).
Note that %~(t, x) = g(t, x) by (2.3) since |x| < ¢~!(T). Using (2.5) for the left-hand side and

G(t, x) = 9(t, x) for the right-hand side, we obtain (2.20) for |x| < &~'(T).
Now assume |x| > $~!(T) and observe that

s s
/;%d gyll (t—s,x — z)gyzz(s, 2)dz

_ S1¢s _
- (/z>¢1(T), +/|z\>dr‘<r), +/\z|5¢*l(r), +/\z|5dr1<r). )gﬂ (t—s5x—2)

lx—z|> o~ L(T) lx—zl<o~1(T) lx—z|>@—L(T) x—zl<o~1(T)

x Gy2(s, 2)dz
=hL+L+5+1L.

First we assume 0 < B < 1 and obtain upper bounds for ;, i = 1,...4. For I;, using
¢~ (T) > 1 we have

I = / gﬁll(f —85,x— Z)g)fzz(s, 2)dz
Ix—z|> P~ N(T),|z|> &~ (T)

2/ Ot =) (Jx — 2 ANG(t —5,x —2)
[x—z|> &~ N(T),|z|> &~ 1(T)

x &1 (s)2 (|22 A 1)¥(s, 2)dz

Ot — s) & N(s) / exp(—b|x — z|# — b|z|P)dz. (2.24)
[x—z|> @~ 1(T),|z|> &~ 1(T)

By (2.14) we obtain

L <@ — )01 s)? exp(—b|x|P) = c; &1t — )" &~ 1(s)? Y (1, x)
<t —s) Lo — syt o2 (1, x).

where we used 61,5, > 0and t — s < T for the last line. For the estimates of I, I5 and I, we
omit counterpart of the last line above.
For I, using (2.3) we have

L= / Gt — 5, x — )G (s, 2)dz
lx—zl< @~ 1(T). 121> 2~ 1(T)

= @*10 — s @*1(5)}’2 f %Sl(t —85,X—2) exp(_b|z|/3)dz‘
|x—z|<®~U(T),|z|> D~ 1(T)

Since |x — z| < ®~!(T), using triangular inequality we have

exp(—blz|?) < exp(—b|x|F)exp(blx — z|?) < exp(b &~ (T)F)exp(—b|x|’). (2.25)
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Thus by (2.19),

I < &7t — )" &7 (5) exp(—b|x|") / G\t — 5, x — 2)dz

R4
<t —$) o7 — )T o) Y (¢, x).

By the similar way, we obtain

L <cys o7t — )1 @7 ()22t x).
When |x| > 20~ (T), we have I; = 0. So we can assume |x| < 2~ !(T) without loss of
generality for the estimate of I;. By (2.5) We have

Iy < / Gt — 5.x — G2 (s, 2)dz < 49 (2, x).
R4

Using 9(t, x) < 9, ~(T)) = 9(t, &~ 1(T)) < *? ' D’q, 2067 (T)) < ' D gz, x),
we can obtain desired estimates. Combining estimates for Iy, I,, I3 and I, we arrive (2.20) for
0<pB<l.
For the case B = 1, estimate for 14 is same as above. For I, and I3, instead of (2.25) we argue
as the following: using |x — z| < ¢~(T) and |x|, |z| > @}(T), we have
d+1

! exp( b| < e (bfzs_l(T))e ( b| )
——exp(—— —— exp(= xp(—=|x]).
o[ P(=3ikl = x| P(3 P=3

For I,, following (2.24) and using (2.15) for the fourth line and (2.8) for the fifth line we have

1
I =& 't — s @’l(s)}’?/
el @1 (D) Jz1> 217y |x — 2] 2] 4!
( b| | b| Dd
x exp(—=|x —z| — =
P 5 Z 3 Z Z
1

b
<@t —5)" &7 (s)2 exp(— < |x]) _
5 ezl L1 — 2]z

b
< &'t — e (s exp(—§|x|)/d(l Alx = 2" (A A 2™ Y)dz
R

<7t — ) (s)2 exp(—l§’|x|) =07 Nt — )" D7) 92, x)

|x |d+1
<3t —s) Lo — syt gl (29 s, x).

(c) Integrating (2.20) with respect to s from O to ¢. With (2.12), we can follow the proof of [13,
Lemma 2.6(c)]. O

3. Heat Kkernel estimates for Lévy processes

Following the framework of [5,13], we need estimates of derivatives of the heat kernel for
the symmetric Lévy process whose jumping kernel is J(|y|) (see, for example, [13, Proposition
3.2]). To be more precise, in our case, to get the upper bound of heat kernel for non-symmetric
operator of the form (1.1), we need correct upper bounds of the first and second order derivatives
of the heat kernel for unimodal Lévy processes. In this section, we will prove that (1.4) and (1.5)
are sufficient condition for the estimates of the second order derivatives in Proposition 3.2, which
decay exponentially or subexponentially.

Please cite this article in press as: P. Kim, J. Lee, Heat kernels of non-symmetric jump processes with exponentially decaying jumping kernel,
Stochastic Processes and their Applications (2018), https://doi.org/10.1016/j.spa.2018.07.003.




P. Kim, J. Lee / Stochastic Processes and their Applications xx (XXxx) xxx—xxx 15

3.1. Settings

In this section, we fix T < [1,00) and let v(dy) = v(]y|)dy be an isotropic measure
in RY satisfying fza(1 A [y|*)v(dy) < oco. Throughout this section we further assume that
v : Ry — R, is non-increasing, differentiable function.

Here are our goals in this section.

Proposition 3.1. Let X be an isotropic unimodal Lévy process in R¢ with Lévy measure v(|y|)dy
satisfying the following assumptions: ¢ is a nondecreasing function with ¢(0) = 0 satisfying
(1.6) and (1.7), and there exist constants a > 0 and 0 < 8 < 1 such that

—1

80 <v(r) < %, O<r=<1 and v({r)=< aexp(—brﬂ), r>1. 3.1
Then its transition density x — p,(x) is in CZ’O(Rd) and satisfies gradient estimates
k 0 S Py _
[Vip: ()] < ct G2 (t, x) = &7 (1) (m A 9(|X|)) , k=0,1 (3.2)

foranyO <t <Tandx € R4, The constant ¢ depends onlyonk,d, T, a, a;, a1, b, B and Cy.
With the above result, we can obtain the second gradient estimate for the isotropic unimodal

Lévy process whose jumping kernel satisfies (1.4) and (1.5).

Proposition 3.2. Suppose that ¢ is a nondecreasing function with ¢(0) = 0 satisfying (1.6)
and (1.7), and that Lévy measure J(|y|)dy satisfies (1.4) and (1.5) with 0 < B < 1. Then, its
corresponding transition density x +— p(t, x) is in C,‘,’O(Rd) and satisfies gradient estimates

IVEp@t, )| < et 9 (t,x)= &' ()F ( A 9(|x|)> ., k=0,1,2 (3.3)

td-1(1)d
forany O <t < T and x € R4. The constant ¢ depends onlyonk,d, T, a, ay,ay, b, f and C.

In the next subsection, we prove Propositions 3.1 and 3.2.
3.2. Proof of Propositions 3.1 and 3.2
In this subsection, we will combine some results in [14,11,12] to prove Proposition 3.1. Recall

that we have assumed that v : R, — R is non-increasing differentiable function satisfying
f]Rd (1 A y|2)v(| y])dy < oo. In this subsection, instead of the function @, we mainly use

2
r
—’ 0 S 1’
o(r) = for sdt1y(s)ds =7 34
o(Dr?, r>1,

Note that the integral for s91y(s)ds above is finite because of our assumption fRd(l A
IyP)v(lyhdy < oo.

To prove Propositions 3.1 and 3.2 at once, we need to consider the following conditions on
Lévy measure v(]y|)dy which is slightly more general than (3.1). We assume that there exist
constants a > 0,0 < 8 < 1 and £ > 0 such that

v(r) < art exp(—brﬂ), r> 1. 3.5
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Also, we assume that there exist a3 > 0 and a3 € (0, 2] such that
R R

a3 (_)Olz E (p( ) ,
r @(r)

0<r <R <o (3.6)

For instance, when X is an isotropic Lévy process in Proposition 3.1 we have w% < p(s)sdt! <
%, which implies ¢(r) < @(r). Using this and Lemma (2.1) we obtain (3.6) with a3 = «;.
Thus, the conditions in Proposition 3.1 imply (3.5) and (3.6).

Under (3.6), we have ¢(r) < cr® forr < 1 so that
r Sd+1 r 1
Tl < / ——v(s)ds < / s Tu(s)ds < / s N(s)ds, r<1.
o 7 0 0

Thus, letting r | 0 we obtain fol s9=1y(s)ds = oo. Now we record the counterpart of Lemma
(2.1). Following the proof of Lemma (2.1), we obtain

R R
B By o<r<nr 3.7)
@(r) r
In addition, since v is non-increasing, we have
r r d
o) = r*Zf s u(s)ds > r*2/ s y@)dr = rd‘j:rz) r<l. (3.8)
0 0

In this subsection except the proofs of Propositions 3.1 and 3.2 we will always assume that v
satisfies (3.5) and (3.6). Let X be the Lévy process with Lévy measure v(|y|)dy, and & — ¥ (|€])
be the characteristic exponent of X. First note that v(RY) = fRd v(ly|)dy = oo because
fol s v(s)ds = oo. Also, since X is isotropic, characteristic exponent of X is also isotropic

function. Define ¥(r) = sup,_, ¥ (|y[) and let P(r) = fRd(l A ‘f—f)v(|y|)dy be the Pruitt
function for X. By [1, Lemma 1 and Proposition 2], we have that for » > 0,

%P(r*l) <Y< V@) <Y () <20°PCY, 1> 0. (3.9

Using (3.9), we can prove the following lemma.

Lemma 3.3. Assume that v(|y|)dy satisfies (3.5) and (3.6). Then, ¥(r) is comparable to
go(r_l)_l, i.e., there exists a constant ¢ > 0 such that

o™ < B() <), r>o0. (3.10)

Proof. We claim that
P(r)=or)"" for r>0. (3.11)

First assume r < 1 and observe that

P(r) = / (1 /\E)V(z)dz
R4 l"z

r 1 00
= c(d) <r2/ sde(s)ds + f sdﬁlv(s)ds + / sdlv(s)ds>
0 r 1

= C(d)(l[ + I+ 13).
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logr
log2

By the definition of ¢ we have I} = go(r)_l. To estimate I, let us define k := | =5 |, the largest
logr

log2*

k
sdflv(s)ds = Z b;.
i=0

integer smaller than or equal to Then we have

2i+1,

k
051252/_
i=0 72

Using (3.6), we have

20+, 21+,

Ly < (2'r)7? / sTy(s)ds < 272 f s (s)ds
2 0

— 4¢(2i+1r)71 < 032270t3(i+1)¢(r)71.
Thus,
k

pesi < 1 3.12
L2 =50 (12
i=0

227(x3

k
0<h< b <
<hs<)his

Also, using (3.5) and (3.6) we obtain

c2p(1)
azp(r)’

1

where we used a3 < a3(1)* < Z% for the last inequality. Combining estimates of /;, I and I3
we have proved the claim (3.11) forr < 1.
Now assume r > 1. Then we have

P@r) = / (1A E)v(z)dz
R4 }’2

1 o) 2
= c(d) (rzf s v(s)ds + / (1A i—z)sdlv(s)ds>
0 1

= c(d)(@(r)™" + L).

Also, using (3.5) we have

o0
0<h < a/ sd-t=1 exp(—bsﬁ)ds = <
1

[ee] S2 o]
0<l < / —2sd_lu(s)ds < ar_z/- gd—tHl exp(—bsﬁ)ds < C3r_2.
1 r 1

Using ¢(r) = @(1)r? for r > 1 we obtain that P(r) < r~2 < @(r)~! for r > 1, which implies
(3.11) for r > 1. Therefore, (3.11) holds for any » > 0. Combining (3.11) and (3.9) we conclude
the lemma. [

Using (3.10), (3.6) and (3.7) we obtain the following weak scaling condition for ¥: there
exists a constant ¢ > 0 such that
R U(R) - R

C—1(7)“3 < v = c(;)z, 0<r <R < oo. (3.13)

Let p,(x) be a transition density of X. Since X is isotropic, x +— p;(x) is also isotropic
function for any # > 0. By an abuse of notation we also denote the radial part of the heat kernel
p:(x) of X as p,(r),r > 0.

To obtain gradient estimate for p,(x), we first follow the proof of [14, Proposition 3.1] to
construct a (d 4+ 2)-dimensional Lévy process Y whose heat kernel estimate implies gradient
estimate of X. The construction of this (d + 2)-dimensional process Y in [14] is highly motivated
by [8, Theorem 1.1].
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Lemma 3.4. Assume that isotropic unimodal Lévy measure v satisfies (3.5) and (3.6). Then there
exists an isotropic Lévy process Y in RT2 such that its characteristic exponent is € — Y (|€]),
£ € R¥*2, Let vi(|x|) and g;(|x|) be the jumping kernel and heat kernel of Y, respectively. Then
foranyr > 0,

") =~ L pyr) (3.14)
4t __andrplr ’
and

vi(r) = —Lv’(r). (3.15)

2nr
Proof. The existence of ¥ and (3.14) are immediately followed by [14, Proposition 3.1]. Note
that using (3.9) and (3.13) we have

4
tim Y2 s i 2P i
p—oologp ~ p—oow2logp ~ p—oe log p

c1p®

which is one of the conditions in [14, Proposition 3.1]. For (3.15), we just need to follow the
corresponding part in the proof of [14, Theorem 1.5]. Here we provide a brief sketch for the proof
for reader’s convenience; As in the proof of [ 14, Theorem 1.5], without using the assumption that
—V'(r)/r is non-increasing, one can show that there exists an isotropic Lévy process X@*? in
R?*+2 with jumping kernel v;(dy) and that the characteristic exponent of X“*? is y(r). Thus,
X@+2 and Y are identical in law, which concludes the proof. To show this, only [14, (8) and
(9)] are used, which follow directly from the fact that v is isotropic, unimodal measure satisfying
Jea(Iy1* A ) u(dy) <00, O

We emphasize here that we do not impose the condition (1.5) on v. Thus the function
r — vi(r) in the above lemma may not be non-increasing.

Now we are going to establish heat kernel estimates for the process Y obtained in Lemma 3.4,
which will imply heat kernel estimate and gradient estimate of X as a consequence of (3.14). To
do this, we will check conditions (E), (D), (P) and (C) (when 8 < 1) in [12] for the process X
and Y, and apply [12, Theorem 4] and [1 1, Theorem 1].

First, we verify the condition (E) in [12]. Recall ¥(r) = sup, ., ¥ (|y]).

Lemma 3.5. Assume that isotropic unimodal Lévy measure v satisfies (3.5) and (3.6). Then for
any n,m € N, there exists a constant ¢ = c(n, m) > 0 such that

/ e—“/f(\zl)|z|mdz < C!p_](t_l)n+m, t> 0.

Proof. By (3.9) and (3.13) we have that for 0 < ¢,

2N (a 00 5
/ e—tl//(|z|)|Z|de < Cl/ rn+m—ldr +CI/ e ™ tLP(r)rn+z1z—ldr
n 0 Lp—l(,—l)
o —1—1 —1 =1\
< W*l(tfl)i’H»m + le 6763t (T @ )/ )*3
W*l(zfl)

x el

= (C2 o /Ooe_c3.§-"‘1sn+m—ldr> W—](t_l)n_,_m
1

=cy4 !p—l(t—l)n-i-m’

where we have used the change of variables with s = in the last line. O

_r
T=1G-T)
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Note that Lemma 3.5 for (n,m) = (d, 1) and (n, m) = (d + 2, 1) implies the condition (E)
in [12] for the process X and Y, respectively. _
For 0 < 8 < 1 and £ > 0, we define non-increasing functions f and f by

o () .
fr) = ritlo@r)’ - and
ptl exp(—brﬂ), r>1
e(1) <l
fr) = rip@r)’ - (3.16)
rt exp(—br’s), r>1

The functions f and f above are non-increasing since forany 0 <r < R < 1,

1 ’ ' 1
= / Gy u(s)ds = / 1 rnde = / 1" (Rndt =
réo(r) o r 0 0

Here we used that v is nonincreasing. Note that by (3.5) and (3.8),

@ <cf(r) and v(r) <cf(r) for  r >0 3.17)
r

RYp(R)

In the next lemma we verify the ~condition (D) in [12] for both X and Y. In fact, we are going
to verify (D) for X with the above f and y = d, while we use f and y = d + 1 to verify (D) for

Y. Let By(x,r) = {y € R? : |x — y| < r}and recall that diam(A) = sup{|x — y| : x,y € A}

and vy (r) = —5-v'(r).

Lemma 3.6. Assume that v satisfies (3.5) and (3.6). Then both v(R?) and vi(R4+?) =
thHZ vi(|x|)dx are infinite, and there exists ¢ > 0 such that

V(A) < ¢ f(8(A)[diam(A)]¥, A € BRY). (3.18)
and
vi(A) = [ vi(lxDdx < ef(8(A)[diam(A)T', A e B(RIM?). (3.19)
A
for some ¢ > 0, where §(A) := inf{|y| : y € A}.

Proof. We have already showed that v(By(0, 1)) = v(RY) = oo. For any A € B(RY), using
(3.17) we have

V(A) = / v(|ydy < v(8(A))[diam(A)]¢ < ¢ f(8(A))[diam(A)]’.
A

This concludes (3.18).
Using v'(r) < 0, (3.1), the integration by parts and the fact v(B4(0, 1)) = co we have

0 (R4?) > /

Bg42(0,1)

1
=c limﬁ)rlf (—[rdv(")]; + d/ rd_lv(”)d”)

&

1 1
vi(|lyDdy = c(d) / rd v (ndr = ¢ liml%)nf / —rV'(rydr
0 € &

1
= ¢ liminf(e9v(e) + d/ ri=v(r)dr — v(1))
el0 e

> c2v(B4(0, 1)) — c1v(1) = oo.
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Now it remains to prove (3.19). First observe that using the integration by parts, we have that for
any0 <r <R,

R 1 R 1 R
/ s8N (s)ds = ——/ sW(s)ds = — (—[sdv(s)]:e +d/ sd_lv(s)ds)
’ 2r J, 2 -

R (3.20)
< L (rdv(r) + v(r)d/ sd_lds> = Lv(r)Rd
- 2w -

2

where we used that v is non-increasing. Now denote r := §(A) and [ :=diam(A).
When [ > r/2,using A C {y € R¥*2 : r < |y| <r + [} we obtain

)
vi(A) <viy :r <yl <r+ih = c(d)f sy (s)ds
( ) v(r)

; ld+l < C3f(r)ld+1,

v(r)(r + D7 <

where we used (3.20) and (3.17) for the_last line.
When! < r/2, choose a point yy € A with |yy| = r. Since A C By12(y0, )\ By+2(0, r), there
exists ¢4 = c4(d) > 0 such that

f Lo (dy) < eyl
[y|=s

for any s € [r, r +[]. Thus, by (3.20) and (3.17) we have

r+l ld+1 r+l
() = (BO0 D\ BO.M) Zes [ 1 s sest [ s s
d+1
< C5 [
= o pdl

which proves (3.19). O

Recall ¥(r) = sup, ., ¥ (|yD-

(+ vy = et 12 < o e,
r

Lemma 3.7. Assume that v satisfies (3.5) and (3.6). For every k < 1, there exists ¢ = c(k) > 0
such that

1
f exp(bi|yl’)vdy) < c¥(=), r>0 (3.21)
{yeR4:|y|>r} r
and
1
/ exp(brlylP)vi(dy) < c¥(=), r>0 (3.22)
{yeR+2:|y|>r} r

Proof. Since (3.21) can be derived directly from the estimate of I; below, we only prove (3.22)
here. Using the integration by parts, we have

/ exp(bi|y|P)vi(dy) = c(d) / exp(btP)t(—v'(t))dt
[y|>r r

= c(d) ([exp(bmﬁ)td( v / (exp(bitP)r?y v(t)dt)
= c(d)(I + ).
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For I,, by (3.17) lim, . ooe?™” t40(1) < lim,_ ooae t0— 14—t — 0 50 I, = " rdu(r) <

c1o(r)~!. Now let us estimate I,. First we observe that

d 41 r<1
4 Bypd : =
a1 (eXp(bKl‘ )t ) = {exp(bKtﬂ)td+ﬂ_l, P

Thus, for r > 1 we have
o0 o0
1

/ (exp(brtP)t?Y v(t)dt < c2/ exp(—b(1 — K)tPy =1 < c3r7% = C“?()).

r r q) r

For r < 1, using above estimate, (3.12) and (3.6) we get

[ee) 1 00
/ (exp(bmﬂ)rd)/v(z)dt=< / + / )(exp(b/ctﬁ)td)/v(t)dt
r r 1

1 o0
<o (/ " o(r)dt +/ exp(—b(1 — K)tﬁ)td—“ﬂ—ldt)
r 1

C.
<_4+

= c3 < ——
o(r) o(r)

Combining above two inequalities and (3.10), we obtain 11 + I, < c¢g W(%). Therefore, we have
proved the lemma. [

Using Lemma 3.7, we verify the condition (P) in [12] for both X and Y. We continue to use
the non-increasing functions f and f defined in (3.16).

Lemma 3.8. Assume that isotropic unimodal Lévy measure v satisfies (3.5) and (3.6). Then,
there exists ¢ > 0 such that

/ f (S Volyl — m) v(dy) < Cf(s)g/(l), r,s >0 (3.23)
{yeRe:|y|>r) 2 r
and
/ f (S Vyl — m) vi(dy) < Cf(S)W(l), r,s >0 (3.24)
(yeRA+2]y|>r) 2 r

Proof. We only prove (3.24) here, since (3.23) can be verified similarly. We claim that for any
0 < B < 1, there exists ¢; > 0 such that for any s, # > 0,

t
fsvit— E) < c1 f(s)exp(bkt?) (3.25)
where k = 1(27# + 1). First we define
1
df#’ r=2
fi(r) = r“ el
ptl exp(—brﬂ), r>2.

Then, since f(r) = fi(r) forr € (0, 1] U (2, 0o) we have

' fr) < i) <eaf(r), r>0. (3.26)
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s

Now assume s Vv ¢ > 2. Then, using 1 Vv 5

< sVt — 5 and triangular inequality,
t t t t
fevi=3)=(vi— 5" exp(=bls vi—3)) = (1v 5™ exp(=b(s = 5))
S t t
= (v )" exp(=bs" ) exp(b(5)") = ¢ () exp(b(3)).

Here in the last inequality we used £ > 0 and exp(—bsﬂ) <c3f(s)for0 <s <2. Whens <2
and ¢ < 2, using (3.26), (3.6) and (3.7) with s V  — £ >  we obtain

222
t t c29(1)
sVit—=)<cfitVvi—=)=
/¢ 7! = el 2 (sVi—Ddtlg(svi=1)
cap(l)
——— < s fi(s) < cs5f(5).
S g S 4J1(s) < ¢sf(s)
Here we used ; (S‘C(t‘“i 5= w‘fs(;;) ; (f(vst/i < day ! which follows from (3.6) and (3.7). Thus, we

conclude (3.25). Combining (3.25) anci Lemma 3.7, we have proved the lemma. [

Now we obtain a priori heat kernel estimates for the process X and Y. To state the results, we
need to define generalized inverse of ¢ by ¢~ '(t) ;== inf{s > 0 : ¢(s) > t}. Using (3.6) and [1,
Remark 4], we obtain

L Rup  oHR) R\ 1/a
T = 20

and

ay'plp™' () <1 < a3p(p™ (), (3.28)
which are counterparts of (2.8). First we apply [11, Theorem 3] to obtain the regularity of the
transition density p,(x) of X.

Proposition 3.9. Let X be an isotropic unimodal Lévy process in RY with jumping kernel
v(lyl)dy satisfying (3.5) and (3.6) with 0 < B8 < 1. Then x — p;(x) € C,‘,’O(Rd) and for
any k € Ny there exists ¢; > 0 such that

t
VAPl < ap™ ()7 (gol(t)d A d—) (3.29)
Ix1“@(lx )
foranyt > 0and x € RY.

Proof. Define h(t) = asin [11]. Note that by (3.10) and (3.28) we have

1
w—1l=1)
)< ¢ 1), t>0. (3.30)

Applying [11, Theorem 3] for the process X, p,(x) € C;°(R?) and forany k € N, y € [1, d] and
n > y we have constants ¢y , satisfying

; —d=k i Ly, IOV pqagar < ﬂ)n
Ve (O] < cien(h(2))™ " min 1, oD’ + 1+h(t) :

Note that we already verified [11, (8)] at Lemma 3.5. Thus, using A(¢) < ¢~'(¢) we obtain

VAP (0| < G ()™7F
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Also, taking y = d, n = d + 2 and using h(t) =< ¢~ '(z) we get

-2
vip, . —k —b(\x|/4>ﬂ+h —k d<1+ﬂ>
[Vepi(X)] < ¢, (() |x|d(p(| ) @) x| o

-1
SC(pl(t)k< + (% (I)A1)2ﬁ>
X

x|
< CGnp '@)7F

Ix“p(x|)

Ix[“o(|x])’

The last inequality is straightforward when |x| < @~ '(¢) and it follows from (3.27) and (3.28)
when |x| > ¢~ !(¢). Therefore, we conclude that

Vi) < crp™! t)"‘( ‘H“’/\;).
[Vep:(0)] < k™ ( ¢ (1) o)

Note that the gradient estimates in Proposition 3.9 is same as the ones in [13, Proposition 3.2]
except that the gradient estimates in [13, Proposition 3.2] is for r < T (see Remark 2.3).

Combining above estimates with Lemmas 3.5, 3.6 and 3.8, we can apply [11, Theorem 1] for
the process X and Y. Here is the result.

Lemma 3.10. Assume that v satisfies (3.5) and (3.6) and B = 1. Then for any T > 1, there
exists a constant ¢ > 0 such that

b b
pi(x) = ctexp(=7IxD) and qi(x) = cto” (1) exp(—71x1) (3.31)

forany0 <t < T and |x| > ¢~ X(T).

Proof. Define h(t) := m asin [11] and denote ¢;(|x|) = g;(x). Applying Lemmas 3.5, 3.6
and 3.8 to [11, Theorem 1] for the process Y in Lemma 3.4, we have that for any ¢, r > 0,

qi(r) < cih()™! <h<t>f“ A [rf(r/4>+h(t>“exp( sz og(l + M))D
ot <¢1(r>d A [tf(r/4)+<p‘(t) Tlep(—eo ,l(t)
x log(l + cs 1(t)))D
First observe that using f(4) = (5)~~" exp(—2r) for > 4 we obtain
tsv"(t)"f(i) < cerr™"! exp(—%r) < cﬂexp(—grx r>4. (3.32)

Let ¢(T) > 4 be a constant which is large enough to satisfy
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Then using (3.27) in the second inequality, for any 0 < ¢ < T and r > ¢(T') we have

@1 (0)™ " exp(—cq = ()IOg( +cs 1(t)))

RPN o(T) cy4r o(T)
<o ') leXp(—z(p_l(t) og(l + cs 1(T)))eXp(— jl(;) og(1 + cs _I(T)))
T
<o Nn)™! exp(—cs ﬁ) exp( ‘(T) log(1 + ¢ _(] (;)))

b Cot

r b y
m B Zr) = ,T(p(r) exp(_z”) < cot exp(—Zr)

<o ') exp(—cs
where cg = supsz]s‘“rl exp(—cgs) < oo. Thus,
b
a:(r) = ciote” (O exp(=7r), 1> o(T) = ple7 (c(T))).

Meanwhile, by (3.14) and (3.29) we have

be(T)
4

cute” (07!
for ¢~ !(T) < r < ¢(T). Therefore, combining above two estimates we conclude the estimate on
g in (3.31).

Note that, applying Lemmas 3.5, 3.6 and 3.8 to [11, Theorem 1] for the process X and using
h(t) < ¢~ (¢) we have

1 r b
q(r) = =—I|—p(r)] < < cnte™ () Texp(——r + )
27r dr 4

pi(r) < cio (wm A [tf(r/4)+<p‘(t) 4 exp(—c1j———)

1(t)
x log(1 +cp2 p—r ))]) (3.33)

for any ¢, r > 0. Using (3.33), the estimate on p in (3.31) can be verified similarly. [

Now we check condition (C) in [12] withrg = 1,7, = coand y =d for X (y =d + 1 for
Y, respectively). We need additional condition 0 < 8 < 1 to verify the condition (C).

Lemma 3.11. Assume v satisfies (3.5) and (3.6) with 0 < B < 1. Then, there exists constant
¢ > 0 such that for every |x| > 2 and r € (0, 1],

p 1 ~ 1 -
fr) <cr ?w(-), / flx —yhv(dy) < cW (=) f(Ix]), (3.34)
r {yeR4:|x—y|>1,|y|>r} r

and

1 1
fr) <er ' w(-), / flx —yDhvildy) < c¥(=) f(x]). (3.35)
r {yeRA+2:x—y|>1,|y|>r} r

Proof. The first inequalities in (3.34) and (3.35) immediately follow from (3.10) and (3.16).
Let us show the second inequality in (3.35). When [x — y| > M , using (2.13) and triangular
inequality, we have |x|® < |x — y|? + (2 — 1)|y|?. Thus, using th1s inequality and Lemma 3.7
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we obtain

/ Fx = yhvidy) = / _ Ix — y|7 " exp(—b|x — y|F)vi(dy)
e—yl= &L y[>r lx—yl= 5L y|>r

< (%)‘“ / el Dyl i)
y|>r
1
= 7 [ expQ" — Dt = e e UG
y|>r

So, it suffices to show that there exists a constant ¢, > 0 such that for every |x| > 2,
/ g 0= yDu@n S eaf e, (336)
I<jx—yl=

To show this, we will divide theset D :=={y : 1 < |x —y| < %} into cubes with diameter 1. Let
x = (X1,...,Xxq42). For (ay, ...,a442) € Zd+2, we define a := (v/d + 2)_1(611, ...y Q442), and
let

a 2a; +1

[xi + Xi+ ——=
IH 2«/d +2 24/d +2

be a cube with length (v/d + 2)~!. Since diam(C,) = 1 and x + a is the center of cube C,, for
< \x|+l

)

any |a| < we have ¢s > 0 independent of a such that

x|

vi(CaN D) <c3f(8(CaN D)) <c3f <(|x| la| — 5) v 7)

< callxh=lal) ™ exp (=Bl x| = lall?) < eslxI ™" exp (=b(1x| — lal)”)

where we used Lemma 3.6 for the first inequality and triangular inequality for the second line.

Thus, using |a| — % < |x —ylon C, and

pc |J Ca

|x|+1
15lal< B5FL

we obtain

flx = yhvi(dy) < — y|7exp(—blx — y|P)vi(dy)
1xl
I<lx=y|l=5 ﬂD

l<|a|<\x\+1
1, 1
< D (al= ) " exp(=blal = HFwi(CaN D)
1<|al< XL
==
<colx|™" Y lal™ exp(—blal)

x|
1<la|<Bl+1

x exp(=b(|x| = |a])P).
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Since |a| < EE by (2.13) we have |al® + (jx| — |a))? + 1 > al® + (x| + 1 = |a])} >
lx|? 4+ (2 = 2)|a|?. Thus,

WY exp(=blal®) exp(—b(lx| — [a))

[x]+1
I<la|<*=5—

< crlx|"exp(=blxlf) D" lal™ " exp(=b(2 — 2)lal?) < cs f(Ix]).
aeZd\{0}

Combining above inequalities and using (3.10), we arrive (3.36). Therefore, we conclude that the
second inequality in (3.35) holds.
The second inequality in (3.34) can be verified similarly so skip the proof. [

Now we have that conditions (E), (D) and (C) in [12] hold for the process Y when v satisfies
(3.5) and (3.6) with 0 < B < 1. Thus, we can apply [12, Theorem 4] for both X and Y.
Lemma 3.12. Let T > 1 and assume that v satisfies (3.5) and (3.6) with 0 < 8 < 1. Then, there
exists a constant ¢ > 0 such that

pi(r) < ctr~"exp(—brf) (3.37)

and

< cto ') r "t exp(—brP) (3.38)

d (r)
—pi(r
dr pr
forany O <t < T andr > 4.
Proof. Applying [12, Theorem 4] for ¥ and (3.10) we have that for 0 < ¢+ < 7, = T and
r>4rg =4,

a/(r) < cite” 7 f(r) = et (O~ exp(—brP).
Combining this with (3.14), |%pt(r)| <2mrq,(r) < et ()"t exp(—brﬂ). This concludes
(3.38). (3.37) immediately follows from applying [12, Theorem 4] for X. [

For reader’s convenience, we put the heat kernel estimates and gradient estimates in
Proposition 3.9, and Lemmas 3.10 and 3.12 together into one proposition.

Proposition 3.13. Let X be an isotropic unimodal Lévy process in R? with jumping kernel
v(|y)dy satisfying (3.5) and (3.6). Then, x — p;(x) € C;O(Rd) and the following holds.
(a) There exists a constant c¢; > 0 such that

|VI;P:(X)| <cap ') ((pl(l‘)d A ) , t>0,xeR? and keN,.

rdo(r)
(b) Assume B = 1. Then for any T > 1, there exists a constant ¢, > 0 such that
b
IVipi(0)l < et O exp(= 7). 1 €O, T], x| > ¢7'(T) and k=0,1.
(c) Assume O < B < 1. Then for any T > 1, there exists a constant ¢z > 0 such that

IVEp(0)| < esto™ ' () Fr~texp(—=br?), te(0,T], x| > ¢ (T) and k=0,1.

Proof. (a) and (b) immediately follow from Proposition 3.9 and Lemma 3.10, respectively.
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(c) Observe that forany ¢t € (0, T], o '(T) < |x| < 4and k = 0,1,
< C4t<p_1(t)_kr_£ exp(—brﬂ).

rio(r) —
This and Lemma 3.12 finish the proof. [

IVEp(x)] < cro™l(0)7*

Now we are ready to prove Propositions 3.1 and 3.2.

Proof of Proposition 3.1. Now assume that X is an isotropic Lévy process in Proposition 3.1
with Lévy measure v(|y|)dy. Recall that ¢(r) < &(r), and v satisfies (3.5) with £ = 0 and (3.6).
Therefore, we can apply results in Proposition 3.13 with the function @ instead of ¢. Using
Proposition 3.13 and (2.4), we conclude that for any ¢ € (0, 7] and x € R4

IVEp(0)] < et ()G (1, x) < e2t9° (1, x), k=0,1. O

Proof of Proposition 3.2. (3.3) for k = 0,1 and that ¢t — p(¢t,x) is in C ,;’O(Rd) immediately
follow from Proposition 3.1.

Now it suffices to prove (3.3) when k = 2. Let X be an isotropic unimodal Lévy process
with jumping kernel J(|x|)dx satisfying (1.4) with 0 < 8 < 1 and (1.5), and let ¥ (|x|) = ¥ (x)
be a characteristic exponent of X. By Lemma 3.4, there exists an isotropic Lévy process Y in
R?+2 with characteristic exponent v (r) satisfying (3.14) and (3.15). In particular, by (1.5) and
(3.15), Y is unimodal. Denote J;(|x|)dx and ¢,(]x|) be the Lévy density and transition density of
Y respectively. Using (3.15) we have

Zn/rjl(t)dtz_fr&dtz—[M];_fri;)dtz@_M_/rizt)dt.
g .t t P s r s !

Since J; is non-increasing by (1.5), we obtain that forany 0 < s < r,

" J
(r — I < / nnds < 79 (3.39)
s 2ms
and
4 1 [J J nJ
r = 9)71(s) = / hodr = - (190D —/ 79 4
s 27 \ s r . 12
1
= 2—(J(s) — J(r)). (3.40)
Tr
We claim that there exists a constant ¢ > 0 such that
g < Ji(r) < ¢ <1 and Ji(r) < cr 'exp(—brf)
— N r ——, r < r) < cr exp(=br?),
ri2gr) = T () 1 b
r>1. (3.41)

Forr <1, letting s = } in (3.39) we have J;(r) < 222 < T

(r,s) = (Cr, r) with constant C = (a%)z/d > 1 in (3.40) we have

5 > J(@r)—J(Cr) - 1 ( a 1 )
= 2nC(C — 1)r2 = 2aC(C — Dr2*rdg(r)  a(Cr)l¢(Cr)

by (1.4). Also, taking

1 1 a 1
=cC-n (“ - W) )~ 20(C = 1) r g0’

1

where we used ¢(Cr) = ¢(r)anda — —7 =

% in the second line.
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When r > 1, letting s = r — 1 in (3.39) we have
) = T8 < Dexpbir — 1) < & exp(-br),
where we used the assumptions 7 > 1 and 0 < 8 < 1 for the last inequality. We have proved
(B.ile)t. ¢ be the function (3.4) with v = J; and the dimension d + 2 (instead of d). Note that
(3.41) implies that ¢ satisfies

71’.2 r2 CI‘2

rr s S(P(”)Z T d+3 = Qs
IN —¢(s/2)ds Jo B30 (9)ds T [, st

a1 d(r) < 2¢7 d(r/2) =

=2cP(r), r < 1.

Thus, J; satisfies (3.5) with £ = 0 and (3.6) since  satisfies (2.2). Combining ¢(r) < @(r) and
Proposition 3.13 for the process Y, we have that there is a constant ¢, > 0 satisfying

-1 9
———p(t, 1) = q;(r) < 299D, r)  and <t )G D1, )

2mr or

d (r)
a'rqtr

forany 0 < ¢ < T and r > 0. From now on, assume ¢ € (0, 7] and x € R9. Also, let r = |x].
Combining above inequalities and (3.14) we have

9> d—139
IV3p(t, x)| =g zpt.r)+ ——= p(t. 0l —27TI—( rg:(r) + (d — g (r))|

<2nd (q,(r) + r|;qt(r)|> < cst (1 + rgp—l(;)—l) G@(; ) (3.42)

< et (14707 ) )G9 2, r)

where we used (2.4) for the last line. Thus, using (2.3) we obtain

IV2p(t, x)| < 2c4tG D1, 1) < 2¢, 07 (1) = 2407 ()G (1, 1),
X

r< o7\ (3.43)
Also, for $7'(t) < r < &=1(T) we have
cat 2c4tr?
V200 0)] < ol gts, gy < 2T g

P=1(1r) R A0k

<2¢07'(1)?

(3.44)

o 12
rdé(r)_zmds ()Y (e, r).

Note that above estimates are valid forany 0 < g < 1.

Now assume 0 < B < 1. Let us recall that J; satisfies (3.5) with £ = 1 and (3.6). Applying
Proposition 3.13(c) for the process Y we have

d
q:(r) < cstr~"exp(—br?) and |-l < est @' ()" exp(—brP)
r
for r > @~!(T). Thus, by (3.42)

d
\Vap(t, x)| <27d (qt(r) + r|5q,<r)|>
<cet(r™' +107' @) ") exp(—brf) < et &N () Gy (1, 1)
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for r > @~!(T). Combining this with (3.43), (3.44) and (2.4) we obtain
Vil < cst @710 Gr (1, %) < 00¥(1, %), 0<t<T.xeR"

This concludes (3.3) for0 < 8 < 1.
Similarly, for 8 = 1 using Proposition 3.13(b) for the process Y we have

b d b
qi(r) < ciotexp(—=r) and |—gq,(r)| < ciot @' (1)~ exp(=-r)
4 dr 4
forr > ¢~(T). Thus,
2 d —1p -1 b
IVip(t, 0l = 2wd ( q,(1xD + Ixl | —qi (1Dl ) < ent (o' ®) " +7r) exp(—77)
b
<cptd'()7? exp(—z|x]) = st O G (t,r),  r> 7N,
Hence, combining this with (3.43), (3.44) and (2.4) we obtain
V2 ()] < crat @1 Gr(t, x) < 159, x), 0<t<T,x R,

which is our desired result for g = 1. 0O

4. Further properties of heat kernel for isotropic Lévy process

In this section we assume that J satisfies (1.4) with 0 < g < 1 and (1.5), and that
nondecreasing function ¢ satisfies (1.6) and (1.7). As in the previous section, let X be an isotropic
unimodal Lévy process with jumping kernel J(]y|)dy and p(¢, x) be the transition density of X.
Also, let £ be an infinitesimal generator of X.

Recall that & is defined in (1.24). The following results are counterpart of [13, Proposition
3.3].

Proposition 4.1. For every T > 1, there exists a constant 0 < ¢ = ¢(d, T, a, a, o1, b, B8, Cy)
such that foreveryt € (0, T]and x, y, 7z € R?,

|p(tox) = ple.y)| < ¢ (';__l(f)' A 1) LG+ ) @.1)
and
2
|8,(,x; 2)| < c( qj'j'(t) A 1) t( Gt x £2)+9(t,x)), (4.2)

Proof. (a) Since (4.1) is clearly true when &~'(f) < |x — y| by (3.3), we assume that
&7(t) > |x —y|. Let a(d) = x + 6(y — x), & € [0, 1] be a segment from x to y. Then,
for any 6 € [0, 1] we have

l(@)] > x| — |x —a@)] > |x| — |x —y| > |x| — &7 (1),
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here we used |x — y| < @~!(¢) for the last inequality. Thus, we obtain
1 1
Ip@, x) — p(t, y)| = I/ o'(0) - Vip(t, a(0)do| < / la" O]V, p(t, a(6))| d6
0 0

1
<¢ / l )| &~ (1) "t9(t, 2(0)) dO
0
< alx =y O G, x| — (1))
<clx =y o7\ ()"tY(@, x).

Here we used (3.3) with £k = 1 for the second line and (2.10) for the last line. This concludes
4.1).
Note that using (3.3) for k = 2 and following the same argument as the above we can estimate
|V p(t,x) — Vp(t, y)|. Hence, we have a constant ¢3 > 0 satisfying
IVp(t,x) = Vp(t, y)| < eslx =y 97 ()2 1(G (1. 0) + 9, y)) (4.3)

forO <t <Tand|x —y| < &' (2).

(b) (4.2) is clearly true when ¢~!(r) < 2|z|. Now assume &~ '(t) > 2|z|. Let a(d) =
x 4+ 6z, 0 € [—1, 1] be a segment from x — z to x + z. Then, for any 6 € [—1, 1] we have
lo(@)] > |x] — $71(¢)/2, hence

18,(2, x: 2)| = [(p(r, x) = p(t, x = 2)) = (p(t, x + 2) — p(t, x))|

1
= ’/0 «'(0) - Vplt, a0)) — a'(=0) - Vp(r, x(—6))d6|

1
—| / 2 (Vplt, () — Vp(t, a(=0))do)|
0
< de3 |21 27O (129 @, 1x| — @7 (1))
<cs NP1 9, x).
Here we used |a(0) — a(—60)| < 2|z| < $~'(¢) and (4.3) for the first inequality, and (2.10) for

the second one. [

Proposition 4.2. For every T > 1, there exist constants ¢; = ¢;(d, T, a, aj, a1, b, B, Cy) > 0,
i = 1,2, such that forany t € (0, T] and x € R?,

|z
/Rd 18,(t, x; )| J(1z) dz < ¢ Ad(dij(t) A 1)2t (G(t,x £2)+9(t,x) J(|z])dz

¥9(t, x) 4.4)

A

Proof. By (4.2) we have

/Rd 18,(t, x; 2)| J(Iz]) dz

|z] 2
<c /Rd(dsflm AN TG x£2)+ 9, x) J(z)dz “s)

Iz -
<o (/Rd( 0 A l)zt%(t,x +2)J(z)dz + 19 (t, x)P(P l(t)))

=+ )
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Clearly, by (3.11) we have

L < c39(t, x). (4.6)
To estimate I}, we divide I; into two parts as
z
L = / ( |_1| )2154(t,x +2)J(z])dz +/ 19(t, x + 2)J(|z]) dz
l<o-l@y P7H(0) 21> &=1(r)
=11 +1p.

By using (2.10) in the first inequality below and (3.11) in the third, we have

I < C4tg(2‘ .X)/ |Z|2
B U gty P72

< cat9(t, x\)P(DP (1)) < cs9(t, x).

A1)J(|z]) dz

For the estimates of I;,, we will use

J(lz]) < ceb(lz]) = c6%r(t,2), |zl > 7'(@), “.7)
which follows from (1.4) and (2.1). Using (2.4), (4.7) and (2.21), we arrive

I < c(,at/ YG(t,x —2)9(t, z7)dz < c79(¢, x).
lzI> =1 ()

Here we used (2.9) for the last inequality. The lemma follows from the estimates of [y, I;, and
L. O

4.1. Dependency of p* in terms of &

Recall that

L (x) =1lim (f(r+2) = f)) k(x, 2)J(zdz
|z|>€
where J : Ry — Ry is a non-increasing function satisfying (1.4) and (1.5) with strictly
increasing function ¢ satisfying (1.6) and (1.7).
Let £ : R? — (0, 00) be a symmetric function satisfying

ko < R(z) <k forallz e R? (4.8)

where kq and k are constants in (1.2). We denote Z*® symmetric Lévy process whose jumping
kernel is given by £(z)J(|z]), z € R?. Then the infinitesimal generator of Z*® is a self-adjoint
operator in L?(R?) and is of the following form:

LY@ =lim | &+~ [ENREI (2dz

(4.9)

1
=3 lig)l (fx+2)+ flx —2) = 2f ()R (lzDdz.
€ lz|>€
(1.4) implies that when f € CZ(RY), it is not necessary to take the principal value in the last line
in (4.9). The transition density of Z®(i.e., the heat kernel of £#*) will be denoted by p*(z, x). In
this section, we will observe further properties of p*(z, x).
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Remark 4.3. The operator (1.1) satisfies all conditions in [13] with respect to the function
g;(t, x)and @(r~1)~! except [13, (1.7)]: Recall from Remark 2.3 that g;(t, X) is comparable to the
function p(¢, x) in [13]. Moreover, by Lemma 3.3, The characteristic exponent of any symmetric
Lévy process whose jumping kernel comparable to J(|z]), is comparable to @(r=')~!. Clearly
(2.2) and [13, Remark 5.2] with (1.4) imply [13, (1.4), (1.5) and (1.9)]. Also, we obtain gradient
estimates with respect to G(t, x) in Proposition 3.9, which are same as the gradient estimates
in [13, Proposition 3.2]. Under these observations, one can follow the proofs of [13] using (1.4)
instead of the condition [13, (1.7)] and see that [13, Theorems 1.1-1.3] hold under our setting.

Using the Remark 4.3, from the remainder this paper we use [13, Theorems 1.1-1.3] without
any further remark

Let R := & — “0. Then, 2 < f{(z) < k1. Let pﬁ be the heat kernel of symmetric Lévy
process Z" whoseJumpmg kernel is ﬁ(z)](|z|)dz and p 7 (t,x) = p(Kot x) be the heat kernel
of symmetric Lévy process z? whose jumping kernel is KO J(|z])dz. Without loss of generality,

we can assume that Zﬁ and Z72 7 are independent. By [9, Theorem 1.2], there exists a constant
c=c(T)=cd,T,a,a, a1, b, B, Cy, ko, k1) > 0 such that

PR, x) < ct9(t, x) forall 0<r<T, xeR (4.10)

for every R satisfying (4.8). Also, by Remark 4.3 we have [13, (3.21)]. We record this for the
readers:
apr(e,x)

Py ), lim p( x) = So(). (4.11)

Since Z*® and Z 7 are independent, Z fand Z8 + Z 7 have same distributions. Thus, we have

Py = / dp%°<r,x—y>pﬁ<t,y>dy
2 (4.12)

4 _
/Rd p(got, x —y)pit, ydy.

First we extend Propositions 3.2 and 4.1-4.2.

Proposition 4.4. There exists a constant ¢ = ¢(d, T, a, ai, a1, b, B, Co, kg, k1) > 0 such that
foranyt € (0,T]and x,y,z € R?,

IVepi(t, )| < ct 1) ' 91, x), (4.13)
PR, x) — pR, Y < ct(@H ) x — vl A DE (@, x) + (2, y)), (4.14)
18,a(t, x5 2)| < ct((D7' @)z A D (1, x £2) + (1, x)), (4.15)
and
deS,,ﬁ(t,x; DI (zdz < c¥(t, x). (4.16)
R
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Proof. (a) Using (4.12), (4.11), (3.3), (2.21) and (2.9) for each line, we obtain
a K =
Ve p®(t, x)| = ‘Vx/ p(=t,x — )t y)dy‘
Rd 2
Ko
< ‘ / Vip(t, x —y)tg(t,y)dy‘
R4 2

<c /Rd t@‘l(t)‘lg(%t,x —y) x t9(t, y)dy
< et 0™ O + T )
<3t ') 'Y, x).

(b) Using (4.12), (4.11), (4.1), (2.21) and (2.9) we obtain

K K 5
1P, x) — P )| < /1"’(30’ x =9 p(gy — lp (¢ dz
R{

lx — yl Ko Ko
<e /R (EZD A Eax 0+ 9y -2

X t9(t, z7)dz
lx — yl
P-1(1)
lx — yl
P=1(1)
(c) We use (4.12), (4.11), (4.2), (2.21) and (2.9) for each line to estimate |5, (7, x; 2)|.

= a( ADE A+ %)t, )+ 91+ %)t, ¥)

< ast(

ADE(, x)+ 9, y).

Ko 3
18,01, 2: )| < /dwp(;r, x — i lp, y)dy
R

<e [ (@022 A 1)(%(%, x—y+o)+ %(%r, x =)
Rl
x t9(t, y)dy
< ot (@) 2l A D@ + %)r, xE)+ Y1+ %)t, X))
<3t @O Nz)? A IDZ (@, x £2) + 91, x)).
(d) We use (4.12), Fubini’s theorem, (4.11), (4.4), (2.21) and (2.9) for each line to estimate
fRd|8pﬁ(t,x; D|J(|z])dz.
/ 8,a(t,.x; D1 (12dz < / / 185(21,x — v; DI, Yy I (l2dz
Rd R JRd 2
= f ( 18,221, x —y:z)|J(|z|)dz> p(t, y)dy
Rd ]Rd 2

< clf G x — ) X 190, y)dy
R4 2
<9+ %)r, X) <9t x). O

Next, we obtain continuity of transition density with respect to K. This is the counterpart
of [13, Theorem 3.5].
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Theorem 4.5. There exists a constant ¢ = ¢(d, T, a, ay, a1, b, B, Co, ko, k1) > 0 such that for

any two symmetric functions 81 and R, in R¢ satisfying (4.8), any t € (0, T] and x € R%, we

have
|pfi(t, x) — p™2(t, x)| < cllfi — Ralleo 19(2, )., (4.17)
VPR, x) = Vp™(t, 0)| < cllfi = Kl @ ()19, x), (4.18)
and
/ 18,13 2) = 8, (1, x5 D1 (122 < R = Ralloob (2, ). (4.19)
R

Proof. (a) p®i(s, y)is uniformly bounded on s € [#/2, t] by (4.10) and lim,_,, p*2(t—s, x—y) =
So(x — y) by (4.11). Thus, we have

lim | p™is, y)p™2(@t — s, x — y)dy = p™i(t, x).
sttt Jwrd

By the similar way, we get

lim [ p™i(s, »)p™(t — s,x — y)dy = p™2(t, x).
s40 Jpd

Hence, for ¢ € (0, T] and x € R?,

" d ]
/— / PG, y)pRt —s,x — y)dy | ds
0 dS R4

Using (4.11) in the second line, the fact that £*1 is self-adjoint in the third line and (4.9) in the

PR, x) — p2(t, x)| =

fourth line, we have

t/2 d .
/ - (/ PG, ypRt — s, x —y)dy) ds
0 S R4

t/2 X ‘
N / (/{ (LR pRi(s, y)p™t —s,x — y) — pHi(s, y) LT
0 Rd
x pR2(t —s5,x — y)) dy> ds

12
= / (/ pGs, y) (LN — L) pP(t — s, x — y)dy) ds
0 R

1 t/2 R
=5 / </ (s, y) (/ 817»@2([ —s5,x —y; 2)Ri1(2) — ﬁﬁz))](lzl)dz) dy) ds.
0 R Rd
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Hence, by using (4.16), (4.13) and the convolution inequality (2.21), we have

t/2 d
/ — (/ pR(s, y)p2(t — s, x —y)dy> ds
0 ds R4

1 t/2
s—uﬁl—ﬁznm/ / PH(s.y) / 8,5t = 5.x = v 2| I(12dz ) dy ) ds
2 0 RrRd Rd P

12
<ol — ﬁznoof / $G(s, YDt —5.x — y)dyds
0 R

12
< ollfi — falleo / s(s™ 4t — ) Gt x)ds < 3] 8y — K119 (¢, x),
0

forallr € (0, T]and x € R?. By the similar way, we also obtain

tod
/ d—(/ pﬁ‘(s,y)pﬁz(t—s,x—y)dy)ds
t)2 as R4

1 t
f (/ Pﬁz(t—s,y)(/ 5pﬁ1(s,x—y;z)(ﬁ1(z)—ﬁz(z))l(lzl)dz>dy>ds
t/2 \JRd R4

2
t
<cllfi — ﬁzlloo/ / (t —5)9(s, )Yt —s,x — y)dyds
t/2 JRA
< 3|81 — Rallt¥ (2, X).

Therefore, we arrive

IpRi(t, x) — p2(t, x)|

t/2 d
< [ o </ pH (s, y)p™(t — 5, x — y)dy> ds
0 N R4
td
+ / — </ pRi(s, )™t — s, x — y)dy> ds
t/2 ds R4

< 2c3||R1 — Rollect¥ (2, X).

(b) Set ﬁ,-(z) = Ri(z) — ko/2, i = 1,2. Using (4.12), (3.3), (4.17), (2.21) and (2.9), we have
that forall 7 € (0, T] and x € R,
VP10 = Vp, x| = ‘/ Vo (Frx =) (P » = o ) dy‘
R4

K
<ali— Ralle? 071 [ GCD0x =90 dy
R

< ollf — Rl @ ) 91 + %)r, x)
< 3] — Rallw ()11, x).
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(c) By using (4.12), (4.2), (4.17), (2.21) and (2.9) we have that forany ¢ € (0, T]and x, z € R,

. R )
B0, (0.3 = Syt 0 = | [ 8,C00x =312 (P00 - 000 3) dy)
R4 2

< clllfi — Kol (@7 @) 2l A 1) fd@(%t, x—yE)+Yt, x — )G, y)dy
R

< el R — Ralloo( (02l A1) (D1 + %)t, X2 +D( + %)t, )
< 381 — Rollao(B71 O 2l A1) H(F 0, x £ 2) + 91, X)).

Integrating above inequality we obtain that

[ 18,0 00x52 = 8,0 212z
R

< sty —ﬁ2||oo/ (B A 12 @0 x £ 04 D0 ) I
R4 P (t)

< cllRi — Kol (1, x),
where the last inequality follows from Proposition 4.2, [

Estimates in this section are almost same with [13, Section 2 and 3] except these: First of
all, the function ¢ is different from [13], hence our estimates are more precise than estimates
in [13]. However, we do not have estimates for third derivatives in terms of ¢ of the heat kernel
in Proposition 3.2. Thus, we do not have the improvements on [13, (3.14) and (3.18)], which are
used for the gradient estimate of the function p“(¢, x, y) in Theorems 1.1-1.4, for instance, [13,
Theorem 1.1(2) and 1.2(4)].

5. Estimates of p*(¢, x, y)

For the remainder of this paper, we always assume that ¥ : R? x RY — (0, 0o) is a Borel
function satisfying (1.2) and (1.3), that J satisfies (1.4)—(1.5) with the function ¢ satisfying (1.6)
and (1.7).

For a fixed y € R?, let Ry(z) = «(y, z) and let L% be the freezing operator defined by

LY =tim [ 8;(e; ey, 2 (12hdz. G.D

|z|>¢

Let p,(t,x) == p*(t, x) be the heat kernel of the operator £*v. Note that R, satisfies (4.8) so
that there exists a constant ¢ > 0 such that

py(t,x) <ct9(t,x) forallx,ye RY, 1 € (0, T]. 5.2)

By Remark 4.3 and [13, Theorem 1.1], we have a continuous function p“(f,x,y) on
(0, 00) x R? x R? solving (1.11) and it satisfies

p“(t,x,y)gctg(t,x—y), 0<t<T and x € R?

In this section, we will investigate further estimates and regularity of p“(z, x, y). We first
recall the construction of p* from [13, section 4]. For ¢ > 0 and x, y € R?, define

2
= (L% = L) py(t, )x = ). (5.3)

1
dolt %, y) = /Rd 8y (1. X — y1 D (x. 2) — k(3. DT (J2])dz
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For n € N, we inductively define the function g, (z, x, y) by

t
qn(t,x, Y) ::/ /dQO(f—S, X, Z)anl(*& Z, )’)dZdS (54)
0o Jr
and
o0
q(t, x,y) =Y qult, x, y). (5.5)
n=0
Finally we define
t t
oy(t, x) = / oy(t, x, 8)ds = / /d p.(t —s,x —2)q(s, z,y)dzds (5.6)
0 0o JRr
and

Pt x,y) = pyt,x —y)+¢,(t,x)=p,(t,x =)
+f f p.(t —s,x —2)q(s,z, y)dzds. 5.7
0 R4

As [13, section 4], the definitions in (5.3)—(5.7) are well-defined. In other words, each integrand
in (5.3)—(5.7) is integrable and series in (5.5) absolutely converge on (0, c0) x R4 x R4,
In the next lemma, we will establish the upper bounds of p*.

Theorem 5.1. Forevery T > 1 and §y € (0, 5] N (0, a1 /2), there are constants ¢; and c; such
that for any t € (0, T]1and x, y € R,

|y (1. 0| < c1t(4,° +G2) (6. x — y) (5.8)
and

P, x,y) < ct9(t, x — y). (5.9

The constants ¢; and c; depend ond, T, a, ay, a1, b, B, Cy, 8o, 8, ko, k1 and k.

Proof. We first claim that for n € Ny,

|gn(t, X, )] < d(Gi0 4110, + Dot ) (0. X = ¥) (5.10)
with
F((S()/Z)H-H

- n+1 _ n+1
dy = (16C(8. T)c2)" " [ | B(0/2. k8o/2) = (16Cc2) TSN

k=1

where C = C(8p, T') is the constant in (2.20). Without loss of generality, we assume that
C > 1/16.
For n = 0, using (5.3), (1.2), (1.3) and (4.16) we have
1
lqo(t, x, )| < E/dlcspy(t,x =y Dk (x, 2) — «(y, 2)J (|zDdz
R
<c(x =y Al) /d|8py(t1 x —y;2)lJ(|z)dz
R

<o(x =y Al)G(@t,x —y) = czggo(t, X —y).
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Suppose that (5.10) is valid for n. Then fort < T,

t
an+1(t,x,y)|§/ / lgo(t — s, X, 2)qn(s, z, ¥)|dzds

< ¢ad, / / GOt — s, x — D Gorns, + nao)(x z = y)dzds
< 16Ce2d, B(So/2., (n + 1)80/2)(G0 1215 + Fs 1y, ) (12X — )

= n+1(g(n+2)a + g(n+l)50)(t’ xX—=y)

here we used induction in the second line, and used (2.22) and (2.23) in the last line. For the third
line, we need the following: let® = n =1,y = § = 0,8 = §p and y» = (n + 1)5p which
satisfy conditions in Proposition 2.8(c) since &y € (0, v /2). Then, by (2.22) we have
t
f Gt — 5. % — DG 0r4 15,5, 2 — y)dzds
R4
<4CB(8p/2, (n + 1)80/2)( (n+2)5 %H])BO + g(n+2)60)(t X —Yy)
< 8CB(80/2. (n + 1)80/2)(Fir 1215, + Doy 1) (1 X — ¥)-

Also, letting 8 = n =1,y = 0,8 = 8§ = § and y» = J§y which satisfy conditions in
Proposition 2.8(c),
! 5
/ Gt —5,x —2) nao(x, 7z — y)dzds
0 JRrd

= 4CB/2. (0 Do)l + G i T Fotesg) 12X = )

< 8CB(80/2, (n + 1)80/2)(%) 2% +£4(,,+1),30)(t, x—y).

Thus, (5.10) is valid for all n € Ny. Note that

o0
> d, NTY = Cy(8, T) < o0 (5.11)
n=0
—1 (n+1)3,
since % 16Cc, 31 (T)Y0B(8y/2, (n + 1)89/2) — 0 as n — oo. So, by using

(2.16) in the second line we obtain

Zmn(t X, y) < Zd 0 s LNt x — )

< Zdn SN TY (G0 + ) (1. x — y) = C1(F +4,°) (6. x — y)

n=0

fort < T. Therefore, forevery ¢ € (0, T]and x, y € R4,

lq(t, x, ) < C1(Gn +4,°)(t, x — ¥). (5.12)
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To obtain (5.8) and (5.9), we calculate that
t
pos [ p=sx =iz vldzas
0 JR

t
Sca/ / (t—s)%(t—s,x—z)(%%%—%’s(’)(s,z—y)dzds
0 JRA

< cut (90 +4°) (. x =)
<2c, O NTY19(t, x — y) = cst9(t,x —y), forallr e (0,T].

Here we used (4.11) and (5.12) for the second line, (2.22) for the third line and (2.18) for the last
line. Therefore, using (4.11) we arrive p“(z, x, y) < py(t, x—=y)+lpy(t, X)| < cst9(t, x—y). O

We concludes this section with some fractional estimates on p“(z, x, y).
Lemma 5.2. Forevery T > 1 and y € (0, 11N (0, «y), there exists a constant c3 such that for
anyt € (0, T]and x,x',y € RY,
|p“(t. x, y) = p(t. 5", y)| < calx = x|V t(gfy(t, x—=y+ gi)y(t, x' — y)).

The constant c3 depends ond, T, a, ay, a1, b, B, Co, ¥, 6, ko, k1 and k.

Proof. Assume that x, x’, y € R? and t € (0, T]. By (4.14) and the fact that y < 1, we have
|p(s,x —2) — p(s, x' —2)| < cilx —x'|Vs @"(s)_y(%(s, x—2)+%9(s, x' — Z))(5 13)
<cilx —x'"s(9%, (s, x =)+ 90, (5, x' = 2)). '
foranyO0 <s < T and z € R?. Thus, by (5.12), (5.13) and a change of the variables, we further
have that for §g := (§ A «1/4) € (0,81 N (0, a1 /2),
t
0,00 =00 = [ Ipitr—s.x =2 = putr = 5. = Dl lg(s. 2 9l dzds
0 JR

t
Y _ 0 _ _ 0 _ r_
<colx — x| /0 Ad(t s)(%_y(t S, X —2) +§€_y(t S, X z))
x (9" +90)(s.2 — y)dzds
<cslx = x/lyt(g9y+ao(t, X= WG x =)+ G (X =)+ G - y))
<2c30 1 (1)) — x| 1(9°, (1, x — ) +9°,(t.x' —y)), forallz € (0, T].

Since y < «aj, the penultimate line follows from (2.22) (with 6§ = 0), and the last line by (2.16)
and (2.17). The lemma follows by combining above two estimates and (5.7). [

6. Proof of Theorems 1.1-1.4

In this section we prove the main theorems in Section 1. We first prove that the function
p (t, x, y) defined by (5.7) satisfies all statements in Theorems 1.1-1.4, then we show that
p“(t, x, y) is the unique solution to (1.11) satisfying (i)—(iii) in Theorem 1.1.

Proof of Theorems 1.3 and 1.4. It follows from Remark 4.3 that we can apply the results in [13,
Theorem 1.1-1.4] for operator (1.1) with the function 4(t, x). Note that the function p*(¢, x, y)
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in [13, Theorems 1.1-1.4] is constructed by the same way as (5.7). Therefore, Theorems 1.3 and
1.4 except (1.20) immediately follow from Remarks 2.3 and 4.3, and [13, Theorem 1.1(iii), 1.2
and 1.3]. Finally (1.20) is proved in Lemma 5.2. [

Now we prove the lower bound estimates in Theorem 1.1 and Corollary 1.2 for the function
p“(t, x, y)in (5.7). By Theorems 1.3 and 1.4, we have that (P/),~( defined by p“(z, x, y)in (5.7)
with (1.22) is a Feller semigroup and there exists a Feller process X = (X;, P,) corresponding
to (Pf);>0. Moreover, by (1.23) for f € Ci’g(Rd),

FOXD) = fOr) — / L5 F(X,)ds ©.1)
0

is a martingale with respect to the filtration o (X, s < t). Therefore, by the same argument
as that in [5, Section 4.4], we have the following Lévy system formula: for every function
f :R? x R? — [0, co) vanishing on the diagonal and every stopping time S,

S
E. Y f(X,-.X,)=E, / f(Xo ) Ix (X dy)ds . 6.2)
0<s<S§ 0

where Jx(x,y) :=«(x,y — x)J(]x — y|). For A € B(R?) we define 74 := inf{r > 0 : X, & A}
be the exit time from A.

Using (6.1), (1.2) and (3.11), the proof of the following result is the same as the one in [13,
Lemma 5.7]. We skip the proof.

Lemma 6.1. Let T > 1. For each ¢ € (0, 1) there exists . = A(e) > 0 such that for every
O0<r< (D),

sup P, (rB(x,,) < A@(r)) <eg. (6.3)

xeRd
We record that by (6.3), for any x € RY and 0 < r < &~ 1(T) we have
A
Elte.n] = A1/2) 2P (Tx.r) > AP(r)) > 5¢(r) =cP(r). (6.4)

Now we are ready to prove the lower bound in (1.15).
Lemma 6.2. The function p“(t, x, y) in (5.7) satisfies (1.15).

Proof. Fix T > 1. Let py(z, x) be the heat kernel of the freezing operator in (5.1), and
Jy(2) = k(y, 2)J(|z]) and ¥,(z) be the corresponding Lévy measure and characteristic exponent,
respectively. By [11, Theorem 2], there exist constants Cy, C, > 0 such that

py(t,x) > C o7 ()77, t€(0,T],y e R and |x| < C, o7 '(1). (6.5)

Indeed, Jy(z)dz is symmetric and infinite Lévy measure by (1.2) and that J(|z|)dz is infinite
Lévy measure. To check the condition [11, (3)], we need to show that there exists a constant
¢ > 0 such that

/ e @zldz < chy()™, 0 <1,y eR (6.6)
R4

Please cite this article in press as: P. Kim, J. Lee, Heat kernels of non-symmetric jump processes with exponentially decaying jumping kernel,
Stochastic Processes and their Applications (2018), https://doi.org/10.1016/j.spa.2018.07.003.




P. Kim, J. Lee / Stochastic Processes and their Applications xx (XXxx) xxx—xxx 41

where h(1) = ﬁ and ¥,(r) == sup,.-,¥,(2). Let P(r) == fra(1 A E5)J(jz)dz and

Pyr) == [oa(1 A ‘r'z )Jy(1z])dz. Then, by [11, (11)] we have
cikoPr™") < o Pyr™) < Wy(r) < 2P,(r ) < 2 P(rY), 1 > 0. (6.7)
On the other hand, by the symmetry of J, and [11, (10)], we have

¥y(z) > (1 —cos 1) |& - 2|2 J,(d&) > Ko(1 — cos 1) & - z)*J (€ )dE.
|&1<1/]z| |&1=<1/|z|

Since by a rotation

L 1/HIE~z|ZJ(|E|)d$ = Iz|2/ E2J(EDdE, i=1,...,d,

[&1<1/z|
we have
¥y(z) > d k(1 — cos 1)]z)? €T (1E])dE.
[&1<1/z|
Thus, when |z| < 1 we have
¥y(2) = d ieo(1 — cos 1|z EPT(dE) > crlz]* = c3D(z| ™),
[El<1

whereas by (1.4) we have

1/1z]
¥y (2) = d” ' io(1 — cos D]z / 17T (d§) = culz)? / —dS—C495(|Z| h
lE1=1/1z] P(s)
for |z| > 1. Therefore, using (3.11) and (3.9) we obtain
¥y (2) = es (2|7 = e6P(lz]) = (co/¥(I2)). (6.8)

Moreover, (3.11) and (6.7) also imply that A,(¢) =< o71(1) < h(t) =
(6.8) we can follow the proof of Lemma 3.5 and obtain (6.6) as

#t_]). From this and

/ e™"gldz < / eSO zldz < crh(D) ™! < eshy (T
R4 R
0<tyeR. (6.9)

Note that every constant above is independent of y. Therefore, letting f(r) = 0 we obtain all
conditions in [11, Theorem 2] so we have (6.5) where C; > 0 is independent of y.
The rest of the proof is almost identical to the one of [13, Theorem 1.4]. Note that there is
minor gap in [13, (5.36)]. We provide the full details here including the correction of [13, (5.36)].
Choose #y € (0, T'] small enough to satisfy 2¢; 7! (#p)% < C;/2 where ¢; and 8 are constants
in (5.8). Then, using (5.8) and (2.18) we have that forany 0 < ¢ <ty and x, y € R?,

lpy(t, )| < c1t(4,° + G0Nt x — y) < 2¢1 87 (20)01F (2, x — y)

IA

C
2e1 07 (1) &7 (1) < 7‘45—1(0—".

Thus, combining above inequality and (6.5) we obtain

C
PEt,x,y) = pylt,x — ¥) 4+ ¢y(t, x) > py(t,x — y) — |$y(t, x)| > 7145—‘0)—‘1

Please cite this article in press as: P. Kim, J. Lee, Heat kernels of non-symmetric jump processes with exponentially decaying jumping kernel,

Stochastic Processes and their Applications (2018), https://doi.org/10.1016/j.spa.2018.07.003.

20

21

22

23

24

25

26

27

28

29



42 P. Kim, J. Lee / Stochastic Processes and their Applications Xx (XXXX) XXX—Xxx

for0 <t < tgand x,y € RY with [x — y| < C,8'(r). By (1.19) and iterating at most
no = [T /ty] + 1 times, we obtain the following near-diagonal lower bound

Pe(t,x,y) > C307 ()™ forallr € (0, T]and |x — y| < C4&~ (1) (6.10)

for some constants C3, C; > 0. Indeed, for r € (0, 7] and x, y € R? with |x — y| < C497'(r)
where C4 := C(nyg /al)l/ @ e (0,27 isa sufficiently small constant satisfying

t
Cid7 (1) < G071 (—)
no

by (2.8). Letn = L%J + 1 and zy, ..., z,—1 be the points in the segment from x to y
satisfying |21 —x| = |zj+1 —zi| = [y —za—1| = “=2. Note that n < ng since [x —y| < C4&~'(1).

Then, by (1.15)

pk(t,x, y) = /d /d pi/n, x, w)p“t/n, wy, wr)...p@{/n, wy_1,y)
R R

X dlU1 .. .dw,,_l

Z/ , / pr@t/n, x, w)p(t/n, wi,wy)...p"(t/n, w1, y)
B(z, B2 B(z,_1, 5220

x dwy...dw,_

— ¥\~ C? t

< -l X = yl\-o Dd M1 gty o o g1l
= o) (F5,) 2 2 G
Here we used % > % &~1(1), n < ng and (2.8) for the last line. Therefore, we obtain (6.10).
Now we assume |x — y| > C;®~'(¢) and let A > 0 be the constant in Lemma 6.1 for ¢ = 1/2
and 7(z, c,t) = TB.cd—1 (1) Then forevery 0 <t < T,

1
sup P, (t(z,27%Cy, 1) < A1) < = (6.11)
zeRd 2

Leto =inf{s > 0: X, € B(y, 272C4 9 '(¢))} be the hitting time of B(y, 272C4$~'(¢)). By the
strong Markov property and (6.11) we have

P, (XM € B(y. 2—‘0445—10))) > Py (o <A, osup X — Xo| < 2—20445—10))

selo,rt]

=E, (IP’XG( sup | X, — Xo| < 2’2C4®’1(t)); o< M)

s€[0,A1] (6.12)

> inf  P.(t(z,27%C4. 1) > At)Py (0 < At)

2€B(y, 1)

1 1 -2 -1
> E]P’x(a <) > i (Xinewo-3cn € BOL272C071 (1))

Since |x = y| > C4$~'(¢), we have
Xy & B(y,272C407' (1) € B(x,273C4®7'(1), s <M AT(x,273Ca, ).
Thus,

l{XAtAr(x,2*3C4.t)EB()’,2_2C4‘P_l(t))} = Z I{XS'EB()"Z_ZC“(P_I([))} ’
sf)\t/\r(x,Z*3C4,t)
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Therefore, by the Lévy system formula in (6.2) we obtain

Py (Xuinewa-3c, € B, 272C407' (1))

MAT(x,273Cy,1)
E, / / Jx(Xs,u)duds
0 B(y.272C4 97 1(1))

MAT(x,273Cy,1)
> E, f f 0d Xy — uD Ly, sy dicds | . (6.13)
0 B(y,272C4 971(1)

Let w be the point in the segment from x to y satisfying |[w — y| = 3 -27*C,®~!(¢). Since
|x — X,| <273C4®!(¢), we have that for any u € B(w, 2 *C4 P~ (1)),

Xy —ul < |x = X[+ |x —w[+ [w —u| < [x -y

so that B(w,27*C4@7'(t)) € B(,272C,@7 ') N {u : | Xy, — u| < |x — y|} for every
s < At AT(x,273Cy, 1). Thus,

MAT(x,273Cy.1)
E, / / i0J (1 Xs — ul)jusix,—u|<x—yy duds
0 B(y, &~1(1)

MAT(x,273C4.1)
> kolE, / / J(x —yl)duds (6.14)
0 Bw,2~4Cy &1 (r))

> 1 07 () T(Jx — yDEL[At A T(x,273Cy, 1)]
> ot @' I (1x = yI),

where we used (6.4) and (2.2) for the last line.
Therefore, combining (6.12)=(6.14) we arrive

P, x,y) 2/ PO, x, 2)p (1 = Mt, z, y)dz
B(y, =1@)
> inf P =Mt z,y) P, x,2)dz
2€B(y,271C4 &7 1(1)) B(y,2~1Cy -1(t))

>t )™ ) T (Jx — y)).
forall0 <t < T and x, y € R with |x — y| > C, 7 '(¢). O

Proof of Theorem 1.1. By Remarks 2.3 and 4.3, p“(¢, x, y) defined in (5.7) satisfies (1.11),
(1.13) and (1.14). Also, (1.12) and (1.15) follow from Theorem 5.1 and Lemma 6.2, respectively.
It remains to show the uniqueness part of Theorem 1.1. Recall that we observe in Remark 4.3
that [13, (1.9)] holds. Thus all results in [13, Sections 5.1 and 5.2] hold for our case. Since
properties (i)—(iii) are stronger than ones in [13, Theorem 1.1], we now see that the proof of the

uniqueness part of Theorem 1.1 is exactly same as the one of the uniqueness part of [13, Theorem
1.1]. O
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